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f -COHOMOLOGY AND MOTIVES OVER NUMBER RINGS
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Abstract

This paper is concerned with an interpretation of f -cohomology, a modification of

motivic cohomology of motives over number fields, in terms of motives over number

rings. Under standard assumptions on mixed motives over finite fields, number fields

and number rings, we show that the two extant definitions of f -cohomology of mixed

motives Mh over a number field F—one via ramification conditions on l-adic

realizations, another one via the K-theory of proper regular models—both agree

with motivic cohomology of h!�Mh½1�. Here h!� is constructed by a limiting process

in terms of intermediate extension functors j!� defined in analogy to perverse sheaves.

The aim of this paper is to give an interpretation of f -cohomology in terms
of motives over number rings. The notion of f -cohomology goes back to
Beilinson who used it to formulate a conjecture about special L-values [6, 7].
The most classical example is what is now called H1

f ðF ; 1ð1ÞÞ, f -cohomology of
1ð1Þ, the motive of a number field F , twisted by one. This group is O�F nZ Q, as
opposed to the full motivic cohomology H1ðF ; 1ð1ÞÞ ¼ F�nQ. Together with
the Dirichlet regulator, it explains the residue of the Dedekind zeta function zF ðsÞ
at s ¼ 1. This idea has been generalized in many steps and many ways, for
example to the notion of Selmer complexes [36]. This work is concerned with
the f -cohomology of a mixed motive Mh over F . There are two independent yet
conjecturally equivalent ways to define H1

f ðF ;MhÞHH1ðF ;MhÞ. We interpret
the two definitions of f -cohomology as motivic cohomology of suitable motives
over OF . This idea is due to Huber.

There are two approaches to H1
f ðMhÞ. The first is due to Beilinson [8,

Remark 4.0.1.b], Bloch and Kato [11, Conj. 5.3.] and Fontaine [20, 22]. It is
given by picking elements in motivic cohomology acted on by the local Galois
groups in a prescribed way (Definition 6.1, Definition 6.4, Definition 6.6). The
second definition of H1

f ðMhÞ, due to Beilinson [7, Section 8], applies to Mh ¼
h i�1ðXhÞðnÞ, with Xh smooth and projective over F , i � 2n < 0. It is given by
the image of K-theory of a regular proper model X of Xh (Definition 6.10).
Such a model may not exist, but there is a unique meaningful extension of this
definition to all Chow motives over F due to Scholl [44].
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Our main results (Theorems 6.8, 6.11, 6.13) show that both definitions of
H1

f ðMhÞ agree with H0ðh!�h i�1ðXh; nÞ½1�Þ. Here h!� is a functor that attaches
to any suitable mixed motive over F one over OF . It is defined by a limiting
process using the intermediate extension j!� familiar from perverse sheaves [10]
along open immersions j : U ! Spec OF . Even to formulate such a definition,
one has to rely on profound conjectures, namely the existence of mixed motives
over (open subschemes of ) Spec OF . The proof of the main theorems also
requires us to assume a number of properties related to weights of motives.

We point out that previously Jannsen and Scholl have shown the agreement
of these two notions (in the case Mh ¼ hiðXhÞðnÞ, Xh=F smooth and proper) under
weaker hypotheses than the ones considered here [42]. Also Scholl uncondi-
tionally proved the agreement for products of smooth projective curves over F
(op. cit.). Our motivation for studying and employing this stronger set of
assumptions about motives lies in an application to special L-values conjectures
[40]. Very briefly, Beilinson’s conjecture concerning special L-values for mixed
motives Mh over Q has f -cohomology as motivic input. L-functions of such
motives can be generalized to motives over Z such that the classical L-function of
Mh agrees with the L-function (over Z) of h!�Mh½1�. Thereby the L-function and
the motivic data in Beilinson’s conjecture belong to the same motive over Z, thus
giving content to a more general conjecture about special L-values for motives
over Z. In this light it is noteworthy that H0ðh!�h2n�1ðXh; nÞ½1�Þ identifies with
the group that occurs in the part of Beilinson’s conjecture that describes special
values at the central point.

The contents of the paper are as follows: Section 1 is the basis of the
remainder; it lists a number of axioms on triangulated categories of motives.
Such categories DMgmðSÞ have been constructed by Voevodsky [45] and Hana-
mura [24] (over fields) and Levine [33] (over bases S over a field). The various
approaches are known to be (anti-)equivalent, at least for rational coe‰cients
[33, Section VI.2.5], [12, Section 4]. Over more general bases S, the category
DMðSÞ has been constructed by Ivorra [30] and Cisinski and Déglise [13]. We
sum up the properties of this construction by specifying a number of axioms
concerning triangulated categories of motives that will be used in the sequel.
They are concerned with the ‘‘core’’ behavior of DMðSÞ, that is: functoriality,
compacity, the monoidal structure and the relation to algebraic K-theory, as well
as localization, purity, base-change and resolution of singularities. We work
with motives with rational coe‰cients only, since this is su‰cient for all our
purposes. We use a contravariant notation for motives, that is to say the functor
that maps any scheme X to its motive MðXÞ shall be contravariant. This is in
line with most pre-Voevodsky papers.

Section 2 is a very brief reminder on realizations. The existence of various
realizations, due to Huber and Ivorra [25, 27, 30], is pinning down the intuition
that motives should be universal among (reasonable) cohomology theories.

After Section 3, a brief intermezzo on perverse l-adic sheaves over OF ,
Section 4 spells out a number of conjectural properties (also called axioms in the
sequel) of DMgmðSÞ, where S is either a finite field Fp, a number field F or a
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number ring OF . The first group of these properties centers around the existence
of a category of mixed motives MMðSÞ, which is to be the heart of the so-called
motivic t-structure. The link between mixed motives over OF and Fp or F is
axiomatized by mimicking the exactness properties familiar from perverse sheaves
(Axiom 4.2). A key requirement on mixed motives is that the realization
functors on motives should be exact (Axiom 4.5). For the l-adic realization
over Spec OF ½1=l�, this requires a notion of perverse sheaves over that base
(Section 3). Another important conjectural facet of mixed motives are weights.
Weights are an additional structure encountered in both Hodge structures and
l-adic cohomology of algebraic varieties over finite fields, both due to Deligne
[16, 17]. They are important in that morphisms between Hodge structures or
l-adic cohomology groups are known to be strictly compatible with weights,
moreover, they are respected to a certain extent by smooth maps and proper
maps. It is commonly assumed that this should be the case for mixed motives,
too. We show in a separate work that the t-structure axioms and the needed
weight properties hold in the triangulated subcategory DATMðOF ÞHDMgmðOF Þ
of Artin-Tate motives (as far as they are applicable) [41].

The remaining two sections assume the validity of the axiomatic framework
set up so far. The first key notion in Section 5 is the intermediate extension
j!�M of a mixed motive M along some open embedding j inside Spec OF . This
is done as in the case of perverse sheaves, due to Beilinson, Bernstein and Deligne
[10]. Quite generally, much of this paper is built on the idea that the abstract
properties of mixed perverse sheaves (should) give a good model for mixed
motives over number rings. Next we develop a notion of smooth motives, which
is an analog of lisse étale sheaves. This is needed to use a limiting technique
to get the extension functor h!� that extends motives over F to ones over OF .
Finally, we apply the axiom on the exactness of l-adic realization to show that
intermediate extensions commute with the realization functors. This will be a
stepstone in a separate work on L-functions of motives [40].

Section 6 gives the comparison theorems on f -cohomology mentioned above.
The two definitions of f -cohomology being quite di¤erent, the proofs of the
comparison statements are di¤erent, too: the first is essentially based on the
Hochschild-Serre spectral sequence. The crystalline case of that definition of
f -cohomology is disregarded throughout. The second proof is a purely formal,
if occasionally intricate bookkeeping of cohomological degrees and weights.

The problem of finding a motivic interpretation of terms such as H1
f ðMhÞ

underlying the formulation of Beilinson’s conjecture has been studied by Scholl
[43, 44, 42], who develops an abelian category MMðF=OF Þ of mixed motives over
OF by taking mixed motives over F , and imposing additional non-ramification
conditions. Conjecturally, the group Ext iMMðF=OF Þð1; h

iðXh; nÞÞ for Xh=F smooth
and projective, i ¼ 0; 1, agrees with what amounts to H i�1ðh!�h2n�1ðXh; nÞ½1�Þ.

No originality is claimed for Sections 1, 2, and 4, except perhaps for the
formulation of the relation of mixed motives over OF and F and the residue
fields Fp, which however is a natural and immediate translation of the theory of
perverse sheaves. I would like to thank Denis-Charles Cisinski and Frédéric
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Déglise for communicating to me their work on DMgmðSÞ over general bases [13]
and Baptiste Morin for explaining me a point in étale cohomology. Most of all,
I gratefully acknowledge Annette Huber’s advice in writing my thesis, of which
this paper is a part.

1. Geometric motives

Throughout this paper, F is a number field, OF its ring of integers, p stands
for a place of F . For finite places, the residue field is denoted Fp. By scheme
we mean a Noetherian separated scheme. Actually, it su‰ces to think of schemes
of finite type over one of the rings just mentioned. In this section S denotes a
fixed base scheme.

This section is setting up a number of axioms describing a triangulated
category DMgmðSÞ of geometric motives over S. They will be used throughout
this work. As pointed out in the introduction, the material of this section is due
to Cisinski and Déglise [13], who build such a category of motives using Ayoub’s
base change formalism [4].

Axiom 1.1 (Motivic complexes and functoriality).
� There is a triangulated Q-linear category DMðSÞ. It is called category of
motivic complexes over S (with rational coe‰cients). It has all limits and
colimits.

� (Tensor structure) The category DMðSÞ is a triangulated symmetric mono-
idal category (see e.g. [33, Part 2, II.2.1.3]). Tensor products commute
with direct sums. The unit of the tensor structure is denoted 1S or 1. Also,
there are internal Hom-objects in DM, denoted Hom. The dual M4 of an
object M A DMðSÞ is defined by M4 :¼ HomðM; 1Þ.

� For any map f : X ! Y of schemes, there are pairs of adjoint functors

f � : DMðYÞ. DMðXÞ : f�ð1Þ

such that f �1Y ¼ 1X and, if f is quasi-projective,

f! : DMðX Þ. DMðYÞ : f !:

The existence of f! and f ! is restricted to quasi-projective maps since the
abstract construction of these functors in Ayoub’s work [4, Section 1.6.5], on
which Cisinski’s and Déglise’s construction of motives over general bases [13]
relies, has a similar restriction.

Recall that an object X in a triangulated category T closed under arbitrary
direct sums is compact if HomðX ;�Þ commutes with direct sums. The sub-
category of T of compact objects is triangulated and closed under direct
summands (a.k.a. a thick subcategory) [35, Lemma 4.2.4]. The category T is
called compactly generated if the smallest triangulated subcategory closed under
arbitrary sums containing the compact objects is the whole category T.
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Axiom 1.2 (Compact objects). The motive 1 A DMðSÞ is compact. The
functors f � and f !, whenever defined, and n and Hom preserve compact objects.
The same is true for f� and f! if f is of finite type. The canonical map M !
ðM4Þ4 is an isomorphism for any compact object M.

Definition 1.3. The subcategory of compact objects of DMðSÞ is denoted
DMgmðSÞ and called the category of geometric motives over S.

For any map f : X ! S of finite type, the object MSðX Þ :¼MðXÞ :¼
f� f

�1 A DMgmðSÞ is called the motive of X over S. By adjunction, M is a
contravariant functor from schemes of finite type over S to DMgmðSÞ. For any
quasi-projective f : X ! S, the motive with compact support of X , McðX Þ, is
defined as f! f

�1 A DMgmðSÞ.
The smallest thick subcategory of DMðSÞ containing the image of M is

denoted DMe¤
gmðSÞ and called the category of e¤ective geometric motives. The

closure of that subcategory under all direct sums is called the category of e¤ective
motives, DMe¤ ðSÞ.

Axiom 1.4 (Tensor product vs. fiber product). The functor M is an additive
tensor functor, i.e., maps disjoint unions of schemes over S to direct sums and fiber
products of schemes over S to tensor products in DMgmðSÞ.

Axiom 1.5 (Compact generation). The categories DMðSÞ and DMe¤ ðSÞ are
compactly generated.

The category DMðSÞ, being closed under countable direct sums is pseudo-
abelian [33, Lemma II.2.2.4.8.1], i.e., it contains kernels of projectors. In par-
ticular, the projector MðP1

SÞ !MðSÞ !MðP1
SÞ has a kernel K (the first map is

induced by the projection onto the base, the second map stems from the rational
point 0 A P1

S). The object

1ð�1Þ :¼ K ½2�;

is called Tate object or Tate motive. The resulting decomposition MðP1
SÞ ¼

1l 1ð�1Þ½�2� implies 1ð�1Þ A DMe¤
gmðSÞ.

Axiom 1.6 (Cancellation and E¤ectivity). In DMgmðSÞ (and thus in DMðSÞ),
the Tate object 1ð�1Þ has a tensor-inverse denoted 1ð1Þ. For any M A DMðSÞ,
n A Z, set MðnÞ :¼Mn 1ð1Þnn

. Then there is a canonical isomorphism called
cancellation isomorphism (n A Z, M;N A DMðSÞ):

HomDMðSÞðM;NÞGHomDMðSÞðMðnÞ;NðnÞÞ:

The smallest tensor subcategory of DMgmðSÞ that contains DMe¤
gmðSÞ and 1ð1Þ

is DMgmðSÞ. In other words, DMgmðSÞ is obtained from DMe¤
gmðSÞ by tensor-

inverting 1ð�1Þ.
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Definition 1.7. Let M be any geometric motive over S. We write
H iðMÞ :¼ H iðS;MÞ :¼ HomDMðSÞð1;M½i�Þ. For M ¼MðXÞðnÞ for any X

over S we also write H iðX ; nÞ :¼ H iðMðXÞðnÞÞ ¼ HomDMgmðSÞð1;MðX ÞðnÞ½i�Þ ¼
ð1Þ

HomDMgmðX Þð1; 1ðnÞ½i�Þ. This is called motivic cohomology of M and X , respec-
tively.

Axiom 1.8 (Motivic cohomology vs. K-theory). For any regular scheme X ,
there is an isomorphism H iðX ; nÞGK2n�iðX ÞðnÞQ , where the right hand term denotes
the Adams eigenspace of algebraic K-theory tensored with Q [39].

This is a key property of motives, since algebraic K-theory is a universal
cohomology theory in the sense that Chern characters map from algebraic
K-theory to any other (reasonable) cohomology theory of algebraic varieties [23].
For S a perfect field, this axiom is given by [45, Prop. 4.2.9] and its non-e¤ective
analogue. See also [33, Theorem I.III.3.6.12.].

Recall Grothendieck’s category of pure motives M@ðKÞ with respect to an
adequate equivalence relation@, see e.g. [3, Section 4]. For rational equivalence
they are also called Chow motives, since, for any smooth projective variety X
over a field K ,

HomMratðKÞð1ð�nÞ; hðXÞÞ ¼ CHnðX Þ;ð2Þ

where hðX Þ denotes the Chow motive of X and the right hand term is the Chow
group of cycles of codimension n in X . This way, the above axiom models the
fact [45, 2.1.4] that Chow motives are a full subcategory of DMgmðKÞ. Under
the embedding MratðKÞHDMgmðKÞ, hðX ; nÞ maps to MðXÞðnÞ½2n�.

Remark 1.9. We do not need to assume expressis verbis homotopy in-
variance (i.e., 1!G pr�pr

�1 A DMgmðSÞ for pr : S � A1 ! S) nor the projective
bundle formula [45, Prop. 3.5.1]. (Note, however, that K 0-theory does have such
properties.)

Axiom 1.10 (Localization). Let i : Z ! S be any closed immersion and
j : V ! S the open complement. The adjointness maps give rise to the following
distinguished triangles in DMðSÞ:

j! j
� ! id! i�i

�;

i�i
! ! id! j� j

�:

(In particular, f� f
�G id, where f : Xred ! X denotes the canonical map of the

reduced subscheme structure.) In addition, one has j �j� ¼ id and i�i� ¼ id, equiv-
alently j �i� ¼ i�j! ¼ 0.

Axiom 1.11 (Purity and base change).
� For any quasi-projective map f , there is a functorial transformation of
functors f! ! f�. It is an isomorphism if f is projective.
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� (Relative purity): If f is quasi-projective and smooth of constant relative
dimension d, there is a functorial (in f ) isomorphism f ! G f �ðdÞ½2d�.

� (Absolute purity): If i : Z ! U is a closed immersion of codimension c
of two regular schemes Z and U , there is a natural isomorphism i !1G
1ð�cÞ½�2c�.

� (Base change): For any two quasi-projective maps f and g let f 0 and g 0

denote the pullback maps:

X 0 �X Y ���!g 0 Y???y f 0

???y f

X 0
g

X

ð3Þ

������!
Then there is canonical isomorphism of functors

f �g! !
G

g 0! f
0�:

This axiom is proven by Cisinski & Déglise using Ayoub’s general base
change formalism. See in particular [4, 1.4.11, 12] for the construction of the
base change map. See also [33, Theorem I.I.2.4.9] for a similar statement in
Levine’s category of motives.

Definition 1.12. Let f : S ! Spec Z be the structural map. Assume f is
quasi-projective. Then DðMÞ :¼ HomðM; f !1ð1Þ½2�Þ is called Verdier dual of M.

By the preceding axioms, D induces a contravariant endofunctor of DMgmðSÞ.
The shift and twist in the definition is motivated as follows: given some complex
analytic space X , the Verdier dual of a sheaf F on X is defined by

DðFÞ :¼ RHomDðShvðX ÞÞðF; f !ZÞ;

where f denotes the projection to a point, see e.g. [29, Ch. VI]. When X is
smooth of dimension d, one has f !Z ¼ f �ZðdÞ½2d� ¼ ZðdÞ½2d�. A similar fact
holds for l-adic sheaves (see e.g. [31, Section II.7–8]). The above definition
mimics this situation insofar as Spec Z is seen as an analogue of a smooth a‰ne
curve.

Let us give a number of consequences of the preceding axioms, in particular
purity, base change and localization: in (3), suppose that f is smooth and
g : X 0 ! X is a codimension one closed immersion between regular schemes.
Then there is a canonical isomorphism

g!MX ðYÞ ¼MX 0 ðX 0 �X Y Þð�1Þ½�2�:ð4Þ

Let ZHX be a closed immersion of quasiprojective schemes over S. Then
there is a distinguished triangle of motives with compact support

McðZÞ !McðX Þ !McðXnZÞ:
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Let S be a scheme of equidimension d such that the structural map
f : S ! Spec Z factors as

S !j S 0 !i An
Z or Pn

Z !
p
Spec Z;

where j is an open immersion into a regular scheme S 0, i is a closed immer-
sion and p is the projection map. Then f !1 ¼ 1ðd � 1Þ½2d � 2�, as one sees by
applying relative purity to p and to j, and absolute purity to i. In particular,
the Verdier duality functor on any open subscheme S of Spec OF is given by
DDMgmðSÞð?Þ ¼ Homð?; 1ð1Þ½2�Þ while on DMgmðFpÞ it is given by Homð?; 1Þ ¼ ?4.

Axiom 1.13 (Verdier dual). The Verdier dual functor D exchanges ‘‘!’’ and
‘‘�’’ throughout, e.g., there are natural isomorphisms Dð f !MÞG f �DðMÞ for any
quasi-projective map f : X ! Y and M A DMðYÞ and similarly with f! and f�.

Lemma 1.14. Let S be such that f !1 ¼ f �1ðdÞ½2d� for some integer d, where
f : S ! Spec Z is the structural map. For example, S might be regular and a‰ne
or projective over Z (see above), or smooth over Spec Z ( purity). Then, for any
compact object M A DMgmðSÞ, the canonical map M ! DðDðMÞÞ is an isomor-
phism. This will be referred to as reflexivity of Verdier duality.

Proof. By Axiom 1.5, it su‰ces to check it for M ¼ p�p
�1, where

p : X ! S is some map of finite type. In this case it follows for adjointness
reasons and the assumption. r

Axiom 1.15 (Resolution of singularities). Let K be a field. As a triangu-
lated additive tensor category (i.e., closed under triangles, arbitrary direct sums and
tensor product), DMðKÞ is generated by 1ð�1Þ and all MðXÞ, where X=K is a
smooth projective variety.

When S is an open subscheme of Spec OF , the generators of DMðSÞ are
1ð�1Þ, ip�MðXpÞ, and MðXÞ, instead, where Xp is any projective and smooth
variety over Fp, ip denotes the immersion of any closed point Fp of S, and X is any
regular, flat projective scheme over OF .

Consequently, the subcategories of compact objects DMgmð�Þ are generated
as a thick tensor subcategory by the mentioned objects. In Voevodsky’s theory
of motives over a field of characteristic zero, this is [45, Section 4.1]. This uses
Hironaka’s resolution of singularities. Over a field of positive characteristic and
number rings, one has to use de Jong’s resolution result, see [28, Lemma B.4].

We also need a limit property of the generic point. Let S be an open
subscheme of Spec OF , let h : Spec F ! S be the generic point.

Axiom 1.16 (Generic point). Let M be any geometric motive over S. The
natural maps j� j

�M ! h�h
�M give rise to an isomorphism lim�! j� j

�M ¼ h�h
�M,
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where the colimit is over all open subschemes j : S 0 ! S. It induces a distinguished
triangle in DMðSÞ

0
p AS

ip�i
!
pM ! id! h�h

�M;ð5Þ

where the sum runs over all closed points p A S and ip is the closed immersion.

2. Realizations

One of the main interests in motives lies in the fact that they are explaining
(or are supposed to explain) common phenomena in various cohomology theories.
These cohomology functors are commonly referred to as realization functors.
They typically have the form DMgmðSÞ ! DbðCÞ, where C is an abelian category
whose objects are amenable with the methods of (linear) algebra, such as finite-
dimensional vector spaces or finite-dimensional continuous group representations
or constructible sheaves.

For example, let l be a prime and let S be either a field of characteristic
di¤erent from l or a scheme of finite type over Spec OF ½1=l�. The l-adic
cohomology maps any scheme X of finite type over S to

RGlðX Þ :¼ Rp�p
�Ql A Db

c ðS;QlÞ;

where p : X ! S is the structural map and the right hand category denotes the
‘‘derived’’ category of constructible Ql-sheaves on S (committing the standard
abuse of notation, see e.g. [31, II.6., II.7.]). This functor factors over the l-adic
realization functor ([27, p. 772], [30]) RGl : DMgmðSÞ ! Db

c ðS;QlÞ. When S is
of finite type over Fp, the realization functor actually maps to Db

c;mðS;QlÞ, the
full subcategory of complexes C in Db

c ðS;QlÞ such that all HnðCÞ are mixed
sheaves [17, 1.2].

Further realization functors include Betti, de Rham and Hodge realization.
See e.g. [27, 2.3.5]. The following axiom says (in particular) that the l-adic
realization of MðX Þ does give the l-adic cohomology groups.

Axiom 2.1 (Functoriality and realizations). The l-adic realization functor
commutes with the six Grothendieck functors f�, f!, f !, f �, n and Hom (where
applicable). For example, for any map f : S 0 ! S and any geometric motive M
over S 0:

ð f�MÞl ¼ f�ðMlÞ:

3. Interlude: Perverse sheaves over number rings

This section is devoted to a modest extension of l-adic perverse sheaves [10]
to the situation where the base S is an open subscheme of Spec OF ½1=l�. It is
needed to formulate Axiom 4.5 for the l-adic realization of motives over number
rings. This section may be considered a reformulation in ‘‘perverse language’’ of
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the well-known duality for cohomology of the inertia group. In a nutshell, the
theory of perverse sheaves on varieties over Fq stakes on relative purity, that is
f !Zl ¼ f �ZlðnÞ½2n� for a smooth map f of relative dimension n. The analogous
identity for a closed immersion i : Spec Fp ! S reads

i !Zl ¼ i�Zlð�1Þ½�2�:ð6Þ

It is a reformulation of well-known cohomological properties of the inertia
group: H1ðIp;VÞ ¼ ðVð�1ÞÞIp for any l-adic module with continuous Ip-action

ðpF lÞ. All higher group cohomologies of Ip vanish.
Let DbðS;ZlÞ be the bounded ‘‘derived’’ category of Zl-sheaves on S as

constructed by Ekedahl [19]. All following constructions can be done for Ql

instead of Zl, as well. We keep writing j� for the total derived functor,
commonly denoted Rj� etc. However, Rnj� etc. keep their original meaning.

As in loc. cit., see especially [2.2.10, 2.1.2, 2.1.3, 1.4.10]1, one first defines a
notion of stratification, and secondly obtains a t-structure on the subcategory
Db
ðS;LÞðS;ZlÞ that are constructible with respect to a given stratification S ¼ fSig

and a set L of irreducible lisse sheaves on the strata. Thirdly, one takes the
‘‘limit’’ over the stratifications. The union of all Db

ðS;LÞðS;ZlÞ is the ‘‘derived’’

category Db
c ðS;ZlÞ of constructible sheaves. In order to extend the t-structure

on the subcategories to one on Db
c ðS;ZlÞ, one has to check that the inclu-

sion Db
ðS 0;L 0ÞðS;ZlÞ ! Db

ðS;LÞðS;ZlÞ is t-exact for any refinement of stratifications.

Here we employ a di¤erent argument. The proof of [2.1.14, 2.2.11] relies on
relative purity for l-adic sheaves [2, Exp. XVI, 3.7]. As in the proof of [2.1.14]

we have to check the following: let Si !
a
S 0i !

b
S be the inclusions of some strata

and let C A Db;b0
ðS 0;L 0ÞðS;ZlÞ. Then C A Db;b0

ðS;LÞðS;ZlÞ. We can assume dim Si ¼ 0,
dim S 0i ¼ 1, since all other cases are clear. Thus, b is an open immersion. We
may also assume for notational simplicity that Si ¼ Spec Fp. Let j be the com-
plementary open immersion to a. By definition, Hnb!C ¼ b!HnC ¼ b�HnC is
locally constant and vanishes for n < �1. In the parlance of Galois modules this
means that, viewed as a p1ðS 0i Þ-representation, the action of the inertia group
Ip H p1ðS 0i Þ on that sheaf is trivial. Thus

a!Hnb�C ¼ a�ðR1j� j
�Hnb�CÞ½�2� ¼ H1ðIp;Hnb�CÞ½�2� ¼ a�Hnb�Cð�1Þ½�2�:

(We have used pF l at this point.) The spectral sequence

Hp�2a�Hqb!Cð�1Þ ¼ Hpa!Hqb!C ) Hna!b!C

is such that the left hand term vanishes for p0 2 since a� is exact w.r.t.
the standard t-structure. It also vanishes for q < �1 by the above. Hence
the right hand term vanishes for n ¼ pþ q < 1. A fortiori it vanishes for
n < �dim Fp ¼ 0.

1 In the sequel, any reference in brackets refers to [10].
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Objects in the heart of this t-structure on Db
c ðS;ZlÞ are called perverse

sheaves on S. For example Zl½1� and i�Zl for any immersion i of a closed point
are perverse sheaves on S. The Verdier dual of any C A Db

c ðS;ZlÞ is defined by
DðCÞ :¼ HomðC;Zlð1Þ½2�Þ. As above, we have dropped ‘‘R’’ from the notation,
so that this Hom means what is usually denoted RHom.

Lemma 3.1. Let j : S 0 ! S be an open immersion and i : Z ! S a closed
immersion. Let h : Spec F ! S be the generic point. Then j�, j!, i�, h

�½�1�, j �

and D are t-exact, while i� ði !Þ is of cohomological amplitude ½�1; 0� ð½0; 1�Þ,
in particular right-exact (left-exact, respectively). Finally, the t-structure on
Db

c ðS;ZlÞ is non-degenerate [10, p. 32].

Proof. The only non-formal statement is the exactness of j�. The corre-
sponding precursor result [4.1.10] is a reformulation of [1, Th. 3.1., Exp. XIV],
which says for any a‰ne map j : X ! Y over schemes over a field K , and any
(honest) sheaf F which is torsion (prime to char K)

dðRqj�FÞa dðFÞ � q

where dðGÞ :¼ supfdimfxg;Gx 0 0g for any sheaf G. In our situation, we are
given a locally constant sheaf F on S 0 whose torsion is prime to all character-
istics of S. The conclusion of the theorem also holds for j, as follows from the
cohomological dimension of Ip, which is one. r

Let F be any perverse sheaf on S 0. Following [1.4.22], let the intermediate
extension j!�F be the image of the map j!F! j�F of perverse sheaves on S.
As in [2.1.11] one sees that it can be calculated in terms of the good truncation
with respect to the standard t-structure: j!�F ¼ tcan

a�1 j�F: If F ¼ G½1�, where
G is a lisse (honest) sheaf on S 0, this gives ðR0j�GÞ½1�.

4. Mixed motives

Throughout this section, let S ¼ Spec F or Spec Fp or an open subscheme of
Spec OF .

This section formulates a number of axioms concerning weights and the
motivic t-structure on triangulated categories of motives over S. In contrast to
the axioms listed in Section 1, the axioms mentioned in this section are wide
open, so it might be more appropriate to call them conjectures instead.

Axiom 4.1 (Motivic t-structure and cohomological dimension). The category
of geometric motives DMgmðSÞ has a non-degenerate t-structure [10, Def. 1.3.1]
called motivic t-structure. Its heart is denoted MMðSÞ. Objects of MMðSÞ are
called mixed motives over S.

For any M A DMgmðSÞ, there are a; b A Z such that taaM ¼ tbbM ¼ 0.
Here and in the sequel, ta� and tb� denote the truncation functors with respect to
the motivic t-structure.

11f -cohomology and motives over number rings



The cohomological dimension of DMgmðFpÞ and DMgmðFÞ is 0 and 1,
respectively, in the sense that

HomDMðFpÞðM;N½i�Þ ¼ 0

for all mixed motives M, N over Fp and i > 0 and similarly for mixed motives over
F and i > 1. (For i < 0 the term vanishes by the t-structure axioms.)

The t-structures are such that over S ¼ Spec F or Spec Fp, 1 A MMðSÞ, while
for an open subscheme SH Spec OF , 1½1� A MMðSÞ.

The existence of the motivic t-structure on DMgmðKÞ satisfying the axioms
listed in this section is part of the general motivic conjectural framework, see
e.g. [8, App. A], [3, Ch. 21]. The idea of building a triangulated category of
motives and descending to mixed motives by means of a t-structure is due to
Deligne. The existence of a motivic t-structure on DMgmðKÞ is only known
in low dimensions: the subcategory of Artin motives, i.e., motives of zero-
dimensional varieties, carries such a t-structure [45, Section 3.4.]. By loc. cit.,
[37], the subcategory of DMgmðKÞ generated by motives of smooth varieties
of dimensiona 1 is equivalent to the bounded derived category of 1-motives
[16, Section 10] up to isogeny. Finally, if K is a field satisfying the Beilinson-
Soulé vanishing conjecture, such as a finite field or a number field, the category
of Artin-Tate motives over K enjoys a motivic t-structure [32, 46]. The results
on Artin-Tate motives are generalized to bases S which are open subschemes of
Spec OF in [41].

The conjecture about the cohomological dimension is due to Beilinson. A
(fairly weak) evidence for this conjecture is the cohomological dimension of Tate
motives over F and Fp, which is one and zero, respectively. This follows from
vanishing properties of K-theory of these fields.

The normalization in the last item is merely a matter of bookkeeping, but is
motivated by similar shifts in perverse sheaves (Section 3). The existence of a
motivic t-structure is not expected to hold for motives with integral coe‰cients.

We do not (need to) assume that the canonical functor DbðMMðSÞÞ !
DMgmðSÞ is an equivalence of categories or, equivalently [9, Lemma 1.4.],

Ext iMMðSÞðA;BÞ ¼ HomDMgmðSÞðA;B½i�Þ for all mixed motives A and B.

Axiom 4.2 (Exactness properties). Let SH Spec OF be an open subscheme,
let i : Spec Fp ! Spec OF be a closed point, j : U ! S an open immersion and
h : Spec F ! S the generic point.

Then j � ¼ j !, h�½�1�, i�, j� and j! are exact with respect to the motivic t-
structures on the involved categories of geometric motives. Further, i� is right-
exact, more precisely it maps objects in cohomological degree 0 to degrees ½�1; 0�.
Dually, i ! has cohomological amplitude ½0; 1�. Verdier duality D is ‘‘anti-exact’’,
i.e., maps objects in positive degrees to ones in negative degrees and vice versa.

The axiom is motivated by the same exactness properties in the situation of
perverse sheaves over Spec OF ½1=l� (Section 3). The corresponding exactness
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properties of the above functors on Artin-Tate motives, where the motivic
t-structure is available, are established in [41].

Definition 4.3. The cohomology functor with respect to the motivic
t-structure on DMgmðSÞ is denoted pH�. For any scheme X=S, we write

h iðX ; nÞ :¼ pH iMSðXÞðnÞ:

Axiom 4.4. Let Xh=F be any smooth projective variety. Then numerical
equivalence and homological equivalence (with respect to any Weil cohomology)
agree on Xh.

Let either S be a field and let C stand for the l-adic realization (in
case char S0 l), Betti, de Rham or absolute Hodge realization or let SH
Spec OF ½1=l� be an open subscheme and let C be the l-adic realization. We
write RGC : DMgmðSÞ ! DbðCÞ for the realization functor, where DbðCÞ is
understood as a placeholder of the target category of C. (We abuse the notation
insofar as that target category is not a derived category in the strict sense when
C is the l-adic realization.) For all realizations over a field, this category is
endowed with the usual t-structure on the derived category of an exact category,
e.g. on Db

c ðK ;QlÞ for l-adic realization. When C is the l-adic realization over
an open subscheme S of Spec OF ½1=l�, we take the perverse t-structure on
Db

c ðS;QlÞ defined in Section 3. Using this, we have the following axiom:

Axiom 4.5 (Exactness of realization functors). Realization functors RGC are
exact with respect to the motivic t-structure on DMgmðSÞ. Equivalently, as the
t-structure on DbðCÞ is non-degenerate, RGCðpH0MÞ ¼ pH0RGCðMÞ for any
geometric motive M over S. On the left, pH0 denotes the cohomology functor
belonging to the motivic t-structure on DMgmðSÞ, while on the right hand side it

is the one belonging to the t-structure on DbðCÞ.

This axiom is, if fairly loosely, motivated by a similar fact in the theory of
mixed Hodge modules: let X be any complex algebraic variety. Then, under the
faithful ‘‘forgetful functor’’ from the derived category of mixed Hodge modules to
the derived category of constructible sheaves with rational coe‰cients

DbðMHMðXÞÞ ! Db
c ðX ;QÞ

the category MHMðX Þ corresponds to perverse sheaves on X .
Recall that in an abelian category C, a morphism f : ðX ;W �Þ ! ðY ;W �Þ

between filtered objects is called strict if f ðWnXÞ ¼ f ðX ÞVWnY for all n.

Axiom 4.6 (Weights). Any mixed motive M over S has a functorial finite
exhaustive separated filtration W�M called weight filtration, i.e., a sequence of
subobjects in the abelian category MMðSÞ

0 ¼WaMHWaþ1MH � � �HWbM ¼M:
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Any morphism between mixed motives is strict with respect to the weight fil-
tration.

Tensoring any motive with 1ðnÞ shifts its weights by �2n.
Let RGC : DMgmðSÞ ! DbðCÞ be any realization functor that has a notion of

weights (such as the l-adic realization when S ¼ Spec Fp or the Hodge realization
when S ¼ Spec Q). Then

grWn RGCðMÞ ¼ RGCðgrWn MÞ
for any mixed motive M over S.

Definition 4.7. For any M A MMðSÞ, we write wtðMÞ for the (finite)
set of integers n such that grWn M0 0. For M A DMgmðSÞ, define wtðMÞ :¼
6

i AZ wtðpH iðMÞÞ � i.

Axiom 4.8 (Preservation of weights). Let f : X ! S be a quasi-projective
map. Then the functors f! f

� preserve negativity of weights, i.e., given a geometric
motive M over S with weightsa 0, f! f

�M also has weightsa 0. Dually, f� f
!

preserves positive weights.
In the particular case SH Spec OF (open), let j : U ! S and h : Spec F ! S

be an open immersion into S and the generic point of S, respectively. Let
i : Spec Fp ! S be a closed point. Then, i� and j! preserve negativity of weights
and dually for i ! and j�. Finally, j � and h� both preserve both positivity and
negativity of weights.

The preceding weight axioms are motivated by the very same properties of
l-adic perverse sheaves on schemes over C or finite fields [10, 5.1.14], number
fields [26] as well as Hodge structures [16, Th. 8.2.4] and Hodge modules (see
[38, Chapter 14.1] for a synopsis). In these settings, actually f! and f � preserve
negative weights, but we do not need weights for motives over more general bases
than the ones above. The weight formalism we require is stronger than the one
provided by the di¤erential-graded interpretation of DMgm over a field [12] or
[5, 6.7.4].

Remark 4.9. Over S ¼ Spec OF , we actually only use the following weight
properties: for any M A DMgmðSÞ, the interval wtðMÞ containing the weights
of M satisfies the following two properties: first, it is compatible under functor-
iality as in 4.8 and, second, j!� preserves weights of pure smooth motives. (See
Definitions 5.3, 5.7 for these two notions and the proof of Theorem 6.11.)

Example 4.10. For any projective (smooth) scheme X of finite type over S,
the weights of h iðX ÞðnÞ area i � 2n (b i � 2n, respectively).

Axiom 4.11 (Mixed vs. pure motives). For any field K, the subcategory of
pure objects in MMðKÞ identifies with MnumðKÞ, the category of numerical pure
motives over K.
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By Axiom 4.1, there is an exact sequence

0! H1ðh2n�1ðXh; nÞÞ ! H2nðXh; nÞ ! H0ðh2nðXh; nÞÞ ! 0:

By Axioms 4.4 and 4.11, it reads

0! CHnðXhÞQ;hom ! CHnðXhÞQ ! CHnðXhÞQ=hom! 0:ð7Þ

Here CHmðXhÞQ;hom and CHmðXhÞQ=hom are by definition the kernel and the
image (seen as a quotient of the Chow group) of the cycle class map from the
m-th Chow group to l-adic cohomology of Xh, CHmðXhÞQ ! H2mðXh;QlðmÞÞ
[34, VI.9].

As a consequence of the weight filtration, every mixed motive is obtained in
finitely many steps by taking extensions of motives in MnumðKÞ. Recall also that
for any X=Fq which is smooth and projective the spectral sequence

Extp
MMðFqÞð1; h

qðX ÞÞ ) HomDMgmðFqÞð1;MðX Þ½pþ q�Þ

degenerates by Axiom 4.1 and yields an agreement

CHqðXÞ=num ¼ HomMnumðFqÞð1; h
q
numðX ÞÞð8Þ

¼4:11 HomMMðFqÞð1; h
qðXÞÞ ¼ CHqðXÞ;

i.e., the agreement of rational and numerical equivalence (and thus, of all adequate
equivalence relations).

Remark 4.12. Recall that the agreement of numerical and homological
equivalence on all smooth projective varieties over F implies the motivic hard
Lefschetz [3, 5.4.2.1]: for such a variety Xh=F of constant dimension dh, let ia dh
and a any integer. Then, taking the ðdh � iÞ-fold cup product with the cycle
class of a hyperplane section with respect to an embedding of Xh into some
projective space over F yields an isomorphism (‘‘hard Lefschetz isomorphism’’)

h iðXh; aÞ !
G

h2dh�iðXh; dh � i þ aÞ:ð9Þ
The hard Lefschetz is known to imply a non-canonical decomposition [18]

MðXhÞG0 hnðXhÞ½�n�:
We need to assume the following generalization of this. It will be used in

Lemma 5.10, which in turn is crucial in Section 6. Note that the index shift in
the second part is due to the normalization in Axiom 4.1: for S ¼ Spec OF and a
closed point i as above, take for example X ¼ S, MðSÞ ¼ 1 ¼ h1ðSÞ½�1� (sic) and
i�MðSÞ ¼ 1Fp

¼ h0ðSpec FpÞ.

Axiom 4.13 (Decomposition of smooth projective varieties). Let X=S be
smooth and projective. In DMgmðSÞ, there is a non-canonical isomorphism

fX : MðXÞG0
n

hnðX Þ½�n�:
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For open subschemes SH Spec OF , this isomorphism is compatible with pullbacks
along all closed points i : Spec Fp ! S in the following sense: let Xp be the fiber of
X over Fp, and let c be the isomorphism making the following diagram commuta-
tive. Its left hand isomorphism is an instance of base change.

i�MðXÞ ���!i �fX 0
n

i�hnðXÞ½�n�???yG
???yc

MðXpÞ ���!fXp
0
m

hmðXpÞ½�m�

Then c respects the direct summands, i.e., induces isomorphisms

i�hnðXÞ½�n�G hn�1ðXpÞ½�nþ 1�:

5. Motives over number rings

In the following sections we assume the axioms of Sections 1, 2, and 4.
Unless explicitly mentioned otherwise, let S be an open subscheme of Spec OF ,
let i : Spec Fp ! Spec OF be a closed point, j : S 0 ! S an open subscheme and
h : Spec F ! S the generic point.

This section derives a number of basic results about motives over S from
the axioms spelled out above. We define and study the intermediate extension
j!� : MMðS 0Þ !MMðSÞ in analogy to perverse sheaves (Definition 5.3). An
‘‘explicit’’ set of generators of DMgmðSÞ (Proposition 5.6) is obtained using j!�.
We introduce a notion of smooth motives (Definition 5.7), which should be
thought of as analogs of lisse sheaves. Using this notion, we extend the
intermediate extension to a functor h!� spreading out motives over F with a
certain smoothness property to motives over S, cf. Definition 5.13. This functor
will be the main technical tool in dealing with f -cohomology in Section 6. In
Lemma 5.15 we express the l-adic realization of motives of the form j!�M in
sheaf-theoretic language.

5.1. Cohomological dimension
The following is an immediate consequence of Axiom 4.2:

Lemma 5.1. For any scheme X over S we have h�½�1�h iðX ; nÞ ¼
h i�1ðX �S F ; nÞ.

The following lemma parallels (and is a consequence of ) Axiom 4.1.

Lemma 5.2. The cohomological dimension of DMgmðSÞ is two, that is to say,
for any two mixed motives M, N over S,

HomDMgmðSÞðM;N½i�Þ ¼ 0

for all i > 2. In particular H iðMÞ vanishes for jij > 1.
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Proof. Apply HomðM;�Þ to the localization triangle 0
p AS ip�i

!
pN ! N !

h�h
�N of Axiom 1.16, where ip are the immersions of the closed points

of S. The terms adjacent to HomðM;N½i�Þ are HomðM;0
p
ip�i

!
pN½i�Þ ¼

0
p
Homði�pM; i !pN½i�Þ (as M is compact) and HomðM; h�h

�N½i�Þ ¼
Homðh�M; h�N½i�Þ. The latter term vanishes for i > 1 since h�½�1� is exact and
the cohomological dimension of DMgmðFÞ is one.

To deal with the former term, we have to take into account that i !p and i�p
are not t-exact, but of cohomological amplitude ½0; 1� and ½�1; 0�, respectively.

By decomposing i !pN into its pH1- and pH0-part and similarly with i�pM and
using that the cohomological dimension of DMgmðFpÞ is zero, the term vanishes
for i > 2. Using general t-structure properties, the second claim is a particular
case of the first one. r

5.2. Intermediate extension

Definition 5.3 (Motivic analog of [10, Def. 1.4.22]). The intermediate
extension j!� of some mixed motive M over S 0 is defined as

j!�M :¼ imð j!M ! j�MÞ:

The image is taken in the abelian category MMðSÞ, using the exactness of j! and
j�, Axiom 4.2.

Remark 5.4. Let i : Z ! S be the complement of j. The localization
triangles (Axiom 1.10) and cohomological amplitude of i� (Axiom 4.2) yield
short exact sequences in MMðSÞ

0! i�
pH�1i�j�M ! j!M ! j!�M ! 0;ð10Þ

0! j!�M ! j�M ! i�
pH0i�j�M ! 0:ð11Þ

These triangles are the same as for perverse sheaves in the situation that the
analog of Axiom 4.2, [10, 4.1.10], is applicable.

Lemma 5.5. � Given any mixed motive M over S 0, j!�M is, up to a unique
isomorphism, the unique mixed extension of M (i.e., an object X in MMðSÞ
such that j �X ¼M) not having nonzero subobjects or quotients of the form
i�N, where i : Z ! S is the closed complement of j and N is a mixed motive
on Z.

� For any two composable open immersions j1 and j2 we have j1!� � j2!� ¼
ð j1 � j2Þ!�.

� j!� commutes with duals, i.e., Dð j!��ÞG j!�Dð�Þ.

Proof. The proofs of the same facts for perverse sheaves [10, Cor. 1.4.25,
2.1.7.1] carry over to this setting. The first statement easily implies the last
one. r
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The following proposition makes precise the intuition that any motive M
over S should be reconstructed by its generic fiber (over F ) and a finite number
of special fibers (over various Fp).

Proposition 5.6. As a thick subcategory of DMðSÞ, DMgmðSÞ is generated
by motives of the form

� i�MðXpÞðmÞ, where Xp=Fp is smooth projective, m A Z and i : Spec Fp ! S is
any closed point and

� j!� j
�hkðX ;mÞ, where X is regular, flat and projective over S with smooth

generic fiber, and j : S 0 ! S is such that X �S S 0 is smooth over S 0 and k
and m are arbitrary.

Proof. Let DHDMgmðSÞ be the thick category generated by the objects in
the statement. By resolution of singularities over S (Axiom 1.15), DMgmðSÞ is
the thick subcategory of DMðSÞ generated by objects i�MðXpÞðmÞ and MðXÞðmÞ,
where Xp and X are as in the statement and m A Z.

It is therefore su‰cient to see M :¼MðX Þ A D. Let j : S 0 ! S be such that
XS 0 is smooth over S 0. By 1.10 it is enough to show j� j

�M A D, since motives
over finite fields are already covered. Applying the truncations with respect to
the motivic t-structure to j� j

�M and exactness of j�, j � (Axiom 4.2) shows that
we may deal with j� j

�hkðX ;mÞ for all k instead of j� j
�M. (Only finitely many

k yield a nonzero term by Axiom 4.1.) By Remark 5.4, there is a short exact
sequence of mixed motives

0! j!� j
�hkðX ;mÞ ! j� j

�hkðX ;mÞ ! i�
pH0i�j� j

�hkðX ;mÞ ! 0:

Here i is the complement of j. The left and right hand motives are in D, hence
so is the middle one. r

5.3. Smooth motives
The notion of smooth motives (a neologism leaning on lisse sheaves) is a

technical stepstone for the definition of the generic intermediate extension h!�, cf.
Definition 5.13. Roughly speaking, smoothness for mixed motives M means that
i�M and i !M do not intermingle in the sense that their cohomological degrees are
disjoint.

Definition 5.7. Let M be a geometric motive over S. It is called smooth
if for any closed point i : Spec Fp ! S there is an isomorphism

i !MG i�Mð�1Þ½�2�:

M is called generically smooth if there is an open (non-empty) immersion
j : S 0 ! S such that j �M is smooth.

Let X=S be a scheme with smooth generic fiber Xh. Then MSðXÞ is a
generically smooth motive.
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The isomorphism in Definition 5.7 is not required to be canonical in any
sense. Therefore, the subcategory of smooth motives is not triangulated in
DMgmðSÞ.

Lemma 5.8. Let M be a smooth mixed motive over S. Let i : Z ! S
be proper closed subscheme, let j : S 0 ! S be its complement. Then i !M ¼
ðpH1i !MÞ½�1� and dually i�M ¼ ðpH�1i�MÞ½1�.

Proof. By assumption i !MG i�Mð�1Þ½�2�. By Axiom 4.2, the left hand
side of that isomorphism is concentrated in degrees ½0; 1�. The right hand side is
in degrees ½1; 2�. This shows i !M ¼ pH1ði !MÞ½�1� by Axiom 4.1 and similarly
for i�M. r

The following is the key relation of smooth motives and the intermediate
extension. Note the similarity with Lemma 5.14.

Lemma 5.9. Let M be a smooth mixed motive over S. Then M is canoni-
cally isomorphic to j!� j

�M.

Proof. Let i : Z ! S be the complement of j. Given any i�NHM with
N A MMðZÞ, we apply the left-exact functor i ! and see NH pH0ði !MÞ ¼5:8 0.
Quotients of M of the form i�N are treated dually. We now invoke Lemma 5.5.

r

Lemma 5.10. Let X be any smooth projective scheme over S. Set M :¼
MðXÞ. Then all hnX ¼ pHnM are smooth.

Proof. Let fm;n be the ðm; nÞ-component of the bottom isomorphism
making the following commutative:

i !M
G; see ð4Þ

i�Mð�1Þ½�2�???yG;4:13

???yG;4:13

0
m

Am :¼0 i !ðpHmMÞ½�m� ����!G
0
n

Bn :¼0 i�ðpHnMÞð�1Þ½�n� 2�:

�����������������������!

We claim fm;n ¼ 0 for all m0 n, from which the lemma follows. By Axiom 4.13
we have Bn G hn�1ðXpÞ½�n� 1�ð�1Þ. Using this and the reflexivity of the Verdier
dual functor, we obtain an isomorphism Am G ðpHmþ1i !MÞ½�1�m�. Hence Bn

is concentrated in cohomological degree nþ 1, while Am is in degree nþ 2.
(The a priori bounds of Axiom 4.2 would be ½m;mþ 1� and ½nþ 1; nþ 2�,
respectively.) As the cohomological dimension of motives over Fp is zero
(Axiom 4.1), the only way for fm;n 0 0 is m ¼ n. r

19f -cohomology and motives over number rings



5.4. Generic intermediate extension

Lemma 5.11 (Spreading out morphisms). Given two geometric motives M
and M 0 over S together with a map fh : h

�M ! h�M 0, there is an open sub-
scheme j : S 0HS and a map fS 0 : j

�M ! j �M 0 which extends fh. Any two such
extensions agree when restricted to a possibly smaller open subscheme. In par-
ticular, if fh is an isomorphism, then fS 0 is an isomorphism for su‰ciently small S 0.

Proof. The adjunction map M ! h�h
�M and h�fh give a map M !

h�h
�M 0, hence by (5) a map M !0

p
ip�i

!
pM

0½1�. As M is compact, it factors

over a finite sum 0
p AT ip�i

!
pM

0½1�. Let j : S 0 ! S be the complement of the
points in T . The map M ! h�h

�M 0 factors over j� j
�M 0 and gives a map

j �M ! j �M 0 which extends fh. The first claim is shown.
For the unicity of the extension, we may assume that fh is zero, and show

that fS 0 is zero for some suitable S 0. This is the same argument as before: the
map M ! j� j

�M 0 constructed in the previous step factors over 0
p AS 0 ip�i

!
pM

0,
since M ! h�h

�M 0 is zero. By compacity of M, only finitely many primes in
the sum contribute to the map, discarding these yields the claim.

If fh is an isomorphism, ch :¼ f�1h can be extended to some cS 0 . As both
fS 0 � cS 0 and idS 0 extend idh, they agree on some possibly smaller open sub-
scheme of S and similarly with cS 0 � fS 0 . r

Remark 5.12. The lemma shows the full faithfulness of the functor

lim�!
S 0HS

DMgmðS 0Þ !
h�

DMgmðFÞ:

Its essential surjectivity is a consequence of Axiom 1.5, so we have an equiv-
alence. However, we will stick to the more basic language of colimits in DMðSÞ
instead of colimits of the categories of geometric motives.

Definition 5.13. Let Mh A DMgmðFÞ be a motive such that there exists
a generically smooth mixed motive M over S (Definition 5.7) with h�MGMh.
Then the generic intermediate extension h!�Mh is defined as

h!�Mh :¼ j!� j
�M

where j : S 0 ! S is an open immersion such that j �M is smooth.

This is independent of the choices of j and M (Lemmas 5.9, 5.11) and
functorial (5.11). For a mixed, non-smooth motive M, there need not be a
map j!� j

�M !M. Therefore, lim�! j!� j
�M does not make sense unless there is

some smoothness constraint on Mh.

5.5. Intermediate extension and l-adic realization
This subsection deals with the interplay of the (generic) intermediate extension

functor on mixed motives and the l-adic realization. In this subsection, S is an
open subscheme of Spec OF ½1=l�. The following lemma is well-known.
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Lemma 5.14. Let F be an étale (honest) locally constant sheaf on S. Let
h : Spec F ! Spec OF ½1=l� be the generic point. Then the canonical map F!
R0h�h

�F is an isomorphism.

Lemma 5.15. Let M be a mixed motive over S 0. Let j : S 0 ! S be an open
immersion. Then

ð j!�MÞl ¼ j!�ðMlÞ:

Let i be the complementary closed immersion to j : S 0 ! S and let h 0 and h be the
generic point of S 0 and S, respectively. If M is additionally smooth, one has

ði�j!�MÞl ¼ i�j!�Ml ¼ i�ðR0h�h
0�Ml½�1�Þ½1�:

To clarify the statement, note that the l-adic realization of M is a perverse
sheaf on S 0 by Axiom 4.5. Thus, j!� (Section 3) can be applied to it.

Proof. The first statement follows from Axiom 2.1, the definition of j!� and
the exactness of RGl (Axiom 4.5).

Let now M be mixed and smooth over S 0. As Ml is a perverse sheaf by
4.5, there is an open immersion j 0 : S 00 ! S 0 such that j 0�Ml½�1� is a locally
constant (honest) sheaf on S 00. As M is smooth we know from Lemmas 5.5
and 5.9

i�j!�M ¼ i�ð j � j 0Þ!� j 0�M:

By the interpretation of ð j � j 0Þ!� in terms of R0ð j � j 0Þ� (Section 3) we have

ði�j!�MÞl ¼ i�j!�Ml ¼ i�ðR0ð j � j 0Þ� j 0�Ml½�1�Þ½1� ¼
5:14

i�ðR0h�h
0�Ml½�1�Þ½1�: r

6. f -cohomology

6.1. f -cohomology via non-ramification
Let F be a number field. For any place p of F , let Fp be the completion,

Gp the local Galois group. For finite places, Ip denotes the inertia group. For
brevity, we will usually write H�ðMÞ for H�ðS;MÞ, where M is any motive over
some base S.

Definition 6.1 [11, Section 3]. Let V be a finite-dimensional l-adic vector
space, endowed with a continuous action of Gp, where p is a finite place of F not
over l. Set

H i
f ðFp;VÞ :¼

H0ðFp;VÞ i ¼ 0

ker H1ðFp;VÞ ! H1ðIp;VÞ i ¼ 1

0 else:

8><
>:
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Remark 6.2. If p lies over l, the definition is completed by H1
f ðFp;VÞ :¼

ker H1ðFp;VÞ ! H1ðFp;Bcrys nVÞ, where Bcrys denotes the ring of p-adic periods
[21]. We will disregard this case throughout.

Lemma 6.3. Let hp : Spec Fp ! Spec OFp
be the generic point of the com-

pletion of OF at p. Using the above notation, for p not over l, there is a canonical
isomorphism H1

f ðFp;VÞGH1ðOFp
;R0hp�VÞ. (The right hand side denotes l-adic

cohomology over OFp
.)

Proof. For any ln-torsion sheaf F on Fp we write AðFÞ :¼ ker H1ðFp;FÞ
! H1ðIp;FÞ. The Ql-sheaf V is, by definition, of the form U nZl

Ql, where
U ¼ ðUnÞn is a projective system of Z=ln-sheaves. By definition

H1ðFp;VÞ ¼ lim �
n AN

H1ðFp;UnÞnQl

and similarly for H1ðIp;VÞ. Both lim � n
and �nZl

Ql are left-exact functors, so
one has

H1
f ðFp;VÞ ¼ lim �

n

AðUnÞ
 !

nQl:

Thus it is su‰cient to show AðUÞ ¼ H1ðOFp
;R0hp�UÞ for any ln-torsion sheaf U

over Fp.
Recall the description of étale sheaves on OFp

from [34, II.3.12, II.3.16].
Let i : Spec Fp ! Spec OFp

be the closed point. As OFp
is a henselian ring [34,

Prop. I.4.5], for any sheaf F on Spec OFp
, the global sections depend only on the

special fiber and

GSpec Fp
¼ GSpec OFp

� ðhp�Þ ¼ GSpec OFp
� ði�i�hp�Þ:

These functors can be interpreted using group cohomology: GSpec OFp
� i� ¼ GFp

and ð�Þ Ip ¼ i�hp� (loc. cit.). The Hochschild-Serre spectral sequence for ð�ÞGp ¼
ð�ÞGalðFpÞ � ð�Þ Ip can be translated to

HpðSpec OFp
; i�i

�Rqhp�UÞ ) HnðFp;UÞ:

In addition we have the Leray spectral sequence

HpðSpec OFp
;Rqhp�UÞ ) HnðFp;UÞ:

The exact sequence of low degrees of the Hochschild-Serre sequence maps to the
sequence below:

0 ���! H1ðSpec OFp
;R0hp�UÞ ���! H1ðFp;UÞ ���! H0ðSpec OFp

;R1hp�UÞ???y¼
???y

0 AðUÞ H1ðFp;UÞ H1ðIp;UÞ���������! ���������! ��������!
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As H0ðGalðFpÞ;H1ðIp;UÞÞHH1ðIp;UÞ and GOFp
¼ GOFp

� i�i�, the right hand
map is injective, therefore there is a unique isomorphism between the left hand
terms making the diagram commutative. r

In order to proceed to a global level, the following definition is done:

Definition 6.4 [22, II.1.3]. Given an l-adic continuous representation V of
G ¼ GalðF Þ, define H i

f ðF ;VÞ to be such that the following diagram is cartesian.
In the lower row, V is considered a Gp ¼ GalðFpÞ-module by restriction.

H i
f ðF ;VÞ H iðF ;VÞ???y

???yQ
H i

f ðFp;VÞ ���! Q
H iðFp;VÞ

������!

The product ranges over all finite places p of F . We define H i
f ;ncrysðF ;VÞ

similarly, except that in the lower row of the preceding diagram only places p
that do not lie over l occur.

Lemma 6.5. Let V be an l-adic étale sheaf on Spec F. Then there is a
natural isomorphism

H i
f ;ncrysðF ;VÞGH1ðOF ½1=l�;R0h�VÞ:

Proof. By the same argument as in the previous proof, we may assume that
V is a sheaf of Z=ln-modules, since the isomorphism we are going to establish
is natural in V and

H i
f ;ncrysðF ;VÞ ¼ ker H iðF ;VÞ !

Y
pF l

ðH iðFp;VÞ=H i
f ðFp;VÞÞ:

Consider the following cartesian diagram (pF l)

Spec Fp

hp
Spec OFp

ip
Spec Fp???yb

???ya

???y¼
Spec F ���!h Spec OF ½1=l�  ���

i
Spec Fp

�����!  �����

In the derived category of Z=ln-sheaves on Spec OF ½1=l�, there is a
triangle R0h�V ! Rh�V ! R1h�½�1�V . Likewise, R0hp�b

�V ! Rhp�b
�V !

R1hp�b
�V ½�1�. (We have used pF l, since the inertia group has cohomological

dimension bigger than one for p j l.) This yields exact horizontal sequences, the
vertical maps are adjunction maps
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0 �! H1ðSpec OF ½1=l�; h�VÞ H1ðF ;VÞ H0ðSpec OF ½1=l�;R1h�VÞ???y
???y

???ya

0 �! Q
pF l

H1ðOFp
;R0hp�b

�VÞ ��! Q
pF l

H1ðFp; b
�VÞ

Q
pF l

H0ðOFp
;R1hp�b

�VÞ

�����! ����!
��!

We will show that a is injective. Hence, the left square is cartesian and by
definition and Lemma 6.3 the claim is shown. Indeed, a factors as

H0ðOF ½1=l�;R1h�VÞH
Y
pF l

H0ðFp; i
�
pR

1h�VÞ

!
Y
pF l

H0ðOFp
;R1hp�b

�VÞ ¼G
Y
pF l

H0ðFp; i
�
pR

1hp�b
�VÞ

 !
:

using i�R1h�V ¼ i�pa
�R1h�V ¼ i�pR

1hp�b
�V . r

Definition 6.6 [8, Remark 4.0.1.b], [11, Conj. 5.3], [20, Section 6.5], [22,
III.3.1.3]. Let Mh be a mixed motive over F . Let, similarly to Definition 6.4,
H i

f ðMhÞ be defined such that the following diagram, in which the bottom products
are taken over all primes l, is cartesian. As usual, Mhl is the l-adic realization,
seen as a G-module.

H i
f ðF ;MhÞ H iðF ;MhÞ???y

???yQ
l

H i
f ðF ;MhlÞ ���! Q

l

H iðF ;MhlÞ

������!

Again, to rid ourselves from crystalline questions at p j l, we define H i
f ;ncrysðF ;MhÞ

by replacing
Q

l H i
f ðF ;MhlÞ in the bottom row by

Q
l H i

f ;ncrysðF ;MhlÞ.

We are now going to exhibit an interpretation of f -cohomology thus defined
in terms of the generic intermediate extension h!�. Recall that we are assuming
in this section the axioms of Sections 1, 2, and 4. Mixed motives are needed to
even define h!�. Moreover, for the comparison result, we need to assume the
following conjecture.

Lemma 6.7. Let N be any mixed motive over Fp. The l-adic realization

map H0ðFp;NÞ ! H0ðFp;NlÞ :¼ N
GalðFpÞ
l is injective.

Proof. By the strictness of the weight filtration, the canonical maps

H0ðgrW0 NÞ  H0ðW0NÞ ! H0ðNÞ
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are both isomorphisms. Moreover, the l-adic realization functor commutes with
grW0 by Axiom 4.6, so that we can replace N by grW0 and assume that N is pure
of weight 0. In view of our assumptions on motives, cf. (8), all adequate
equivalence relations agree, so that we may regard N as a pure motive with
respect to any adequate equivalence relation. As the injectivity is stable under
taking direct summands, we may assume N ¼ hðX ; nÞ for X smooth and pro-
jective over Fp, by definition of pure motives and Axiom 4.11. The left hand
side is given by CHnðX Þ, so the map is injective by (8). r

Theorem 6.8. Let M be a generically smooth mixed motive over OF

(Definition 5.7). Set h�M½�1� ¼: Mh. There is a natural isomorphism

H0ðOF ; h!�h
�MÞ !G H1

f ;ncrysðF ;MhÞ:

Proof. Notice that h!�h
�M is well-defined by the assumptions. We want to

show that there is a cartesian commutative diagram

H0ðh!�h�MÞ H0ðh�h�MÞ ¼ H1ðMhÞ::::::::: b

???yQ
l

H1
f ;nlðF ;MhlÞ

Q
l

H1ðF ;MhlÞ

�����!

������!
Let j : U ! Spec OF be any open immersion such that j �M is smooth. We have
h!�h

�M ¼ j!� j
�M. The left hand term of the exact sequence

0
p AU

H0ðip�i
!
pMÞ ! H0ð j� j �MÞ ! H0ðh�h�MÞ ! 0

p AU

H1ðip�i
!
pMÞ

induced by (5) vanishes as i !pM is concentrated in cohomological degree 1
for p A U (Lemma 5.8). Any a A H0ðh�MÞ maps to a finite sub-sum of
0

p A Spec OF
H1ðip�i !pMÞ, so letting j be the open complement of these points,

a lies in (the image of ) H0ð j� j �MÞ:

H0ðh�MÞ ¼ lim�!
j:U!Spec OF

j �M smooth

H0ð j� j �MÞ:

By Lemma 6.9 below, the map H0ð j!� j �MÞ ! H0ð j� j �MÞ ! H0ðh�MÞ is injective.
Therefore, taking the colimit over all U such that MjU is smooth, the exact
localization sequence

0! H0ð j!� j �MÞ ! H0ð j� j �MÞ ! 0
p BU

H0ðpH0i�p j� j
�MÞ

stemming from (11) gives

0! H0ð j!� j �MÞ ! H0ðh�h�MÞ !0
p

H0ðpH0i�p jp� j
�
pMÞ:
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Here jp is the complementary open immersion to ip and the direct sum is over all
(finite) places p of OF . We have i�ph�h

�M ¼ i�p jp� j
�
pM, so the top sequence in the

following commutative diagram is exact:

ð12Þ
0 H0ð j!� j �MÞ H1ðMhÞ 0

p

H0ðpH0i�ph�h
�MÞ???y

???y
???y

0 ���! Q
l

H0ðð j �l j!� j �MÞlÞ ���! Q
l

H1ðMhlÞ ���! Q
l

0
pF l

H0ððpH0i�ph�h
�MÞlÞ

������! �������! ������!

The lower row denotes l-adic cohomology over OF ½1=l�, F , and the various
Fp, respectively. Moreover, jl : Spec OF ½1=l� ! Spec OF is the open immersion.
The remainder of the proof consists in the following steps: we show that the
diagram is commutative, that the second row is exact, identify its lower leftmost
term and show that the rightmost vertical map is injective. This implies that the
left square is cartesian, hence the theorem follows.

We write i and il for the open immersions of U V Spec OF ½1=l� into
Spec OF ½1=l� and U , respectively. By Lemma 5.15 and the exactness of j �l
we have

ð j �l j!� j �MÞl ¼ ði!�i�j �lMÞl ¼ i!�i
�ð j �lMÞl:

Thus (12) is commutative since every term at the bottom just involves the l-adic
realization of the motive above it, restricted to Spec OF ½1=l�.

The exactness of the bottom row is shown separately for each l, so l is fixed
for this argument. By the characterization just mentioned, i!�i

�ð j �lMÞl does not
change when shrinking U , since j!� j

�M is independent of U (as soon as M is
smooth over U). On the other hand, by the exactness of the l-adic realization
functor (Axiom 4.5) ð j �lMÞl is a perverse sheaf on Spec OF ½1=l�, so is a locally
constant sheaf (shifted into degree �1) on a suitable small open subscheme.
Hence we may assume that i�ð j �lMÞl is a locally constant sheaf in degree �1.
By Section 3, i!�i

�ð j �lMÞl ¼ ðR0i�i
�ð j �lMÞl½�1�Þ½þ1�, so the lower row is the exact

cohomology sequence belonging to the distinguished triangle of sheaves on
Spec OF ½1=l�

R0hl�ðMhÞl ! Rhl�ðMhÞl ! ðR1hl�ðMhÞlÞ½�1�:
Here hl : Spec F ! Spec OF ½1=l� is the generic point. As is well-known, there is
an isomorphism

D :¼ R1hl�h
�
lA!

G
0
pF l

ip�i
�
pR

1hl�h
�
lA ¼: 0 Bpð13Þ

for any generically locally constant constructible l-adic sheaf A, such as Ml½�1�.
Indeed, the adjunction map a : D!

Q
pF l Bp factors over the direct sum: note

that ð0 BpÞ=ln ¼0ðBp=l
nÞ and likewise with the product. Then

HomðD;0 BpÞ ¼ lim �
n

HomðD=ln;0ðBp=l
nÞÞH lim �

n

Hom D=ln;
Y
ðBp=l

nÞ
� �
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and to see that a lies in the left hand subgroup, it is enough to consider the Z=ln-
sheaves D=ln etc. The corresponding map H1ðGalðF Þ;A=lnÞ !

Q
H1ðIp;A=lnÞ

(Galois cohomology of the inertia groups) factors over the direct sum, since the
left hand term agrees with H1ðGalðF 0=F Þ;AÞ for some finite extension F 0=F .
This uses that A=ln is constructible. The extension F 0=F is ramified in finitely
many places (only), so the claimed factorization follows. This implies (13) and
thus the exactness of the lower row of (12). By Lemma 6.5 and Lemma 5.14,
the factors in the lower left-hand term of (12) agree with H1

f ;ncrysðF ; h�Ml½�1�Þ.
To show that the rightmost vertical map of (12) is an injection, let a ¼

ðapÞp A Spec OF
be a nonzero element of the rightmost upper term. Only finitely

many ap are nonzero. Pick some l not lying under any of these prime ideals p.
Then the image of a in 0

pF l
H0ððpH0i�ph�h

�MÞlÞ is nonzero by Lemma 6.7.
r

Lemma 6.9. Let M be a mixed motive over S such that j �M is smooth for
some open immersion j : U ! S. Then both maps H0ð j!� j �MÞ ! H0ð j� j �MÞ !
H0ðh�MÞ are injective.

Proof. Indeed the kernels are H�1ðpH0i�j� j
�MÞ ¼ 0 and 0

p AU H0ði !pMÞ,
which vanishes since i !pM sits in cohomological degree þ1, for M is smooth
around p A U (Lemma 5.8). r

6.2. f -cohomology via K-theory of regular models

Definition 6.10. Let Xh be a smooth and projective variety over F . Let
X=OF be any projective model, i.e., X �OF

F ¼ Xh. Then we define

H iðXh; nÞOF
:¼ imðH iðX ; nÞ ! H iðXh; nÞÞ:

Recall that we are assuming the axioms of Sections 1, 2, and 4; the full force
of mixed motives will be made use of in the sequel.

Theorem 6.11. The above is well-defined, i.e., independent of the choice of
the model X. More precisely we have natural isomorphisms:

H0ðh!�h i�1ðXh; nÞ½1�Þ ¼
H iðXh; nÞOF

i < 2n

CHnðXhÞQ;hom i ¼ 2n

(

Moreover

H�1ðh!�h i�1ðXh; nÞ½1�Þ ¼ H0ðh i�1ðXh; nÞÞ:

When X is regular, the definition and the statement are due to Beilinson [7,

Lemma 8.3.1]. In this case one has H iðXh; nÞOF
¼ im K 02n�iðX Þ

ðnÞ
Q ! K 02n�iðXhÞðnÞQ ,

but that expression does in general depend on the choice of the model [14, 15].
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An extension of Beilinson’s definition to all Chow motives over F due to Scholl is
discussed in the theorem below. We first provide a preparatory lemma.

Lemma 6.12. Let M A MMðSpec OF Þ be a mixed, generically smooth motive
with strictly negative weights (Definition 5.7). Let j : U ! Spec OF be an open
non-empty immersion such that MjU is smooth. The natural map j!� j

�M ! h�h
�M

gives rise to an isomorphism

H0ð j!� j �MÞ ¼ imðH0ðMÞ ! H0ðh�h�MÞÞ:

Proof. By Lemma 6.9, H0ð j� j �MÞ ! H0ðh�h�MÞ is injective. Hence it
su‰ces to show H0ð j!� j �MÞ ¼ imðH0M ! H0ð j� j �MÞÞ. Let i be the comple-
ment of j. From (10), (11), we have a commutative exact diagram

H0ð j! j �MÞ
a

H0ðMÞ H0ði�i�MÞ???y??y
???y

0 ¼ H�1ði� pH0i�j� j
�MÞ H0ð j!� j �MÞ H0ð j� j �MÞ???y

H1ði� pH�1i�j� j �MÞ ¼ 0

�������! ��!

����! f�����!

The indicated vanishings are because of t-structure reasons and Axiom 4.1,
respectively. It remains to show that a is surjective. As i�M is concentrated in
cohomological degrees ½�1; 0� (Axiom 4.2), there is an exact sequence

0 ¼ H1ðpH�1i�MÞ ! H0ði�MÞ ! H0ðpH0i�MÞ:
However H0ðpH0i�MÞ ¼ 0 as i� preserves negative weights (Axiom 4.8) and by
strictness of the weight filtration and compatibility with the t-structure (Axiom
4.6). r

Proof. Let j : U ! Spec OF be an open nonempty immersion (which
exists by smoothness of Xh) such that XU is smooth over U . By definition
of h!� and Lemmas 5.1 and 5.10, the left hand term in the theorem agrees with
H0ð j!�h iðXU ; nÞÞ. In the sequel, we write M :¼ h iðX ; nÞ and Mh :¼ h�½�1�M ¼
h i�1ðXh; nÞ.

We first do the case i < 2n. The spectral sequences

HaðhbðX ; nÞÞ ) HaþbðX ; nÞ; HaðhbðXh; nÞÞ ) HaþbðXh; nÞ
resulting from repeatedly applying truncation functors of the motivic t-structure
converge since the cohomological dimension is finite (Axiom 4.1 over F , Lemma
5.2 over OF ). By Lemma 5.2, H ið�Þ, applied to mixed motives over OF , is non-
zero for i A f�1; 0; 1g only. We thus have to consider two exact sequences.
The exact functor h�½�1� maps to similar exact sequences for motivic cohomology
over F (the indices work out properly, see Lemma 5.1):
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0 ���! K ���! H iðX ; nÞ H�1ðh iþ1ðX ; nÞÞ 0???y
???y

???y
0 ���! Kh ���! H iðXh; nÞ ���! H0ðh iðXh; nÞÞ ¼

4:6;4:10
0 ���! 0

ð14Þ

������! �����!

0 H1ðh i�1ðX ; nÞÞ K ���! H0ðMÞ ���! 0???y
???y

???y
0 ���! H2ðh i�2ðXh; nÞÞ ¼

4:1
0 ���! Kh ���! H1ðMhÞ ���! 0

ð15Þ

�����! �����!

Here, K and Kh are certain E3-terms of the spectral sequences above. The
rightmost vertical map in (14) is injective as one sees by combining (5) with the
left-exactness of i !p. Hence

H iðXh; nÞOF
¼ imðH iðX ; nÞ ! H iðXh; nÞÞ ¼ imðK ! KhÞ

¼ imðH0ðMÞ ! H1ðMhÞÞ

The motive M ¼ h iðX ; nÞ is a generically smooth (mixed) motive by Lemma
5.10. (Recall that this uses the decomposition axiom 4.13 for smooth projective
varieties.) By Example 4.10, its weights are strictly negative. Thus Lemma 6.12
applies and the case i < 2n is shown.

We now do the case i ¼ 2n. The motive j �M is pure of weight zero
(Example 4.10), hence by strictness of the weight filtration for motives over OF

and (10), (11) the same is true for E :¼ j!� j
�M. (This is an avatar of [10, Cor.

5.3.2].) Thus pH1i !E has strictly positive weights because of Axiom 4.8 and the
compatibility of weights and the motivic t-structure, i.e., wtpH1ð�ÞHwtð�Þ þ 1.
Therefore H0ðpH1i !EÞ ¼ 0. Here i is any closed immersion. The localization
triangle (5) yields

H0ðEÞ !a H0ðh�h�EÞ ¼
ð7Þ

CHnðXhÞQ;hom !0
p

H1ði !pEÞ ¼0 H0ðpH1ði !EÞÞ ¼ 0:

Therefore, a is surjective. The injectivity of a is Lemma 6.9.
To calculate H�1ðh!�Mh½1�Þ, let j : U ! Spec OF be as above. The natural

map H�1ðSpec OF ; j!� j
�MÞ ! H�1ðU ; j �MÞ is an isomorphism by the exact coho-

mology sequence belonging to (11). Thus we have to show

H�1ðSpec OF ; j� j
�MÞ ¼ H�1ðSpec OF ; h�h

�MÞ:

This follows from the localization axiom 1.10 and i !pM being in cohomolog-

ical degree þ1 for all points p in U (Lemma 5.8), so that H0ðFp; i
!
pMÞ ¼

H�1ðFp; i
!
pMÞ ¼ 0. r

By a theorem of Scholl [44, Thm. 1.1.6], there is a unique functorial and
additive (i.e., converting finite disjoint unions into direct sums) way to extend
the definition of H iðXh; nÞOF

as the image of the K-theory of a regular proper
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flat model (Definition 6.10) to all Chow motives over F , in particular to ones of
smooth projective varieties Xh=F that do not possess a regular proper model X .
The following theorem compares this definition with the one via intermediate
extensions.

Theorem 6.13. Let hh be a direct summand in the category of Chow motives
of hðXh; nÞ where Xh=F is smooth projective. Let i A Z be such that i � 2n < 0.
Let i : MratðF Þ ! DMgmðFÞ be the embedding. Then, the group

H iðhhÞOF
:¼ H0ðh!�ðpH i�2n�1ðiðhhÞÞ½1�ÞÞ:

is well-defined and agrees with the aforementioned definition by Scholl.

Proof. Recall iðhðXh; nÞÞ ¼MðXh; nÞ½2n� A DMgmðFÞ. We first check that
the group is well-defined: let X=OF be a projective model of Xh. By Lemma
5.11, there is some model M A MMðOF Þ of pH i�2n�1iðhhÞ½1� and an open sub-
scheme U of Spec OF such that M is a direct summand of pH i�1MðXÞðnÞ and
such that X �U is smooth over U . Then h i�1ðX ; nÞ is a smooth motive when
restricted to U (Lemma 5.10). Hence so is M. Thus h!� can be applied to
ðpH i�2n�1iðhhÞÞ½1�.

The assignment hh 7! H0ðh!�ðpH i�2n�1iðhhÞÞ½1�Þ is functorial and additive and
hðXhÞðnÞ maps to

H0ðh!�ðpH
i�1MðXh; nÞÞ½1�Þ ¼6:11 H iðXh; nÞOF

:

Thus the two definitions agree by Scholl’s theorem. r
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[ 9 ] A. A. Beĭlinson, On the derived category of perverse sheaves, K-theory, arithmetic and

geometry, Moscow, 1984–1986, Lecture notes in math. 1289, Springer, Berlin, 1987, 27–41.
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[37] F. Orgogozo, Isomotifs de dimension inférieure ou égale à un, Manuscripta Math. 115
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