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1 Motives and homotopical algebra – an introduction

This chapter outlines the fundamental questions motivating the work assembled in this thesis. It is written
with the explicit goal of being as accessible to non-mathematicians as possible. Thus, it is some kind of
a response to many people’s question “What do you do at work?” The first section finishes with a rough
description of the papers accumulated in this thesis.

Section 2 contains a brief introduction to Beilinson’s conjecture, which fueled, to a higher or lesser extent,
the papers in this first part of the thesis. Section 3 begins with a gentle invitation to homotopical algebra
and concludes with a survey of the three papers in this second part of the thesis.

1.1 Algebraic and arithmetic geometry

Many areas of mathematics deal with the problem of solving equations

f(x) = 0,

where f is some function. In many situations it is moreover necessary to solve not a single equation, as above,
but instead simultaneously solve equations involving several functions f1, . . . fm, each of which depends on
several variables x1, . . . , xn:

f1(x1, . . . , xn) = 0, (1.1)

f2(x1, . . . , xn) = 0,

...

fm(x1, . . . , xn) = 0.

Algebraic geometry is concerned with the case when the above functions f1, . . . , fm are polynomial functions
in the variables x1, . . . , xn such as x2

1 + 4x2
2 − x1x3. Since polynomials are built only using addition and

multiplication, they are simpler than functions such as sin(x), log(x), ex or |x|, which are not primarily
studied by algebraic geometers. The word algebraic in algebraic geometry refers to restricting one’s attention
to polynomial equations. The word geometry in algebraic geometry refers to the nature of this domain of
mathematics: it applies every-day geometric intuition to solve algebraic problems. For example, solving a
system of equations can be graphically illustrated by intersecting the solution sets of the individual equations.

Algebraic geometry is driven by the following questions:

Question 1.1. 1. Is there a solution (x1, . . . , xn) to a system of polynomial equations as in (1.1) above?
2. If yes, what can we say more about the solutions? How many solutions are there? Can we, instead of

merely counting the solutions, give a more meaningful description of such a solution set?

To describe what we know about this, we have to clarify what qualifies as a solution. This can be
dramatically illustrated with the innocuous-looking equation

xn + yn = zn. (1.2)

Here n is a positive integer. For n = 2 this equation is the one from Pythagoras’ theorem. The main interest
in this equation lies with n ≥ 3, which we assume now. We can ask the solution (x, y, z) to consist of three
positive real numbers, or three positive rational numbers, for example. The answer depends dramatically
on our choice: any triple

(x, y, z = n
√
xn + yn)

is a real solution for arbitrary positive x and y. However, if we require the solutions to consist of positive
rational numbers, the answer is entirely different: the only solutions are of the form (x, y = 0, z = x) where
x is arbitrary, and (x = 0, y, z = y) where y is arbitrary. This result was suggested by Fermat in 1637, but it
required the efforts of generations of mathematicians and an arsenal of mathematical techniques until Wiles
proved this result in 1994.

This example is not a coincidence, but part of a more general phenomenon: even though the rational
numbers are much more elementary than, say, real or complex numbers, solving equations is easier if we
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enlarge our range of solutions. To illustrate this phenomenon, we consider a single polynomial equation in
a single variable:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, (1.3)

where an, . . . , a0 are some constants. Again, depending on what we count as a solution, we may end up
having no solution. For example,

x2 + 1 = 0

has no real (or rational) solution, since x2 ≥ 0 for all real numbers x. The number x we are looking for
would be a square root of −1, which does not exist in the reals. There is one way out, namely by enlarging
our number system. For example, starting with the real numbers R, we can enlarge our number system to
complex numbers, which are obtained from R by adding a new number

√
−1 to it. This forces us to also

include numbers such as b
√
−1 and finally a+ b

√
−1 to be able to do addition and multiplication as in the

reals. Thus, we end up considering the complex numbers:

C = {a+ b
√
−1 with a, b ∈ R}.

It is a remarkable fact, the fundamental theorem of algebra, that even though we added only one “new”
number, namely

√
−1, now all polynomial equations as in (1.3) become solvable. We refer to this fact by

saying that C is an algebraically closed field.
This process of enlarging a number system to include solutions of all polynomial equations can always

be done. If we apply this procedure to Q, the rationals (instead of R), it is not enough to just add
√
−1.

Instead the process of formally adding solutions to polynomial equations is an infinite procedure in this case.
In both cases, the passage from our original set of numbers to the one where we have added solutions of all
polynomial equations is denoted by an overline, such as Q or R. (The latter, as we have seen, is just C).

The passage to an algebraically closed field (i.e., a large enough system of numbers) solves – by design –
the problem of solving single polynomial equations. What about multiple equations? From manipulations
with linear equations, we only expect solutions to exist if we have more variables than equations in (1.1), i.e.,
n ≤ m. Let us inspect the case n = m = 2 more closely, which means that we are intersecting the solution
sets of two equations in the plane.

We will focus on two “stupid” systems of equations. The first one is this, where we take two variables x
and y (there is no typo, y does not appear in the equations):

x = 0,

x = 1.

Clearly, no pair (x, y) will satisfy these two equations (no matter whether we consider rational, real, or
complex solutions). Geometrically, these two equations correspond to attempting to intersect two parallel
lines, which is impossible. On the other hand, any two non-parallel lines do intersect in exactly one point.
In this sense, our notion of intersecting lines is not 100% predictable: starting with a pair of non-parallel
lines we might over time turn one of the lines so that it becomes parallel to the other: all of a sudden, the
intersection points of the two lines disappears. More precisely, the intersection points (which did exist as
long as the lines were not parallel) exist went off to infinity. To match our expectation that we get one
intersection point, we have to include this point at infinity. This is what projective geometry is about. It
can be described in completely elementary terms, but for brevity’s sake, we will move on.

Next, we turn to another “stupid” system of equations, again in the variables x and y:

x = 0, (1.4)

x = 0.

Before, we had less solutions than expected (namely none), which we circumvented by considering solutions
at infinity. Now, we have more solutions than expected (namely infinitely many): we are intersecting a
line (given by x = 0) with itself. There is a 1%-, a 99%-, and a 100%-solution to this fundamental issue:
the 1%-solution is to omit one equation: in this case we have two variables, but only one equation, so we
“rightfully” have infinitely many solutions. This is only a 1%-solution since the above phenomenon also
arises in more complicated situations, where it is not necessarily true that one of the equations can be
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obtained from the others. A 99%-solution is a policy “we don’t look at systems of equations which have
more solutions than expected”. Commutative algebra, which is the engine under the hood of algebraic
geometry, tells us what causes this phenomenon. At least in theory, we can attempt to avoid systems of
equations displaying such a pathology. A comprehensive 100%-solution to this has become possible in recent
years thanks to the development of an enhanced version of algebraic geometry known as derived algebraic
geometry. It is fundamentally enhancing the way we form intersections. A tiny glimpse of this changed
meaning of intersection is mentioned in the introduction to homotopical algebra below (Section 3). The
work presented in this thesis is partly motivated by the recent advent of derived algebraic geometry.

Answer (to Question 1.1.1.). 1. Polynomial equations need not have any rational solution. However,
(singly) polynomial equations always have complex solutions (or, more generally, solutions in an alge-
braically closed field).

2. Systems of equations always have complex solutions if we have more variables than equations, provided
that we are working in projective geometry. That is, we count intersection points at infinity (should
they arise) as solutions, as well.

3. Solutions of systems of polynomial equations as in (1.1) have the expected dimension n−m if we avoid
the phenomenon alluded to after (1.4). Here, “dimension” refers roughly to the number of independent
directions of our solution set.

It is worth noting that in answering the questions, we actually changed the question. (This is something
mathematicians often do: if you cannot answer the question, change it until you can.) Let’s be honest about
how severe these deviations (or restrictions) are. The restrictions imposed in the above three points are of
fundamentally different nature: doing projective geometry, as required by Answer 1.1.2. turns out to be
extremely natural. Avoiding the systems of equations with unexpectedly many solutions, as in Answer 1.1.3.,
is also doable: in a precise mathematical sense, it is not only a 99%- solution, but a 99.9999. . . %-solution.
Better yet, derived algebraic geometry, which is being rapidly developed, allows to circumvent such restric-
tions much more comprehensively. It is the restriction in Answer 1.1.1. which is, by a large margin, the most
severe one. Indeed, our knowledge is much more partial if we are seeking rational (as opposed to complex)
solutions of polynomial equations. For example, describing rational solutions (x, y) of equations of the form

y2 = x3 + ax+ b (with a, b ∈ Q), (1.5)

is a matter of ongoing research. To emphasize that one is interested in more restricted solutions, such as
rationals or even integers, one refers to the area as arithmetic geometry, as opposed to algebraic geometry
whose classical focus is on solving equations in algebraically closed fields such as C.

1.2 Symmetries of solution sets

To work towards a better understanding of Question 1.1.1. in the context of arithmetic geometry, it is helpful
to turn to Question 1.1.2.: how can we describe the structure of algebraic solution sets beyond stating that
there are / there are no solutions? This question admits a comprehensive answer in two separate cases: for
systems of linear equations (which are studied in linear algebra), and for a (single) polynomial equation in
one variable (which is the topic of Galois theory).

Systems of linear equations are easy to solve, for example by eliminating one variable after another by
means of adding and multiplying equations. What is more, the solutions have themselves a very linear
shape. This means the following: a linear function f1 is of the form f1(x1, . . . , xn) = a1x1 + . . . anxn for
some numbers a1, . . . , an. If a tuple (x1, . . . , xn) satisfies

f1(x1, . . . , xn) = 0

and another tuple (y1, . . . , yn) satisfies the same equation, then a short computation involving the explicit
form of f1 shows that the sum (x1 + y1, . . . , xn + yn) also satisfies the equation:

f1(x1 + y1, . . . , xn + yn) = 0.

In other words: the sum of two solutions is again a solution. The same works for the remaining f2, . . . , fm
(provided they are all linear). Mathematical objects having a linear shape, such as the solution set of a
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system of linear equations, are called vector spaces. Vector spaces are easy to handle, thanks to the fact that
we can always choose a coordinate system, similarly to the way we think about three-dimensional space, for
example.

Polynomial equations in a single variable also have some additional structure. For example, the quadratic
equation

x2 + 1 = 0

has two solutions:
x = ±

√
−1.

The ± sign is not only a shorthand indicating there are two solutions, but more importantly it shows how the
two solutions are related: one is obtained from the other by changing + to − and vice versa. The symmetry
displayed by the solutions of this equation is a very important asset. We denote this exchange of +

√
−1 and

−
√
−1 by σ, i.e., σ(a + b

√
−1) is defined as a − b

√
−1. The function σ is called complex conjugation. It

allows us to relate the complex numbers C to the real numbers R in the following way: a complex number
z = a+ b

√
−1 is a real number if and only if

σ(z) = z, (1.6)

since this forces b to be zero. Geometrically, we can picture C as the plane, with R ⊂ C being the horizontal
axis and the replacement z = a+ b

√
−1 7→ a− b

√
−1 corresponding to mirroring at the horizontal axis.

As was mentioned above, systems of polynomial equations can be solved in the complex numbers. If we
are instead tasked to find a real solution to a system of polynomial equations (whose coefficients are real), we
can first look for complex solutions (x1, . . . , xn). These will be solutions in R precisely if they are unaffected
by complex conjugation, i.e., if σ(xi) = xi for all i.

This strategy can also be applied when we seek rational solutions: we pass from Q to the (infinitely
bigger) algebraically closed field Q. Since we know we will find solutions there, we then have to determine
what solutions are unaffected by the symmetry group (replacing the ± replacement above) of the passage
from Q to its algebraic closure. Since we may well have no (or, as in the case of (1.2) above, very few)
solutions, so we can (and should) instead try to specify the solutions in the bigger field Q and also describe
what the symmetry does to them.

This sounds fair enough, but suffers from two serious problem: first, describing the action of the symmetry
group on non-linear objects (such as the non-linear solution set of polynomial equations) is difficult. Second,
the symmetry group relating Q and Q is infinitely more complicated than the one relating C = R to R.

1.3 Linearization

Since we can fully control linear equations, the line of attack will now be this: first, instead of solving
equations in a field such as Q or R, say, we solve these equations in its algebraic closure Q or R = C.
As was outlined in Section 1.1, this is possible and yields the expected answers. Second, we linearize the
answer, motivated by the fact that we understand linear objects much better than non-linear ones. Third,
we keep track of the symmetries arising from the passage from Q to Q, or from R to R. This should help
us in finding solutions in Q or in R. (There is no general, proud “then we are done”, but at the end of the
section, we will include a positive statement about solutions of polynomial equations.)

We have described the first and the third step to some extent above. Let us turn to the second. The
strategy of linearization goes back to Leibniz and Newton, the founders of calculus. Their invention, the
derivative of a function gives the best linear approximation to that function at a given point. The concept
of a derivative also has a prominent place in algebraic and arithmetic geometry. We will also encounter
the idea of linearization in the introduction of Section 3. In this section, however, the meaning of the term
linearization is different and often goes by the name of homology. This notion originates in the early 20th
century when Poincaré founded an area nowadays known as algebraic topology. Homology allows us to
formalize the slogan

“Can we solve all problems that we expect to be able to solve?” (1.7)
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We will explain this by means of a basic example of homology called singular homology. Consider a triangle
∆ with three edges x, y, and z and vertices a, b, and c. For reasons that will become clear in a moment, we
consider the alternating sum of its three edges

∂(∆) = x− y + z. (1.8)

(The + and − signs here are just book-keeping, i.e., a way of saying we count x and z once, and y once, but
with a minus sign. We don’t actually add the edges in the sense of moving or concatenating them.) In a
similar vein, we can take a line segment (such as x, y or z) and consider its boundary, which in the case of
x gives

∂(x) = a− b.

We can now compute
∂(∂∆) = ∂(x− y + z) = (a− b) + (b− c) + (c− a) = 0.

(Here the alternating sums come in handy.) These computations tell us that we can only expect to find a
triangle ∆ satisfying (1.8) if ∂(x) − ∂(y) + ∂(z) = 0. The latter is a precondition for being able to solve
the problem of finding ∆. Let us now suppose this precondition. Can we, then, always find ∆? Singular
homology tells us whether it is possible and, if not, how badly it fails.

For example, we consider triangles and line segments in X = R2\{(0, 0)}, the plane with the origin
removed. In there, we have three line segments x, y, z as above, but there is no triangle such that ∂(∆) =
x−y+z. The reason is the missing point in X. By contrast, for X = R2, this phenomenon does not happen.

Elaborating further on this idea, one assigns to any space X its so-called first singular homology of X,
denoted by H1(X). Essentially, it measures, in the parlance of (1.7), how many triangles in X that we should
be able to fill in, we actually can fill in. We have seen the examples X = R2 and R2\{(0, 0)}. We may just
as well apply it to X being the set of complex solutions of a system of polynomial equations. The important
benefit is this: a space in general, and the solution set of polynomial equations in particular need not have
any nice structure. However, homology does have a nice structure: we can add elements in it (by means of
the book-keeping mentioned above), much the same way as we can add two elements of a line or two points
in a plane. This linearity property of H1(X) makes it very useful. It is also very well computable. For
example, we have

H1(R2\{(0, 0)}) = Z,

but
H1(R2) = 0.

Let us summarize by saying that we have assigned to a system of polynomial equations the homology
of its solution set, i.e., have transformed a non-linear object into a linear one. This transformation is a big
simplification. Of course, it comes at the price that we may have suppressed essential features of our non-
linear problem. The following formula, known as the Lefschetz trace formula, tells us that our simplification
is not hopelessly naive: consider a map f : X → X, the number of fixed points x, i.e., those points satisfying
f(x) = x is expressible in terms of the homology of X:

#{x ∈ X, f(x) = x} =
∑
i

(−1)itr
(

Hi(X)
f−→ Hi(X)

)
. (1.9)

It would require some more digression to completely specify the assumptions on X and on f and to completely
explain the right hand side. The punchline of the above equation is nonetheless understandable: the non-
linear question of solving the equation

f(x) = x

has been expressed by the linear (i.e., feasible) problem of computing the homology of X.
In addition to singular homology, which is closely linked to classical geometric intuition, there is a whole

zoo of other homology theories which raise the question (1.7) for different kinds of problems. None of them
is picturesque enough to be included in this introduction, so we just point out one important other such
theory named étale cohomology. Étale cohomology achieves the seemingly impossible: on the one hand,
it yields results compatible with our geometric intuition (along the lines of simplicial homology explained
above) whenever our intuition is meaningful. On the other hand, it is applicable in arithmetic situations
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where our geometric intuition breaks down. For example, it applies when we are interested in solutions of
polynomial equations in the finite field Fp. Computing in this field means that we only have the numbers
{0, 1, . . . , p − 1}, for a fixed prime number p, and moreover, whenever we get out of this set (by adding or
multiplying two sufficiently large numbers), we divide by p and only remember the remainder of this division,
which is again in {0, 1, . . . , p− 1}. For example, in F3 we have x3 = x for any x ∈ {0, 1, 2}: dividing 23 = 8
(in Z) by 3 leaves a remainder of 2, so that 23 = 2 in F3. An important feature of these fields is the existence
of a map called Frobenius map: it maps any x ∈ Fp to Fr(x) := xp. Since p = 0 in the field Fp, the binomial
formula

(x+ y)p = xp + pxp−1y +
p(p− 1)

2
xp−2y2 + · · ·+ p(p− 1)

2
x2yp−2 + pxyp−1 + yp

ensures that all summands but the outer two are zero. This means (x+y)p = xp+yp in these fields! (Unlike
in high-school, where (x+ y)2 = x2 + y2 was always wrong.) Unlike Q, which exists, but is pretty implicit,
the algebraic closure Fp of Fp (obtained, once again, by adding solutions of all polynomial equations) is not
too far from Fp: an element x ∈ Fp lies in Fp precisely if

Fr(x) = x. (1.10)

In a sense, the Frobenius map is a vague analogue of the complex conjugate, which similarity is most
conspicuous when comparing (1.10) to (1.6).

We can finally give justify the above-mentioned claim that linearization (i.e., passage to homology),
combined with keeping track of symmetries, gives an answer to Question 1.1 (for solutions in Fp). Let us
write X for the set of solutions in Fp of the system (1.1). We also write X for the set of solutions in Fp. (We
are thus redoing what we did at the end of Section 1.2, except for Fp instead of Q or R. By (1.10), we know
that fixed points of the Frobenius map are exactly solutions in Fp.) Strikingly, the number of solutions in
Fp can be expressed using étale cohomology, very much in the same spirit as in (1.9) above. The formula is
known as Grothendieck’s trace formula. It reads

#X =
∑
i

(−1)itr
(

Hi
c(X)

Fr−→ Hi
c(X)

)
. (1.11)

It is not the point of explaining all the notation in the right hand side, but only the following two aspects:
X is a non-linear object, whereas the étale cohomology group Hi

c(X) is a vector space, i.e., a linear object.
The map Fr takes care of the symmetry inherent in the passage from Fp to Fp.

The upshot is this: we can count solutions of polynomial equations by linearizing the problem (by means
of a suitable cohomology theory) and employing its finer structure, which expresses the symmetry of the
passage the field Fp to its algebraic closure Fp.

Are we done? Far from it: we were initially looking for solutions in Q, but we ended up talking about
solutions in Fp. The so-called local-to-global principle allows us, in restricted situations, including in partic-
ular the case of a (single) polynomial quadratic equation, to deduce the existence of rational solutions from
solutions in {0, 1, . . . , pn − 1} (for n = 1 this is Fp as above), for all p and all n, and R. For most higher
degree equations, such as (1.5), this method fails though.

1.4 Towards motives

In describing the strategy mentioned at the beginning of Section 1.3 we have not made explicit how we
linearize the non-linear solution set. We have met singular homology and have noted the existence of étale
cohomology. In addition to these two, there are a few others, such as de Rham cohomology, which is related
to the solvability of differential equations. These different ways of linearizing algebraic-geometric objects all
have their individual merits: they “see” different aspects: for example singular homology only works well for
solutions in C, but utterly fails to address solutions in Fp, which is only seen by étale cohomology. On the
other hand, the finer structures on complex solution sets offered by complex analysis are invisible to étale
cohomology.

These different cohomology theories possess very similar formal features. They even yield identical results
when we look look at the bare bones. (Recall that a key point in our strategy in Section 1.3 was the extra
symmetry afforded by the transition from our initial field to its algebraic closure. The very existence of the
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Frobenius map Fr appearing in (1.11) testifies the importance of this approach. By “bare bones” we mean
striping off such extra structure.)

Motivic cohomology is the common principle behind these different ways of linearizing algebraic varieties.
It is beyond the scope of this introduction to properly introduce these notions. We can only roughly state
that motivic cohomology is given by the so-called Chow groups. For an algebro-geometric object X, the
Chow group CH(X) consists of points, lines, surfaces, etc. in X. Here point refers to a solution of the
polynomial equations defining X, and lines, surfaces etc. refer to letting points move (in 1, 2, etc. directions)
in a polynomial way. Since we were initially interested in finding polynomial solutions, i.e., points in X,
Chow groups are closely related to our object of interest. Moreover, in a sense that can be made precise,
Chow groups (and motivic cohomology in general) are the most faithful way of linearizing algebraic varieties.

Because Chow groups are so closely related to the non-linear algebraic structure, computing Chow groups
is very hard. We do have a few tools at our disposal, but our knowledge is much more limited even about
supposedly basic questions. For example, the construction of singular homology makes it evident that there
is no H−1(X): after all we don’t have any (−1)-dimensional analogue of points (which are 0-dimensional) and
line segments (which are 1-dimensional). The corresponding assertion for motivic cohomology is, however,
entirely non-trivial and only known in a few special cases, which will be mentioned again in Section 2.3.

The description of Chow groups should be compared to the construction of simplicial homology groups,
whose elements arose similarly, namely by points, line segments, triangles etc., where now line segments etc.
are not subject to the condition that they are of polynomial nature. Since the definition of Chow groups
and singular homology is so similar (just that the condition on being polynomial is dropped in the latter),
there is a map

CH(X)→ H(X), (1.12)

for example, between the Chow group and the singular homology of X. The Hodge conjecture, one of the
major open questions in algebraic geometry roughly says that given any element in H(X), subject to some
natural restrictions, it is possible to find an element in CH(X) which maps to a multiple of the given one in
H(X). This conjecture, and likewise its siblings including the Tate conjecture, are very interesting since they
would allow to infer solutions of polynomial equations (broadly construed) from much more easily accessible
objects, such as elements in the homology of X.

In relation to this sketch of arithmetic geometry and motives, the research presented in this thesis can
be summarized (in a highly approximative way) as follows.

• Two papers Arakelov motivic cohomology I, II (surveyed in Section 2.1) develop a new cohomology
theory which blends motivic cohomology and, roughly speaking, a variant of singular homology. In a
way, this cohomology theory measures how much the right and left hand term in (1.12) differ.

• Using this notion of Arakelov motivic cohomology, the paper Special L-values of geometric motives
(Section 2.2) develops a conjecture which unifies three important conjectures, including the Beilinson
conjecture which relates rational solutions of polynomial equations with ones over Fp (more precisely
with L-functions which are constructed out of counting points over Fp). Beilinson’s conjecture is almost
the best kind of an answer we can get to Question 1.1 for rational solutions. (It is still a conjecture,
though.)

• The proof that this unified conjecture is a valid reformulation of the classical ones is based on the
papers f-cohomology and motives over number rings (Section 2.4) and Artin-Tate motives over number
rings (Section 2.3).

• A paper Algebraic K-theory at the infinite place (Section 2.5) computes, again roughly speaking, the
analogue of motivic cohomology for an unusual kind of number system.

• A group of three papers develops a theory which serves to do algebra in a situation where the sets of
numbers we compute with are subject to deformations. The theory can be used as a computational tool
to understand the enhanced meaning of intersections in derived algebraic geometry (see the discussion
of Answer 1.1.3. above).

The general statements of this theory are developed in the paper Admissibility and rectification of col-
ored symmetric operads (Section 3.1). The paper Homotopy theory of symmetric powers (Section 3.2)
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shows how to handle the requirements of this theory in practice. Symmetric operads in abstract sym-
metric spectra (Section 3.3) shows how to apply the theory to spectra, which bundle all the information
given by a cohomology theory. This last part is also related to my earlier work discussed in Section 2.1.
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2 Arithmetic geometry

Let us return to Question 1.1.2. above: how many rational solutions does a system of polynomial equations
have? More generally, how many rational points does an algebraic variety X/Q (i.e., locally defined by
rational polynomials) have?

This question can be made more precise by counting rational points (x1, . . . , xn) ∈ X(Q) whose de-
nominators are bounded by some N and describe how it grows as N grows. This leads to so-called height
ζ-functions.

Below, we will instead focus on the Chow groups CH(X) mentioned in Section 1.4. They are defined to be
the free abelian group of all irreducible subvarieties in X, modulo rational equivalence, i.e., deforming cycles
along a family parametrized by P1. More generally, one considers Bloch’s higher Chow groups CH(X,n),
which are built out of cycles on X × An instead of cycles on X. Higher Chow groups are, up to torsion,
isomorphic to Adams eigenspaces in higher algebraic K-theory by means of the Chern class map

Kn(X)(p) ⊗Q
∼=−→ CHp(X,n)⊗Q.

This works for varieties X over a field. Since we will also be interested in finite type schemes over Z, we use
the left hand side in general as the definition of motivic cohomology (with rational coefficients), denoted by
H2p−n

M (X,Q(p)).
Beilinson’s conjecture relates the rank of these motivic cohomology groups, for X/Q with the vanishing

or pole orders of an L-functions associated to X. Moreover, it expresses the value of the L-function at
integers, up to a non-zero rational factor, in terms of motivic cohomology and another cohomology known
as Deligne cohomology. (This non-zero rational factor is eliminated by the Bloch-Kato conjecture, which
will not be discussed below.) In the remainder of this introduction, we will roughly outline the formulation
of Beilinson’s conjecture. For further details, the reader can consult [Kin03; Sch88], for example.

As a motivation, and also since they are needed later, we first discuss ζ-functions, which are closely
related to the L-functions appearing in Beilinson’s conjecture. Given an algebraic variety X/Fp, Weil had
the idea to assemble the number ]X(Fpn) of Fpn -valued points (i.e., solutions of the equations over all the
finite extensions Fpn), into a function defined by

Z(X, t) := exp

( ∞∑
n=1

]X(Fpn)tn/n

)
.

The function ζ(X, s) := Z(X, p−s) can also be computed as an infinite product

ζ(X, s) =
∏
x

(1−N(x)−s)−1, (2.1)

where the product ranges over closed points ofX, i.e., all solutions of the equations with values in a finite field,
whose cardinality is denoted by N(x). As was outlined in Section 1.3, étale cohomology, more specifically
the Grothendieck trace formula (1.11) serves the purpose of linearizing the problem of counting solutions.
This trace formula implies

Z(X, t) =

2 dimX∏
i=0

det
(
id− tFr−1|Hi

c(X ×Fp
Fp,Q`)

)(−1)i+1

. (2.2)

Here Fr is the Frobenius map mentioned in Section 1.3, Hc denotes étale cohomology with compact support,
and ` 6= p is a prime.

This formula relates an entity of non-linear origin, namely the number of solutions of a polynomial system
of equations, to something linear, namely the Q`-vector space of étale cohomology, endowed with its action
of the Frobenius. (Saying that the right hand side is of linear nature refers to the cohomology groups being
Q`-vector spaces. It is not to say, that the polynomial is actually linear in t. Instead, it is a rational function
which is described precisely by the Weil conjectures proven by Dwork and Deligne.)

The formula (2.1) also makes sense if X is a finite type scheme over Z. In this case we take the product
over all closed points (i.e., Fpn -valued for some prime p and n ≥ 1). These functions are vast extensions
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of Riemann’s ζ-function which is the special case X = SpecZ. Unlike for X/Fp, handling such functions
requires a lot more care: defined as above, they only converge for Re(s) > dimX. It is expected that that
they admit an analytic continuation to the entire complex plane, and that they satisfy a functional equation
relating ζ(X, s) to ζ(X, d− s).

We now switch back to X being a projective smooth variety defined over Q. A classical example is the
elliptic curve E defined by (1.5) (or rather, its projective closure). The L-function of the motive hi(X) is
defined by

L(hi(X), s) :=
∏
p

det(id− Fr−1p−s|Hi(X,Q`)
Ip)−1.

This formula is closely related to (2.2), except for the presence of the inertia group Ip, which appears. To
explain it, we choose a projective model X/ SpecZ (by clearing all denominators). If we think of SpecZ as
being analogous to a curve C, and and X as a family of manifolds parametrized by C, the family will be
smooth except at finitely many points. The invariants of the inertia group corresponds, in this analogy, to
the invariants of the monodromy action, around these points, on the cohomology of a smooth fiber of the
family X . As above, (highly nontrivial) caveats concerning the independence of the choice of ` in each factor,
the independence of a choice of embedding Q` ⊂ C, the convergence, analytic continuation and functional
equation apply to this definition of L(hi(X), s). We will neglect these here and in Section 2.2.

Beilinson’s conjecture states that the pole order of L(hi(X), s) at an integer s = m is expressible in terms
of motivic cohomology. The complete statement would require introducing a number of further notions, so
we just mention one special case, which is

ords=m L(hi−1(X), s) = dim Hi
M(X, i−m)Z (2.3)

for i − 2m ≥ 1. If X has a projective regular model X , the subscript Z at the right denotes the image of
Hi

M(X , i−m) in the corresponding motivic cohomology group of X.
The special L-value is, according to Beilinson’s conjecture, also closely related to motivic cohomology.

Again, there are three different cases of the conjecture. For i− 2m < 1, it says that there is an isomorphism

Hi
M(X,Q(i−m))Z ⊗Q R

∼=−→ Hi
D(X,R(i−m)). (2.4)

The right hand vector space is Deligne cohomology, a cohomology mixing Betti cohomology with real coeffi-
cients, and de Rham cohomology (truncated by means of the Hodge filtration). Relative to natural Q-lattices
in these R-vector spaces, Beilinson’s conjecture asserts that the special L-value at s = m is given by the
determinant of this isomorphism.

2.1 Arakelov motivic cohomology

Beilinson’s conjecture (in the special case (2.4) above, but even more prominently in the cases we have
omitted above) suggests considering a cohomology theory

Ĥ∗M(X,R(∗))

which measures the difference between H∗M(X,R(∗)) and H∗D(X,R(∗)), i.e., motivic cohomology (with real
coefficients) and Deligne cohomology. Here X is a scheme over Z, Q, R, or C. More precisely, we want a
cohomology fitting into a long exact sequence

. . .→ Ĥi
M(X,n)→ Hi

M(X,m)→ Hi
D(X,m)→ Ĥi+1

M (X,n)→ . . . (2.5)

The map in the middle is the Beilinson regulator, i.e., the Chern class for Deligne cohomology. More
generally, to make the concept available for the Beilinson conjecture, which is about hi(X), which is only a
piece of the motive of X, we want such a theory to be available for motives. A convenient such category is
given by the category DM(Z) of Beilinson motives over SpecZ introduced by Cisinski and Déglise.

The papers [HS15] (joint with Andreas Holmstrom) and [Sch15] develop such a formalism. While the
desideratum in (2.5) is simple, it is nontrivial to actually construct such a theory. The difficulty is to refine

the Beilinson regulator to a map between more structured objects: to construct ĤM, it is not enough to
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know the map on the level of cohomology groups, but one needs a refined presentation on the level of chain
complexes. Such presentations were known, but are not compatible with pushforwards. The key idea which
overcomes these difficulties and also makes the construction of ĤM highly canonical is a zig-zag

HB
id⊗1−→ HB ⊗HD

1⊗id←− HD.

Here HB and HD are spectra representing motivic cohomology and Deligne cohomology, respectively. Étale
descent for Deligne cohomology implies that the right hand map is a weak equivalence. Thus, the homotopy
fiber of the left hand map id⊗ 1, which is well-defined, represents the sought-for ĤM.

This very canonical way of constructing a cohomology theory can also be applied to a K-theoretic (as
opposed to motivic cohomology) variant. It also quickly yields a higher arithmetic Riemann-Roch theorem.

In [Sch15], these abstract constructions are shown to extend the classical notions of arithmetic K-theory
and arithmetic Chow groups. This is a subtle task since these classical constructions depend on explicit
complexes computing, say, arithmetic K-theory, whereas the above construction is more conceptual, but
inexplicit. In a nutshell, these comparison results are possible by upgrading the classical construction to the
more structured framework of motivic spectra, and then using a strong unicity property for the homotopy
fiber ĤB: the only isomorphism of ĤB in the triangulated category DM(Z) which is compatible with the
identity on HB and the identity on HD is the identity.

The idea of using motivic ring spectra to handle cohomology theories has also been used by various
authors. In particular, Bunke, Nikolaus, and Tamme later refined the Beilinson regulator to a map of
motivic E∞-ring spectra, which is the most structured statement possible about this map [BNT15].

2.2 Special L-values

The paper [Sch16] is about a reformulation of Beilinson’s above-mentioned conjecture.
For any motive M over Z, the composition of morphisms in DM(Z) yields a natural pairing between

(ordinary) motivic homology H∗(M) = HomDM(Z)(HB,M) and Arakelov motivic cohomology Ĥ∗(M,d) :=

HomDM(Z)(M, ĤB(d)) introduced above:

Hi(M,R)⊗R Ĥ2−i(M,R(1))→ Ĥ2(Z,R(1)) = ĈH1(SpecZ) = R. (2.6)

Conjecture 2.7. This pairing is a perfect pairing for any constructible motive M in DM(Z).

This duality is of course in the same spirit as Poincaré duality for sheaves on an open manifold and also
as Artin-Verdier duality for étale sheaves on SpecZ. Yet, this conjecture is much deeper. If M is of the form
M = i∗N for a geometric motive N over Fp, this conjecture is equivalent to the conjunction of Beilinson’s
conjecture on agreement of rational and numerical equivalence and Parshin’s conjecture. It also implies the
independence of L-functions of the choice of `. For X/Z being projective and regular, the conjecture is
equivalent to the Beilinson-Soulé vanishing conjecture.

The vector spaces in pairing (2.6) (or more precisely, the alternating tensor products of their determinants,
as i varies), carry a natural rational structure. For Hi(M,R) = Hi(M,Q)⊗Q R this is the trivial one. The

Q-structure on Ĥ∗(M,R) is obtained from the trivial one on H∗(M,R) and the Q-structure on H∗D(M,R)
obtained by glueing the rational structure on Betti cohomology, and the Q-structure on algebraic de Rham
cohomology stemming from the isomorphism

H∗dR(XR) = H∗dR(X)⊗Q R (for X/Q).

In more concrete terms, the Q-structure on H∗D(M) encodes periods, i.e., matrices of the form(∫
γi

ωj

)
for bases γi ∈ HB∗(X,Q) and ωj ∈ H∗dR(X).

We can now state the second part of the L-values conjecture:
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Conjecture 2.8. For a constructible motive M in DM(Z), the order of the L-function is given by

ords=0 L(M, s) = −χ̂(M),

the negative Euler characteristic of Arakelov motivic cohomology of M . The special L-value is given, up to
a non-zero rational factor, by

L∗(M, 0) ≡ 1/ΠM mod Q×,

where ΠM denotes the determinant of the pairings (2.6) (more precisely, the alternating determinant for all
i, with respect to the Q-structures just mentioned).

There are three notable special cases of these conjectures: one is M = i∗N , as above. In this case
Conjecture 2.8 is closely related to the Tate conjecture. For M = Mc(X), the motive with compact support
of a scheme X/Z, the pole order prediction is equivalent to a conjecture of Soulé. For M being a certain
intermediate extension of the motive of a smooth projective variety X/Q, the conjecture is closely related
to Beilinson’s conjecture. More formally, we have:

Theorem 2.9. Assuming a motivic t-structure for motives over Z satisfying the usual expected properties,
the above pair of conjectures is equivalent to the conjunction of Beilinson’s conjecture, Tate’s conjecture and
Soulé’s conjecture.

The above conjectures are compatible with distinguished triangles of motives. In particular, thanks to the
work of Borel, they hold for all Tate motives. They are also compatible with the functional equation.

It is a natural open question how to refine the above conjecture to an integral statement, along the lines
of the Tamagawa number conjecture by Bloch-Kato.

A different approach to L-values, which gives an integral prediction, but only applies to L-functions of
the form L(M(X), s), where X/Z is projective and regular, has been initiated by Lichtenbaum and was
pursued by Flach and Morin. We refer to the introduction of [Sch16] for references and further discussion,
and also the recent work [FM16] which uses the above construction of Arakelov motivic cohomology and the
above reformulation of Beilinson’s conjecture.

2.3 Artin-Tate motives over number rings

An inspiring, but challenging feature of the world of motives is the fact that many foundational “facts” are
still conjectures. For example, the Beilinson-Soulé vanishing, i.e., the vanishing of

K2p−i(X)
(p)
Q = Hi

M(X,Q(p))
?
= 0 for i < 0,

which is a triviality for Betti cohomology, is not at all clear.
There is one exception to this state of affairs, namely for the subcategory DATM(F ) ⊂ DM(F ) of mixed

Artin-Tate motives which is generated by motives of the form M(E)(n), where E/F is a finite extension
of the ground field F . For us, the ground field F is a number field or a finite field. For these fields,
the Beilinson-Soulé vanishing is known. Levine and later Wildeshaus used this to establish a motivic t-
structure on (Artin-)Tate motives. In [Sch11], these observations were extended to a triangulated category
DATM(OF ) of Artin-Tate motives over number rings. The category consists, by definition, of motives of
the form M(OE) and M(Fq), where E is a finite extension of F and Fq is a finite extension of some residue
field of OF .

The main statements of this paper are summarized by the following theorem:

Theorem 2.10. The category DATM(OF ) carries a motivic t-structure, which on the one hand extends the
one established by Levine-Wildeshaus, and on the other hand parallels the perverse t-structure on a curve.
Moreover, there is a weight filtration formalism.

For the subcategory DATM(OF ) ⊂ DM(OF ), this result establishes what has been referred to as the
“usual expected properties” in Theorem 2.9 above. In particular, for Artin-Tate motives the comparison
of the above-mentioned L-values conjecture is unconditionally equivalent to the classical conjectures of
Beilinson, Tate, and Soulé.
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2.4 f-cohomology and motives over number rings

The paper [Sch12] develops the necessary theory to make sense of the intermediate extension functor η!∗
which shows up in relating Beilinson’s conjecture to a conjecture for motives over Z.

For special motives, the idea of this functor is simple: for X/Q is smooth and projective, there is an
open subscheme U ⊂ SpecZ and a smooth projective extension XU of X. Then η!∗(h

i(X)) is defined as
j!∗h

i+1(XU ), where j!∗ is the intermediate extension functor. To define this intermediate extension, one has
to use an abelian category of mixed motives, which only exists conjecturally. (An unconditional subcategory
is studied in Section 2.3.) The paper specifies the precise axioms on mixed motives we need to make this
construction work. Moreover, based on these axioms, it shows that this functor j!∗ on motives is compatible
with the usual one on `-adic sheaves over SpecZ via the `-adic realization functor. Finally, the motivic
cohomology of η!∗h

i(X) is related to classical variants of motivic cohomology, such as the integral motivic
cohomology groups Hi

M(X,n)Z and the homologically trivial part of the Chow group.

2.5 K-theory at infinity

The paper [Sch14] is devoted to the K-theory of a new class of rings introduced by Durov [Dur07]. Durov’s
work allows to rigorously discuss the compactification SpecZ beyond the philosophy of Arakelov theory

scheme over Z vs. complex analytic space over C.

This is made possible by using a relaxed notion of rings. These rings, called generalized rings are defined
by their modules, extending the observation that the ring structure on a (usual) ring can be encoded via the
free R-modules Rn, together with the map

R2 ×R×R→ R, ((x1, x2), y, z) 7→ x1y + x2z.

The ring Z∞ which serves as a replacement of the (usual) rings of p-adic integers Zp is defined by declaring
its free module of rank n to be

Z∞(n) :=
{

(x1, . . . , xn) ∈ Rn,
∑
|xi| ≤ 1

}
.

The main result of this paper shows that the K-theory of Z∞ and more general rings O (occurring at
the infinite place of number rings) is governed by a smaller group, namely

E := {x ∈ O, |x| = 1}.

For example, for O = Z∞, E = {±1}. The algebraic K-theory of the Waldhausen category of free O-modules
can be computed as

Ki(O) = πsi (BE+, ∗),

the stable homotopy groups of the classifying space of E, equipped with a disjoint base point. The reason
that the K-theory of these generalized rings is comparatively simple is the presence of the corners in the
space Z∞(n) which implies strict constraints on automorphisms of Z∞(n): these are, it turns out, simply
given by permuting the corners.

More recently, Haran [Har15] has proposed another type of generalized ring, which has the property that
the free module of rank n is instead given by{

(x1, . . . , xn) ∈ Rn,
∑
|xi|2 ≤ 1

}
.

It seems interesting to study the K-theory of these types of rings and to see if there is a closer relationship
to Deligne cohomology than for Durov’s rings.
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3 Homotopical algebra

In Section 1.4, we encountered motives as being some kind of universal linearization of algebraic varieties.
We will begin this section by an introduction to homological algebra, which we will initially frame as a tool
to do linearization in a different sense.

The mathematical objects we are going to linearize are not just functions, which assigning a number
f(x) to a number x, but functors: they assign an object F (X) to an object X. Functors are richer than
functions since they are operating with objects X which have a richer internal structure than just a number.
For example, F might be defined on all abelian groups, in which case the structure of abelian groups, as
encoded by maps between them, must be respected by F .

To specify which functors are “linear”, it is convenient to use the notion of an exact sequence

0 −→ A
a−→ B

b−→ C −→ 0,

which is a shorthand for saying that b is surjective and its kernel is isomorphic to A via a. Here A, B, and C
are abelian groups, for example. A functor F is called exact if it preserves short exact sequences. We view
exact functors as being analogous to linear functions. Indeed, taking our cue from the dimension formula in
linear algebra, we could view B as being some sort of “sum” of A and C

B = A “ + ” C.

The quotation marks are huge here: it is not usually true, and indeed the whole point of homological algebra,
that B is actually the direct sum of A and C! If we are willing, however, to indulge in a big-quotation-
marks-attitude, then the condition that F be exact just means F is “linear”, meaning

F (A “ + ” C) = F (A) “ + ” F (C).

Like in calculus, though, many interesting functors usually fail to be exact. For example, the functor

F : M 7→ F (M) := M ⊗Z Z/2 = M/2M

is not exact, since it maps the exact sequence

0 −→ Z
2−→ Z

pr−→ Z/2→ 0 (3.1)

to
0 −→ Z/2

0−→ Z/2
id−→ Z/2 −→ 0 (3.2)

which is no longer exact: the kernel of id is not isomorphic to Z/2. Deriving a functor is a way to remedy
its non-exactness (or non-“linearity”). More precisely, the derived functor of a functor F is the best exact
approximation to F , comparable to the derivative being the best linear approximation of a function. In the
above example (3.2), the easiest way (and, in a precise sense, the universal way) of reinstating “linearity”
(i.e., exactness) is to extend the above sequence to

0 −→ Z/2
id−→ Z/2

0−→ Z/2
id−→ Z/2 −→ 0. (3.3)

The right hand underlined copy of Z/2 is the original F (Z/2), whereas the left one is the modification we
have to insert to restore exactness. Therefore, we are led to stipulating that the derived tensor product
should consist, in a sense that remains to be made precise, of the two underlined copies of Z/2. On the other
hand, if we regard (3.3) as a “linear equation”

“the two Z/2” = “the remaining two Z/2”

we should also expect the derived tensor product, usually denoted by

Z/2⊗L
Z Z/2,

to consist of the two non-underlined copies of Z/2.
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In pointing towards derived algebraic geometry around (1.4), we have discussed the self-intersection of
the line x = 0 in the plane. Algebraically, this corresponds to the tensor product k[y] ⊗k[x,y] k[y], which is
k[y], i.e., corresponds to the line x = 0. An obvious modification of the discussion of Z/2⊗L

Z Z/2 computes

the derived tensor product k[y]⊗L
k[x,y] k[y] = [k[y]

0−→ k[y]], which is the derived intersection of the line with
itself.

We are now facing two questions:

Question 3.1. 1. How can we rigorously define derived functors?
2. How do we compute derived functors?

To comprehensively answer these questions, we will gradually consider more general situations of non-
exactness. The first step requires the notion of a quasi-isomorphism. These are maps of chain complexes
which induce an isomorphism on all homology groups (defined as the kernel of the differential modulo the
image of the preceding differential). For example, the map of chain complexes (the map goes in the vertical
direction, the horizontal maps are the differentials of the chain complex)

. . . // 0 //

��

Z
2 //

��

Z

pr

��

// 0

��

// . . .

. . . // 0 // 0 // Z/2 // 0 // . . .

(3.4)

is a quasi-isomorphism: the homology groups of both complexes are all 0, except at the spot involving the
map pr, where homology is Z/2. Note that saying this map is a quasi-isomorphism is simply restating the
exact sequence (3.1). It is not hard to show that a functor F is exact in the sense above if and only if it
preserves quasi-isomorphisms. It is helpful to think of quasi-isomorphisms as those maps which preserve the
true content of a chain complex: at the end of the day we will not be interested so much in the complex itself,
but rather only in its cohomology groups. For example, de Rham cohomology of a manifold is computed
both by the complex of differential forms, and also by the complex of currents. Depending on the situation,
one of the complexes may be better suited to computations than the other, but the core content (i.e., the
cohomology) remains unchanged.

We have arrived at a point where we view exact functors as those preserving the core content of a
mathematical object. This idea of core content is also important in non-abelian settings, most prominently
in homotopy theory. Homotopy theorists regard two topological spaces as similar enough (by means of a fixed
map f : X → Y ) whenever the induced map of homotopy groups πn(f) : πn(X)→ πn(Y ) are isomorphisms
for all n ≥ 0. Such a map f is called a weak equivalence. The simplest example of a weak equivalence is the
inclusion of a point inside an interval, pt→ I.

We define a functor to be exact if it preserves weak equivalences. Once again, non-exact functors are
ubiquitous. The following glueing functor is a typical example: it assigns to some diagram consisting of three
spaces X, X ′ and X ′′ and two continuous maps x′ and x′′,

X

x′′

��

x′
// X ′

��

X ′′ // X ′ tX X ′′

(3.5)

its pushout X ′ tX X ′′, i.e., the space obtained by glueing X ′ and X ′′ along X, via the given maps. For
example, the pushout of

pt t pt

��

// pt

pt

(3.6)

is a single point. However, if we replace the single copies of pt by intervals I (which are weakly equivalent,
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and the maps are also weakly equivalent to the original ones):

pt t pt

i0ti1
��

i0ti1 // I

I,

(3.7)

the pushout is S1, the circle. It is genuinely different from (i.e., not weakly equivalent to) the previous
pushout: the winding number yields an isomorphism π1(S1) = Z, but π1(pt) = 0. Therefore, the pushout
functor is not exact: it does not preserve weak equivalences between diagrams (which are by definition those
maps of diagrams whose individual components are weak equivalences in the sense above).

Model categories, a far-reaching concept due to Quillen [Qui67] conveniently explain the above phenom-
ena. They consist of the following data:

1. A category C. In the above examples, we would take chain complexes of abelian groups or roof diagrams
of topological spaces as in (3.5).

2. A class of maps in C called weak equivalences. These are the maps we consider to preserve the core
content of an object. Above, we would take quasi-isomorphisms, i.e., maps inducing isomorphisms on
homology, resp. weak equivalences of diagrams (i.e., maps inducing isomorphisms of homotopy groups
for the three spaces involved.)

3. Two classes of maps called cofibrations and fibrations. Once the weak equivalences are specified, these
two classes determine each other. In many model categories, there is a rather explicit set of generating
cofibrations which formalize the intuition that any CW complex can be constructed by repeatedly
(possibly infinitely) attaching cells.

These data are required to satisfy certain conditions and compatibilities. The most important condition
is that for any object X, we must be able to find a weak equivalence, called a cofibrant replacement :

X ′
∼−→ X

where X ′ is cofibrant, i.e., obtained from ∅ by repeatedly glueing “cells” (possibly infinitely many). Pro-
jective resolutions of modules, which are a key technique of homological algebra, are precisely the cofibrant
replacements in a model category on chain complexes known as the projective model structure. Thus, the
top line in (3.4) is a cofibrant replacement of the bottom line (i.e., the object Z/2). Similarly, the diagram
(3.7) is a cofibrant replacement of (3.6).

Model categories provide an answer for Question 3.1.2. above: suppose a functor F : C → D between
two model categories preserves cofibrations and acyclic cofibrations (i.e., maps which are both cofibrations
and weak equivalences). Such a functor is a left Quillen functor.1 For example, the tensor product functor
− ⊗Z Z/2 is a left Quillen functor provided we understand cofibrations to be maps that glue in projective
modules, as alluded to above. The functor which assigns to a diagram (3.5) its pushout is also a left Quillen
functor provided that we understand cofibrant objects to be diagrams in which both maps x′ and x′′ are
obtained by glueing in cells.

The derived functor of a left Quillen functor F , denoted LF , is defined as

LF (X) = F (X ′).

A little lemma known as Brown’s lemma shows that (unlike F !), LF preserves weak equivalences. Moreover,
LF is homotopically terminal among its peers, i.e., functors mapping to F and preserving all weak equiva-
lences. In this precise sense, it is the optimal approximation of F by an exact functor. Being homotopically
terminal only depends on the weak equivalences, not on the choice of (co)fibrations. In particular, if we

1An entirely symmetric story can be told for deriving exact functors which are exact at the left (but fail to preserve exactness
at the right). A dual notion of right Quillen functors serves to compute these. This subsumes (and greatly extends) the usual
computation of sheaf cohomology by injective resolutions, for example. In the remainder of this introduction, we will focus on
left Quillen functors.
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had computed the left derived functor using a different class of cofibrations (which option is what makes
model categories useful), the resulting derived functors would be weakly equivalent. For details the reader
is referred to [Dwy+04].

Revisiting our examples, we see that

Z/2⊗L
Z Z/2 = (Z

2−→ Z)⊗Z Z/2 = (Z/2
0−→ Z/2),

i.e., just the terms in (3.3) which are not underlined. Similarly, the above derived pushout, better known as
the homotopy pushout can be computed as

pt tL
pttpt pt = I tpttpt I = S1.

Nicely, the chain rule of calculus has the following analogue: given two composable left Quillen functors

C F−→ D G−→ E , there is a weak equivalence

LG ◦ LF
∼−→ L(G ◦ F ).

We end this short introduction by putting the notion of a model category into the context of other
homotopical-algebraic notions, by means of the following analogy between linear and homotopical algebra
[FG12]:

vector spaces + basis
forget

00 vector spaces
can choose

pp

dim

11 numbers

determines up to iso.
pp

model categories
∞-category of bifibrant objects

00∞− categories
can choose

pp

homotopy category

00 ordinary categories

determines up to equivalence
pp

Two vector spaces are isomorphic if and only if their dimensions agree. Analogously, two ∞-categories
are equivalent (by means of some given functor) if and only if their homotopy categories are equivalent.
The classical example of a homotopy category is the derived category of a Grothendieck abelian category.
The analogy also illustrates the shortcomings of the homotopy category (of a model or an ∞-category):
for a linear map f : V → W , we are unable to define dim ker f if we only remember dimV and dimW .
Similarly, we are unable to do the majority of algebraic manipulations in the homotopy category of an ∞-
(or model) category. This much about the right hand column. The left colum serves, so to speak, for doing
concrete computations. Presentable ∞-categories arise from combinatorial model categories. Such a choice
of a model structure is not unique, but allows for a convenient choice, similarly to choosing bases in vector
spaces. Forgetting a basis of a vector space corresponds, in homotopy land, to constructing an ∞-category
out of bifibrant (i.e., both cofibrant and fibrant) objects of a model category. It is inspiring to also view this
analogy from a historical perspective: while matrices (i.e., vector spaces made concrete) appear in Gauss’
1801 Disquisitiones Arithmeticae, the axiomatic concept of a vector space emerged only in Peano’s 1888
Calcolo Geometrico [Kle07]. Similarly, model categories (i.e., ∞-categories made concrete) were introduced
by Quillen in 1967. It took some decades, until Lurie’s 2012 Higher topos theory (based on earlier work of
Joyal) gave us the notion of ∞-categories.

3.1 Operads and their algebras in model categories

Above, we have outlined homological and homotopical algebra as a tool to apply homotopical methods to
algebraic problems. Recently, however, the term homological algebra acquires a second flavor, namely by
doing algebra in a context where the usual notions of rings and modules are understood up to a notion of weak
equivalence. Such a development is fueled by the work of Toën and Vezzosi on derived algebraic geometry,
and again Lurie’s work on spectral algebraic geometry. My joint work with Dmitri Pavlov in [PS14a] adresses
the question of doing homological algebra (in this latter sense) in a model-categorical context.

To do algebra, we need a multiplication. This is codified by endowing a model category C with an
additional functor

−⊗− : C × C −→ C
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playing the role of the tensor product (of chain complexes of abelian groups) or the cartesian product (of
topological spaces). Such a structure is known as a symmetric monoidal model category. It allows us to
talk about the standard notions of commutative monoids and their modules, namely objects R ∈ C with a
multiplication map

µ : R⊗R→ R,

respectively, objects with a map R⊗M →M , satisfying the usual rules.
There are now the following immediate questions about a symmetric monoidal model category. The

first asks for establishing the basis of homotopical linear algebra (broadly construed), whereas the second is
needed to get homotopical commutative algebra (which forms the basis of homotopical algebraic geometry)
off the ground.

Question 3.2. 1. Given a monoid R ∈ C, when does the category ModR(C) of R-modules inherit a
model structure?

2. When does the category Comm(C) of commutative monoids in C inherit a model structure?

In both cases the word “inherit” means that weak equivalences and fibrations in ModR(C) (respectively,
Comm(C)) are precisely those maps whose underlying map in C is in the corresponding class. We will use
the term “inherit” in a similar way below.

Answer (to Question 3.2.1.). The model structure on ModR(C) exists, for any R, whenever C satisfies
the monoid axiom introduced by Schwede and Shipley [SS00]. The key point of this axiom is that for any
Y ∈ C and any acyclic cofibration s, the map

Y ⊗ s

is a couniversal weak equivalence, i.e., a weak equivalence which remains a weak equivalence under any
pushout.

In practice, the monoid axiom is a mild condition satisfied for all basic model categories. In Section 3.2,
we discuss how to promote it to more involved model categories.

To describe our answer to Question 3.2.2., it is convenient to generalize the question. Originating in
topology, but also relevant in algebraic geometry (in the guise of the multiplication in Deligne cohomology)
is a situation where the multiplicative structure on some object is not just given by a map

µ : R⊗R→ R

as above, but instead the multiplication maps are parametrized by a space O(2), so we consider a map

µ : O(2)⊗R⊗R→ R.

A typical example in topology is the loop space Ω(X) = Hom(S1, X). The process of concatenating two
loops in X gives a map Ω(X) × Ω(X) → Ω(X). But the way we choose our speed in traversing the first
and then the second loop gives us a space parametrizing such binary operations. More generally, the space
A∞(n) of n disjoint, linearly embedded, open intervals in R can be used to define a natural parametrized
n-ary multiplication map

A∞(n)× Ω(X)×n → Ω(X).

For different n, the spaces A∞(n) are naturally related by means of multiplication maps

A∞(n)×
n∏
i=1

A∞(ki)→ A∞

(
n∑
i=1

ki

)
,

and the above action on Ω(X) is compatible with this multiplication. Moreover, there is a Σn-action on
A∞(n) which is naturally compatible with both multiplication maps. According to May, the collection of the
A∞(n)’s is called an operad known as the little intervals operad, and Ω(X) is an algebra over this operad.
Contracting the intervals to their centers yields a map A∞(n)→ As, the associative operad, which is defined
by As(n) = Σn. This map of operads yields a restriction functor

AlgAs(Top)→ AlgA∞
(Top)
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between topological spaces with a strictly associative multiplication and those with a multiplication which
is only associative up to homotopies specified by the A∞-action. It is classically known that this functor is
part of a Quillen equivalence, i.e., the homotopy categories are equivalent.

To also address the commutativity aspects of multiplication, one considers the operad E∞ defined as
the union over higher-dimensional little disks operads (for increasingly high-dimensional disks). Moreover,
the commutative operad Comm is defined by Comm(n) = pt. Now, even though we have a natural weak
equivalence E∞ → Comm of operads, it is not true (and classically known) that E∞-algebras in Top are
Quillen equivalent to strictly commutative algebras. The difference is that the Σn-action on the n-th level
of Comm is not free, whereas it is free on A∞(n) and As(n). These facts can be paraphrased by saying that
a topological algebra, which is associative up to (coherent higher) homotopies can be strictified to (i.e., is
weakly equivalent to) a strictly associative algebra. The corresponding statement for commutative algebras
vs. E∞-algebras is false.

With this motivation in hand, we come back to general questions about operadic algebras. The first
question asks when we can do homotopical algebra over operads. (The case O = Comm is Question 3.2.2.
above.) The second question asks whether doing homotopical algebra is sensitive to the choice of operad we
use to model our algebras. In the above classical examples in C = Top, the answer is yes for A∞ vs. As, but
no for E∞ vs. Comm. The third question asks whether our computations will be sensitive to our choice of
model category. For example, there is a natural Quillen equivalence

| − | : sSet � Top : Sing (3.8)

between simplicial sets and topological spaces. It would be disturbing if homotopical algebra in simplicial
sets would be genuinely different than in topological spaces. (It is not, it turns out.)

Question 3.3. 1. Given a symmetric operad O, when does the category AlgO(C) of O-algebras inherit a
model structure?

2. When does a weak equivalence of operads O → P yield a Quillen equivalence

AlgP (C)→ AlgO(C)?

I.e., when does the forgetful functor induce an equivalence of the homotopy categories

Ho(AlgP (C))→ Ho(AlgO(C))?

3. Given a Quillen equivalence F : C � D : G, and an operad O in C (respectively P in D), when are the
adjunctions

AlgO(C) � AlgF (O)(D)

AlgG(P )(C) � AlgP (D)

Quillen equivalences?

These three questions form the basis for doing homotopical algebra in the afore-mentioned sense. They
were adressed by Muro [Mur11; Mur14] for non-symmetric operads. This excludes operads such as Comm
(yielding commutative monoids) or Lie (yielding Lie algebras). In [PS14a], we answer these questions for
symmetric operads. Compared to non-symmetric operads, this is considerably more delicate, since the
homotopical properties of Σn-actions, most importantly the homotopical properties of expressions such as

O(n)⊗Σn
R⊗n,

have to be taken into account.
In the answers below, we will omit mentioning certain mild technical conditions. These are usually of the

following form: C is combinatorial (this is a mild set-theoretic size condition, and the condition that there
is a set of generating cofibrations), and C satisfies a certain finiteness condition (which ensures that filtered
colimits are exact). These two conditions are of technical nature, and can be relaxed further.

Below, we need the notion of an h-cofibration introduced by Batanin and Berger [BB13]. In practice
(whenever C is left proper) being an acyclic h-cofibration is equivalent to being a couniversal weak equivalence.
This notion already appeared in the monoid axiom above. In particular, this condition is decidedly weaker
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than being an acyclic cofibration. The symbol � denotes the pushout product of maps. If s is a map
s : ∅ → X (from the initial object ∅), then s�n is just the map ∅ → X⊗n.

To the best of our knowledge, the following existence criterion extends all other similar such criteria in
the literature.

Answer (to Question 3.3.1.). Suppose that for any Σn-equivariant object Y ∈ C, and any acyclic cofibra-
tion s in C, the map

Z := Y ⊗Σn s
�n (3.9)

is an acyclic h-cofibration.2 Then AlgO(C) inherits a model structure for any symmetric operad O.

We define C to be symmetric h-monoidal if it satisfies the condition above, and also its non-acyclic
counterpart (obtained by omitting the word acyclic above). The reason to include the non-acyclic part in
this definition is explained in Section 3.2, as is the question of checking symmetric h-monoidality for a given
model category C.

Despite the condition of symmetric h-monoidality looking similar to the monoid axiom of Schwede and
Shipley, the proof in the symmetric case is more involved. Its key point is to control homotopical properties
of pushouts (in the category of operadic algebras) along a map of free operads. The seed crystal in the case
of commutative monoids (i.e., the case O = Comm) is the following: the coproduct of two free commutative
monoids Sym(R) and Sym(S) is given by

Sym(R) t Sym(S) = Sym(R t S),

and it can be computed as ∐
a,b≥0

Σa+b ×Σa×Σb
R⊗a ⊗ S⊗b,

a fancy way of writing the binomial formula from high-school. In general, the computation of arbitrary
pushouts of operadic algebras is due to Harper [Har10].

Question 3.3.2. admits the following answer, where C is supposed to be symmetric h-monoidal (and
satisfies some mild technical assumptions, as above).

Answer (to Question 3.3.2.). A map f : O → P of operads induces a Quillen equivalence

AlgO(C) � AlgP (C)

if and only if f is symmetric flat, i.e., its n-th level f(n) is such that

f(n) �Σn
s�n (3.10)

is a weak equivalence for any cofibration s. (Again, the key case to keep in mind is s : ∅ → X for X cofibrant,
in which case the condition requires that f(n)⊗Σn

X⊗n is a weak equivalence.)

We have mentioned above that AlgComm(Top) � AlgE∞
(Top) is not a Quillen equivalence. This is

explained by the fact that Top is not symmetric flat: taking coinvariants by a Σn-action does not preserve
weak equivalences of topological spaces: for example RP∞, which is a model for BZ/2 = (EZ/2)/(Z/2), is
not weakly equivalent to pt = pt/(Z/2). This example suggests that symmetric flatness is a rarely satisfied
condition. (It does hold, though, in any situation with rational coefficients, by Maschke’s theorem.) This
leads to the following

Question 3.4. What to do if C is not symmetric h-monoidal or symmetric flat?

A symmetric flatness condition also arises when we compare operadic algebras in model categories with
operadic algebras in ∞-categories, as introduced by Lurie. Briefly, we show that the ∞-category underlying
operadic O-algebras in C is equivalent to the∞-category of algebras over the operadic nerve provided that C
is symmetric flat with respect to the levelwise projective replacement O′ → O. In the parlance of the above

2More generally, we need to require a similar property for a finite family s1, . . . , se of acyclic cofibrations. A similar notational
abuse will be done with the symmetric flatness condition below.
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analogy between linear and homotopical algebra, the model category of operadic algebras is a “basis” of the
analogous ∞-category, as it should.

Question 3.3.3. is also answered in [PS14a]. Instead of discussing the statement in detail, we just point
out that the statements we obtain extend the ones of Schwede and Shipley (for modules over monoids) quite
faithfully. For example, since the left adjoint in (3.8) is strong monoidal, we obtain a Quillen equivalence

AlgO(sSet) � Alg|O|(Top)

for any symmetric operad O in simplicial sets.
The proof of this statement uses a description of pushouts of operads due to Spitzweck [Spi01] and Berger–

Moerdijk [BM09], which is by far the most involved algebraic input in this paper. This pushout description
can also be used to give a new proof of Harper’s above-mentioned formula for pushouts of operadic algebras.

3.2 Homotopy theory of symmetric powers

In a nutshell, even though the proofs of the above statements are involved, the final results take a very
natural shape. A working mathematician, especially one working in motivic homotopy theory, will also ask:

Question 3.5. How to verify the conditions of symmetric h-monoidality and symmetric flatness for a given
model category C?

This question is adressed in the paper [PS15]. Our course of action is in the spirit of, say, the condition of
a ring being Noetherian: it is easily or even trivially verified for basic rings (such as fields), and it is robust
under various ring-theoretic constructions (localization, polynomial rings, completions), making it available
for a large class of rings.

We check these conditions for basic model categories, such as chain complexes, simplicial abelian groups,
or simplicial sets. For example, chain complexes are symmetric h-monoidal if and only if we work over
a ground ring of characteristic 0. This recovers the well-known non-existence of a model structure on
commutative dg-Fp-algebras. Interestingly though, simplicial abelian groups are symmetric h-monoidal.
This is derived from the fact that simplicial sets are symmetric h-monoidal. These facts and also the ones
mentioned below are based on the following observation, which is partly due to Gorchinsky–Guletskii [GG16]:
the conditions in (3.9) and (3.10) only have to be checked for generating (acyclic) cofibrations. This simplifies
our task tremendously: for the basic model categories mentioned above it reduces to checking it for a few
maps. For example, the generating acyclic cofibrations of simplicial sets are just ∂∆n ⊂ ∆n.

We study the stability of the symmetricity properties under the two most common methods to construct
of model categories: transfers and Bousfield localizations. Transfer refers to the situation that a model
structure on a category C is turned into one on a category D by means of an adjunction

F : C � D : G,

such that weak equivalences and fibrations in D are the preimages (under G) of the ones in C. This situation
is ubiquitous, with a large class of examples arising from forgetful functors, including the functor forgetting
some module structure, as alluded to in Question 3.2.1. above. The Quillen adjunction (3.8) is also an
example of transfer.

Left Bousfield localizations are an equally important construction. The term localization derives from
the localization of rings and modules. More generally, it refers to forcing a class S of maps to become weak
equivalences while keeping the objects the same. In model categories, left Bousfield localizations are of the
form

C � C[S−1],

where the right hand side is the same category, carrying the same cofibrations, but a larger class of weak
equivalences. A prototypical example is the Bousfield localization of the category of presheaves with respect
to some topology.

We show that for transfers or localizations which are sufficiently compatible with the monoidal structures,
the symmetric h-monoidality and symmetric flatness of C passes to D (resp. to C[S−1].) At this point,
bundling the condition for acyclic and non-acyclic cofibrations in the definition of symmetric h-monoidality
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becomes crucial: it would be impossible to carry the acyclic part of symmetric h-monoidality through a
Bousfield localization, since we have in practice little control over the generating acyclic cofibrations of
C[S−1].

All of the above of course also works for the non-symmetric variants; in particular it shows how to
propagate the monoid axiom along transfers and localizations.

3.3 Symmetric operads in symmetric spectra

In a third paper [PS14b], we apply the results of the preceding two papers to model categories of symmetric
spectra. Motivated by the construction of motivic commutative ring spectra, which offer certain complica-
tions not present in the classical case of spectra of simplicial sets, we strive to make our results as general as
possible: we consider spectra with values in a symmetric monoidal model category C. In such a generality,
the category SpR(C) of symmetric spectra is defined as modules over an arbitrary commutative monoid R
in symmetric sequences. The model structure is obtained by first transferring it from a model structure on
symmetric sequences (where one has a certain freedom), and then performing a Bousfield localization which
corresponds to the stabilization in the classical case of spectra of simplicial sets. An important twist is
the consideration of the positive stable model structure denoted Sp+

R below. This concept is well-known in
topology. It arises by forcing cofibrant objects X to be trivial in spectral degree 0 which causes expressions
such as X⊗n to have a free Σn-action. On the other hand, since the stabilization process allows us, roughly
speaking, to disregard low spectral levels, the resulting model category will be equivalent to the usual (non-
positive) stable model structure. This is, in a nutshell, the basis of the following implication, where we drop
certain minor technical conditions on C:

C is h-monoidal and flat =⇒ Sp+
R(C) is symmetric h-monoidal and symmetric flat.

Here, h-monoidality and flatness are the non-symmetric counterparts of the above notions, i.e., are obtained
by omitting the coinvariants by the Σn-actions. These non-symmetric conditions are much weaker than the
symmetric ones. They are satisfied for the following model categories C, and many more:

• For C = Top (or C = sSet) and R being freely generated by the circle S1 is the classical one, the
category SpS1(C) is the classical category of symmetric spectra.

• Motivic spectra arise from C = sPSh(Sm/S), simplicial presheaves on the site of smooth schemes over
some base scheme S, R being freely generated by P1, the projective line.

• For C = Ab (or, to have a more meaningful model category C = Ch(Ab), chain complexes of abelian
groups) and R being freely generated by Z, the category SpZ(Ab) is the category of FI-modules
appearing throughout the work of Church on representation stability and homological stability.

The main theorem in [Chu+14] states that FI-modules over a Noetherian ring are a Noetherian category
themselves. It is probable that the homotopical algebra performed in [PS14b] yields interesting results similar
to this one. More generally, it seems interesting to revisit modular representation theory from the point of
view of spectra in Fp-modules. The reason for this is the fact that whenever the monoid R is generated by
the monoidal unit 1, such as in the case of FI-modules above, there is a Quillen equivalence

C ∼−→ Sp+
1 (C).

In other words, homological calculations can just as well be done in spectra. This answers Question 3.4.
We apply these excellent model-theoretic properties of spectra in several directions:

• We show that the axioms of Toën and Vezzosi needed to do homotopical algebra in their sense (i.e.,
the foundations of derived algebraic geometry on a model categorical level) are satisfied for spectra.

• We show that axioms of Goerss-Hopkins obstruction theory (adressing the liftability of commutative
monoids in the stable homotopy category to E∞-spectra) are satisfied for spectra in the above generality.

• We show how to construct strictly commutative motivic ring spectra. We highlight one application of
this, namely to Deligne cohomology.

This latter application closes, in a sense, the circle to my earlier work.
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ARAKELOV MOTIVIC COHOMOLOGY I

ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Abstract

This paper introduces a new cohomology theory for schemes of finite
type over an arithmetic ring. The main motivation for this Arakelov-
theoretic version of motivic cohomology is the conjecture on special val-
ues of L-functions and zeta functions formulated by the second author.
Taking advantage of the six functors formalism in motivic stable homo-
topy theory, we establish a number of formal properties, including pull-
backs for arbitrary morphisms, pushforwards for projective morphisms
between regular schemes, localization sequences, h-descent. We round
off the picture with a purity result and a higher arithmetic Riemann-
Roch theorem.

In a sequel to this paper, we relate Arakelov motivic cohomology to

classical constructions such as arithmetic K and Chow groups and the
height pairing.

1. Introduction

For varieties over finite fields, we have very good cohomological tools for

understanding the associated zeta functions. These tools include �-adic coho-

mology, explaining the functional equation and the Riemann hypothesis, and

Weil-étale cohomology, which allows for precise conjectures and some partial

results regarding the “special values”, i.e., the vanishing orders and leading

Taylor coefficients at integer values. The conjectural picture for zeta functions

of schemes X of finite type over SpecZ is less complete. Deninger envisioned a

cohomology theory explaining the Riemann hypothesis, and Flach and Morin

have developed the Weil-étale cohomology describing special values of zeta

functions of regular projective schemes over Z at s = 0 [Den94,FM12,Mor11].

In [Sch13], the second author proposed a new conjecture, which describes

the special values of all zeta functions and L-functions of geometric origin, up

to a rational factor. It is essentially a unification of classical conjectures of

Beilinson, Soulé and Tate, formulated in terms of the recent Cisinski-Déglise
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720 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

theory of triangulated categories of motives over Z. This conjecture is for-

mulated in terms of a new cohomology theory for schemes of finite type over

Z. The purpose of this paper is to construct this cohomology theory and

establish many of its properties.

This cohomology theory, which we call Arakelov motivic cohomology, is re-

lated to motivic cohomology, roughly in the same way as arithmetic Chow

groups relate to ordinary Chow groups or as arithmetic K-theory relates to

algebraic K-theory. The key principle for cohomology theories of this type

has always been to connect some algebraic data, such as the algebraic K-

theory, with an analytical piece of information, chiefly Deligne cohomology,

in the sense of long exact sequences featuring the Beilinson regulator map

between the two and a third kind of group measuring the failure of the

regulator to be an isomorphism. This was suggested by Deligne and Soulé

in the 1980s. Beilinson also expressed the idea that the “boundary” of an

algebraic cycle on a scheme over Z should be a Deligne cohomology class

[Bĕı87]. Gillet, Roessler, and Soulé then started developing a theory of arith-

metic Chow groups [GS90b,GS90c,GS90a,Sou92], arithmetic K0-theory and

an arithmetic Riemann-Roch theorem [Roe99, GRS08]. Burgos and Wang

[Bur94, Bur97, BW98] extended some of this to not necessarily projective

schemes and gave an explicit representation of the Beilinson regulator. More

recently, Goncharov gave a candidate for higher arithmetic Chow groups for

complex varieties, Takeda developed higher arithmetic K-theory, while Bur-

gos and Feliu constructed higher arithmetic Chow groups for varieties over

arithmetic fields [Gon05, Tak05, BGF12]. The analogous amalgamation of

topological K-theory and Deligne cohomology of smooth manifolds is known

as smooth K-theory [BS09].

In a nutshell, these constructions proceed by representing the regulator as

a map of appropriate complexes. Then one defines, say, arithmetic K-theory

to be the cohomology of the cone of this map. Doing so, however, requires

a good command of the necessary complexes, which so far has prevented ex-

tending higher arithmetic Chow groups to schemes over Z and also requires

one to manually construct homotopies whenever a geometric construction is

to be done, for example the pushforward. The idea of this work is to both

overcome these hurdles and enhance the scope of these techniques by intro-

ducing a spectrum, i.e., an object in the stable homotopy category of schemes,

representing the sought cohomology theory.

This paper can be summarized as follows: let S be a regular scheme of

finite type over a number field F , a number ring OF , R, or C. In the stable

homotopy category SH(S) (cf. Section 2.1) there is a ring spectrum HD rep-

resenting Deligne cohomology with real coefficients of smooth schemes X/S
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ARAKELOV MOTIVIC COHOMOLOGY I 721

(Theorem 3.6). We define (cf. Definition 4.1) the Arakelov motivic cohomol-

ogy spectrum Ĥ� as the homotopy fiber of the map

H�
id∧1HD−→ H� ∧ HD.

Here, H� is Riou’s spectrum representing the Adams eigenspaces in algebraic

K-theory (tensored by Q). Étale descent for HD implies that the canonical

map HD → H� ∧ HD is an isomorphism (Theorem 3.6), so there is a distin-

guished triangle

Ĥ� → H� → HD → Ĥ�[1].

We define Arakelov motivic cohomology to be the theory represented by this

spectrum, that is to say,

Ĥn(M,p) := HomSH(S)Q(M, Ĥ�(p)[n])

for any M ∈ SH(S). Thus, there is a long exact sequence involving Arakelov

motivic cohomology, motivic cohomology and Deligne cohomology (Theorem

4.5). Moreover, Arakelov motivic cohomology shares the structural proper-

ties known for motivic cohomology, for example a projective bundle formula,

a localization sequence, and h-descent (Theorem 4.14). It also has the ex-

pected functoriality : pullback for arbitrary morphisms of schemes (or motives,

Lemma 4.9) and pushforward along projective maps between regular schemes

(Definition and Lemma 4.10). All of this can be modified by replacing H� by

BGL, the spectrum representing algebraic K-theory. The resulting Arakelov

version is denoted B̂GL and the cohomology theory so obtained is denoted

Ĥn(M).

We extend the motivic Riemann-Roch theorem given by Riou to arbitrary

projective maps between regular schemes (Theorem 2.5), a statement that

is of independent interest. We deduce a higher arithmetic Riemann-Roch

theorem (Theorem 4.13) for the cohomology theories Ĥ∗(M,−) vs. Ĥ∗(M). It

applies to smooth projective morphisms and for projective morphisms between

schemes that are smooth over the base.

In the second part of this paper [Sch12], we will show how to relate the

homotopy-theoretic construction of Arakelov motivic cohomology to the clas-

sical definitions of arithmetic K- and Chow groups. For example, the arith-

metic K0-groups K̂
T
0 (X) defined by Gillet and Soulé [GS90c, Section 6] for a

regular projective variety X (over a base S as above) sit in an exact sequence

K1(X) →
⊕
p≥0

Ap,p(X)/(im∂ + im ∂) → K̂T
0 (X) → K0(X) → 0,

where Ap,p(X) is the group of real-valued (p, p)-forms ω on X(C) such that

Fr∗∞ ω = (−1)pω. The full arithmetic K-groups K̂T
0 (X) are not homotopy
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722 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

invariant and can therefore not be addressed using A1-homotopy theory. In-

stead, we consider the subgroup

K̂0(X) := ker

⎛⎝ch : K̂T
0 (X) →

⊕
p≥0

Ap,p(X)

⎞⎠ .

For smooth schemes X/S, we show a canonical isomorphism

(1.1) Ĥ0(M(X)) ∼= K̂0(X)

and similarly for higher arithmetic K-theory, as defined by Takeda. The

homotopy-theoretic approach taken yields a considerable simplification since it

is no longer necessary to construct explicit homotopies between the complexes

representing arithmetic K-groups, say. For example, the Adams operations

on K̂i(X) defined by Feliu [Fel10] were not known to induce a decomposition

K̂∗(X)Q ∼=
⊕

p K̂∗(X)
(p)
Q . Using that the isomorphism (1.1) is compatible with

Adams operations, this statement follows from the essentially formal analogue

for Ĥ∗. Moreover, (1.1) is shown to be compatible with the pushforwards on

both sides in an important case. This implies that the height pairing on a

smooth projective scheme X/S, S ⊂ Spec Z, is expressible in terms of the

natural pairing of motivic homology and Arakelov motivic cohomology of the

motive of X. According to the second author’s conjecture, the L-values of

schemes (or motives) over Z are given by the determinant of this pairing.

2. Preliminaries

In this section, we provide the motivic framework that we are going to

work with in Sections 3 and 4: we recall the construction of the stable homo-

topy category SH(S) and some properties of the Cisinski-Déglise triangulated

category of motives. In Section 2.3, we generalize Riou’s formulation of the

Riemann-Roch theorem to regular projective morphisms. This will then be

used to derive a higher arithmetic Riemann-Roch theorem (Theorem 4.13).

Finally, we recall the definition and basic properties of Deligne cohomology

that are needed in Section 3 to construct a spectrum representing Deligne

cohomology.

2.1. The stable homotopy category. This section sets the notation

and recalls some results pertaining to the homotopy theory of schemes due to

Morel and Voevodsky [MV99].

Let S be a Noetherian scheme. We only use schemes which are of finite

type over Z, Q, or R. Unless explicitly mentioned otherwise, all morphisms of

schemes are understood to be separated and of finite type. Let Sm/S be the
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ARAKELOV MOTIVIC COHOMOLOGY I 723

category of smooth schemes over S. The category of presheaves of pointed

sets on this category is denoted PSh• := PSh•(Sm/S). We often regard a

scheme X ∈ Sm/S as the presheaf (of sets) represented by X, and we write

X+ := X � {∗} for the associated pointed version. The projective line P1
S is

always viewed as pointed by ∞. The prefix Δop− indicates simplicial objects

in a category. The simplicial n-sphere is denoted Sn; this should not cause

confusion with the base scheme S.

We consider the pointwise and the motivic model structure on the category

Δop(PSh•) [Jar00, Section 1.1]. The latter is obtained by considering objects

that are local with respect to projections U×A1 → U and the Nisnevich

topology. The corresponding homotopy categories will be denoted by Hosect,•
and Ho•, respectively. The identity functor is a Quillen adjunction with

respect to these two model structures.

The category Spt := SptP
1

(ΔopPSh•(Sm/S)) consists of symmetric P1
S-

spectra, that is, sequences E = (En)n≥0 of simplicial presheaves which are

equipped with an action of the symmetric group Sn and bonding maps P1 ∧
En → En+1 such that (P1)∧m ∧En → En+m is Sn × Sm-equivariant (and the

obvious morphisms). The functor Σ∞
P1 : Δop(PSh•) 
 F �→

(
(P1)∧n ∧ F

)
n≥0

(bonding maps are identity maps; Sn acts by permuting the factors P1) is

left adjoint to Ω∞ : (En) �→ E0. Often, we will not distinguish between a

simplicial presheaf F and Σ∞
P1(F ).

The category Spt is endowed with the stable model structure [Jar00, The-

orems 2.9, 4.15]. The corresponding homotopy category is denoted SH (or

SH(S)) and referred to as the stable homotopy category of smooth schemes

over S. The pair (Σ∞
P1 ,Ω∞) is a Quillen adjunction with respect to the mo-

tivic model structure on ΔopPSh• and the stable model structures on Spt.

We sum up this discussion by saying that there are adjunctions of homotopy

categories

(2.1) Hosect,• � Ho• � SH.

The stable homotopy categories are triangulated categories. We will use

both the notationM [p] andM∧(S1)∧p, p ∈ Z, for the shift functor. Moreover,

inHo(S) there is an isomorphism P1
S
∼= S1∧(Gm,S , 1). Thus, in SH(S), wedg-

ing with Gm,S is invertible as well, and we write M(p) for M ∧ (Gm,S)
∧p[−p],

p ∈ Z, for the Tate twist. For brevity, we also put

M{p} := M(p)[2p].

For any triangulated, compactly generated category C that is closed under

coproducts, we let CQ be the full triangulated subcategory of those objects Y

such that HomC(−, Y ) is a Q-vector space. The inclusion i : CQ ⊂ C has a right
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724 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

adjoint which will be denoted by (−)Q. The natural map HomC(X,Y )⊗Q →
HomC(X, i(YQ)) = HomCQ

(XQ, YQ) is an isomorphism if X is compact; see

e.g. [Rio07, Appendix A.2]. In particular, we will use SH(S)Q. Wherever

convenient, we use the equivalence of this category with DA1(S,Q), the ho-

motopy category of symmetric P1-spectra of complexes of Nisnevich sheaves of

Q-vector spaces (with the Tate twist and A1 inverted) [CD09, 5.3.22, 5.3.37].

Given a morphism f : T → S, the stable homotopy categories are connected

by adjunctions:

(2.2) f∗ : SH(S) � SH(T ) : f∗,

(2.3) f! : SH(T ) � SH(S) : f !,

(2.4) f� : SH(T ) � SH(S) : f∗.

For the last adjunction, f is required to be smooth. (2.2) also applies to

morphisms which are not necessarily of finite type ([Ayo07, Scholie 1.4.2]; see

also [CD09, 1.1.11, 1.1.13; 2.4.4., 2.4.10]).

2.2. Beilinson motives. Let S be a Noetherian scheme of finite dimen-

sion. The key to Beilinson motives (in the sense of Cisinski and Déglise) is the

motivic cohomology spectrum H�,S due to Riou [Rio07, IV.46, IV.72]. There

is an object BGLS ∈ SH(S) representing algebraic K-theory in the sense that

(2.5) HomSH(S)(S
n ∧ Σ∞

P1X+,BGLS) = Kn(X)

for any regular scheme S and any smooth scheme X/S, functorially (with

respect to pullback) in X. The Q-localization BGLS,Q decomposes as

BGLS,Q =
⊕
p∈Z

BGL
(p)
S

such that the pieces BGL
(p)
S represent the graded pieces of the γ-filtration on

K-theory:

(2.6) HomSH(S)(S
n ∧ Σ∞

P1X+,BGL
(p)
S ) ∼= grpγ Kn(X)Q.

The Beilinson motivic cohomology spectrum H� is defined by

(2.7) H�,S := BGL
(0)
S

and the resulting Chern character map BGLS,Q →
⊕

p H�,S{p} is denoted ch.

The parts of the K-theory spectrum are related by periodicity isomorphisms

(2.8) BGL
(p)
S = H�,S{p}.

For any map f : T → S, not necessarily of finite type, there are natural

isomorphisms

(2.9) f∗BGLS = BGLT , f∗H�,S = H�,T .
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ARAKELOV MOTIVIC COHOMOLOGY I 725

The following definition and facts are due to Cisinski and Déglise [CD09,

Sections 12.3, 13.2]. By a result of Röndigs, Spitzweck and Ostvaer [RSØ10],

BGLS ∈ SH(S) is weakly equivalent to a certain cofibrant strict ring spectrum

BGL′
S , that is to say, a monoid object in the underlying model category

SptP
1

(PSh•(Sm/S)). In the same vein, H�,S can be represented by a strict

commutative monoid object H′
�,S [CD09, Cor. 14.2.6]. The model structures

on the subcategory of SptP
1

of BGL′
S- and H′

�,S-modules are endowed with

model structures such that the forgetful functor is Quillen right adjoint to

smashing with BGL′
S and H′

�,S , respectively. The homotopy categories are

denoted DMBGL(S) and DM�(S), respectively. Objects in DM�(S) will be

referred to as motives over S. We have adjunctions

(2.10) − ∧ BGLS : SH(S) � DMBGL(S) : forget

(2.11) − ∧ H�,S : SH(S)Q � DM�(S) : forget.

There is a canonical functor from the localization of SH(S)Q by all H�-

acyclic objects E (i.e., those satisfying E⊗H�,S = 0) to DM�(S). This

functor is an equivalence of categories, which shows that the above definition

is independent of the choice of H′
�,S . This also has the consequence that the

forgetful functor DM�(S) → SH(S)Q is fully faithful [CD09, Prop. 14.2.8],

which will be used in Section 4.1. All this stems from the miraculous fact that

the multiplication map H� ∧H� → H� is an isomorphism.

Motivic cohomology of any object M in SH(S)Q is defined as

Hn(M,p) := HomSH(S)Q(M,H�(p)[n])(2.12)

(2.11)
= HomDM�(S)(M ∧H�,S ,H�,S(p)[n]).

The adjunctions (2.10), (2.11) are morphisms of motivic categories [CD09,

Def. 2.4.45], which means in particular that the functors f�, f∗, f
∗, f! and f !

of (2.2), (2.3), (2.4) on SH(−) can be extended to ones on DMBGL(−) and

DM�(−) in a way that is compatible with these adjunctions [CD09, 13.3.3,

14.2.11]. For DM�(S) this can be rephrased by saying that these functors

preserve the subcategories DM�(−) ⊂ SH(−)Q.

For any smooth quasi-projective morphism f : X → Y of constant relative

dimension n and any M ∈ DM�(Y ), we have the relative purity isomorphism

(functorial in M and f)

(2.13) f !M ∼= f∗M{n}.

For example, f !H�,Y ∼= H�,X{n}. This is due to Ayoub; see e.g. [CD09,

2.4.21].
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726 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

For any closed immersion i : X → Y between two regular schemes X and Y

with constant relative codimension n, there are absolute purity isomorphisms

[CD09, 13.6.3, 14.4.1]

(2.14) i!H�,Y ∼= H�,X{−n}, i!BGLY
∼= BGLX .

Definition 2.1. Let f : X → S be any map of finite type. We define the

motive of X over S to be

M(X) := MS(X) := f!f
!H�,S ∈ DM�(S).

Remark 2.2. In [CD09, 1.1.34] the motive of a smooth scheme f : X → S

is defined as f�f
∗H�,S . These two definitions agree up to functorial isomor-

phism: we can assume that f is of constant relative dimension d. By relative

purity, the functors f ! and f∗{d} are isomorphic. Thus their left adjoints,

namely f! and f�{−d}, agree too. Therefore, f!f
!H�,S = f!f

∗H�,S{d} =

f�f
∗H�,S .

Definition 2.3. A map f : X → Y of S-schemes is a locally complete inter-

section (l.c.i.) morphism if both X and Y are regular and, for simplicity of

notation, of constant dimension and if

f = p ◦ i : X i→ X ′ p→ Y

where i is a closed immersion and p is smooth. Note that this implies that

X ′ is regular. If there is such a factorization with p : X ′ = Pn
Y → Y the

projection, we call f a regular projective map.

We shall write dim f := dimX − dimY for any map f : X → Y of finite-

dimensional schemes.

Example 2.4. Let f = p ◦ i be an l.c.i. morphism. Absolute purity for i

(2.14), relative purity for p, and the periodicity isomorphism BGL ∼= BGL{1}
give rise to isomorphisms

f !H�,S ∼= f∗H�,S{dim(f)}, f !BGLS
∼= f∗BGLS .

Let f : X → Y be a projective regular map. Recall the trace map in

SH(Y ):

(2.15) trBGL
f : f∗BGLX = p∗i∗i

∗BGLX′
(2.14)→ p∗BGLX′ → BGLY ,

constructed in [CD09, 13.7.3]. This is not an abuse of notation insofar as

trBGL
f is independent of the choice of the factorization. This is shown by

adapting [Dég08, Lemma 5.11] to the case where all schemes in question are

merely regular.
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The trace map for H� is defined as the composition

(2.16) tr�f : f∗f
∗H�,Y {dim f} � f∗f

∗BGLQ,Y

trBGL
f−→ BGLQ,Y � H�,Y .

In case f = i, this is the definition of [CD09, Section 14.4].

Given another regular projective map g, the composition g ◦ f is also of

this type. The trace maps are functorial: the composition

f∗g∗BGL
trBGL

f−→ f !g∗BGL
f !trBGL

g−→ f !g!BGL

agrees with trBGL
g◦f and similarly with tr�? . This can be deduced from the

independence of the factorization; cf. [Dég08, Prop. 5.14].

By construction, for any smooth map f : Y ′ → Y , the induced map

Hom(f�f
∗S0, trBGL

f [−n]) : Kn(X
′) → Kn(Y

′) is the K-theoretic pushforward

along f ′ : X ′ := X×Y Y
′ → Y ′ [CD09, 13.7.3]. Similarly,

Hom(f�f
∗S0, tr�f [−n](p)) is the pushforward Kn(X

′)
(p)
Q → Kn(Y

′)
(p)
Q . In-

deed, the pushforward on the Adams graded pieces of K-theory is defined as

the induced map of the graded homomorphism f ′
∗ on K-theory [FL85, V.6.4].

The adjoint maps

BGLX = f∗BGLY → f !BGLY , f∗f
∗BGLY → BGLY

will also be denoted trBGL
f and similarly with tr�f .

2.3. The Riemann-Roch theorem. We now turn to a motivic Riemann-

Roch theorem, which will imply an arithmetic Riemann-Roch theorem for

Arakelov motivic cohomology (Theorem 4.13). It generalizes the statement

given by Riou for smooth morphisms [Rio10, Theorem 6.3.1] to regular pro-

jective maps. Independently, F. Déglise has obtained a similar result [Dég11].

Recall the virtual tangent bundle of a regular projective map f = p ◦ i :

X
i→ X ′ p→ Y , Tf := i∗Tp − CX/X′ ∈ K0(X) (see e.g. [FL85, V.7]). Here

Tp := Ω∨
X′/Y is the tangent bundle of p and CX/X′ := (I/I2)∨ is the conor-

mal sheaf associated to the ideal I defining i. As an element of K0(X), Tf

does not depend on the factorization. Its Todd class Td(Tf ) is an element of⊕
p∈Z K0(X)

(p)
Q (see e.g. [FL85, p. 20] for the general definition of Td; this

is applied to the Chern character ch : K0(−) →
⊕

p K0(−)
(p)
Q [FL85, pp. 127,

146]). It is regarded as an endomorphism of
⊕

p∈Z H�,X{p} via the natural

identification
⊕

p∈Z K0(X)
(p)
Q = EndDMBGL(X)Q(

⊕
p∈Z H�,X{p}).
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728 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Theorem 2.5 (Riemann-Roch). Let f : X → Y be a regular projective

map. The following diagram is a commutative diagram in SH(Y )Q (or, equiv-

alently, in DM�(Y )):

f∗f
∗BGLQ,Y

trBGL
f

��

∼=ch

��

BGLQ,Y

∼=ch

��

f∗f
∗
�Y

f∗ Td(Tf )
�� f∗f

∗
�Y

tr�f
�� �Y .

Here, �Y is shorthand for
⊕

p∈Z H�,Y {p}.
Proof. The statement is easily seen to be stable under composition of reg-

ular projective maps, so it suffices to treat the cases f = p : Pn
Y → Y and

f = i : X → Pn
Y separately. The former case has been shown by Riou, so

we can assume f : X → Y is a closed embedding of regular schemes. The

classical Riemann-Roch theorem says that the map

K0(X)Q →
⊕
p

K0(Y )
(p)
Q , x �→ ch f∗(x)− f∗(Td(Tf ) ∪ ch(x))

vanishes. Viewing x as an element of HomSH(Y )Q(S
0, f∗f

∗BGLQ,Y ), this can

be rephrased by saying that x �→ αf ◦ x is zero, where

αf := chX ◦ trBGL
f − tr�f ◦ f∗ Td(Tf ) ◦ f∗f∗ chY ∈ Hom(f∗f

∗BGLQ,Y ,�Y ).

To show αf = 0, we first reduce to the case where f : X → Y has a retraction,

that is, a map p : Y → X such that p ◦ f = idX . Then, we prove the theorem

by reducing it to the classical Riemann-Roch theorem.

For the first step, recall the deformation to the normal bundle [FL85, IV.5]:

(2.17) ∅ ��

��

X
i∞ ��

��

P1
X

pr
��

F

��

X

f

��

X

����������

����������

f ′

��

X

i0
���������

f

��

Ỹ �� Ỹ + Y ′ s+g′
�� M

π �� Y

Y ′

�����������

��

�
�
�
� �
	



g′

����������������������������� Y

g

����������

����������������

����������������

We have written M := BlX×∞(P1
Y ) and Y ′ := P(CX/Y ⊕ OX), Ỹ := BlXY

and Y ′+ Ỹ for the scheme defined by the sum of the two divisors. All schemes

except Y ′ + Ỹ are regular; all maps except π and pr are closed immersions.
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ARAKELOV MOTIVIC COHOMOLOGY I 729

The diagram is commutative and every square in it is cartesian. The map f ′

has a retraction. We show

αf ′ = 0 ⇒ αf = 0

by indicating how to replace each argument in [FL85, proof of Theorem II.1.3],

which shows αf ′ ◦ x = 0 ⇒ αf ◦ x = 0 for any x as above, in a manner that

is independent of x.

The identity f∗(x) = f∗i
∗
0pr

∗(x) = g∗F∗pr
∗(x) is replaced by the commuta-

tivity of the following diagram of maps of (BGL-)motives, where v := g ◦ f =

F ◦ i0:

F!F
!BGLM

O
P1
X
∈K0(P

1
X)

��

OX∈K0(X)

��

BGLM

OY ∈K0(Y )

��

v!v
!BGLM OX∈K0(X)

�� g!g
!BGLM

The maps are given by the indicated structural sheaves in K0(?), via the

identifications of Hom-groups in DMBGL(Y ) with K-theory. For example,

the upper horizontal map is the adjoint map to the inverse of the trace map

isomorphism trBGL
F : F ∗BGL → F !BGL, which corresponds via absolute pu-

rity to OP1
X

∈ K0(P
1
X) = HomDMBGL(Y )(F!F

!BGL,BGL). The composition

of the map given by OP1
X

and OY is given by their tensor product (viewed as

OM -modules), that is, OX , so the diagram commutes. The same argument

applies to f ′
∗(x) = g′∗F∗pr

∗(x).

The projection formula is [CD09, Theorem 2.4.50(v)]. The divisors Y and

Y ′ + Ỹ ⊂ M are linearly equivalent, which implies g∗(1) = g′∗(1) + s∗(1) ∈
K0(M)

(1)
Q [FL85, IV.(5.11), Prop. V.4.4]. This in turn is equivalent to the

agreement of the following two elements of Hom(H�,M ,H�,M{−1}):

H�,M
adj.→ g∗g

∗H�,M
g!tr

�

g−→ g!g
!H�,M{−1} adj.→ H�,M{−1}

and

H�,M
adj.→ g′∗g

′∗H�,M ⊕ s∗s
∗H�,M

g′
! tr
�

g′⊕s!tr
�

s−→ g′!g
′!H�,M{−1} ⊕ s!s

!H�,M{−1}
adj.→ H�,M{−1}.

Finally, the identity s∗F∗pr
∗(x) = 0 is formulated independently of x using

again base-change (and using that the motive of the empty scheme is zero).

This finishes the first step.
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730 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Thus, we can assume that f has a retraction p : Y → X. By [Rio10,

Section 5, esp. 5.3.6; cf. the proof of 6.1.3.2], the obvious “evaluation” maps

Hom(BGLX,Q,BGLX,Q) injectively to∏
i∈Z,T∈Sm/X

HomQ

(
Hom((P1)∧i ∧ T+,BGLX,Q),Hom((P1)∧i ∧ T+,BGLX,Q)

)
.

The outer Hom denotes Q-linear maps; the inner ones are morphisms in

SH(X)Q. There is an isomorphism u : f∗BGLQ,Y → f !
�Y , for exam-

ple the Chern class followed by the absolute purity isomorphism (Example

2.4). Appending u on both sides, we conclude that the evaluation maps

Hom(f∗BGLY,Q, f
!
�Y ) into∏

i,T

HomQ

(
Hom((P1)∧i ∧ T+, f

∗BGLY,Q),Hom((P1)∧i ∧ T+, f
!
�Y )

)
.

For any T ∈ Sm/X, consider the following cartesian diagram:

T
fT

��

t

��

U

��

pT
�� T

t

��

X
f

�� Y
p

�� X.

Recall that T ∈ SH(X) is given by t�t
∗S0. Here t� is left adjoint to t∗; cf.

(2.4). Thus, the term simplifies to∏
i,T

HomQ

(
Hom((P1)∧i, t∗f∗BGLY,Q),Hom((P1)∧i, t∗f !

�Y )
)
.

The diagram X → Y → X is stable with respect to smooth pullback: fT is

also an embedding of regular schemes; pT is a retract of fT . Moreover, the

trace map trBGL
f behaves well with respect to smooth pullback, i.e., t∗trBGL

f =

trBGL
fT

and similarly for tr�? , ch? and Td(T?). Thus, it is sufficient to consider

the case T = X. That is, we have to show that βf , the image of αf in∏
i∈Z

HomQ

(
Hom((P1)∧i, f∗BGLY,Q),Hom((P1)∧i, f !

�Y )
)

=
∏
i∈Z

HomQ

(
HomSH(X)Q((P

1
X)∧i,BGLX,Q),HomSH(Y )Q((P

1
Y )

∧i, f∗f
!
�Y )

)
is zero. The composition

Hom((P1
Y )

∧i, f!f
∗
�Y )

tr�f ,∼=
−→ Hom((P1

Y )
∧i, f!f

!
�Y )

γf−→ Hom((P1
Y )

∧i,�Y )

is the pushforward f∗ :
⊕

p∈Z K0(X)
(p)
Q → ⊕K0(Y )

(p)
Q , which is injective since

p∗f∗ = id. Thus, the right hand adjunction map γf is also injective, and it is
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sufficient to show γf ◦ βf = 0. For any i ∈ Z,

γf ◦ βf
by def.
= (f∗ ◦ (− ∪ Td(Tf )) ◦ chX)− (chY ◦f∗)
RR
= 0

∈ HomQ

(
K0(X)Q,⊕K0(Y )

(p)
Q

)

= HomQ

(
HomSH(X)Q((P

1)∧i, f∗BGLY,Q),HomSH(Y )Q((P
1)∧i,�Y )

)
.

The vanishing labeled RR is the classical Riemann-Roch theorem for f . �
2.4. Deligne cohomology.

Definition 2.6 ([GS90a, 3.1.1.]). An arithmetic ring is a datum (S,Σ,Fr∞),

where S is a ring, Σ = {σ1, . . . , σn : S → C} is a set of embeddings of S into

C and Fr∞ : CΣ → CΣ is a C-antilinear involution (called infinite Frobenius)

such that Fr∞ ◦σ = σ, where σ = (σi)i : S → CΣ. For simplicity, we suppose

that Sη := S×SpecZSpecQ is a field. If S happens to be a field itself, we refer

to it as an arithmetic field . For any scheme X over an arithmetic ring S, we

write

XC := X×S,σC
Σ

and X(C) for the associated complex-analytic space (with its classical topol-

ogy). We also write Fr∞ : XC → XC for the pullback of infinite Frobenius on

the base.

The examples to have in mind are the spectra of number rings, number

fields, R or C, equipped with the usual finite set Σ of complex embeddings

and Fr∞ : (zv)v∈Σ �→ (zv)v.

We recall the properties of Deligne cohomology that we need in the sequel.

In order to construct a spectrum representing Deligne cohomology in Section 3

we recall Burgos’ explicit complex whose cohomology groups identify with

Deligne cohomology. In the remainder of this subsection, X/S is a smooth

scheme (of finite type) over an arithmetic field.

Definition 2.7 ([Bur97, Def. 1.2, Thm. 2.6]). Let E∗(X(C)) be the following

complex:

(2.18) E∗(X(C)) := lim−→E∗
X(C)

(logD(C)),

where the colimit is over the (directed) category of smooth compactifications

X of X such that D := X\X is a divisor with normal crossings. The complex

E∗
X(C)

(logD(C)) is the complex of C∞-differential forms on X(C) that have

at most logarithmic poles along the divisor (see [Bur97] for details). We

write E∗(X) ⊂ E∗(X(C)) for the subcomplex of elements fixed under the

Fr∗∞-action. Forms in E∗(X) that are fixed under complex conjugation are
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732 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

referred to as real forms and denoted E∗
R(X). As usual, a twist is written as

E∗
R(X)(p) := (2πi)pE∗

R(X) ⊂ E∗(X). The complex E∗(X) is filtered by

F pE∗(X) :=
⊕

a≥p,a+b=∗
Ea,b(X).

Let D∗(X, p) be the complex defined by

Dn(X, p) :=

{
E2p+n−1

R (X)(p− 1) ∩
⊕

a+b=2p+n−1,a,b<p E
a,b(X), n < 0,

E2p+n
R (X)(p) ∩

⊕
a+b=2p+n,a,b≥p E

a,b(X), n ≥ 0.

The differential dD(x), x ∈ Dn(X, p), is defined as −proj(dx) (n < −1),

−2∂∂x (n = −1), and dx (n ≥ 0). Here d is the standard exterior derivative,

and proj denotes the projection onto the space of forms of the appropriate

bidegrees. We also set

D :=
⊕
p∈Z

D(p).

The pullback of differential forms turns D into complexes of presheaves on

Sm/S. Deligne cohomology (with real coefficients) of X is defined as

Hn
D(X, p) := Hn−2p(D(p)(X)).

For a scheme X over an arithmetic ring such that Xη := X×SSη is smooth

(possibly empty), we set Hn
D(X, p) := Hn

D(Xη).

Recall that a complex of presheaves X �→ F∗(X) on Sm/S is said to have

étale descent if for any X ∈ Sm/S and any étale cover f : Y → X the

canonical map

F∗(X) → Tot(F∗(. . . → Y×XY → Y ))

is a quasi-isomorphism. The right hand side is the total complex defined

by means of the direct product. (Below we apply it to F∗(X) = D(p)(X),

which is a complex bounded by the dimension of X, so that it agrees with the

total complex defined using the direct sum in this case.) The total complex is

applied to the Čech nerve. At least if F is a complex of presheaves of Q-vector

spaces, this is equivalent to the requirement that

F∗(X) → Tot(F∗(Y))

is a quasi-isomorphism for any étale hypercover Y → X. Indeed the latter is

equivalent to F∗ satisfying Galois descent (as in (2.26)) and Nisnevich descent

in the sense of hypercovers. The latter is equivalent to the one in the sense

of Čech nerves by the Morel-Voevodsky criterion (see e.g. [CD09, Theorem

3.3.2]).
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Theorem 2.8.

(i) The previous definition of Deligne cohomology agrees with the classical

one (for which see e.g. [EV88]). In particular, there is a long exact

sequence

Hn
D(X, p) → Hn(X(C),R(p))(−1)p → (Hn

dR(XC)/F
pHn

dR(XC))
Fr∞(2.19)

→ Hn+1
D (X, p)

involving Deligne cohomology, the (−1)p-eigenspace of the Fr∗∞ action

on Betti cohomology, and the Fr∞-invariant subspace of de Rham coho-

mology modulo the Hodge filtration.

(ii) The complex D(p) is homotopy invariant in the sense that the projection

map X×A1 → X induces a quasi-isomorphism D(A1×X) → D(X) for

any X ∈ Sm/S.

(iii) There is a functorial first Chern class map

(2.20) c1 : Pic(X) → H2
D(X, 1).

(iv) The complex D is a unital differential bigraded Q-algebra which is asso-

ciative and commutative up to homotopy. The product of two sections

will be denoted by a ·D b. The induced product on Deligne cohomology

agrees with the classical product ∪ on these groups [EV88, Section 3].

Moreover, for a section x ∈ D0(X) satisfying dD(x)(= dx) = 0 and any

two sections y, z ∈ D∗(X), we have

(2.21) x ·D (y ·D z) = (x ·D y) ·D z

and

(2.22) x ·D y = y ·D x.

(v) Let E be a vector bundle of rank r over X. Let p : P := P(E) → X be

the projectivization of E with tautological bundle OP (−1). Then there

is an isomorphism

(2.23) p∗(−) ∪ c1(OP (1))
∪i :

r−1⊕
i=0

Hn−2i
D (X, p− i) → Hn

D(P, p).

In particular the following Künneth-type formula holds:

(2.24) Hn
D(P

1×X, p) ∼= Hn−2
D (X, p− 1)⊕Hn

D(X, p).

(vi) The complex of presheaves D(p) satisfies étale descent.

Proof. (i) This explicit presentation of Deligne cohomology is due to

Burgos [Bur97, Prop. 1.3.]. The sequence (2.19) is a consequence of this

and the degeneration of the Hodge to de Rham spectral sequence. See e.g.

[EV88, Cor. 2.10]. (ii) follows from (2.19) and the homotopy invariance of
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Betti cohomology, de Rham cohomology, and, by functoriality of the Hodge

filtration, homotopy invariance of F pHn
dR(−). For (iii), see [BGKK07, Sec-

tion 5.1.] (or [EV88, Section 7] for the case of a proper variety). (iv) is

[Bur97, Theorem 3.3.].1

For (v), see e.g. [EV88, Prop. 8.5.].

(vi) This statement can be read off the existence of the absolute Hodge

realization functor [Hub00, Cor. 2.3.5] (and also seems to be folklore). Since

it is crucial for us in Theorem 3.6, we give a proof here. Let

D̃∗(X, p) := cone(E∗
R(X)(p)⊕ F pE∗(X)

(+1,−1)−→ E∗(X))[−1 + 2p].

By [Bur97, Theorem 2.6.], there is a natural (fairly concrete) homotopy equiv-

alence between the complexes of presheaves D̃(p) and D(p). The descent state-

ment is stable under quasi-isomorphisms of complexes of presheaves and cones

of maps of such complexes. Therefore it is sufficient to show descent for the

complexes E∗
R(−)(p), F pE∗(−), E∗(−). Taking invariants of these complexes

under the Fr∗∞-action is an exact functor, so we can disregard that operation

in the sequel. From now on, everything refers to the analytic topology; in par-

ticular we just write X for X(C), etc. Let j : X → X be an open immersion

into a smooth compactification such that D := X\X is a divisor with normal

crossings. The inclusion

Ω∗
X
(logD) ⊂ E∗

X(logD)

of holomorphic forms into C∞-forms (both with logarithmic poles) yields

quasi-isomorphisms of complexes of vector spaces

RΓRj∗C → RΓRj∗Ω
∗
X ← RΓΩ∗

X
(logD) → ΓE∗

X(logD)

that are compatible with both the real structure and the Hodge filtration

[Bur94, Theorem 2.1.], [Del71, 3.1.7, 3.1.8]. Here (R)Γ denotes the (total

derived functor of the) global section functor on X. The complex E∗(X),

whose cohomology is H∗(X,C), is known to satisfy étale descent [Hub00, Prop.

2.1.7]. This also applies to E∗
R(X)(p) instead of E∗(X). (Alternatively for the

former, see also [CD12, 3.1.3] for the étale descent of the algebraic de Rham

complex Ω∗
X .)

1Actually, the product on D(X) is commutative on the nose. We shall only use the

commutativity in the case stated in (2.22) and the associativity as in (2.21); cf. Definition
and Lemma 3.3.
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It remains to show the descent forX �→ F pE∗(X). Consider a distinguished

square in Sm/S,

X ′ ��

��

X

��

Y ′ �� Y,

i.e., cartesian such that Y ′ → Y is an open immersion, X/Y is étale and

induces an isomorphism (X\X ′)red → (Y \Y ′)red. Then the sequence

Hn(F pE∗(Y )) → Hn(F pE∗(Y ′))⊕Hn(F pE∗(X)) → Hn(F pE∗(X ′))(2.25)

→ Hn+1(F pE∗(Y ))

is exact: firstly, the direct limit in (2.18) is exact. Moreover,

Hn(Γ(F pEX(logD))) maps injectively into Hn(X,Ω∗
X
(logD)), and the image

is precisely the p-th filtration step of the Hodge filtration on Hn(X,Ω∗
X
(logD))

= Hn(X,C). Similarly forX ′, etc., so that the exactness of (2.25) results from

the sequence featuring the Betti cohomology groups of Y , Y ′ �X and X ′, to-

gether with the strictness of the Hodge filtration [Del71, Th. 1.2.10]. This

shows Nisnevich descent for the Hodge filtration. Secondly, for any scheme

X and a Galois cover Y → X with group G, the pullback map into the

G-invariant subspace

(2.26) Hn(F pE∗(X)) → Hn(F pE∗(Y )G)

is an isomorphism. Indeed, a similar statement holds for E∗(−) instead of

F pE∗(−). We work with Q-coefficients, so taking G-invariants is an ex-

act functor; hence Hn(F pE∗(Y )G) = (Hn(F pE∗(Y )))G = (F pHn
dR(Y ))G =

F p(Hn
dR(Y )G), the last equality by functoriality of the Hodge filtration. Then,

again using the strictness of the Hodge filtration, the claim follows. Hence

the presheaf X �→ F pE∗(X) has étale descent. �

3. The Deligne cohomology spectrum

Let S be a smooth scheme (of finite type) over an arithmetic field (Defini-

tion 2.6). The aim of this section is to construct a ring spectrum in SH(S)

which represents Deligne cohomology for smooth schemes X over S. The

method is a slight variation of the method of Cisinski and Déglise used in

[CD12] to construct a spectrum for any mixed Weil cohomology, such as al-

gebraic or analytic de Rham cohomology, Betti cohomology, and (geometric)

étale cohomology. The difference compared to their setting is that the Tate

twist on Deligne cohomology groups is not an isomorphism of vector spaces.
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In this section, all complexes of (presheaves of) abelian groups are con-

sidered with homological indexing: the degree of the differential is −1, and

C[1] is the complex whose n-th group is Cn+1. As usual, any cohomological

complex is understood as a homological one by relabeling the indices. In par-

ticular, we apply this to (the restriction to Sm/S of) the complexes D(p), D

defined in Definition 2.7, and let

(3.1) Dn := D−n =
⊕
p∈Z

D−n(p).

In order to have a complex of simplicial presheaves (as opposed to a complex

of abelian groups), we use the Dold-Kan equivalence

K : Com≥0(Ab) � Δop(Ab) : N

between homological complexes concentrated in degrees ≥ 0 and simplicial

abelian groups. We write τ≥n for the good truncation of a complex.

Definition 3.1. We write

Ds := K(τ≥0D),

Ds(p) := K(τ≥0D(p)).

Via the Alexander-Whitney map, the product on D transfers to a map

(3.2) Ds(p) ∧Ds(p
′) → Ds(p+ p′).

Lemma 3.2. For X smooth over S and any k ≥ 0, p ∈ Z we have:

(3.3) HomHo•(S
k ∧X+,Ds(p)) = H2p−k

D (X, p)

and similarly for Ds.

Proof. In Hosect,• (cf. Section 2.1 for the notation), the Hom-group reads

HomHosect,•(S
k ∧X+,K(τ≥0(D))) = πkK(τ≥0(D(X)))

= Hk(τ≥0(D(X)))

=
⊕
p∈Z

H2p−k
D (X, p).

We have used the fact that any simplicial abelian group is a fibrant simplicial

set and the identification πn(A, 0) = Hn(N (A)) for any simplicial abelian

group.

The presheaf Ds is fibrant with respect to the motivic model structure,

since Deligne cohomology satisfies Nisnevich descent and is A1-invariant by

Theorem 2.8 (vi) and (ii). Thus the Hom-groups agree when taken in Hosect,•
and Ho, respectively. �
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Definition and Lemma 3.3. The Deligne cohomology spectrum HD is

the spectrum consisting of the Ds(p) (p ≥ 0), equipped with the trivial action

of the symmetric group Σp. We define the bonding maps to be the composition

σp : P1
S ∧Ds(p)

c∗∧id→ Ds(1) ∧Ds(p)
(3.2)→ Ds(p+ 1).

Here c∗ is the map induced by c := c1(OP1(1), FS) ∈ D0(1)(P1), the first

Chern form of the bundle O(1) equipped with the Fubini-Study metric. This

defines a symmetric P1-spectrum.

Define the unit map 1D : Σ∞
P1S+ → HD in degree zero by the unit of the

DGA D(0). In higher degrees, we put

(3.4) (1D)p : (P1)∧p (c∗)∧p

−→ Ds(1)
∧p μ−→ Ds(p).

Equivalently, (1D)p := σp−1 ◦ (idP1 ∧ (1D)p−1). This map and the product map

μ : HD ∧ HD → HD induced by (3.2) turn HD into a commutative monoid

object of SH(S), i.e., a commutative ring spectrum.

Proof. Recall that c is a (1, 1)-form which is invariant under Fr∗∞ and under

complex conjugation, so c is indeed an element of D0(1)(P1). Its restriction

to the point ∞ is zero for dimension reasons, so c is a pointed map (P1,∞) →
(D0(1), 0). It remains to show that the map

(P1)∧m ∧Ds(n)
id∧m−1∧c∗∧id−→ (P1)∧m−1 ∧Ds(1) ∧Ds(n)

(3.2)→ (P1)∧m−1 ∧Ds(n+ 1)

→ . . .

→ Ds(m+ n)

is Σm×Σn-equivariant, i.e., invariant under permuting the m wedge factors

P1. Given some map f : U → (P1)×m with U ∈ Sm/S, let fi : U → P1 be the

i-th projection of f and ci := f∗
i c1(OP1(1)). Given some form ω ∈ D(n)(U)∗,

we have to check that the expression

(3.5) c1 ·D (c2 ·D (. . . (cm ·D ω) . . . ))

is invariant under permutation of the ci. Here ·D stands for the product map

(3.2). This holds before applying the Dold-Kan functor K (i.e. (P1)×m×D(n)

→ D(n + m) is Σm-invariant) since the forms ci ∈ D0(1)(U) are closed, so

by Theorem 2.8(iv) the expression (3.5) is associative and commutative. The

Alexander-Whitney map is symmetric in (simplicial) degree 0, i.e. K(D(p))∧
K(D(p′)) → K(D(p)⊗D(p′)) commutes with the permutation of the two fac-

tors when restricting to elements of degree 0. Moreover, it is associative in all

degrees. As ci ∈ D0(1), the previous argument carries over to the product on

Ds(−) instead of D(−). This shows that HD is a symmetric spectrum.
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By Theorem 2.8(iv), the product on D is (graded) commutative and asso-

ciative up to homotopy; thus the diagrams checking, say, the commutativity

of HD ∧ HD → HD do hold in SH(S). The details of that verification are

omitted. �

Remark 3.4. (1) Consider the spectrum D′ obtained in the same way

as HD, but replacing Ds(p) by HD. Then the obvious map φ :⊕
p∈Z HD{p} → D′ is an isomorphism. To see that, it is enough

to check that HomSH(S)(S
n∧Σ∞

P1X+,−) yields an isomorphism when

applied to φ. By the compactness of Sn ∧ Σ∞
P1X+ in SH(S), this

Hom-group commutes with the direct sum. Then the claim is trivial.

(2) Choosing another metric λ on O(1) in the above definition, the result-

ing Deligne cohomology spectrum would be weakly equivalent to HD

since the difference of the Chern forms c1(O(1), FS)− c1(O(1), λ) lies

in the image of dD : D1(1) → D0(1); see e.g. [Jos06, Lemma 5.6.1].

Lemma 3.5. The Deligne cohomology spectrum HD is an Ω-spectrum (with

respect to smashing with P1).

Proof. We have to check that the adjoint map to σp (Definition and Lemma

3.3),

bp : Ds(p) → RHom•(P
1,Ds(p+ 1)),

is a motivic weak equivalence. As P1 is cofibrant and Ds(p+1) is fibrant, the

non-derived Hom•(P
1,Ds(p)) is fibrant and agrees with RHom•(P

1,Ds(p)).

The map is actually a sectionwise weak equivalence, i.e., an isomorphism in

Hosect,•(S). To see this, it is enough to check that the map

Ds(p)(U) → Hom•(P
1,Ds(p+ 1)(U))

is a weak equivalence of simplicial sets for all U ∈ Sm/S [MV99, 1.8., 1.10,

p. 50]. Them-th homotopy group of the left hand side is H2p−m
D (U, p) (Lemma

3.2), while πm of the right hand simplicial set identifies with those elements of

πm(Hom(P1×U,Ds(p+ 1))) = H
2(p+1)−m
D (P1×U, p+ 1) which restrict to zero

when applying the restriction to the point ∞ → P1. By the projective bundle

formula (2.24), the two terms agree. �
Theorem 3.6.

(i) The ring spectrum HD represents Deligne cohomology in SH(S): for any

smooth scheme X over S and any n, m ∈ Z we have

HomSH(S)((S
1)∧n ∧ (P1

S)
∧m ∧ Σ∞

P1X+,HD) = H−n−2m
D (X,−m).

(See Section 2.1 for the meaning of (S1)∧n, (P1
S)

∧m with negative expo-

nents.)
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(ii) The Deligne cohomology spectrum HD has a unique structure of an H�,S-

algebra, and
⊕

p∈Z HD{p} has a unique structure of a BGLS-algebra. In

particular, HD is an object in DM�(S), so that ( i) and (2.11) yield

a natural isomorphism HomDM�(S)(MS(X),HD(p)[n]) = Hn
D(X, p) for

any smooth X/S.

(iii) The map idD ∧ 1H� : HD → HD ∧H� is an isomorphism in SH(S)Q.

Definition 3.7. The maps induced by the unit of HD are denoted ρD : H� →
HD and chD : BGL →

⊕
p HD{p}, respectively.

Proof. By Lemma 3.5, HD is an Ω-spectrum. Thus (i) follows from Lemma

3.2.

(ii) By 3.3, HD is a commutative ring spectrum. Recall the definition of

étale descent for spectra and that for this it is sufficient that the individual

pieces of the spectrum have étale descent [CD09, Def. 3.2.5, Cor. 3.2.18].

Thus, HD satisfies étale descent by Theorem 2.8(vi). Moreover, HD is ori-

entable since HomSH(S)(P
∞
S ,HD{1}) = lim←−n

Hom(Pn,HD{1}) by the Milnor

short exact sequence (see e.g. [CD12, Cor. 2.2.8] for a similar situation). This

term equals H2
D(P

1, 1) by (2.23). Any object in SH(S)Q satisfying étale de-

scent is an object of DM�(S), i.e., an H�,S-module [CD09, proof of 16.2.18].

If it is in addition an orientable ring spectrum, there is a unique H�,S-algebra

structure on it [CD09, Cor. 14.2.16]. This settles the claim for HD. Secondly,

the natural map (in SH(S))

BGL → BGLQ

(2.8)∼=
⊕
p∈Z

H�{p}
ρD{p}−→

⊕
p

HD{p}

and the ring structure of⊕HD{p} defines a BGL-algebra structure on⊕HD{p}.
This uses that the isomorphism (2.8) is an isomorphism of monoid objects

[CD09, 14.2.17]. The unicity of that structure follows from the unicity of the

one on HD and HomSH(S)(BGLQ,⊕HD{p}) = HomSH(S)Q(BGLQ,⊕HD{p}),
since HD is a spectrum of R- (a fortiori: Q-) vector spaces.

(iii) follows from (ii), using [CD09, 14.2.16]. �

4. Arakelov motivic cohomology

Let S be a regular scheme of finite type over an arithmetic ring B. The

generic fiber Sη := S×ZQ → Bη := B×ZQ is smooth, since Bη is a field (by

Definition 2.6). We now define the Arakelov motivic cohomology spectrum

Ĥ�,S which glues, in a sense, the Deligne cohomology spectrum HD ∈ SH(Sη)

(Section 3) with the Beilinson motivic cohomology spectrum H�,S (2.7). Par-

allelly, we do a similar construction with BGLS instead of H�,S . Once this
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is done, the framework of the stable homotopy category and motives readily

imply the existence of functorial pullbacks and pushforwards for Arakelov mo-

tivic cohomology (Section 4.2). We also prove a higher arithmetic Riemann-

Roch theorem (Theorem 4.13) and deduce further standard properties, such

as the projective bundle formula in Section 4.4.

4.1. Definition. Recall from Section 2.1 the category Spt(S) :=

SptP
1

(ΔopPSh•(Sm/S)) with the stable model structure. The resulting ho-

motopy category is SH(S).

Definition 4.1. For any A ∈ Spt(S), we put

(4.1) Â := hofibSpt(S)

(
A ∧QR(S0)

id∧QR(1D)−→ A ∧QRη∗HD

)
∈ Spt(S).

Here, hofib stands for the homotopy fiber, 1D : S0 → HD is the unit map given

in (3.4), and Q and R are the cofibrant and fibrant replacement functors in

Spt(S). The map 1D is a map in Spt(Sη), as opposed to a map in the

homotopy category SH(Sη). Hence so is the map used in (4.1). We wrote

QR here for clarity, but drop these below, given that the fibrant-cofibrant

replacement of any spectrum is weakly equivalent to the original one.

We write [Â] for the image of Â in SH(S) (or SH(S)Q) under the localiza-

tion functor. Using the strict ring spectra H′
�,S and BGL′

S (Section 2.2), we

define the Arakelov motivic cohomology spectrum Ĥ�,S as

Ĥ�,S := [Ĥ′
�,S ] ∈ SH(S)Q

and similarly

B̂GLS := [B̂GL′] ∈ SH(S).

Theorem 4.2.

(i) Given a morphism f : A → A′ in SH, there is a canonical morphism

[f̂ ] : [Â] → [Â′] in SH which is an isomorphism if f is. In particular,

the Chern character isomorphism ch : BGLS,Q
∼=

⊕
p∈Z H�,S{p} gives

rise to an isomorphism called Arakelov Chern character,

(4.2) ĉh : B̂GLS,Q
∼= ⊕Ĥ�,S{p}

in SH(S)Q.

(ii) If A is a strict ring spectrum, then [Â] is an A-module in a canonical way.

In particular, Ĥ�,S is in DM�(S) and B̂GLS is an object of DMBGL(S).
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Proof. (i) We can represent f by a zig-zag of maps fi and define f̂ to be

the zig-zag of f̂i := hofib(fi ∧ (S0
1HD→ HD)). As any choice of the zig-zag

represents the same given map [f ] : [A] → [A′] in SH(S), the resulting map

[f̂ ] : [Â] → [Â′] is also independent of the choice of the zig-zag.

(ii) The map in (4.1) is a map of A-modules. Its homotopy fiber in the

category of A-modules is an object ÂMod ∈ A − Mod. By the Quillen ad-

junction (2.11) and [Hir03, Theorem 19.4.5], ÂMod is weakly equivalent (in

Spt) to Â. Therefore, the image of [ÂMod] in SH under the forgetful functor

Ho(A − Mod) → SH is isomorphic to [Â]; i.e., the latter is canonically an

A-module. �

Remark 4.3. (i) Theorem 4.2(i) shows that B̂GL does not depend on the

choice of the spectrum representing BGL. In a similar vein, one can

show that given a map A → A′ of strict ring spectra (respecting the ring

structure) that is also a weak equivalence, [Â] is mapped to [Â′] under

the canonical equivalence of categories − : ⊗L
AA

′ : Ho(A − Mod) →
Ho(A′ −Mod). In this sense, the BGL-module structure on B̂GL does

not depend on the choice of the strict ring spectrum. We will not use

this fact, though.

(ii) We are mainly interested in gluing motivic cohomology with Deligne

cohomology. However, nothing is special about Deligne cohomology. In

fact, given some scheme f : T → S (not necessarily of finite type) and

complexes of presheaves of Q-vector spaces D(p) on Sm/T satisfying the

conclusion of Theorem 2.8(ii), (iii), (iv), (v) (actually (2.24) suffices),

and (vi), everything could be done with f∗D(p) instead of η∗D(p).

Definition 4.4. For any M ∈ SH(S), we define

Ĥn(M) := HomSH(S)(M, B̂GLS [n]),

Ĥn(M,p) := HomSH(S)Q(MQ, Ĥ�(p)[n]).

The latter is called Arakelov motivic cohomology of M . For any finite type

scheme f : X → S, we define Arakelov motivic cohomology of X as

Ĥn(X/S, p) := HomSH(S)Q(f!f
!Σ∞

P1S0, Ĥ�,S(p)[n])

and likewise

Ĥn(X/S) := HomSH(S)(f!f
!Σ∞

P1S0, B̂GLS [n]).

Here Σ∞
P1S0 is the infinite P1-suspension of the 0-sphere, i.e., the unit of the

monoidal structure in SH. When the base S is clear from the context, we

will just write Ĥn(X, p) and Ĥn(X). See Theorem 4.13(i) for a statement

concerning the independence of the base scheme S of the groups Ĥn(X/S).
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742 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Theorem 4.5.

(i) For any M ∈ SH(S) there are long exact sequences relating Arakelov

motivic cohomology to (usual) motivic cohomology (2.12) and, for ap-

propriate motives, Deligne cohomology (Definition 2.7):

(4.3)

. . . → Ĥn(M,p) → Hn(M,p)
ρ→ HomSH(S)(M, η∗HD(p)[n]) → Ĥn+1(M,p)

(4.4)

. . . → Ĥn(M) → Hn(M)
ch→ HomSH(S)(M,⊕η∗HD{p}[n]) → Ĥn+1(M) . . . .

The maps ρ and ch agree with the one induced by ρD and chD (Definition

3.7).

(ii) For any l.c.i. scheme X/S (Definition 2.3, for example X = S) we get

exact sequences

· · · → Ĥn(X, p) → K2p−n(X)
(p)
Q → Hn

D(X, p) → Ĥn+1(X, p) → · · · ,

(4.5) · · · → Ĥn(X) → K−n(X) →
⊕
p

H2p−n
D (X, p) → Ĥn+1(X) → · · · .

(iii) If S′ f→ S is a scheme of positive characteristic over S, the obvious map

Ĥn(f∗M,p) → Hn(f∗M,p) is an isomorphism for any M ∈ SH(S′).

(iv) There is a functorial isomorphism

(4.6) Ĥn(M) = HomDMBGL(S)(BGLS ∧M, B̂GLS),

where we view B̂GLS as a BGL-module using Theorem 4.2( ii). A similar

statement holds for H�,S . In addition, there is a canonical isomorphism

Ĥn(M,p) = Ĥn(M ∧ H�,S , p). For example, Ĥn(X, p) = Ĥn(MS(X), p)

for any X/S of finite type. For any compact object M ∈ SH(S), there

is an isomorphism called the Arakelov Chern character:

(4.7) ĉh : Ĥn(M)⊗ZQ =
⊕
p∈Z

Ĥn+2p(M,p).

Proof. The long exact sequence in (i) follows from Theorem 3.6(iii), the

projection formula H� ∧ η∗HD = η∗(H� ∧ HD), and generalities on the ho-

motopy fiber in stable model categories. Similarly, BGL ∧ HD is canonically

isomorphic, via the Chern class, to ⊕H� ∧HD{p} ∼= ⊕HD{p}. The agreement

of ρ and ρD is also clear, since the H�-module structure map H� ∧HD → HD

is inverse to 1� ∧ idD : HD → H� ∧ HD.

For (ii), we use (iv) and apply (i) to MS(X) and f!f
!BGLS , respectively

where f : X → S is the structural map. In order to identify the motivic

cohomology with the Adams eigenspace in K-theory, we use the adjunc-

tion (2.3) and the purity isomorphism for f (Example 2.4). To calculate
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Hom(f!f
!H�,S ,HD), we can replace B by the arithmetic field Bη := B×ZQ.

The scheme S is regular; thus s : S → B is smooth (of finite type). The same

is true for the structural map x : X → B. Now, combining the relative purity

isomorphisms for x and for s, we get an isomorphism

f !HD = f !s∗HD = f !s!HD{− dim s}
= x!HD{− dim s} = x∗HD{− dim s+ dimx} = f∗HD{dim f}.

We conclude

HomSH(S)(f!f
!H�,S ,HD(p)[n]) = Hom(f !H�,S , f

!HD(p)[n])

= Hom(f∗H�,S{dim f}, f∗HD(p)[n]{dim f})
= Hom(H�,X ,HD(p)[n])

3.6
= H2p−n

D (X, p).

(iii) follows from localization. The first isomorphism in (iv) follows from

(2.11). The second one uses in addition the full faithfulness of the forgetful

functor DM� → SHQ (Section 2.2). The map ĉh is induced by (4.2). �
Remark 4.6. By (4.3), each group Ĥn(M) is an extension of a Z-module by

a quotient of a finite-dimensional R-vector space by some Z-module. Both

Z-modules are conjectured to be finitely generated in case S = SpecZ and M

compact (Bass conjecture). Similarly, the groups Ĥn(M,p) are extensions of

Q-vector spaces by groups of the form Rk/some Q-subspace. In particular,

we note that the Arakelov motivic cohomology groups Ĥn(M,p) are typically

infinite-dimensional (as Q-vector spaces). However, one can redo the above

construction using the spectrum H� ⊗ R instead of H� to obtain Arakelov

motivic cohomology groups with real coefficients, Ĥn(M,R(p)). These groups

are real vector spaces of conjecturally finite dimension, with formal properties

similar to those of Ĥn(M,p), and these are the groups needed in the second

author’s conjecture on ζ and L-values [Sch13].

Remark 4.7. In [Sch12, Theorem 6.1], we show that Ĥn(X) agrees with

K̂T
−n(X) for n ≤ −1 and is a subgroup of the latter for n = 0. The group

Ĥ1(X) = coker(K0(X) → ⊕H2p
D (X, p)) is related to the Hodge conjecture,

which for any smooth projective X/C asserts the surjectivity of K0(X)Q →
H2p

D (X,Q(p)) (Deligne cohomology with rational coefficients). For n ≥ 2,

Ĥn(X) = ⊕H2p+n−1
D (X, p).

Example 4.8. We list the groups Ĥ−n := Ĥ−n(SpecOF ) of a number ring

OF . These groups and their relation to the Dedekind ζ-function are well-

known; cf. [Sou92, III.4], [Tak05, p. 623]. For any n ∈ Z, (4.5) reads

H0
D(X,n+ 1)→Ĥ−2n−1→K2n+1

ρ∗→H1
D(X,n+ 1)→Ĥ−2n→K2n

ρ∗→H0
D(X,n).
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In [Sch12, Theorem 5.7], we show that the map ρ∗ induced by the BGL-

module structure of ⊕HD{p} agrees with the Beilinson regulator. We conclude

by Borel’s work that Ĥ−2n−1 is an extension of (K2n+1)tor(= μF if n = 0) by

H0
D(X,n + 1) for n ≥ 0. Moreover, for n > 0, Ĥ−2n is an extension of the

finite group K2n by a torus, i.e., a group of the form Rsn/Zsn for some sn
that can be read off (2.19). Finally, Ĥ0 is an extension of the class group of

F by a group Rr1+r2−1/Zr1+r2−1 ⊕ R.

For higher-dimensional varieties, the situation is less well-understood. For

example, by Beilinson’s, Bloch’s, and Deninger’s work we know that

K2n+2(E)
(n+2)
R → H2

D(E, n+ 2)

is surjective for n ≥ 0, where E is a regular proper model of certain elliptic

curves over a number field (for example a curve over Q with complex mul-

tiplication in case n = 0). We refer to [Nek94, Section 8] for references and

further examples.

4.2. Functoriality. Let f : X → Y be a map of S-schemes. The struc-

tural maps of X/S and Y/S are denoted x and y, respectively. We establish

the expected functoriality properties of Arakelov motivic cohomology. To de-

fine pullback and pushforward, we apply HomDM�
(−, Ĥ�,S) to appropriate

maps, using (4.6).

Lemma 4.9. There is a functorial pullback

f∗ : Ĥn(Y, p) → Ĥn(X, p), f∗ : Ĥn(Y ) → Ĥn(X).

More generally, for any map φ : M → M ′ in SH(S) there is a functorial

pullback

φ∗ : Ĥn(M ′, p) → Ĥn(M,p), φ∗ : Ĥn(M ′) → Ĥn(M).

This pullback is compatible with the long exact sequence (4.3) and, for compact

objects M and M ′, with the Arakelov-Chern class (4.7).

Proof. The second statement is clear from the definition. The first claim

follows by applying the natural transformation

x!x
! = y!f!f

!y!
(2.3)−→ y!y

!

to BGLS or H�,S , respectively. The last statement is also clear since (2.3) is

functorial; in particular it respects the isomorphism ĉh : B̂GLQ,S
∼= ⊕Ĥ�,S{p}.

�
In the remainder of this section, we assume that f and y (hence also x) are

regular projective maps (Definition 2.3). Recall that dim f = dimX −dimY .
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Definition and Lemma 4.10. We define the pushforward

f∗ : Ĥn(X, p) → Ĥn−2 dim(f)(Y, p− dim(f))

on Arakelov motivic cohomology to be the map induced by the composition

MS(Y ) = y!y
!H�,S

(tr�y )−1

−→ y!y
∗H�,S{dim(y)}

(2.2)−→ y!f∗f
∗y∗H�,S{dim(y)}

= x!x
∗H�,S{dim(y)}

tr�x−→ x!x
!H�,S{dim(y)− dim(x)}

= MS(X){− dim(f)}.

Similarly,

f∗ : Ĥn(X) → Ĥn(Y )

is defined using the trace maps on BGL instead of the ones for H� (2.15),

(2.16).

This definition is functorial (with respect to the composition of regular pro-

jective maps).

Proof. Let g : Y → Z be a second map of S-schemes such that both g

(hence h := g ◦ f) and the structural map z : Z → S are regular projective.

The functoriality of the pushforward is implied by the fact that the following

two compositions agree (we do not write H�,−{−} or BGL− for space reasons):

z!z
! tr−1

z→ z!z
∗ → z!h∗h

∗z∗ = x!x
∗ trx→ x!x

!,

z!z
! tr−1

z→ z!z
∗ → z!g∗g

∗z∗ = y!y
∗ try→ y!y

!
tr−1

y→ y!y
∗ → y!f∗f

∗y∗ = x!x
∗ trx→ x!x

!.

This agreement is an instance of the identity adh = y∗adfy
∗ ◦ adg. �

4.3. Purity and an arithmetic Riemann-Roch theorem. In this sub-

section, we establish a purity isomorphism and a Riemann-Roch theorem for

Arakelov motivic cohomology. We cannot prove it in the expected full gener-

ality of regular projective maps, but need some smoothness assumption.

Given any closed immersion i : Z → SpecZ, we let j : U → SpecZ be

its open complement. The generic point is denoted η : SpecQ → SpecZ.

We also write i, j, η for the pullback of these maps to any scheme, e.g.

i : XZ := X×SpecZZ → X. Recall that B is an arithmetic ring whose generic

fiber Bη is a field (Definition 2.6).

Let f : X → S be a map of regular B-schemes. For clarity, we write

D(p)Xη
for the complex of presheaves on Sm/Xη that was denoted D(p)

above and HD,Xη
for the resulting spectrum. Moreover, we write HD,X :=

η∗HD,Xη
∈ SH(X). The complex D(p)Xη

is the restriction of the complex
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746 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

D(p)Bη
. Therefore, there is a natural map f∗D(p)S → D(p)X , which in turn

gives rise to a map of spectra

αf
D : f∗HD,S → HD,X .

This map is an isomorphism if f is smooth, since f∗ : PSh(Sm/S) →
PSh(Sm/X) is just the restriction in this case. Is αf

D an isomorphism for

a closed immersion f between flat regular B-schemes? The corresponding

fact for BGL, i.e., the isomorphism f∗BGLS = BGLX , ultimately relies on

the fact that algebraic K-theory of smooth schemes over S is represented in

SH(S) by the infinite Grassmannian, which is a smooth scheme over S. There-

fore, it would be interesting to have a geometric description of the spectrum

representing Deligne cohomology, as opposed to the merely cohomological

representation given by the complexes D(p).

Lemma 4.11.

(i) Given another map g : Y → X of regular B-schemes, there is a natural

isomorphism of functors αg
D ◦ g∗αf

D = αf◦g
D .

(ii) The following are equivalent:

• αf
D is an isomorphism in SH(X).

• For any i : Z → SpecZ, the object i!f∗HD,S is zero in SH(X×ZZ).

• For any sufficiently small j : U → SpecZ, the adjunction morphism

f∗HD,S → j∗j
∗f∗HD,S is an isomorphism in SH(X).

(iii) The conditions in ( ii) are satisfied if f fits into a diagram

X

f

��

x �� B′ �� B

S

s

����������

where B′ is regular and of finite type over B, x and s are smooth. In

particular, this applies when f is smooth or when both X and S are

smooth over B.

Proof. (i) is easy to verify using the definition of the pullback functor.

(iii) is a consequence of the above remark and (i) using the chain of natural

isomorphisms f∗HD,S = f∗s∗HD,B′ = x∗HD,B′ = HD,X . For (ii), consider the

map of distinguished localization triangles:

i∗i
!f∗HD,S

��

��

f∗HD,S
��

αf
D

��

j∗j
∗f∗HD,S

j∗j
∗αf

D=j∗α
fU
D

��

0 = i∗i
!HD,X

�� HD,X
�� j∗j

∗HD,X .
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The map αfU
D is an isomorphism as soon as j is small enough so that XU and

SU are smooth over BU . Such a j exists by the regularity of X and S. This

shows the equivalence of the three statements in (ii). �
Below, we write � :=

⊕
p∈Z H�{p} and �̂X := hofib(�X → �X ∧ HD,X).

We define

f?B̂GLS := hofib(f !BGLS
id∧1−→ f !BGLS ∧ f∗HD,S)

and similarly for f?
�̂S . (The notation is not meant to suggest a functor

f?; it is just shorthand.) The Chern class ch : BGLS → �S induces a map

f?ĉh : f?B̂GLS → f?
�̂S .

Theorem 4.12. Let f : X → S be a regular projective map (Definition

2.3) such that αf
D is an isomorphism. (In particular (Lemma 4.11 ( iii)) this

applies when B is a field or when X and S are smooth over B or when f is

smooth.) Then there is a commutative diagram in SH(X)Q as follows. Its top

row horizontal maps are BGLX -linear (i.e., induced by maps in DMBGL(X)),

and the bottom horizontal maps are �X -linear. All maps in this diagram are

isomorphisms (in SH(X)Q).

(4.8) B̂GLX

̂chX

��

f∗B̂GLS
α̂��

f∗
̂chS

��

t̂rBGL �� f?B̂GLS

f?
̂chS

��

β
�� f !B̂GLS

f !
̂chS

��

�̂X f∗
�̂S

α̂
��

T̂d(Tf )

�� f∗
�̂S

̂tr�

�� f?
�̂S

β
�� f !
�̂S .

Proof. To define the maps α̂ in (4.8), we don’t make use of the assumption

on αf
D. Pick fibrant-cofibrant representatives of BGL and H�, and HD. Thus,

in the following diagram of spectra, f∗ and ∧ are the usual, non-derived

functors for spectra:

f∗BGLS

f∗(id∧1D)

��

f∗BGLS

αf
BGL ��

id∧f∗1D

��

BGLX

id∧1D

��

f∗(BGLS ∧ HD,S) f∗BGLS ∧ f∗HD,S
��

αf
BGL∧αf

D�� BGLX ∧HD,X .

As f∗ is a monoidal functor (on the level of spectra), the canonical lower

left hand map is an isomorphism of spectra and the left square commutes.

The right square commutes because of αf
D(f

∗1D) = 1D. This diagram in-

duces a map between the homotopy fibers of the two vertical maps, which

are f∗B̂GLS and B̂GLX , respectively. This is the map α̂ above. The one for

�̂ is constructed the same way by replacing BGL by � throughout. Using

f∗ chS = chX , this shows the commutativity of the left hand square in (4.8).

Licensed to Universitat Munster. Prepared on Mon May  1 22:50:22 EDT 2017 for download from IP 128.176.254.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf 29



748 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

By definition of BGL, αf
BGL : f∗BGLS → BGLX is a weak equivalence. Thus,

both maps α̂ are isomorphisms in SH(X) when αf
D is so. They are clearly

BGLX - and �X -linear, respectively.

The horizontal maps in the middle quadrangle are defined as in Theo-

rem 4.2(i): for example, the map trBGL : f∗BGL → f !BGL gives rise to

t̂rBGL : f∗B̂GLS → f?B̂GLS . It is BGLX -linear since trBGL is so. Similarly,

we define T̂d(Tf ) (viewing Td(Tf ) as a (�X -linear) map f∗
�S → f∗

�S) and

t̂r�. Picking representatives of all maps, the quadrangle will in general not

commute in the category of spectra, but does so up to homotopy, by con-

struction and by the Riemann-Roch Theorem 2.5. This settles the middle

rectangle.

By the regularity of X and S, we can choose j : U ⊂ SpecZ such that XU

and SU are smooth over BU . We will also write j for XU → X, etc.

By assumption, αf
D is an isomorphism. Hence, the adjunction map f !BGL∧

f∗HD → j∗j
∗(f !BGL ∧ f∗HD) is an isomorphism in SH. In fact, both

terms are isomorphic in SH to
⊕

p HD{p}, as one checks for example us-

ing the purity isomorphism f !BGLS
∼= f∗BGLS = BGLX . Thus, f?B̂GL

is canonically isomorphic to the homotopy fiber of f !BGL → j∗j
∗f !BGL →

j∗j
∗(f !BGL ∧ f∗HD) = j∗(j

∗f !BGL ∧ j∗f∗HD). Here, the last equality is a

canonical isomorphism on the level of spectra, since j∗ is just the restriction.

By definition, j∗f ! = j!f !. We may therefore replace f by fU . Now, f !
UM is

functorially isomorphic (in SH) to f∗
UM{n}, n := dim fU , by construction of

the relative purity isomorphism by Ayoub [Ayo07, Section 1.6]. Indeed, a is

a closed immersion, and p and every map in the diagram with codomain BU

are smooth:

XU a
��

fU
��

		






 Pn

SU



�
��

��
��

� p
�� SU

��

BU .

Hence to construct β, it is enough to construct a commutative diagram of

spectra:

f∗
UBGLSU

{n}

id∧1D

��

f∗
UBGLSU

{n}

f∗(id∧1D)

��

f∗
UBGLSU

{n} ∧ f∗
UHD,SU

γ
�� f∗

U (BGLSU
∧ HD,SU

){n}.

The map γ is the natural map of spectra f∗
Ux∧f∗

Uy → f∗
U (x∧y), which clearly

makes the diagram commute in the category of spectra. We have constructed
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a map (in SH) β : f?B̂GL → f !B̂GL in a way that is functorial with respect

to (a lift to the category of spectra of) the map ch : BGL → �. Therefore,

the analogous construction for �̂ produces the desired commutative square

of isomorphisms (in SH). Again, the top row map β is BGL-linear and the

bottom one is �X -linear.

Finally, the vertical maps in (4.8) are isomorphisms using the Arakelov

Chern character (4.2). �
We can now conclude a higher arithmetic Riemann-Roch theorem. It con-

trols the failure of ĉh to commute with the pushforward.

Theorem 4.13. Let f : X → S be a regular projective map (Definition

2.3) of schemes of finite type over an arithmetic ring B (Definition 2.6).

Moreover, we assume that f is such that

αf
D : f∗HD,S → HD,X

is an isomorphism. This condition is satisfied, for example, when f is smooth

or when X and S are smooth over B (Lemma 4.11). Then, the following hold:

(i) (Purity) The absolute purity isomorphisms for BGL and H� (2.14) in-

duce isomorphisms (of BGLX- and H�X -modules, respectively):

B̂GLX
∼= f∗B̂GLS

∼= f !B̂GLS , Ĥ�X
∼= f∗Ĥ�S

∼= f !Ĥ�S{− dim f}.
In particular, Arakelov motivic cohomology is independent of the base

scheme in the sense that there are isomorphisms

Ĥn(X/S) ∼= Ĥn(X/X), Ĥn(X/S, p) ∼= Ĥn(X/X, p).

(ii) (Higher arithmetic Riemann-Roch theorem) There is a commutative

diagram

Ĥn(X/X)
f∗

��

̂chX

��

Ĥn(S/S)

̂chS

��⊕
p∈Z Ĥ

n+2p(X, p)
f∗◦̂Td(Tf )

��
⊕

p∈Z Ĥ
n+2p(S, p).

Here, the top line map f∗ is given by

Ĥn(X/X) := HomSH(X)(S
−n, B̂GLX)

(4.8)→ HomSH(X)(S
−n, f !B̂GLS)

(2.2)→ HomSH(S)(S
−n, B̂GLS) = Ĥn(S/S).

Using the identifications Ĥn(X/X) ∼= Ĥn(X/S), this map agrees with

the one defined in Lemma 4.10. The bottom map f∗ is given similarly

replacing BGL with �.
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Proof. The isomorphisms for B̂GL? in (i) are a restatement of Theorem

4.12. The ones for Ĥ�? also follow from that by dropping the isomorphism

T̂d(Tf ) in the bottom row of (4.8) and noting that tr�, hence t̂r�, shifts the

degree by dim f . The isomorphisms in the second statement are given by the

following identifications of morphisms in DMBGL(−), using (4.6):

Hom(BGLX , B̂GLX)
4.12−→ Hom(BGLX , f !B̂GLS)

(trBGL)
−1

−→ Hom(f !BGLS , f
!B̂GLS)

= Hom(f!f
!BGLS , B̂GLS)

and likewise for H�.

(ii) is an immediate corollary of Theorem 4.12, given that the two isomor-

phisms (in SH(X)Q) T̂d(Tf ) ◦ α̂−1 and α̂−1 ◦ T̂d(Tf ), where Td(Tf ) is seen

as an endomorphism of f∗
�S and of �X , respectively, agree. This agreement

follows from the definition of α̂. The agreement of the two definitions of f∗ is

clear from the definition. �
This also elucidates the behavior of (4.5) with respect to pushforward:

in the situation of the theorem, the pushforward f∗ : Ĥn(X) → Ĥn(S) sits

between the usual K-theoretic pushforward and the pushforward on Deligne

cohomology (which is given by integration of differential forms along the fibers

in case f(C) is smooth, and by pushing down currents in general), multiplied

by the Todd class (in Deligne cohomology) of the relative tangent bundle.

4.4. Further properties.

Theorem 4.14.

(i) Arakelov motivic cohomology satisfies h-descent (thus, a fortiori, Nis-

nevich, étale, cdh, qfh and proper descent). For example, there is an

exact sequence

. . . → Ĥn(X, p) → Ĥn(U � V, p) → Ĥn(W, p) → Ĥn+1(X, p) → . . .

where

W ��

��

V

p

��

U
f

�� X

is a cartesian square of smooth schemes over S that is either a distin-

guished square for the cdh-topology (f is a closed immersion, p is proper

such that p is an isomorphism over X\U) or a distinguished square for

the Nisnevich topology (f an open immersion, p étale inducing an iso-

morphism (p−1(X\U)red → (X\U)red)) or such that U � V → X is an

open cover.
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(ii) Arakelov motivic cohomology is homotopy invariant and satisfies a pro-

jective bundle formula:

Ĥn(X×A1, p) ∼= Ĥn(X, p),

Ĥn(P(E), p) ∼=
d⊕

i=0

Ĥn−2i(X, p− i).

Here X/S is arbitrary (of finite type), E → X is a vector bundle of rank

d+ 1, and P(E) is its projectivization.

(iii) Any distinguished triangle of motives induces long exact sequences of

Arakelov motivic cohomology. For example, let X/S be an l.c.i. scheme

(Example 2.4). Let i : Z ⊂ X be a closed immersion of regular schemes

of constant codimension c with open complement j : U ⊂ X. Then there

is an exact sequence

Ĥn−2c(Z, p− c)
i∗→ Ĥn(X, p)

j∗→ Ĥn(U, p) → Ĥn+1−2c(Z, p− c).

(iv) The cdh-descent and the properties ( ii), ( iii) hold mutatis mutandis for

Ĥ∗(−).

Proof. The h-descent is a general property of modules over H�,S [CD09,

Thm 16.1.3]. The A1-invariance and the bundle formula are immediate from

M(X) ∼= M(X×A1) and M(P(E)) ∼=
⊕d

i=0 M(X){i}. For the last statement,

we use the localization exact triangle [CD09, 2.3.5] for U
j→ X

i← Z:

f!j!j
!f !H�,S → f!f

!H�,S → f!i∗i
∗f !H�,S .

The purity isomorphism f∗H�,S{dim f} = f !H�,S (Example 2.4) for the struc-

tural map f : X → S and the absolute purity isomorphism (2.14) for i imply

that the rightmost term is isomorphic to f!i!i
!f !H�,S{− dim i} = MS(Z){−c}.

Mapping this triangle into Ĥ�,S(p)[n] gives the desired long exact sequence.

The arguments for B̂GLS are the same. The only difference is that descent

for topologies exceeding the cdh-topology requires rational coefficients. �
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rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1-172. MR2285241 (2008f:14039)
[BS09] Ulrich Bunke and Thomas Schick, Smooth K-theory (English, with English
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Math. 230 (2012), no. 1, 55–130, DOI 10.1016/j.aim.2011.10.021. MR2900540
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Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR1087394 (92d:14016)
[GS90b] Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector

bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), no. 1, 163–203,
DOI 10.2307/1971512. MR1038362 (91m:14032a)
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ARAKELOV MOTIVIC COHOMOLOGY II

JAKOB SCHOLBACH

Abstract

We show that the constructions done in part I generalize their classi-
cal counterparts: firstly, the classical Beilinson regulator is induced by
the abstract Chern class map from BGL to the Deligne cohomology
spectrum. Secondly, Arakelov motivic cohomology is a generalization
of arithmetic K-theory and arithmetic Chow groups. For example, this
implies a decomposition of higher arithmetic K-groups in its Adams
eigenspaces. Finally, we give a conceptual explanation of the height
pairing: it is the natural pairing of motivic homology and Arakelov
motivic cohomology.

The purpose of this work is to compare the abstract constructions of the

regulator map and the newly minted Arakelov motivic cohomology groups

done in part I (in this issue) with their classical, more concrete counterparts.

In a nutshell, Arakelov motivic generalizes and simplifies a number of classical

constructions pertaining to arithmetic K- and Chow groups.

We show that the Chern class chD : BGL →
⊕

p HD{p} between the spectra

representing K-theory and Deligne cohomology constructed in Definition 3.71

induces the Beilinson regulator

Kn(X) →
⊕
p

H2p−n
D (X, p)

for any smooth scheme X over an arithmetic field (Theorem 5.7).

Next, we turn to the relation of Arakelov motivic cohomology and arith-

meticK- and Chow groups. ArithmeticK-groups were defined by Gillet-Soulé

and generalized to higher K-theory by Takeda [GS90b,GS90c,Tak05]. We de-

note these groups by K̂T
n (X). They fit into an exact sequence

Kn+1(X) → Dn+1(X)/ imdD → K̂T
n (X) → Kn(X) → 0,

Received October 10, 2012 and, in revised form, June 26, 2013. The author would like
to thank Andreas Holmstrom for the collaboration leading to part I of this project.

1The numbering here continues from the end of part I.

c©2015 University Press, Inc.
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756 JAKOB SCHOLBACH

where D∗(X) is a certain complex of differential forms. The presence of

the group Dn+1(X)/ im dD, as opposed to the Deligne cohomology group

ker dD/ im dD =
⊕

p H
2p−n−1
D (X, p) implies that the groups K̂T

n (X) are not

homotopy invariant. Therefore they cannot be addressed using A1-homotopy

theory. Instead, we focus on the subgroup (see Section 6)

K̂n(X) := ker
(
ch : K̂T

n (X) → Dn(X)
)
.

and show a canonical isomorphism

(*) Ĥ−n(X) ∼= K̂n(X)

for smooth schemes X and n ≥ 0. All our comparison results concern the

groups K̂∗(X) and, in a similar vein, the subgroup ĈH∗(X) of Gillet-Soulé’s

group [GS90a] consisting of arithmetic cycles (Z, g) satisfying δZ = ∂∂g/(2πi);

cf. (6.16). The homotopy-theoretic approach taken in this paper conceptu-

ally explains, improves, and generalizes classical constructions such as the

arithmetic Riemann-Roch theorem, as far as these smaller groups are con-

cerned. The simplification stems from the fact that it is no longer necessary

to construct explicit homotopies between the complexes representing arith-

metic K-groups, say. For example, the Adams operations on K̂n(X) defined

by Feliu [Fel10] were not known to induce a decomposition

K̂∗(X)Q ∼=
⊕
p

K̂∗(X)
(p)
Q .

Using that the isomorphism (*) is compatible with Adams operations, this

statement follows from the entirely formal analogue for Ĥ∗, namely the

Arakelov-Chern class isomorphism (4.7). We conclude a canonical isomor-

phism

Ĥ2p,p(X, p) = ĈHp(X)Q.

Moreover, the pushforward on Arakelov motivic cohomology established in

Definition and Lemma 4.10 is shown to agree with the one on arithmetic

Chow groups in two cases, namely for the map SpecFp → SpecZ and for

a smooth proper map X → S, S ⊂ SpecOF for a number ring OF . The

non-formal input in the second statement is the finiteness of the Chow group

CHdimX(X) proven by Kato and Saito [KS86]. In a similar vein, we identify

the pushforward on K̂0 with the one on Ĥ0 (Theorem 6.4). In Section 7, it is

shown that the height pairing

CHm(X)×ĈHdimX−m(X) → ĈH1(S)

coincides, after tensoring with Q, with the Arakelov intersection pairing of

the motive M := M(X)(m − dimX + 1)[2(m − dimX + 1)] of any smooth
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ARAKELOV MOTIVIC COHOMOLOGY II 757

proper scheme X/S:

HomSH(S)(S
0,M)×Hom(M, ĤB,S(1)[2]) → Ĥ2(S, 1),

(α, β) �→ β ◦ α.

Conjecturally, the L-values of schemes (or motives) over Z are given by the

determinant of this pairing [Sch13].

In the light of these results, stable homotopy theory offers a conceptual

clarification of hitherto difficult or cumbersome explicit constructions of chain

maps and homotopies representing the expected maps on arithmeticK-theory,

such as the Adams operations. The bridge between these concrete construc-

tions and the abstract path taken here is provided by a strong unicity theorem.

Recall that there is a distinguished triangle

⊕
p∈Z

HD{p}[−1] → B̂GL → BGL
chD−→

⊕
p∈Z

HD{p}

in the stable homotopy category. Among other things we prove that B̂GL

is unique, up to unique isomorphism fitting into the obvious map of distin-

guished triangles (see Theorem 6.1 for the precise statement). The proof of

this theorem takes advantage of the motivic machinery, especially the com-

putations of Riou pertaining to endomorphisms of BGL. Its only non-formal

input is a mild condition involving the K-theory and Deligne cohomology of

the base scheme. The unicity trickles down to the unstable homotopy cate-

gory. It can therefore be paraphrased as: any construction for the groups K̂∗
that is functorially representable by zig-zags of chain maps and compatible

with its non-Arakelov counterpart is necessarily unique. The above-mentioned

identification of the Adams operations and the K-theory module structure

on K̂ are consequences of this principle. In order to show that the arith-

metic Riemann-Roch theorem by Gillet, Roessler and Soulé [GRS08], when

restricted to K̂0(X) ⊂ K̂T
0 (X) (!), is a formal consequence of the motivic

framework it remains to show that their arithmetic Chern class [GS90c, cf.

Thm. 7.2.1],

K̂0(X)Q ∼=
⊕
p

K̂0(X)
(p)
Q ,

agrees with the Arakelov Chern class established in (4.7). This will be a

consequence of the above unicity result, once the arithmetic Chern class has

been extended to higher arithmetic K-theory by means of a canonical (i.e.,

functorial) zig-zag of appropriate chain complexes.
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758 JAKOB SCHOLBACH

5. Comparison of the regulator

After recalling some details of the construction of BGL in Section 5.1,

we construct a Chern class map ch : BGL →
⊕

p HD{p} that induces the

Beilinson regulator. This is done in Section 5.2. The strategy is to take

Burgos’ and Wang’s representation of the Beilinson regulator as a map of

simplicial presheaves and lift it to a map in SH(S). We finish this section by

proving that this Chern class ch and the one obtained in Definition 3.7,

chD : BGL
id∧1D−→ BGLQ ∧ HD

ch∧id−→
⊕
p∈Z

HB{p} ∧ HD
1B∧idD,∼=←−

⊕
p

HD{p},

agree. In particular, chD also induces the Beilinson regulator. This result is

certainly not surprising—after all, Beilinson’s regulator is the Chern character

map for Deligne cohomology.

Throughout, we will use the notation of part I. In particular, Ho•(S) and

SH(S) are the unstable and the stable homotopy category of smooth schemes

over some Noetherian base scheme S (Sections 2.1, 2.2).

5.1. Reminders on the object BGL representingK-theory. In order

to prove our comparison results, we need some more details concerning the

object BGL representing algebraic K-theory. This is due to Riou [Rio].

Let Grd,r be the Grassmannian whose T -points, for any T ∈ Sm/S, are

given by locally free subsheaves of Od+r
T of rank d. As usual, we regard this

(smooth projective) scheme as a presheaf on Sm/S. For d ≤ d′, r ≤ r′, the

transition map

(5.1) Grd,r → Grd′,r′

is given on the level of T -points by mappingM ⊂ Od+r
T to Od′−d

T ⊕M⊕0r
′−r ⊂

Od′+r′ . Put Gr := lim−→N2
Gr∗,∗, where the colimit is taken in PSh(Sm/S). It

is pointed by the image of Gr0,0. Write Z×Gr for the product of the constant

sheaf Z (pointed by zero) and this presheaf, and also for its image in Ho•(S).

For a regular base scheme S, there is a functorial (with respect to pullback)

isomorphism

(5.2) HomHo•(S)(S
n ∧X+,Z×Gr) ∼= Kn(X),

for any X ∈ Sm/S [MV99, Props. 3.7, 3.9, page 138].

Definition 5.1 ([Rio, I.124, IV.3]). The category SHnaive(S) is the cat-

egory of Ω-spectra (with respect to − ∧ P1) in Ho•(S): its objects are se-

quences En ∈ Ho•(S), n ∈ N, with bonding maps P1 ∧ En → En+1 inducing

isomorphisms En → Hom•(P
1, En+1).

2 Its morphisms are sequences of maps

2We will not write L or R for derived functors. For example, f∗ stands for what is often
denoted Lf∗ and similarly with right derived functors such as RHom, RΩ, etc.
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fn : En → Fn (in Ho•(S)) making the diagrams involving the bonding maps

commute.

Remark 5.2. Recall the projective Nisnevich-A1-model structure on P1-

spectra: a map f : X → Y is a weak equivalence (fibration), if all its lev-

els fn : Xn → Yn form a weak equivalence (fibration, respectively) in the

Nisnevich-A1-model structure on Δop(PSh•(Sm/S)) (whose homotopy cate-

gory is Ho•(S). The homotopy category of spectra with respect to the pro-

jective model structure is denoted SHp(S). The composition of the inclusion

of the full subcategory of Ω-spectra and the natural localization functor,

{X ∈ SHp, X is an Ω-spectrum} ⊂ SHp(S) → SH(S),

is an equivalence. This yields a natural “forgetful” functor SH(S) →
SHnaive(S).

Definition and Theorem 5.3 (Riou, [Rio, IV.46, IV.72]). The spectrum

BGLnaive ∈ SHnaive(S) consists of BGLnaive
n := Z×Gr (for each n ≥ 0) with

bonding maps

(5.3) P1 ∧ (Z×Gr)
u∗
1∧id−→ (Z×Gr) ∧ (Z×Gr)

μ−→ Z×Gr,

where u∗
1 is the map corresponding to u1 = [O(1)] − [O(0)] ∈ K0(P

1)
(5.2)
=

HomHo(P1,Z×Gr) and μ is the multiplication map, that is to say, the unique

map [Rio, III.31], inducing the natural (i.e., tensor) product on K0(−).

For S=SpecZ, there is a lift BGLZ ∈ SH(SpecZ) of BGLnaive∈ SHnaive(Z)

that is unique up to unique isomorphism. For any scheme f : S → SpecZ,

put BGLS := f∗BGLZ. The unstable representability theorem (5.2) extends

to an isomorphism

(5.4) HomSH(S)(S
n ∧ Σ∞

P1X+,BGLS) = Kn(X)

for any regular scheme S and any smooth scheme X/S. In SH(S)Q, i.e., with

rational coefficients, BGLS⊗Q decomposes as

(5.5) BGLS⊗Q =
⊕
p∈Z

HB,S(p)[2p]

such that the pieces HB,S(p)[2p] represent the graded pieces of the γ-filtration

on K-theory:

HomSH(S)(S
n ∧ Σ∞

P1X+,HB,S(p)[2p]) ∼= grpγ Kn(X)Q.

Lemma 5.4. For any d, r, the motive M(Grd,r) (cf. Section 2.2) is given

by

(5.6) M(Grd,r) =
⊕
σ

M(S)
(∑

(σi − i)
) [

2
∑

(σi − i)
]
.
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760 JAKOB SCHOLBACH

The sum runs over all Schubert symbols, i.e., sequences of integers satisfying

1 ≤ σ1 < · · · < σd ≤ d + r. For d ≤ d′, r ≤ r′, the transition maps (5.1)

M(Grd,r) → M(Grd′,r′) exhibit the former motive as a direct summand of the

latter.

Proof. Formula (5.6) is well-known [Sem, 2.4]. The second statement fol-

lows from the same technique, namely the localization triangles for motives

with compact support applied to the cell decomposition of the Grassmannian:

for any field k, a d-space V (d) in kd+r is uniquely described by a (d, d + r)-

matrix A in echelon form such that Aσi,j = δi,j and Ai,j = 0 for i > σj

for some Schubert symbol σ. The constructible subscheme of Grd,r whose

k-points are given by matrices with fixed σ is an affine space A
(σ)
S . The tran-

sition map V (d) �→ kd
′−d ⊕ V (d) ⊕ 0r

′−r corresponds to

A �→

⎡
⎣ Idd′−d 0 0

0 A 0

0 0 0r
′−r

⎤
⎦ ,

that is,

σ �→ (1, 2, . . . , d′ − d, σ1 + (d′ − d), . . . , σd + (d′ − d)) =: σ′.

In other words, the restriction of the transition maps (5.1) to the cells is the

identity map A
(σ)
S → A

(σ′)
S , which shows the second statement. �

5.2. Second construction of the regulator. In this subsection and the

next one, S is an arithmetic field and X is a smooth scheme over S.

Let K : Com≥0(Ab) → ΔopAb be the Dold-Kan equivalence on chain

complexes concentrated in degrees ≥ 0 (with deg d = −1 and shift given

by C[−1]a = Ca−1). Recall from Definitions 2.7 and 3.1 the abelian presheaf

complex D and Ds := K(τ≥0D). We have Hn(D(X)) = πn(Ds(X)) =⊕
p H

2p−n
D (X, p). We set Ds[−1] := K((τ≥0D)[−1]). Recall that for any

chain complex of abelian groups C, there is a natural map S1 ∧ K(C) =

cone(K(C) → point) → K(cone(C → 0)) = K(C[−1]), hence a map K(C) →
ΩsK(C[−1]). (Here and elsewhere, Ωs is the simplicial loop space; its P1-

analogue is denoted ΩP1 .) This map is a weak equivalence of simplicial abelian

groups.

For any pointed simplicial presheaf F ∈ Ho•(S), let ϕ(F ) be the pointed

presheaf

(5.7) ϕ(F ) : Sm/S � X �→ HomHo•(S)(X+, F ).
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According to (5.2) and Lemma 3.2, respectively,

ϕ(Z×Gr) = K0 : X �→ K0(X),(5.8)

ϕ(Ωn
sDs) = H−n

D : X �→
⊕
p

H2p−n
D (X, p), n ≥ 0.

Let P̂ (X) be the (essentially small) Waldhausen category consisting of

hermitian bundles E = (E, h) on X, i.e., a vector bundle E/X with a metric

h on E(C)/X(C) that is invariant under Fr∗∞ and smooth at infinity [BW98,

Definition 2.5]. Morphisms are given by usual morphisms of bundles, ignoring

the metric, so that P̂ (X) is equivalent to the usual category of vector bundles.

Let

(5.9) S∗ : Sm/S � X �→ Sing|S∗P̂ (X)|

be the presheaf (pointed by the zero bundle) whose sections are given by the

simplicial set of singular chains in the topological realization of the Wald-

hausen S-construction of P̂ (X). Its homotopy presheaves are

(5.10)

HomHosect,•(S)(S
n∧X+, S∗) = πnS∗(X) = πn−1ΩsS∗(X) ∼= Kn−1(X), n ≥ 1.

Here, Hosect,• denotes the homotopy category of ΔopPSh•(Sm/S) (simpli-

cial pointed presheaves), endowed with the section-wise model structure. K-

theory (of regular schemes) is homotopy invariant and satisfies Nisnevich de-

scent [TT90, Thm. 10.8]. Therefore, as is well-known, the left hand term

agrees with HomHo•(S)(S
n ∧ X+, S∗). That is, there is an isomorphism of

pointed presheaves

(5.11) ϕ(ΩsS∗) ∼= K0.

According to [Rio, III.61], there is a unique isomorphism in Ho•(S),

(5.12) τ : Z×Gr → ΩsS∗,

making the obvious triangle involving (5.11) and (5.8) commute.

The proof of our comparison of the regulator uses the following result due

to Burgos and Wang [BW98, Prop. 3.11, Theorem 5.2., Prop. 6.13]:

Proposition 5.5. There is a map in Δop(PSh•(Sm/S)),

chS : S∗ → Ds[−1],

such that the induced map

πn chS : Kn−1(X) →
⊕
p∈Z

H
2p−(n−1)
D (X, p)

agrees with the Beilinson regulator for all n ≥ 1.
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By (5.12), we get a map in Ho•(S):

(5.13) ch : Z×Gr
τ,∼=−→ ΩsS∗

Ωs chS−→ Ωs(Ds[−1])
∼=−→ Ds.

The induced map

(5.14)

Kn(X)
(5.4)∼= HomHo•(S

n ∧X+,Z×Gr) → HomHo•(S
n ∧X+,Ds)

(3.3)∼=
⊕
p

H2p−n
D (X, p)

agrees with the Beilinson regulator. In order to lift the map ch to a map in

SH(S), we first check the compatibility with the P1-spectrum structures to

get a map in SHnaive(S). This means that the diagram involving the bonding

maps only has to commute up to (A1-)homotopy. Then, we apply an argument

of Riou to show that this map actually lifts uniquely to one in SH(S).

Recall the Deligne cohomology (P1-)spectrum HD from Lemma 3.3. Its

p-th level is given by Ds(p), for any p ≥ 0.

Theorem 5.6.

(i) In SHnaive(S), there is a unique map

chnaive : BGLnaive
S →

⊕
p∈Z

HD(p)[2p] =:
⊕
p

HD{p}

that is given by ch : Z×Gr
(5.13)−→ Ds in each level.

(ii) In SH(S), there is a unique map

ch : BGLS →
⊕
p∈Z

HD(p)[2p]

that maps to chnaive under the forgetful functor SH(S) → SHnaive(S)

(Remark 5.2).

(iii) There is a unique map

ρ : HB,S → HD

in SH(S)Q such that ch⊗Q =
⊕

p∈Z ρ(p)[2p] : BGLQ → ⊕HD(p)[2p],

under the identification (5.5).

Proof. By Lemma 5.4, the transition maps (5.1) defining the infinite Grass-

mannian induce split monomorphisms M(Grd,r) → M(Grd′,r′) of motives and

therefore (e.g. using Theorem 3.6) split surjections (for any n ≥ 0, d ≤ d′,

r ≤ r′)

(5.15)

HomHo(S)(Grd′,r′ ,Ω
n
sDs) → HomHo(S)(Grd,r,Ω

n
sDs)

‖ ‖
H−n

D (Grd′,r′) H−n
D (Grd,r).
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A similar surjectivity statement holds for the map of Deligne cohomology

groups induced by transition maps defining the product Gr×Gr, i.e.,

Grd1,r1 ×Grd2,r2 → Grd′
1,r

′
1
×Grd′

2,r
′
2
.

(i) the unicity of chnaive is obvious. Its existence amounts to the commu-

tativity of the following diagram in Ho•(S):

(5.16) P1 ∧ Z×Gr

id∧ch

��

u∗
1∧id

�� (Z×Gr) ∧ (Z×Gr)
μ

��

ch∧ ch

��

Z×Gr

ch

��

P1 ∧Ds
c∗∧id �� Ds ∧Ds

μ
�� Ds.

The top and bottom lines are the bonding maps of BGLnaive (cf. (5.3)) and⊕
p HD{p} (cf. Definition and Lemma 3.3), respectively. The map c∗ corre-

sponds to the first Chern class c1(OP1(1)) ∈ H2
D(P

1
S , 1). To see the commuta-

tivity of the right half, we use that the functor ϕ (5.7) induces an isomorphism

HomHo•(S)((Z×Gr)∧2,Ds) = HomPSh•(Sm/S)(K0(−) ∧K0,H
0
D).

This identification is shown exactly as [Rio, III.31], which treats Z×Gr in-

stead of Ds. The point is a surjectivity argument in comparing cohomology

groups of products of different Grassmannianns, which is applicable to Deligne

cohomology by the remark above. By construction of the multiplication map

on Z×Gr, applying ϕ to the right half of (5.16) yields the diagram

K0 ∧K0

μK0 ��

ch∧ ch
��

K0

ch
��

H0
D ∧H0

D

μD
�� H0

D.

Here μK0
is the usual (tensor) product onK0 and μD is the classical product on

Deligne cohomology [EV88]. The Beilinson regulator is multiplicative [Sch88,

Cor., p. 28], so this diagram commutes.

For the commutativity of the left half, let im,n : Pm → Pn be the inclusion

[x0 : . . . : xm] �→ [x0 : . . . : xm : 0 : . . . : 0], for m ≤ n, and im,∞ :=

colimnim,n : Pm → P∞ := colimnPn. The map u∗
1 factors as

P1 i1,∞−→ P∞ u∗
∞−→ Z×Gr

where u∗
∞ ∈ HomHo•(S)(P

∞,Z×Gr) is induced by the compatible system

un = [OPn(1)] − [OPn ] ∈ K0(Pn) simply because i∗1,nOPn(1) = OP1(1). Simi-

larly, c∗ = c1(O(1)) is given by

c∗ : P1 i1,∞−→ P∞ u∗
∞−→ Z×Gr

ch−→ Ds,
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because ch(O(1))− ch(O) = exp(c1(O(1)))−1 which on P1 equals c1(O(1)) ∈
H2

D(P
∞, 1). Then the commutativity of the diagram in question is obvious.

(ii) For each n ≥ 0 and m = 0,−1, put V m
n := HomPSh(Sm/S,Ab)(K0,H

m
D ).

These groups form a projective system with transition maps

V m
n+1 � (fn : K0 → Hm

D ) �→ (ΩP1fn : ΩP1K0 → ΩP1Hm
D ) ∈ V m

n ,

where ΩP1(F ) is the presheaf Sm/S � U �→ ker(F (P1
U )

∞∗
→ F (U)). Indeed,

the projective bundle formula (for P1) implies an isomorphism of presheaves

ΩP1K0
∼= K0 and likewise with Hm

D .

The composition of functors

SH → SHnaive n−→ Ho•
ϕ−→ PSh(Sm/S)

actually takes values in PSh(Sm/S,Ab). Here, n indicates taking the n-th

level of a spectrum. By construction, BGL gets mapped to K0, and HD gets

mapped to the presheaf H0
D =

⊕
p H

2p
D (−, p) for each n ≥ 0. This gives rise

to the following map (cf. [Rio, IV.11]):

HomSH(BGL,
⊕
p

HD{p}) → HomSHnaive(S)(BGLnaive,
⊕
p

HD{p}) ∼= lim←−
n

V 0
n .

This map is part of the following Milnor-type short exact sequence [Rio, IV.48,

III.26; see also IV.8] (it is applicable because of the surjectivity of (5.15) for

n = 1 and n = 2):

(5.17) 0 → R1 lim←−V −1
n → HomSH(BGL,

⊕
p

HD{p}) → lim←−
n

V 0
n → 0.

The map chnaive thus corresponds to a unique element in the right-most term
of (5.17). The natural map

V −1
n = HomPSh(Ab)(K0,H

−1
D ) → lim←−

e

⊕
p

H2p−1
D (Pe

S , p)

∼=
⊕
p∈Z

p⊕
j=0

H2p−2j−1
D (S, p− j)

f �→ (f(OPe(1)))e

is an isomorphism. Indeed, the proof of the analogous statement for motivic

cohomology instead of Deligne cohomology [Rio, V.18] (essentially a splitting

argument) only uses the calculation of motivic cohomology of Pe. Thus it

goes through by the projective bundle formula for Deligne cohomology.

Via this identification, the transition maps ΩP1 : V −1
n+1 → V −1

n are the

direct sum over p ∈ Z of the maps

p⊕
j=0

H2p−2j−1
D (S, p− j) →

p−1⊕
j=0

H
2(p−1)−2j−1
D (S, (p− 1)− j),
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which are the multiplication by j on the j-th summand at the left. Again,

this is analogous to [Rio, V.24]. In particular ΩP1 is onto, since Deligne

cohomology groups are divisible. Therefore R1 lim←−V −1
n = 0, so (ii) is shown.

(iii) As in [Rio, V.36], one sees that ch⊗Q factors over the projections

BGLQ → HB and
⊕

p∈Z HD(p)[2p] → HD. �
5.3. Comparison.

Theorem 5.7. The regulator maps ch, ρ constructed in Theorem 5.6 and

the regulator maps chD, ρD obtained in Definition 3.7 agree:

chD = ch ∈ HomSH(S)(BGL,
⊕
p

HD{p}),

ρD = ρ ∈ HomSH(S)Q(HB,HD).

In particular, chD also induces the Beilinson regulator Kn(X) →⊕
p H

2p−n
D (X, p) for any X ∈ Sm/S, n ≥ 0.

Proof. The map ch is a map of ring spectra (i.e., monoid objects in SH(S)):

the multiplicativity, i.e., ch ◦μBGL = μD ◦ (ch∧ ch) follows from the right half

of the diagram (5.16). The unitality boils down to ch(O) = 1 ∈ H0
D(S, 0). We

define a BGL-module structure on D :=
⊕

p∈Z HD{p} in the usual manner:

BGL ∧ D ch∧id−→ D ∧D μ−→ D.

It is indeed a BGL-module, as one sees using that ch is a ring morphism. By

the unicity of the BGL-algebra structure on D (Theorem 3.6), this algebra

structure agrees with the one established in Theorem 3.6. This implies ch =

chD. The proof for ρ = ρD is similar, replacing BGL with HB throughout. �

6. Comparison with arithmetic K-theory

and arithmetic Chow groups

In this section, we show that the groups represented by B̂GL coincide with a

certain subgroup of arithmeticK-theory as defined by Gillet-Soulé and Takeda

for smooth schemes over appropriate bases (Theorem 6.1). This isomorphism

is compatible with the Adams operations on both sides and with the module

structure over K-theory (Corollary 6.2, Theorem 6.3). We also establish the

compatibility of the comparison isomorphism with the pushforward in two

cases (Theorem 6.4).

We consider the following situation: X → S → B, where B is a fixed

arithmetic ring (Definition 2.6), S is a regular scheme (of finite type) over

B (including the important case S = B), and X ∈ Sm/S. Let η : Bη :=

B×ZQ → B be the “generic fiber”. For any datum ? related to Deligne
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cohomology, we write ? := η∗? for simplicity of notation. That is, Ds(X) :=

η∗Ds(X) = Ds(X×BBη), HD := η∗HD ∈ SH(S), etc.

For a proper arithmetic variety X (i.e., X is regular and flat over an arith-

metic ring B), Gillet and Soulé have defined the arithmetic K-group as the

free abelian group generated by pairs (E,α), where E/X is a hermitian vector

bundle and α ∈ D0(X)/ im dD, modulo the relation

(E
′
, α′) + (E

′′
, α′′) = (E,α′ + α′′ + c̃h(E))

for any extension

E : 0 → E
′ → E → E

′′ → 0

of hermitian bundles. Here c̃h(E) is a secondary Chern class of the extension

(see [GS90c, Section 6] for details). We denote this group by K̂T
0 (X). The

superscript T stands for Takeda, who generalized this to higher n [Tak05,

p. 621].3 These higher arithmetic K-groups K̂T
n (X) fit into a commuta-

tive diagram with exact rows and columns, where K̂n(X) := ker chT and
BD

n (X) := im dD : Dn+1(X) → Dn(X):
(6.1)

Kn+1
��
⊕

p H
2p−n−1
D (p)
��

��

�� K̂n��

��

�� Kn
ch ��

⊕
p H

2p−n
D (p)

Kn+1
�� Dn+1(X)/ im(dD)

dD
����

�� K̂T
n

chT

����

�� Kn
�� 0

BD
n BD

n (X).

The full arithmetic K-groups K̂T
∗ are not accessible to homotopy theory since

they fail to be A1-invariant. Moreover, due to the presence of Dn+1/ im dD the

groups are usually very large. Therefore, we focus on the subgroups K̂∗ ⊂ K̂T
∗

and refer to them as arithmetic K-theory.

By Theorem 5.7, the top exact sequence looks exactly like the one in The-

orem 4.5. In order to show that K̂n(X) and Ĥ−n(X) are isomorphic, we use

that there is a natural isomorphism (functorial with respect to pullback),

(6.2) K̂n(X) ∼= πn+1(hofibΔopSets• S∗(X)
chS−→ Ds[−1](X)), n ≥ 0,

of the arithmetic K-group with the homotopy fiber in pointed simplicial sets

(endowed with its standard model structure) [Tak05, Cor. 4.9]. We write

Ŝ := hofibΔopPSh•(Sm/S)(S∗ → Ds[−1]),

3 Gillet and Soulé use a slightly different normalization of the Chern class which differs

from the one used by Burgos-Wang, Takeda (and this paper) by a factor of 2(2πi)n for
appropriate n. See [GS90c] for details.
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for the homotopy fiber with respect to the section-wise model structure, so

that πn+1

(
Ŝ(X)

)
= K̂n(X).

Recall from Section 4.1 the object B̂GL. Its key property is the existence

of a distinguished triangle (in SH(S)):

(6.3)
⊕
p

HD{p}[−1] → B̂GL → BGL
ch→

⊕
p

HD{p}.

The cohomology groups represented by this object are denoted by Ĥ∗(−); cf.

Definition 4.4.

The content of the following theorems and corollary (6.1, 6.2, 6.3, 6.4) can

be paraphrased as follows: given a commutative diagram in some triangulated

category,

B[−1]

b[−1]

��

�� E

e

��

�� A

a

��

�� B

b

��

B′[−1] �� E′ �� A′ �� B′,

the map e (whose existence is granted by the axioms of a triangulated cate-

gory) is in general not unique. The unicity of e is guaranteed if the map

(6.4) Hom(E,A′[−1]) → Hom(E,B′[−1])

is onto. In our situation, we are aiming at a canonical comparison between,

say, the groups Ĥ∗ and K̂∗. Both theories arise from distinguished triangles

where two of the three vertices are the same, namely the one responsible for

K-theory and the one for Deligne cohomology. Moreover, the map between

them considered up to homotopy, i.e., in the triangulated category SH, is the

Chern class that is independent of choices—as opposed to the Chern form,

which does depend on the choice of a hermitian metric on the vector bundle

in question. As we shall see, the non-formal surjectivity of (6.4) is assured

by conditions (a) and (b) of Theorem 6.1 (or condition (c) if one neglects

torsion). Luckily, it only consists of an injectivity condition for the regulator

on the base scheme S, not on all schemes X ∈ Sm/S. This is one of the

places where working with the objects representing the cohomology theories

we are interested in is much more powerful than working with the individual

cohomology groups.

Theorem 6.1. Let S be a regular scheme over an arithmetic ring. We

suppose that

(a) ch : K0(S) → H0
D(S) =

⊕
p H

2p
D (S, p) is injective, and

(b) K1(S) is the direct sum of a finite and a divisible group.
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For example, these conditions are satisfied for S = B = Z, R, or C. Then the

following hold:

(i) Given any maps s, d in Ho•(S) such that the right square commutes,

there is a unique ŝ ∈ EndHo(S)(Ŝ) making the diagram commute:

Ds = ΩsDs[−1]

Ωsd

��

�� Ŝ

ŝ
��

�� S∗
chS ��

s

��

Ds[−1]

d

��

Ds = ΩsDs[−1] �� Ŝ �� S∗
chS �� Ds[−1].

(ii) Likewise, given any b and d making the right half commute in SH(S),

there is a unique b̂ ∈ EndSH(S)(B̂GL) making everything commute:

⊕
p HD{p}[−1]

d[−1]

��

�� B̂GL

̂b
��

�� BGL
ch ��

b

��

⊕
p HD{p}

d

��⊕
p HD{p}[−1] �� B̂GL �� BGL

ch ��
⊕

p HD{p}.

(iii) The aforementioned unicity results give rise to a canonical isomorphism,

functorial with respect to pullback,

(6.5) K̂n(X) ∼= Ĥ−n(X/S),

for any X ∈ Sm/S, n ≥ 0. (The definition of K̂n(X) in [Tak05] is only

done for X/B proper, but can be generalized to non-proper varieties using

differential forms with logarithmic poles at infinity, as in Definition 2.7.)

Instead of (a) and (b), let us suppose that

(c) ch : K0(S)Q → H0
D(S) =

⊕
p H

2p
D (S, p) is injective. For example, this

applies to arithmetic fields and open subschemes of SpecOF for a number

ring OF .

Then there is a canonical isomorphism

(6.6) K̂n(X)Q ∼= Ĥ−n(X/S)Q.
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Proof of (ii). Let us write (−,−) := HomSH(S)(−,−) and R :=⊕
p∈Z HD{p}. Then we have exact sequences

(6.7)

(R,R[−1])
α ��

��

(BGL, R[−1])

β
��

(R, B̂GL) �� (BGL, B̂GL) ��

��

(B̂GL, B̂GL)
δ �� (R[−1], B̂GL)

(BGL,BGL)

γ

��

(BGL, R).

We prove the injectivity of δ by showing that both α and β are surjec-

tive. For any Ω-spectrum E ∈ SH(S) whose levels En are H-groups such

that the transition maps (5.1) induce surjections HomHo(Grd,r,Ω
m
s En) →

HomHo(Grd′,r′ ,Ω
m
s En) for m = 1, 2, n ≥ 0, there is an exact sequence

0 → R1 lim←−E1
Ω → HomSH(BGL, E) → lim←−E0

Ω → 0.

Here, for any group A, AΩ is the projective system

AΩ : . . . A[[t]] → A[[t]] → A[[t]] → . . . → A[[t]],

with transition maps f �→ (1 + t)df/dt and Er := HomSH(Sr, E) for r = 0, 1
[Rio, IV.48, 49]. This applies to E = BGL and E = R; cf. (5.15):

0 �� R1 lim←−(K1(S)Ω)

��

�� End(BGL)

γ

��

�� lim←−(K0(S)Ω)

��

�� 0

0 ��
⊕

p R1 lim←−(H−1
D (S)Ω) �� Hom(BGL, R) ��

⊕
p lim←−(H0

D(S)Ω) �� 0.

The left hand upper term is 0 by assumption (b) and the vanishing of

R1 lim←−AΩ for a finite or a divisible group A [Rio, IV.40, IV.58]. The right

hand vertical map lim←− ch is injective by assumption (a) and the left-exactness

of lim←−. Hence γ is injective, so β is onto.

The surjectivity of α does not make use of the assumptions (a), (b). Indeed,

Hom(BGL, R[−1]) =
∏
q∈Z

Hom(HB{q}, R[−1])
3.6(ii)
=

∏
q

H−1
D (S).

Given some x ∈ H−1
D (S), pick any representative ξ ∈ ker(D1(S) → D0(S))

and define y : HD{q} → R to be the cup product with ξ. Then α(y) = x.
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(i) We need to establish the injectivity of the map in the first row:

(6.8)

EndHo•(S)(Ŝ) �� HomHo•(S)(ΩsDs[−1], Ŝ)

EndHo•(S)(Ω
∞
P1B̂GL) �� HomHo•(S)(Ω

∞
P1HD[−1],Ω∞

P1B̂GL)

HomSH(S)(Σ
∞
P1Ω∞

P1B̂GL, B̂GL)

Σ∞
P1

�Ω∞
P1

��

�� HomSH(S)(Σ
∞
P1Ω∞

P1HD[−1], B̂GL)

��

HomSH(S)(B̂GL, B̂GL) ��
δ �� HomSH(S)(HD[−1], B̂GL).

The counit map Σ∞
P1Ω∞

P1 → id is an isomorphism when applied to BGL and

HD (and thus HD[−1]), since these two spectra are Ω-spectra. Therefore, the

same is true for B̂GL. We are done by (ii).

(iii) We obtain the sought isomorphism as the following composition:

Ĥ−n(X/S) := HomSH(S)(Σ
∞
P1Sn ∧X+, hofib(BGL

id∧1HD−→ BGL ∧HD))

= HomSH(S)(Σ
∞
P1Sn ∧X+, hofib(BGL

ch−→
⊕
p

HD{p}))(6.9)

= HomHo(S)(S
n ∧X+, hofib(Z×Gr

ch0−→ Ds))(6.10)

= HomHo(S)(S
n ∧X+, hofib(ΩsS∗

chS−→ Ds))(6.11)

= HomHo(S)(S
n ∧X+, hofib(ΩsS∗

chS−→ Ds))

= HomHosect,•(S)(S
n+1 ∧X+, hofib(S∗ → Ds[−1]))(6.12)

= πn+1

(
hofibΔopSets•(S∗(X)

chS→ Ds[−1](X))
)

(6.2)∼= K̂n(X).

The canonical isomorphism (6.9) follows from (ii): we can pick representa-

tives of BGL and of ch : BGL → ⊕HD{p} (Theorem 5.6(ii)) in the underlying

model category Spt. We will denote them by the same symbols. We get a

diagram of maps in Spt := SptP
1

(ΔopPSh•(Sm/S)):
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hofib(id ∧ 1HD
) ��

α

��

BGL
id∧1HD �� BGL ∧ HD

ch

��

hofib(ch) �� BGL
ch ��

⊕
p HD{p}.

The Chern character for motivic cohomology and Theorem 3.6(iii) induce an

isomorphism ch : BGL ∧ HD
∼=

⊕
p HD{p} in SH(S). As SH(S) is triangu-

lated, we get some (a priori non-unique) isomorphism α in SH(S). By (ii),

however, it is unique.

Similarly, the isomorphism (6.11) follows from (i): still using the above lift

of ch to Spt, ch0 := Ω∞
P1 ch is a map of simplicial presheaves. The isomorphism

τ : Z×Gr ∼= ΩsS∗ (5.12) can be lifted to a map τ̃ of presheaves

hofib ch0 ��

��

Z×Gr
ch0 ��

τ̃

��

Ds

hofib chS �� ΩsS∗
chS �� Ds.

The right hand square may not commute in ΔopPSh(Sm/S), but it does in

Ho•(S). By (i), the resulting isomorphism (in Ho•(S)) between

hofibΔopPSh(ch0) and hofibΔopPSh(chS) is independent of the choice of τ̃ and

ch0.

In order to explain the canonical isomorphisms (6.10), (6.12), recall the

following generalities on model categories: let

F : C � D : G

be a Quillen adjunction and let a diagram δ : d1
f−→ d2 ← ∗ in D be given.

The homotopy fiber of f is a fibrant replacement of the homotopy pullback of

δ. If C and D are right proper and d1 and d2 are fibrant, then the homotopy

pullback agrees with the homotopy limit and holimG(δ) is weakly equivalent

to G holim(δ). Finally, replacing any object in δ by a fibrant replacement

yields a weakly equivalent homotopy fiber [Hir03, 19.5.3, 19.4.5, 13.3.4]. Thus

(6.13) HomHo(D)(F (c), hofib f) = HomHo(C)(c, hofibG(f)).

We apply this to the Quillen adjunctions

Δop(PSh•(Sm/X))

id

�
id

Δop(PSh•(Sm/X))

Ω∞
P1

�
Σ∞

P1

SptP
1

(PSh•(Sm/X)).

The leftmost category is endowed with the section-wise model structure, then

the Nisnevich-A1-local one, and the stable model structure at the right. These
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model structures are proper [GJ99, II.9.6], [MV99, 3.2, p. 86], [Jar00, 4.15].

The simplicial presheaf Ds is fibrant with respect to the section-wise model

structure, since it is a presheaf of simplicial abelian groups. Moreover, it is

A1-invariant and has Nisnevich descent by Theorem 2.8(vi). Therefore, it is

fibrant with respect to the Nisnevich-A1-local model structure. Moreover, HD

is an Ω-spectrum by Lemma 3.5, so it is a fibrant spectrum (any level-fibrant

Ω-spectrum is stably fibrant [Jar00, 2.7]). For (6.10), we may pick a fibrant

representative of BGL (still denoted BGL) such that Ω∞
P1BGL =: V is weakly

equivalent to Z×Gr. Again using (i), the homotopy fibers of Ω∞
P1(ch) : V →

Ds and of ch0 : Z×Gr → Ds are canonically weakly equivalent. Finally, the

S-construction presheaf S∗ (cf. (5.9)) is A1-invariant (since K∗(X) ∼= K ′
∗(X)

for all X ∈ Sm/S by the regularity of S) and Nisnevich local for all regular

schemes [TT90, Thm. 10.8] and consists of Kan simplicial sets by definition.

Hence S∗ is a fibrant simplicial presheaf in the A1-model structure. Therefore,

(6.10), (6.12) are fibrant, so these isomorphisms follow from (6.13).

The statement with rational coefficients is similar: one replaces S∗, which is

given by simplicial chains in the topological realization of the S-construction,

by its version with rational coefficients. Likewise, one replaces BGL by its

Q-localization (using the additive structure of SH(S)) BGLQ. Then condi-

tion (a) gets replaced by (c) and (b) becomes unnecessary, since the groups

R1 lim←−AΩ encountered above vanish for a divisible group A. �
6.1. Adams operations. Theorem 6.1 can colloquially be summarized

by saying that any construction on K̂∗, etc., that is both compatible with the

classical constructions on K-theory and Deligne cohomology and canonical

enough to be lifted to the category SH(S) (or Ho(S)) is unique. We now

use this to study Adams operations on arithmetic K-theory. In Section 6.2

below, this principle is used to identify the BGL-module structure on B̂GL.

The arithmetic K-groups are endowed with Adams operations

(6.14) Ψk
̂K
: K̂n(X)Q → K̂n(X)Q.

This is due to Gillet and Soulé [GS90c, Section 7] for n = 0 and to Feliu in

general [Fel10, Theorem 4.3]. Writing

K̂n(X)
(p)
Q := {x ∈ K̂n(X)Q,Ψ

k
̂K
(x) = kp · x for all k ≥ 1}

for the Adams eigenspaces, the obvious question

(6.15)
⊕
p≥0

K̂n(X)
(p)
Q

?
= K̂n(X)Q

was answered positively for n = 0 in [GS90c], but could not be solved for

n > 0 by Feliu since the management of explicit homotopies between the

chain maps representing the Adams operations becomes increasingly difficult
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for higherK-theory. In this section, we show that the above Adams operations

agree with the natural ones on Ĥ∗(X)Q and thereby settle the question (6.15)

affirmatively.

Feliu establishes a commutative diagram of presheaves of abelian groups:

C1 := NĈ∗
ch1 ��

Ψk

��

D∗

Ψk
D

��

C2 := Z̃Ĉ
˜P
∗

ch2 �� D∗.

The Adams operation Ψk
D is the canonical one on a graded vector space:

Ψk
D : D∗ :=

⊕
p

D∗(p) →
⊕
p

D∗(p),Ψ
k =

⊕
p

(kp · id).

The complexes Ci at the left hand side are certain complexes of abelian

presheaves defined in [Fel10]. They come with maps ΩsS∗ → K(Ci) that

induce isomorphisms K∗⊗Q = π∗(ΩsS∗)⊗Q → H∗(Ci)⊗Q, i = 1, 2. By

means of these isomorphisms, Ψk corresponds to the usual Adams operation

onK-theory (tensored with Q). Moreover, both maps chi induce the Beilinson

regulator from K-theory to Deligne cohomology.

Recall also the definition of the arithmetic Chow group from [GS90a, Sec-

tion 3.3] in the proper case and [Bur97, Section 7] in general. In a nutshell,

the group ĈH
p

GS(X) is generated by arithmetic cycles (Z, g), where Z ⊂ X is

a cycle of codimension p and g is a Green current for Z, i.e., a real current

satisfying Fr∗∞ g = (−1)p−1g such that ω(Z, g) := − 1
2πi∂∂g+δZ is the current

associated to a C∞ differential form (and therefore an element of D0(p)(X)).

Here δZ is the Dirac current of Z(C) ⊂ X(C). In analogy to the relation of

K̂T
0 (X) vs. K̂0(X), we put

(6.16) ĈHp(X) := ker(ω : ĈH
p

GS(X) → D0(p)(X)).4

Corollary 6.2. Under the assumption of Theorem 6.1(c), the isomorphism

K̂n(X)Q ∼= Ĥ−n(X)Q is compatible with the Adams operations Ψk
̂K
on the left

and, using the Arakelov-Chern class established in Theorem 4.2, the canon-

ical ones on the graded vector space on Ĥ−n(X)Q ∼=
⊕

p∈Z Ĥ
2p−n(X, p). In

particular, there are canonical isomorphisms

K̂n(X)
(p)
Q = Ĥ2p−n(X, p),(6.17)

ĈHp(X)Q = K̂0(X)
(p)
Q = Ĥ2p(X, p),(6.18) ⊕

p∈Z

K̂n(X)
(p)
Q = K̂n(X)Q.(6.19)

4The group ĈHp(X) is denoted ĈHp(X)0 in [GS90a].
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Proof. We write Ωs,QA := lim−→C∗(Ω|A|) for any pointed connected simpli-

cial set A. Here, | − | : ΔopSets � Top : C∗ is the usual Quillen adjunction,

Ω is the (topological) loop space, the direct limit is indexed by Z>0 ordered

by divisibility, and the transition maps Ω|A| → Ω|A| are the maps that corre-

spond to the multiplication in π1(A). Then πnΩs,Q(A) = (πnΩs(A))⊗ZQ

for all n ≥ 0. The construction is functorial, so it applies to the sim-

plicial presheaf S∗ and gives us a Q-rational variant denoted S∗,Q. The

map Ψk : C1 → C2 yields an endomorphism Ψk
S ∈ EndHo(S)(S∗,Q). More-

over, the maps chi, i = 1, 2, mentioned above factor over chi,Q : S∗,Q →
Ds[−1], and the obvious diagram ch1, ch2, Ψk

D and Ψk
S commutes up to

simplicial homotopy, i.e., in Hosect,•(S), a fortiori in Ho(S). By Theo-

rem 6.1(i), therefore, we obtain a unique map Ψk
̂S
∈ EndHo(S)(Ŝ∗,Q), where

Ŝ∗,Q := hofib ch1 : S∗,Q → Ds[−1]. By construction, both Ψk
̂S
and the canon-

ical Adams structure maps Ψk
D ∈ EndHo(S)(ΩsDs[−1]) map to the same ele-

ment in HomHo(S)(ΩsDs[−1], (Ŝ∗)Q). On the other hand, looking at

B̂GLQ
��

Ψk

B̂GL
��

BGLQ
��

Ψk
BGL

��

BGLQ ∧ HD

Ψk
BGL∧id

��

ch

∼=
�� R :=

⊕
p HD{p}

Ψk
D

��

B̂GLQ
�� BGLQ

�� BGLQ ∧ HD
ch

∼=
�� R

there is a unique Ψk

B̂GL
∈ EndSH(S)Q(B̂GLQ)

δ� Hom(R[−1], B̂GLQ) that

maps to the image of the canonical Adams operation on the graded object

R[−1]. Using EndSH(R[−1]) = EndHo(ΩDs[−1]) (compare the reasoning af-

ter (6.8)) we see that the Adams operations on B̂GLQ and on Ŝ∗,Q agree,

which yields the compatibility statement using the definition of the compar-

ison isomorphism (6.6). The isomorphism (6.17) is then clear, as is (6.19),

using (4.7). (6.18) is a restatement of [GS90c, Theorem 7.3.4]. �
6.2. The action of K-theory on K̂-theory. From Theorem 4.2(ii) re-

call that B̂GL is a BGL-module, i.e., there is a natural BGL-action

μ : BGL ∧ B̂GL → B̂GL.

For any smooth scheme f : X/S, this induces a map called the canoncial

BGL-action on Ĥ-groups:

Hn(X)×Ĥm(X) = HomSH(S)(X+,BGL[n])×Hom(X+, B̂GL[m])

→ Hom(X+ ∧X+,BGL ∧ B̂GL[n+m])

Δ∗◦μ∗−→ Hom(X+, B̂GL[n+m]) = Ĥn+m(X).

Here Δ : X+ → X+ ∧X+ = (X×X)+ is the diagonal map.
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Theorem 6.3. Let S be a regular base scheme satisfying Condition (c) of

Theorem 6.1. Then, at least up to torsion, the canonical comparison isomor-

phism K̂n(X) ∼= Ĥ−n(X) is compatible with the canonical BGL-action on the

right hand side and the K∗-action

K∗(X)×K̂∗(X) → K̂∗(X)

induced by the product structure on K̂T
∗ (X) established by Gillet and Soulé

(for K̂0) [GS90c, Theorem 7.3.2] and Takeda (for higher K̂T -theory) [Tak05,

Section 6] on the left hand side.

Similarly, the pairing

CHn(X)×ĈHm(X) → ĈHn+m(X)

induced by the ring structure on ĈH
∗
GS(X) agrees, after tensoring with Q, with

the canonical pairing

H2n(X,n)×Ĥ2m(X,m) → Ĥ2(n+m)(X,n+m).

Proof. Before proving the theorem proper, we sketch the definition of the

product on K̂T
∗ : instead of the S-construction, Takeda uses the Gillet-Grayson

G-construction G∗(−) := G∗(P̂ (−)) of the exact category of hermitian vec-

tor bundles on a scheme (see p. 761). There is a natural weak equivalence

G∗(T ) → ΩsS∗(T ). In particular, πn(G∗(T )) = Kn(T ) for any scheme T and

n ≥ 0. This gives rise to a canonical isomorphism

K̂n(X) = πn hofibΔop(Sets)(G∗(X)
chG−→ Ds(X))

(cf. [Tak05, Theorem 6.2]). The advantage of the G-construction is the exis-

tence of a bisimplicial version G
(2)
∗ of G-theory together with a weak equiva-

lence R : G∗ → G
(2)
∗ and a map μG : G∗(X) ∧G∗(X) → G

(2)
∗ (X), so that the

induced map πn(G∗(X))×πm(G∗(X)) → πn+m(G∗(X)) is the usual product

on K-theory. Moreover, chG factors over R.

Consider the following diagram, where μD : Ds ∧ Ds → Ds is the product

(cf. Section 3) and the terms in the second column denote the homotopy fibers

(with respect to the section-wise model structure) of the respective right-most

Licensed to Universitat Munster. Prepared on Mon May  1 22:49:21 EDT 2017 for download from IP 128.176.254.22.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf 57



776 JAKOB SCHOLBACH

horizontal maps:

Ωs(G ∧Ds) ��

ΩsμD◦chG

��

G ∧ Ĝ ��

��

G ∧G
id∧chG��

μG

��

G ∧Ds

μD◦chG

��

ΩsDs
�� Ĝ(2) �� G(2) �� Ds

ΩsDs
�� Ĝ ��

��

G

R

��

chG �� Ds.

The lower right square is commutative (on the nose) according to [Tak05].

The upper right square is commutative up to (a certain) homotopy [Tak05,

Theorem 5.2], so there is some dotted map such that the left-upper square

commutes up to homotopy. This yields a map φ : G ∧ Ĝ → Ĝ in Ho•(S)

fitting into the following diagram (in Ho(S)):

(6.20) G ∧ ΩsDs
��

μD◦chG

��

G ∧ Ĝ ��

φ
��

G ∧G ��

μG

��

G ∧Ds

μD◦chG

��

ΩsDs
�� Ĝ �� G �� Ds.

The K∗-action on K̂∗ is induced by φ. Thus, to prove the theorem, it is

sufficient to show that the diagram

Ω∞
P1(BGL ∧ B̂GL)

∼= ��

Ω∞
P1

μ

��

G ∧ Ĝ

φ

��

Ω∞
P1(B̂GL)

∼= �� Ĝ

is commutative in Ho(S). Here the horizontal isomorphisms are the ones

from Theorem 6.1. For this, it is sufficient to show that the dotted map

in (6.20) is unique (in Ho•(S)). The latter statement looks very much like

Theorem 6.1(i). Indeed, it can be shown in the same manner, as we now

sketch: again, one first does the stable analogue, namely the unicity of a

map BGL ∧ B̂GL → B̂GL in SH(S) making the diagram analogous to (6.20)

commute. To do so, the sequences in (6.7) are altered by replacing Hom(?, ∗)
by Hom(BGL∧?, ∗) everywhere. For any E ∈ DMB(S), we have

HomSH(S)Q(BGL∧?, E) =
∏
p∈Z

HomSH(S)Q(HB{p}∧?, E)

=
∏
p

HomSH(S)Q(?{p}, E)
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since DMB(S) ⊂ SH(S)Q is a full subcategory. This applies to E = HD

and E = BGLQ =
⊕

p HB{p}. Therefore, both the surjectivity of α and the

injectivity of γ in (6.7) carries over to the situation at hand.5 Then, the

unstable unicity statement mentioned above is deduced from the stable one.

The statement for the arithmetic Chow groups follows from this: ĈH∗(X)Q
is a direct factor of K̂0(X)Q in a way that is compatible with the action of the

direct factor CH∗(X)Q ⊂ K0(X)Q, by the multiplicativity of the arithmetic

Chern class K̂T
0 (X)Q ∼=

⊕
p ĈH

p

GS(X)Q [GS90c, Theorem 7.3.2(ii)]. Similarly,

the HB-action on ĤB is a direct factor of the BGLQ-action on B̂GLQ. �
6.3. Pushforward. Let f : X → S be a smooth proper map. According

to Definition and Lemma 4.10,

Hom(BGL → f∗f
∗BGL

trBGL
f ,∼=
−→ f!f

!BGL, B̂GL)

defines a functorial pushforward

f∗ : Ĥn(X) → Ĥn(S)

and similarly

f∗ : Ĥn(X, p) → Ĥn−2 dim f (S − dim f),

where dim f := dimX − dimS is the relative dimension of f . We now com-

pare this with the classical pushforward on arithmetic K and Chow groups.

Recall from [Roe99, Prop. 3.1] the pushforward f∗ : K̂T
0 (X) → K̂T

0 (S). This

pushforward depends on an auxiliary choice of a metric on the relative tan-

gent bundle. It should be emphasized that the difficulty in the construction

of f∗ on the full groups K̂T
0 (X) is due to the presence of analytic torsion. We

now show that its restriction to K̂0(X) agrees with f∗ : Ĥ0(X) → Ĥ0(S) in an

important case. This shows that analytic torsion phenomena and the choice

of metrics only concern the quotient K̂T
0 /K̂0. See also [BFiML11] for similar

independence results.

Theorem 6.4.

(i) The pushforward i∗ : Ĥ0(Fp) = H0(Fp) = Z → Ĥ0(Z) = Z ⊕ R is given

by (0, log p).

(ii) Let OF be a number ring and S ⊂ SpecOF an open subscheme and let

f : X → S be smooth projective. For any n ∈ Z, the following diagram is

commutative, where the right vertical map is the pushforward on Gillet-

Soulé’s arithmetic Chow groups [GS90a, Theorem 3.6.1] and the middle

5We need to restrict to Q-coefficients, since the author does not know how to compute
BGL ∧ BGL.
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map is its restriction:

Ĥ2(dimX+n)(X, dimX + n)

f∗

��

∼=
6.1

�� ĈHdimX+n(X)Q

f∗

��

� � �� ĈH
dimX+n

GS (X)

f∗
��

Ĥ2+2n(S, n+ 1)
∼=,6.1

�� ĈHn+1(S)Q
� � �� ĈH

n+1

GS (S).

(iii) Under the same assumptions, the following diagram commutes, where the

right vertical map is the pushforward mentioned above and the middle

one is its restriction. In particular, the restriction of the K̂T
0 -theoretic

pushforward to the subgroups K̂0 does not depend on the choice of the

metric on the tangent bundle Tf used in its definition:

Ĥ0(X)Q

f∗
��

∼=
6.1

�� K̂0(X)Q

f∗
��

� � �� K̂T
0 (X)Q

f∗
��

Ĥ0(S)
∼=,6.1

�� K̂0(S)Q
� � �� K̂T

0 (S).

In order to prove (ii), we need some facts pertaining to the Betti realization

due to Ayoub [Ayo10]: for any smooth scheme B/C, let

−An : Sm/B → AnSm/BAn

be the functor which maps a smooth (algebraic) variety over B to the associ-

ated smooth analytic space (seen as a space over the analytic space attached

to B), equipped with its usual topology. (This functor was denoted −(C)

above.) The adjunction

An∗ : PSh(Sm/B,C) � PSh(AnSm/BAn,C) : An∗

between the category of presheaves of complexes of C-vector spaces on Sm/B

and the similar category of presheaves on smooth analytic spaces over BAn

carries over to an adjunction of stable homotopy categories:

(6.21) An∗ : SH(B,C) � SHAn(BAn,C) : An∗.

We refer to [Ayo10, Section 2] for details and notation; we use P1
BAn -spectra in-

stead of (A1
BAn/GmBAn)-spectra, which does not make a difference. Secondly,

there is a natural equivalence

φX : SHAn(XAn,C)
∼=−→ D(ShvAn(X

An,C))

of the stable analytic homotopy category and the derived category of sheaves

(of C-vector spaces), for any smooth B-scheme X. Both this equivalence and
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(6.21) are compatible with the exceptional inverse image and direct image

with compact support in the sense that

fAn!φSAn∗ = φXAn∗f !, fAn
! φXAn∗ = φSAn∗f!

for any smooth map f : X → S of smooth B-schemes [Ayo10, Th. 3.4]. Here

f! and f ! are the usual functors on the stable homotopy category, while fAn!

and fAn
! are the classical ones on the derived category.

To show (i), we need the following auxiliary lemma. It is probably well-

known, but we give a proof here for completeness.

Lemma 6.5. In a triangulated category, let A
α→ B

β→ C
γ→ A[1] and

A′ α′
→ B′ β′

→ C ′ γ′

→ A′[1] be two distinguished triangles. Consider the maps

of Hom-groups induced by α, α′, etc. We suppose that β∗ is onto and γ∗ is

bijective, as shown:

Hom(B,A′)

α∗

��

α′
∗

����
���

���
���

Hom(C,B′)

β∗

����

β′
∗

����
���

���
���

�
Hom(A[1], C ′)

γ∗,∼=
��

γ′
∗

����
���

���
���

��

Hom(A,A′) Hom(B,B′) Hom(C,C ′) Hom(A[1], A′[1]).

Then, for any ξ ∈ Hom(B,A′), (α∗ξ)[1] = (ξ ◦ α)[1] agrees with the image of

any lift of α′
∗ξ in Hom(A[1], A′[1]) under the above maps.

Proof. Consider the following diagram:

B
β

��

ξ

��

(1)

C
γ

��

υ

��

(2)

A[1]
α[1]

��

ζ,ζ′

��

(3)

B[1]

ξ[1]

��

A′ α′
�� B′ β′

�� C ′ γ′
�� A[1].

By assumption, there is a map υ making the square (1) commute. Next, there

is a unique map ζ making the square (2) commute. On the other hand, by

the axioms of a triangulated category, there is a (a priori non-unique) map

ζ ′ making both (2) and (3) commute. Therefore, ζ = ζ ′. This implies the

claim. �
Proof of Theorem 6.4. (i) Let i : SpecFp → S := SpecZ ← U :=

SpecZ[1/p] : j. Consider the triangles

S0 → i∗i
∗S0 → j!j

∗S0[1] → S0[1],

B̂GL → BGL
ch→

⊕
p

HD{p} → B̂GL[1].

The assumptions of Lemma 6.5 are satisfied, as can be checked using (6.1):

the generator of K0(Fp) lifts to (p,±1) under K1(U) = pZ×{±1} � K0(Fp),
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which in turn gets mapped to log p ∈ H1
D(Q, 1) = R under the Beilinson (or

Dirichlet) regulator, which agrees with the Chern class ch by Theorem 5.7.

Therefore, the pushforward i∗ : Ĥ0(Fp) = H0(Fp) = K0(Fp) = Z → Ĥ0(Z) =

K̂0(S) = Z⊕R is the map (0, log p), so it agrees with the classical K̂-theoretic

pushforward.

(ii) Put d′ := d+ n. We need to show the commutativity of the following

diagram:

(6.22) (HB, f
!ĤB{n+ 1}) p̂

�� (HB, ĤB{d′})
∼= �� ĈHd′

(X)Q

f∗

��

(HB, f!f
!ĤB{n+ 1})

f!f
!→id

��

(HB, ĤB{n+ 1})
∼= �� ĈHn+1(S)Q.

Here p̂ is the relative purity isomorphism f !ĤB{1} ∼= f∗ĤB{d}.
We may assume n ≥ 0 since ĈH≤0(S) = 0. The group CHd′

(X) is finite

for n = 0 by class field theory [KS86, Theorem 6.1] and zero for n > 0. Hence

H2d′−1
D (X, d′) → K̂0(X)

(d′)
Q is onto, by Theorem 4.5. On the other hand, for

dimension reasons, H2d′−1
D (X, d′) = H2d′−2

B (X,R(d′ − 1)). By definition, the

pushforward in arithmetic Chow groups [GS90a, Thm. 3.6.1] is compatible

with

f∗ : H2d′−2
B (XAn,R(d′ − 1)) → H2n

B (CAn,R(n)) = R(6.23)

ω �→ 1

(2πi)d−1

∫
XAn

ω.

Let C∗ be the presheaf complex of real-valued C∞-differential forms on smooth

analytic spaces. This is a flasque complex, and its (presheaf) cohomology

groups agree with Betti cohomology with real coefficients. The construction

and properties of HD (esp. Theorem 2.8) carry over and yield a spectrum

An∗(B) representing Betti cohomology. The maps of complexes of sheaves on

the analytic site,

[R(p) → O → Ω1 → . . . → Ωp−1] → R(p)
∼→ C∗(p),

give rise to a map of spectra HD(p) → An∗B(p). The rectangle (6.22) is

functorial with respect to maps of the target spectrum. Thus, we can replace

ĤB{n + 1} by An∗B(n + 1)[2n + 1] and f∗ : ĈHd′
(X)Q → ĈHn+1(X)Q by

f∗ : H2d′−2
B (XAn,R(d′ − 1)) → H2n

B (C,R(n))
n=0
= R. This settles our claim,
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since the adjointness map fAn
! fAn!C → C does induce the integration map

(6.23) [KS90, Exercise III.20].

(iii) The diagram

K1(X) ��

f∗

��

H−1
D (X)

f∗◦(−∪TdTf )

��

�� K̂0(X)

f∗
��

�� K0(X)

f∗

��

K1(S) �� H−1
D (S) �� K̂0(S) �� K0(X)

is commutative; see [Tak05, Section 7]. On the other hand, applying

HomBGL−Mod(f!f
∗BGL

trBGL

→ f!f
!BGL → BGL,−)

to the triangle (6.3) yields a diagram which is the same, except that K∗ is

replaced by H−∗ and K̂∗ by Ĥ−∗ (and their respective pushforwards estab-

lished in Definition and Lemma 4.10). Indeed, the pushforward on Deligne

cohomology induced by trBGL (as opposed to trB) is the usual pushforward,

modified by the Todd class. This is a consequence of Theorem 2.5.

Now, (iii) is shown exactly as (ii): the only non-trivial part is K̂0(X)
(d)
Q ,

which is mapped onto by H2d−1
D (X, d), since K0(X)

(d)
Q = CHd(X)Q = 0. �

Remark 6.6. The same proof works more generally for f∗ : Ĥn(X, p) →
Ĥn−2 dim f (S, p− dim f), provided that Hn(X, p) = K2p−n(X)

(p)
Q → Hn

D(X, p)

is injective. For example, given a smooth projective complex variety X of

dimension d, a conjecture of Voisin [Voi07, 11.23] generalizing Bloch’s conjec-

ture on surfaces satisfying pg = 0 says that the cycle class map K0(X)
(d−l)
Q

∼=
CHd−l(X)Q → H

2(d−l)
B (X,Q) is injective (or, equivalently, that the cycle class

map to Deligne cohomology is injective) for l ≤ k if the terms in the Hodge

decomposition Hp,q(X) are zero for all p �= q, q ≤ k.

7. The Arakelov intersection pairing

Let S = SpecZ[1/N ] be an open, non-empty subscheme of SpecZ, where

N = p1 · . . . · pn is a product of distinct primes. We write Log(N) :=
∑

i Z ·
log pi ⊂ R for the subgroup (∼= Zn) spanned by the logarithms of the pi.

In this section, we give a conceptual explanation of the height pairing by

showing that it is the natural pairing between motivic homology and Arakelov

motivic cohomology.
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7.1. Definition.

Definition 7.1. For M ∈ SH(S), put

H0(M) := HomSH(S)(S
0,M)

H0(M, 0) := HomSH(S)Q(S
0,MQ).

The second group is called motivic homology of M (seen as an object of SH

with rational coefficients): forM∈DMB(S), H0(M, 0)∼=HomSH(S)Q(HB,MQ).

Definition 7.2. Fix some M ∈ SH(S). The Arakelov intersection pairing

is either of the following two maps

: H0(M)×Ĥ0(M) → Ĥ0(S0) = K̂0(S) = Z⊕ R/Log(N),

πM : H0(M, 0)×Ĥ2(M, 1) → Ĥ2(S0, 1) = K̂0(S)
(1)
Q = (R/Log(N))⊗Q,

(α, β) �→ β ◦ α.

Remark 7.3.

(i) The tensor structure on the category DMc
B(S), the subcategory of com-

pact objects of DMB(S) ⊂ SH(S)Q, is rigid in the sense that the nat-

ural map M → M∨∨ is an isomorphism for any M ∈ DMc
B(S), where

M∨ := HomDMB(S)(M,HB) [CD09, 15.2.4]. This implies that the nat-

ural map Hom(M,N) → Hom(N∨,M∨) is an isomorphism for any two

such motives. In particular H0(M, 0) ∼= H0(M∨, 0), so the pairing can

be rewritten as

(7.1) H0(M∨, 0)×Ĥ2(M, 1) → H2(S, 1).

This is the shape familiar from other dualities, such as Artin-Verdier

duality,

H0(SpecZ,F∨)×H3
c(SpecZ,F(1)) → H3(SpecZ, μ�) = Q/Z.

In this analogy, an étale constructible �-torsion sheaf F corresponds to

a motive M and étale cohomology with compact support gets replaced

by Arakelov motivic cohomology. The pairing (7.1) is conjecturally per-

fect when replacing ĤB by ĤB,R, which is constructed in the same way,

except that HB gets replaced by HB,R, a spectrum representing motivic

cohomology tensored with R. The implications of this conjecture and

its relation to special L-values is the main topic of [Sch13].

(ii) By definition, the intersection pairing is functorial: given a map f :

M → M ′, the following diagram commutes:

πM : H0(M, 0) × Ĥ2(M∨, 1) −→ R

↑ ↓ ↓=
πM ′ : H0(M ′, 0) × Ĥ2(M ′∨, 1) −→ R.
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7.2. Comparison with the height pairing. For a regular, flat, and

projective scheme X/Z of absolute dimension d, Gillet and Soulé have defined

the height pairing μGS :

CHm(X)0� �

��

× CHd−m(X)0
μB

�� ĈH1(S)

CHm(X) × ĈHd−m(X)� �

��

����

μ
�� ĈH1(S)

ĈHm
GS(X) ×

����

ĈHd−m
GS (X)

μGS
�� ĈH1(S).

Here, CHm(X)0 := kerCHm(X) → H2m
D (X,m) is the subgroup of the Chow

group consisting of cycles that are homologically trivial at the infinite place.

The pairing μ is uniquely determined by μGS . It is given by

(Z, (Z ′, g′)) �→ (Z · Z ′, δZ ∧ g′),

where Z and Z ′ are cycles of codimension m and d − m, δZ is the Dirac

current, and g′ is a Green current satisfying the differential equation

ω(Z ′, g′) = − 1

2πi
∂∂g′ + δZ′ = 0.

See [GS90a, Sections 4.2, 4.3] for details. The pairing μB is the height pairing

defined by Beilinson [Bĕı87, 4.0.2]. More precisely, Beilinson considered the

group of homologically trivial cycles on X×SQ, but we will focus on the case

where the variety in question is given over the one-dimensional base S.

We now give a very natural interpretation of the height pairing μ in terms of

the Arakelov intersection pairing. Our statement applies to smooth schemesX

only, essentially because of the construction of the stable homotopy category,

which is built out of presheaves on Sm/S (as opposed to regular schemes,

say).

Theorem 7.4. Let S ⊂ SpecZ be an open (non-empty) subscheme and

let f : X → S be smooth and proper of absolute dimension d. For any m,

let n := m − dim f = m − d + 1 and let M = M(X){n} = f!f
!HB{n} be the

motive of X (twisted and shifted). Then the height pairing μ (tensored with

Q) mentioned above agrees with the Arakelov intersection pairing in the sense
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that the following diagram commutes:

CHm(X)Q

∼= 2.2

��

× ĈHd−m(X)Q

∼= 6.2
��

μ
�� ĈH1(S)Q

∼=
��

H0(M, 0) × Ĥ2(M, 1)
πM �� Ĥ2(S, 1).

Proof. We need to show that the following diagram is commutative. Here

1 := HB is the Beilinson motivic cohomology spectrum, 1̂ := ĤB is its Arak-
elov counterpart (Definition 4.1), and (−,−) stands for HomDMB(?)(−,−),
where the base scheme ? is S or X, respectively. Every horizontal map is an
isomorphism. The maps labelled p and p̂ are relative purity isomorphisms f ! ∼=
f∗{d − 1}, applied to 1 and 1̂, respectively. The isomorphisms between the
(arithmetic) Chow groups and (Arakelov) motivic cohomology are discussed
in Section 2.2 and Corollary 6.2.

(1, f!f
!1{n}) p

��

×

(1,1{m})

×

(1,1{m}) ��

×

CHm(X)Q

×

(f!f
!1{n}, 1̂{1})

(1)πM

��

p
�� (1{m}, f !1̂{1}) p̂

��

◦
��

(2)

(1{m}, 1̂{d})

◦
��

��

(3)

ĈHd−m(X)Q

μ

��

(1, f !1̂{1}) p̂
��

(4)

(1, 1̂{d}) �� ĈHd(X)Q

f∗

��

(1, f!f
!1̂{1})

f!f
!→id

��

(1, 1̂{1}) (1, 1̂{1}) �� ĈH1(S)Q.

The commutativity of (1) is a routine exercise in adjoint functors. The com-

mutativity of (2) is obvious. The commutativity of (3) and (4) is settled in

Theorems 6.3 and 6.4. �
Example 7.5. Using Remark 7.3(ii), we can also describe the baby exam-

ple of the Arakelov intersection pairing forM = M(Fp): according to Theorem

6.4(i), it is given by

H0(Fp) × Ĥ0(Fp) = Z

i∗(0,log p)

��

πFp
�� Ĥ0(Z) = Z⊕ R

H0(Z) = Z

i∗∼=

��

× Ĥ0(Z)
πZ �� Ĥ0(Z) = Z⊕ R.
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Using Theorem 6.3, the bottom row is the obvious multiplication map. There-

fore, πFp
is given by (1, 1) �→ (0, log p).
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homotopique des schémas, thesis, available at http://www.math.uiuc.edu/K-
theory/0793/these.pdf.

[Roe99] Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry,
Duke Math. J. 96 (1999), no. 1, 61–126, DOI 10.1215/S0012-7094-99-09603-5.
MR1663919 (2000a:14029)

[Sch88] Peter Schneider, Introduction to the Bĕılinson conjectures, Bĕılinson’s conjec-
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Special L-values of geometric motives

Jakob Scholbach ∗

August 4, 2015

Abstract

This paper proposes a conceptual unification of Beilinson’s conjecture
about special L-values for motives over Q, the Tate conjecture over Fp and
Soulé’s conjecture about pole orders of ζ-functions of schemes over Z. We
conjecture the following: the order of L(M, s) at s = 0 is given by the nega-
tive Euler characteristic of motivic cohomology of M∨(−1). Up to a nonzero
rational factor, the L-value at s = 0 is given by the determinant of the pairing
of Arakelov motivic cohomology of M with the motivic homology of M :

L∗(M, 0) ≡
∏

i∈Z

det(Hi−2(M,−1)⊗Ĥi(M) → R)(−1)i+1

(mod Q×).

Under standard assumptions concerning mixed motives over Q, Fp, and Z,
this conjecture is equivalent to the conjunction of the above-mentioned con-
jectures of Beilinson, Tate, and Soulé. We use this to unconditionally prove
the Beilinson conjecture for all Tate motives and, up to an n-th root of a
rational number, for all Artin-Tate motives.

In this paper, we study special values of L-functions of geometric motives over
Z. This contains both L-functions over Q and Hasse-Weil ζ-functions of schemes X
of finite type over Z (Propositions 3.5, 3.7):

LQ(Mη, s)
−1 = LZ(η!∗Mη[1], s), (0.1)

ζ(X, s) = L(Mc(X), s).

Here Mη is a mixed motive over Q, η!∗ is a generic intermediate extension functor
similar to the one familiar in perverse sheaf theory, and Mc(X) denotes the motive
with compact support.

Our conjecture on special L-values is as follows:

Conjecture 0.1. (see Conjectures 4.1 and 5.2) LetM be any geometric motive over
Z. We conjecture that pole orders are given by the negative Euler characteristic of
motivic cohomology of M∨(−1):

ords=0 L(M, s) = −χ(M∨(−1)). (0.2)

We conjecture that the Arakelov intersection pairing, which is the natural pairing
of R-vector spaces

πM : Hom(1(−1)[−2],M)︸ ︷︷ ︸
=:H−2(M,−1)

×Hom(M, 1̂)︸ ︷︷ ︸
=:Ĥ0(M)

◦
−→ Hom(1, 1̂(1)[2]) = R,

involving the motivic homology and the Arakelov motivic cohomology of M is a
perfect pairing of finite-dimensional R-vector spaces. This conjectural perfectness
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is very interesting in its own right. For example, special cases of it are equivalent to
the Beilinson-Soulé vanishing conjecture (Theorem 4.5) and the Beilinson-Parshin
conjecture (Theorem 4.3). It also allows to equivalently reformulate (0.2) using the
Euler characteristic of Arakelov motivic cohomology:

ords=0 L(M, s) = −χ̂(M).

Most importantly, though, it allows to express the following conjecture for the
special L-value L∗(M, 0) up to a nonzero rational factor, using the determinants of
the pairings πM [i]:

L∗(M, 0) ≡ Π−1
M (mod Q×),

where
ΠM :=

∏

i∈Z

det(πM [i])
(−1)i(∈ R×/Q×).

The Arakelov motivic cohomology referred to above is a new cohomology estab-
lished in [HS11, Sch12a] (or see Section 2.2). It can be thought of as a cohomology
with compact support, where “compact” refers to the compactification of Spec Z.
More precisely, it is characterized by a long exact sequence

. . .→ Ĥn(M)→ Hn(M)
ch
→ Hn

D(M)→ Ĥn+1(M)→ . . .

involving the Chern class map ch (also known as the Beilinson regulator) between
motivic cohomology and Deligne cohomology.

This conjecture is related to existing conjectures on L-functions as follows:

Theorem 0.2. (see Theorems 5.8, 5.9 for the precise statements) Assuming the
existence of the category of mixed motives (see Axiom 1.2), Conjecture 0.1 is essen-
tially equivalent to the conjunction of the conjectures 5.14, 5.11, 5.19 of Beilinson,
Soulé and Tate on special L-values of motives over Q and ζ-functions à la Hasse-
Weil of schemes over Z and over Fp, respectively.

Recall that the subcategoryDATM(Z) of Artin-Tate motives is the triangulated
subcategory generated by direct summands of motives of number rings OF and
finite fields Fq. Only allowing Q and Fp instead of arbitrary OF and Fq, we get
the triangulated category DTM(Z) of Tate motives. Note that these motives have
rational coefficients. These categories do enjoy a motivic t-structure whose hearts
are denoted MATM(Z) and MTM(Z), respectively [Sch11]. We get the following
unconditional result:

Corollary 0.3. The perfectness of the Arakelov intersection pairing, as well as the
pole order formula (0.2) holds for any Artin-Tate motive over Z. The formula for
the special L-value holds for all motives in the triangulated category generated by
motives M(OF ) and M(Fq), in particular for any Tate motive, i.e., any motive in
DTM(Z). More generally, for any M ∈ DATM(Z),

L∗(M, 0) ·ΠM

is a torsion element of R×/Q×.
In particular, Beilinson’s conjecture holds for any smooth projective variety

Xη/Q such that hj(Xη) is a mixed Tate motive (j ∈ Z). Examples of such va-
rieties include linear varieties [Jan90, Section 14], [Tot14], such as toric varieties
and Grassmannians. Similarly, Beilinson’s conjecture holds up to the m-th root of
a nonzero rational number if hj(Xη) is a mixed Artin-Tate motive.
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Proof: We first show that for anyM ∈ DATM(Z), there is somem > 0 such that
mM := M⊕m lies in the triangulated subcategory L ⊂ DATM(Z) generated by
motives of the form M(OF )(n)[1] and direct factors of M(Fq), for any q = pr, n ∈ Z
and any number ring OF . This statement is unrelated to the Arakelov intersection
pairing and L-functions. It is enough to show this for M being a direct summand
of M(OF )(n)[1]. By definition of η!∗, see [Sch12b, Section 5.4], M ′ := η!∗η

∗M lies
in the triangulated category generated by M and motives of the form i∗N , where
N ∈ DATM(Fp) and i : Spec Fp → Spec Z. As i∗N ∈ L for all N ∈ DATM(Fp),
it is enough to show mM ′ ∈ L. Note that Mη := η∗M [−1] is a direct summand of
M(F )(n). After twisting by −n, these two motives are Artin motives over Q (with
rational coefficients). This category is equivalent to continuous rational Gal(Q)-
representations. For some finite quotient G = Gal(E/Q) of Gal(Q), M(F ) and
Mη factor over G. By Artin induction [Ser78, II.13.1, Théorème 30], there is an
equality inK0(Q[G]), theK0-group of the group ring ofG (with rational coefficients)
m[Mη(−n)] =

∑
i li[ind

G
HQ], where m, li ∈ Z, m > 0, and H runs over the cyclic

subgroups of G. The functor η!∗[1] does not in general send a short exact sequence

Eη : 0→Mη,1 →Mη,2 →Mη,3 → 0

in MATM(Q) to a distinguished triangle in DATM(Q). However, for a suffi-
ciently small open j : U ⊂ Spec Z, there is a similar short exact sequence EU in
MATM(U) such that η∗EU [−1] = Eη and such that η!∗Mη,n[1] = j!∗MU,n for all
n. As j! is triangulated, j!(EU ) is a distinguished triangle in DATM(Z). Moreover,
j!∗MU,n lies in a distinguished triangle whose other vertices are j!MU,n and i∗N ,
where i : Z → Spec Z is the complement of j and N ∈ DATM(Z). Therefore, if
η!∗Mη,j [1] ∈ L for two out of the three Mη,j’s, it is true for the third. Noting that

indGHQ corresponds to the motive M(EH) of the subfield EH ⊂ E fixed by H and
η!∗ M(EH)[1] = M(OEH )[1] ∈ L, we obtain mη!∗Mη[1] ∈ L.

For any number field F and number ring OF , the conjectured pole order for-
mula, the special value and the perfectness of the Arakelov intersection pairings for
M(OF )(n)[1] are (unconditionally, by Proposition 5.16, Remark 5.17, and Theorem
5.18) equivalent to Beilinson’s conjecture for M(F )(n) ∈ MATM(Q) which does
hold by Borel’s work [Bor77]. The three conjectures also hold for direct factors of
M(Fq) by Quillen’s computation of K-theory of finite fields [Qui72]. By Theorem
5.5, the three conjectures therefore hold for any motive in L ⊂ DATM(Z).

Now, let M ∈ DATM(Z) be any Artin-Tate motive. There is an m > 0 such
that mM ∈ L. Since the Arakelov intersection pairings are induced by the composi-
tion of morphisms inDM

B

(Z), the map rmM : H−2(mM,−1)→ Ĥ0(mM)∨ induced
by πmM is clearly the m-fold direct sum of the map rM induced by πM . Hence the
perfectness of πmM , i.e., rmM being an isomorphism, implies the perfectness of
πM . Moreover, we have (L∗(M, 0)ΠM )m = L∗(mM, 0)ΠmM = 1 ∈ R×/Q×, i.e.,
L∗(M, 0)ΠM is torsion in R×/Q×. Similarly, m(ords=0 L(M, s) + χ(M∨(−1))) =
ords=0 L(mM, s)+χ(mM∨(−1)) = 0 ∈ Z, so that ords=0 L(M, s)+χ(M∨(−1)) = 0,
i.e., the pole order formula holds.

The last statement follows immediately.

Conjecture 0.1 is compatible with the functional equation of L-functions. It
is also stable under distinguished triangles (Theorem 5.5). While the latter is a
formal consequence of the setup, it is a key difference between our conjecture and
Beilinson’s conjecture for mixed motives over Q. It allows to break up a motive into
smaller pieces by means of distinguished triangles. This technique is unapplicable
when working with Beilinson’s original conjecture for motives over Q. Moreover,
Conjecture 0.1 gives more freedom because it allows to work in the larger category
of all geometric motives, as opposed to just smooth and projective varieties. It
should be noted, though, that the proof of the equivalence of Beilinson’s L-value
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formula and Conjecture 5.2 is formal, so that proving Beilinson’s conjecture for any
example not covered by techniques such as the ones in Corollary 0.3 will require
new ideas.

The idea of reinterpreting the data in Beilinson’s conjecture in terms of motives
over Z is due to Huber. More precisely, a mixed motive Mη over Q corresponds to
the mixed motive η!∗Mη[1] over Z. This is reified for L-functions by (0.1) and on
the motivic side by an appropriate interpretation of f -cohomology [Sch12b]. The
non-multiplicativity of L-functions (cf. Remark 3.2) is explained by the failure of
η!∗ to be exact. L-functions of motives over Z are multiplicative, though.

This non-multiplicativity, which is a heavy technical burden, has been addressed
by Scholl by introducing a category MM(Q/Z) of mixed motives over Z [Sch91]
(different from the one used here) by imposing non-ramification conditions. The
(conjectural) value of the groups ExtaMM(Q/Z)(1, h

b−1(Xη,m)) is closely related to

the computation of H∗(η!∗ h
−b+1(Xη,−m)[1]) (Theorem 1.3). As for the special

L-values, a conjecture of Scholl [Sch91, Conj. C] says that some Mη ∈MM(Q/Z)
is critical (i.e., its period map is an isomorphism, equivalently all weak Hodge
cohomology groups H∗

w(Mη) vanish) if

Exta
MM(Q/Z)(Mη,1(1)) = Exta

MM(Q/Z)(1,Mη) = 0 for a = 0, 1.

Moreover, a reduction technique transforming any motive Mη into one satisfying
these vanishings is given, so that Deligne’s conjecture [Del79, Conj. 2.8.] con-
cerning the L-value of critical motives can be applied. In similar spirit, the non-
multiplicativity of L-functions of motives overQ has been addressed by Fontaine and
Perrin-Riou by introducing the notion of f -exact sequences, which are ones where
one does save multiplicativity [FPR94, III.3.1.4]. However, such exact sequences
seem to be hard to characterize. The formulation of Conjecture 0.1 resembles their
approach; for example the pole order in op. cit. is expressed as an Euler charac-
teristic of f -cohomology. Using a “cohomology with compact support” to predict
special L-values was already suggested by Beilinson [Bĕı87, 5.10.F]. The category of
motives over Z is both the appropriate home for this idea and allows for the strik-
ingly compact and beautiful formulation of the L-values conjecture by overcoming
the technical obstacles related to motives over Q.

The idea to recast special L-values of motives as determinants of appropriate
pairings was explored by Deninger and Nart [DN95], who show that the motivic
height pairing of [Sch94] can be represented by concatenating morphisms in the
derived category of an appropriate category of motives.

Conjecture 0.1 is the first conjecture that predicts the special values of ζ(X)
modulo Q× at all places (X/Z regular projective; see Example 5.13). A reformula-
tion of the Tamagawa number conjecture in terms of the Weil-étale cohomology due
to Flach and Morin predicts the special value of ζ(X) at s = 0 up to sign [FM12,
Prop. 9.2]. It remains to explicitly compare the compatibility of the approach of
op. cit. and Conjecture 0.1. I expect that similar techniques as the ones in this
paper allow to refine Conjecture 0.1 to a conjectural L-values formula, up to sign,
at all places. However, this remains to be done.

This paper has its origins in a part of my PhD thesis. It is a pleasure to thank
Annette Huber for her advice during this time. I thank Andreas Holmstrom for the
collaboration on Arakelov motivic cohomology [HS11]. I also thank Denis-Charles
Cisinski, Frédéric Déglise and Bruno Kahn for helpful conversations. Finally, I
thank the referee for suggesting many improvements to this article, in particular
concerning the formulation of Corollary 0.3.
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1 Preliminaries

1.1 Determinants and Q-structures

For any ring R, let R be the category of finitely generated R-modules. Let K
be a field. The determinant detV of V ∈ K is detV := ΛdimV V . Its K-dual
is denoted det−1 V . For V∗ ∈ Db(K), the derived category, we set detV∗ :=⊗

i det
(−1)i Hi(V∗). We abbreviate detH∗ := det(−1)i Hi for some Hi ∈ K, i ∈ Z.

Let A,B ∈ Q and let f : AR → BR be an R-linear map. We do not assume
that it respects the rational subspaces. The “usual” determinant of f , which is
well-defined up to a nonzero rational factor agrees, modulo Q× with the image of 1
under the map Q ∼= detA⊗det−1B → detAR⊗ det−1 BR

∼= R. Here the right hand
isomorphism is induced by f .

A complex with Q-structure is a complex V∗ of R-vector spaces that is quasi-
isomorphic to one in Db(R) together with a non-zero map of Q-vector spaces dV∗

:
Q → detV∗. In concrete situations, we usually have a distinguished identification
detV∗

∼= R. In that case, we may also call detV∗ the real number that is the image
of 1 ∈ Q under dV∗

and the given identification.
Maps of complexes with Q-structures are usual maps of complexes; they are not

required to be compatible with the map dV∗
. For a map f : V∗ →W∗ of complexes

with Q-structures the cone of f is endowed with the following Q-structure:

Q
dW⊗(dV )−1

−→ detW∗⊗det−1 V∗
∼= det cone(f).

Define a category Db(R)Q−det to consist of such complexes. Its morphisms are
given by maps of complexes up to quasi-isomorphism (not necessarily respecting
the Q-structures). We say that a triangle A → B → C of objects in Db(R)Q−det

is multiplicative if it is distinguished in Db(R) after forgetting the Q-structure and
detB = detAdetC in the sense that the following diagram (whose right hand
isomorphism stems from the triangle) is commutative:

Q
dC //

(dA)−1⊗dB &&▼▼
▼
▼
▼
▼
▼
▼
▼
▼
▼ detC

∼=
��

det−1 A⊗ detB.

1.2 Motives

Our work takes place in the categoryDM
B

(S) of Beilinson motives over S, where S
is either a finite field, a number ring OF , or a number field F . Cisinski and Déglise
defined this category to be an appropriate subcategory of Morel and Voevodsky’s
stable homotopy category SH(S)Q (with rational coefficients) [CD09]. The category
DM

B

(S) is tensor-triangulated, Q-linear, and closed under arbitrary direct sums.
Its tensor unit is denoted 1S or just 1. Given some scheme f : X → S (always
tacitly supposed to be separated and of finite type), the motive of X and the motive
with compact support are defined as

M(X) := f!f
!1S , Mc(X) := f∗f

!1S . (1.1)

Here f! : DM
B

(X) → DM
B

(S) etc. are the functors defined in op. cit. This
determines a covariant functor M : Sch/S → DM

B

(S) and likewise, but just for
proper maps, with Mc. The motive of the projective line decomposes as M(P1) =
1⊕1(1)[2]. In DM

B

(S), tensoring with 1(1)[2] is invertible and we write M{n} :=
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M⊗(1(1)[2])⊗n for any n ∈ Z. For M ∈ DM
B

(S), we put

Hi(M,p) := HomDM
B

(S)(1(p)[i],M),

Hi(M,p) := HomDM
B

(S)(M,1(p)[i]).

For a regular base S and a regular, projective or affine (but not necessarily flat)
scheme X over S and G := M(X)(−m), motivic cohomology of X is given by

Hi(X,m) := Hi(G) = HomS(f!f
!1(−m),1[i]) = HomX(1,1(m)[i]) = K2m−i(X)

(m)
Q ,

using the purity isomorphism f !1S = f∗1S{d} = 1X{d}, where d = dimX−dimS.
As a consequence of resolution of singularities, the full subcategory DM

B,c(S) ⊂
DM

B

(S) of compact objects agrees with the thick subcategory generated by such
motives G, for any base S as above. We refer to objects of DM

B,c(S) as geometric
motives over S. For a perfect field S, there is a natural equivalence of categories
[CD09, Theorem 15.1.4]

DM
B,c(S)

∼=
−→ DMgm(S)Q (1.2)

with Voevodsky’s triangulated category of geometric motives (with rational coeffi-
cients) [Voe00]. It sends the motive M(X) ∈ DM

B,c(Q) of a smooth S-scheme in
the sense of (1.1) to the motive Mgm(X) of X in Voevodsky’s sense.

The categoryDM
B,c(S) is equipped with a notion of weight : there are full (non-

triangulated) subcategories DM
wt≤n
B,c (S), DM

wt≥n
B,c (S) such that f!1(a)[2a+ n] lies

in the subcategory

DMwt=n
B,c (S) := DM

wt≤n
B,c (S) ∩DM

wt≥n
B,c (S) (1.3)

of objects of pure weight n, for all a, n ∈ Z and all proper maps f : X → S with
regular domain X [Bon10, Héb11]. For any map f (of finite type), the functors f!,

f∗ preserve the subcategories DM
wt≤n
B,c (−) and dually for f !, f∗.

The dual of any geometric motive M is defined as M∨ = Hom
DM

B

(S)(M,1).

Dualizing exchanges ! and ∗: for example, for any map f , (f!f
!1)∨ = f∗f

∗(1∨)
which is canonically isomorphic f∗f

∗1. Therefore, the natural map

M → (M∨)∨ (1.4)

is an isomorphism for any M ∈ DM
B,c(Z) [CD09, 14.3.31]. This yields a canonical

isomorphism H0(M
∨, 0) = H0(M, 0).

Definition 1.1. Let S ⊂ Spec OF be an open subscheme. A motive M ∈
DM

B,c(S) is called smooth if the natural map [Ayo07, Section 2.3.2] 1

i∗M{−1} = i∗M⊗i!1→ i!(M⊗1) = i!M

is an isomorphism for all closed points i : Spec Fp → S. A motive M ∈ DM
B,c(S)

is generically smooth if j∗M is smooth for some open subscheme j : U ⊂ S.

Since M(X)(m) is smooth provided X/S is smooth and proper, every motive
M ∈ DM

B,c(S) is generically smooth. We write η : Spec F → Spec OF for the
generic point.

In order to interpret Beilinson’s conjecture for mixed motives over Q in terms of
motives over Z we need to assume the conjectural framework of mixed motives over
F , Spec OF and Fq. The precise axioms we are staking on are listed in [Sch12b,

1The use of this canonical map, as opposed to a mere noncanonical isomorphism, was suggested
by Bruno Kahn.
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Section 4], so we only summarize them briefly and refer to loc. cit. for a more com-
plete discussion. 2 3 Note that the corresponding statements for the triangulated
category of Artin-Tate motives DATM(OF ) ⊂ DM

B,c(OF ), which is the triangu-
lated subcategory of DM

B

(OF ) generated by M(V )(m) where V → Spec OF is a
quasi-finite, but not necessarily flat map and m ∈ Z, have been shown in [Sch11].

Axiom 1.2. (i) [Sch12b, Axioms 4.1, 4.2] DM
B,c(S) is conjectured to enjoy a

non-degenerate t-structure whose heartMM(S) is called the category ofmixed
motives . The cohomological dimension of MM(S) is conjectured to be 0
(S = Fq) and 1 (S = F ), respectively. The truncation with respect to the
t-structure is denoted pH∗. We write hi(X,n) for pHi(M(X)(n)). The t-
structures are normalized by declaring 1 ∈MM(S) when S = F , Fq and 1[1] ∈
MM(OF ), respectively. For example, h−1(P1

OF
) = 1OF

(1)[1], h−2(P1
F ) =

1F (1). More generally, η∗[−1] is t-exact and η∗ h−b(X,−m) = h−b−1(Xη,−m)
for any scheme X/OF with generic fiber Xη.

(ii) [Sch12b, Axiom 4.5.] The key requirement on the t-structure is that realization
functors of the form DM

B,c(S) → Db(C) are to be exact (see loc. cit. and
around (1.7) for the ℓ-adic realization over Z[1/ℓ]). In the guise of a spec-
trum representing the cohomology theory, the exactness requirement is to be
understood as in (2.14).

(iii) [Sch12b, Axioms 4.4, 4.6, 4.11] Any mixed motive is conjectured to have a
weight filtration which is compatible with the weight formalism mentioned
around (1.3). The pure objects in MM(K) (for any field K) are conjectured to
be identified with the categoryMnum of pure motives with respect to numerical
equivalence. This implies that the pure objects in MM(K) form an abelian
semi-simple category [Jan92, Th. 1]. Moreover, homological and numerical
equivalence are conjectured to agree. The cohomology functors pH∗ belonging
to the motivic t-structure are supposed to respect the weights, i.e., given some
M ∈ DMwt=w

B,c , pHn(M) ∈ MM is pure of weight w + n. For example, for

a smooth projective scheme X/S, M(X)(−m) = f!f
!1(−m) ∈ DMwt=2m

B,c , so

that h−b(X,−m) is pure of weight 2m− b. Morphisms of mixed motives are
expected to respect weights strictly, thereby giving constraints on the existence
of maps between motives.

In the remainder of this paper we assume that the axioms concerning mixed mo-
tives over open subschemes of Spec OF , Fq and F hold.

Given a mixed motive over Q, Mη ∈MM(Q), pick any M ∈MM(Z) satisfying
Mη = η∗M [−1] and some open subscheme j : U → Spec Z such that j∗M is smooth.
We call

η!∗(Mη[1]) := j!∗j
∗M := im(j!j

∗M → j∗j
∗M) ∈MM(Z)

the generic intermediate extension of Mη[1]. This is explained and shown to be

well-defined in [Sch12b, Section 5.4]. We apply this to Mη = h−b−1(Xη,−m) and

M = h−b(X,−m), where Xη/Q is smooth projective and X/Z is any projective
(not necessarily regular) model of Xη of constant dimension d. Throughout this

2Unlike this paper, op. cit. is written with a contravariant notation of motives. This induces
a number of changes in notation: every f!, f ! gets replaced by a f∗ and f∗, and vice versa.
Moreover, a twist and shift M(m)[n] corresponds to M(−m)[−n] here. Both here and there, the
normalization of the t-structure is such that 1[1] ∈ MM(OF ), while 1 ∈ MM(F ).

3 The decomposition axiom for smooth projective varieties formulated in [Sch12b, Axiom 4.13]
is not needed: it is only used in [Sch12b, Lemma 5.10] to show that a certain motive is generically
smooth, but this is inconditionally true for any motive by the remark after Definition 1.1.
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paper, we write

E := η!∗η
∗ h−b(X,−m) = η!∗(h

−b−1(Xη,−m)[1]) ∈MM(Z). (1.5)

This motive is pure of weight w := 2m− b. Its motivic cohomology is given by the
following theorem:

Theorem 1.3. With the above notation, we write Hb(Xη,m)Z := im(Hb(X,m)→
Hb(Xη,m)). Moreover, let CHm(Xη)Q,hom be the subgroup of the Chow group of
cycles homologically equivalent to zero and CHm(Xη)Q/hom the group of cycles
modulo homological equivalence (tensored with Q). Then

Ha(E) = Ha(η!∗ h
−b−1(Xη,−m)[1]) =





CHm(Xη)Q/hom a = 1, w = 1
0 a = 1, w 6= 1
0 a = 2, w ≤ 1
CHm(Xη)Q,hom a = 2, w = 2
Hb+2(Xη,m)Z a = 2, w ≥ 3
0 a = 3, w ≤ 2
? a = 3, w ≥ 3
0 a > 3, a < 1

Proof: Everything except the cases a = 2, w ≤ 1 and a = 3, w ≤ 2 is shown in
[Sch12b, Lemma 5.2, Theorem 6.11]. For a = 2 and w ≤ 1, the map

H2(E)→ H2(η∗E) = H1(h−b−1(Xη,−m))→ Hb+2(Xη,m) = CHm(Xη, w − 2) = 0

is injective: for the first map this is [Sch12b, Lemma 6.9], the second one is because
the cohomological dimension of DM

B,c(Q) is one [Sch12b, Axiom 4.1.]. For a = 3,
w ≤ 2, we use the exact localization sequence

. . .→ ⊕pH
3(ip∗i

∗
pE)→ H3(E)→ H3(η∗E) = H2(η∗[−1]E) = 0.

The right hand vanishing is again because the cohomological dimension of motives
over Q being one. Also by cohomological dimension we have

H3(ip∗i
∗
pE) = Hom(i∗pE, i!p1[3]) = Hom(i∗pE,1(−1)[1]) = HomMM(Fp)(

pH−1i∗pE(1),1).

The functor i∗ preserves negative weights, i.e., wt(pH−1(i∗pE(1))) ≤ wt(E) − 1 −
2 = w − 3. By strictness of the weight filtration the group therefore vanishes for
w ≤ 2.

In accordance with Conjecture 4.1 (see the case w ≤ 1 in the proof of Proposition
5.16) I expect H3(E) = 0 for arbitrary weight w. See the introduction for the
relation of this to Scholl’s notion of mixed motives over Z. For Artin-Tate motives,
the expected vanishing holds unconditionally for all weights:

Theorem 1.4. Let Mη be an Artin-Tate motive over F , concentrated in cohomo-
logical degree −1. Then H3(OF , η!∗Mη) = 0.

Proof: There is some j : U ⊂ Spec OF and a smooth Artin-Tate motive M ∈
MATM(U) = MM(U) ∩ DATM(U) such that Mη = η∗[−1]M . Shrinking U
further (using j′!∗j

′∗M ∼= M for some j′ : U ′ ⊂ U , as M is smooth), we may
assume by the standard splitting routine [Sch11, Lemma 2.5] that there is an etale
Galois cover f ′ : V ′ → U such that f ′∗M is a mixed Tate motive over V ′. The

map M → f ′
∗f

′∗M
∼=
← f ′

! f
′!M → M is deg f ′ · idM , so M is a direct summand of

f ′
∗f

′∗M , since we use rational coefficients. The functor f ′
∗ = f ′

! preserves Artin-
Tate motives and is exact [Sch11, Theorem 4.2]. Hence j!∗f

′
∗f

′∗M = f∗j
′
!∗f

′∗M .
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Here f : V → Spec OF is the normalization of OF in the function field of V ′ and
j′ : V ′ → V is the corresponding open immersion. Consequently,

H3(OF , η!∗Mη) = H3(OF , j!∗M) ⊂ H3(V, j′!∗f
′∗M) = HomV (j

′
!∗f

′∗M, (1[1])[2]) = 0,

since the cohomological dimension of mixed Tate motives over V is one, as opposed
to two for Artin-Tate motives [Sch11, Proposition 4.4].

The following conjecture will be needed to deal with motives over Fp.

Conjecture 1.5. (Beilinson) Let X/Fq be smooth and projective. Up to torsion,
numerical and rational equivalence agree on X .

Recall that homological equivalence lies between these two equivalence relations
[And04, 3.2.1], so under 1.5, all three agree. The second important consequence of
1.5 is that the category of pure Chow motives over Fq is semisimple by Jannsen’s
theorem.

To study L-functions, we need some ℓ-adic realization functor. We use the
machinery developed recently by Ayoub [Ayo12]. It allows the base scheme to be
Z[1/ℓ]. Let ℓ be an odd prime number and S a scheme that is of finite type over
Z or Q such that ℓ is invertible on S (cf. [Ayo12, Hyp. 6.5]). Define the ℓ-adic
realization functor as the following composition

(−)ℓ : DM
B

(S)
F1→ SH(S)Q

F2→ DAét(S,Qℓ) (1.6)
Rℓ→ D(Shvét(S,Qℓ))

F3−→ D(Shvét(S,Qℓ))

The functor F1 is the inclusion of the category of 1-modules in SH(S)Q. The cate-
gory DAét(S,Qℓ) is the homotopy category of the model category of symmetric P1-
spectra of complexes of ℓ-adic presheaves on Sm/S, endowed with the A1-étale-local
model structure. The functor F2 is obtained by combining the natural free abelian
group functor ∆opSets→ Com(Ab) and the sheafification (from Nisnevich sheaves
to etale sheaves), see e.g. [CD09, 5.3.28, 5.3.37]. The functor Rℓ is Ayoub’s ℓ-adic
realization functor. We append the contravariant functor F3 : M 7→ Hom(M, f !Qℓ),
where f : S → Spec Z is the structural map (and Hom denotes the derived inner
Hom). For any map g : X → Y of quasi-projective S-schemes, the functors F1,
F2, Rℓ commute with g!, g∗, g

∗ and g! and, when applied to compact objects, with
Hom [Ayo12, Thm. 6.6]. Finally, F3 exchanges ! and ∗, e.g. F3(g

∗M) = g!F3(M)
for M ∈ D(Shvét(S,Qℓ)). Therefore, for some quasi-projective scheme f : X → S,
(M(X)(−m)[−n])ℓ = f∗f

∗Qℓ(m)[n]. This property is also satisfied for Huber’s and
Ivorra’s realization functors provided S is a field [Hub00, Ivo07]. Thus, for the mere
definition in 3.1, these realization functors are sufficient, but Lemma 3.4 relies on a
realization functor over Z[1/ℓ].

The exactness requirement for the functor −ℓ mentioned in Axiom 1.2(ii) means
that the restriction of −ℓ to DM

B,c(S) is exact with respect to the (conjectural)
motivic t-structure and the t-structure on D(Shvét(S,Qℓ)) (which is the obvious
one if S is a field and the perverse t-structure for S = Spec Z[1/ℓ], see [Sch12b,
Section 3]. For example, for a quasi-projective variety X over a field it implies

(h−b(X))ℓ = Hb(X,Qℓ). (1.7)

2 Arakelov motivic cohomology

2.1 Deligne cohomology

A key input to Beilinson’s conjecture 5.14 is Deligne cohomology. We recall its
classical definition and the well-known interpretation in terms of weak Hodge coho-
mology. Then, we recall from [HS11] the Deligne cohomology spectrum HD which
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is crucial for the definition of Arakelov motivic cohomology. In order to establish
the Q-structure on the groups represented by HD, we explain how to apply the con-
struction in loc. cit. to obtain spectra representing Betti and de Rham cohomology.

Let an : Sm/C → Sman be the functor that associates to any smooth
C-scheme the underlying complex analytic manifold. We also consider an :
Sm/Q (or Sm/R) → Sman,G, where the target category consists of complex ana-
lytic manifolds with a G-action, G := Gal(C/R). In this section, X is a smooth
scheme over Q. We usually write Xan := an(X) and Fr∞ : Xan → Xan for the con-
jugation. We also pick a smooth proper compactification j : X → X (over Q) such
thatD := X\X is a divisor with strict normal crossings. We write Ω∗

X
an(logDan) for

the complex of meromorphic forms on X that are holomorphic on X ⊂ X, and have
at worst logarithmic poles at the divisorD. This complex is endowed with the Hodge
filtration F p := σ≥p, which is simply the brutal truncation. The variant using alge-

braic (i.e., Kähler) differential forms is denoted Ω∗,alg

X
(logD). The C∞-variant is de-

noted E∗
X

an(logDan). The subspace of real-valued forms is denoted E∗
R,X

an(logDan).

These complexes are filtered by F pEn
X

an(logDan) = ⊕a+b=n,a≥pE
a,b

X
an(logDan). To

get rid of the choice of X, put

E∗(X) := lim
−→
X

E∗
X

an(logDan),

and similarly for E∗
R(X), Ω∗(X), Ω∗,alg(X). Here, the colimit runs over the directed

category of all compactifications X as above. Finally, let R(p) := (2πi)pR ⊂ C be
the constant sheaf.

Definition 2.1. Set RD,D,X(p) := cone(Rj∗R(p)⊕ F pΩ∗
X

an(logDan)→ Rj∗Ω
∗
Xan).

For example, if X is proper, RD(p) ∼= [R(p)→ Ω0
Xan → . . .→ Ωp−1

Xan ], with the terms
lying in degrees 0 to p. Deligne cohomology of X is defined as the G-invariant
subspace of a sheaf hypercohomology group,

Hn
D(X, p) := Hn(X

an
,RD,D,X(p))G.

(The G-action is obtained by letting G act on R(p) as a 7→ Fr∗∞(a) and on Ω∗ by
ω 7→ Fr∗∞(ω). This group does not depend on the choice of X [EV88, Lemma 2.8].)

By definition, there is a long exact sequence

. . .→ (Hi
dR(X

an)/F pHi(Xan,Ω∗
X)G → Hi+1

D (X,m)→ Hi+1(Xan,R(m))(−1)m → . . . .

Here the superscript denotes the (−1)m-eigenspace of the Fr∞-action on Betti co-
homology of Xan. This sequence induces an isomorphism

detH∗
D(X,m) = det−1(H∗

dR(X
an)/Fm)G⊗ detH∗(Xan,R(m))(−1)m . (2.1)

The right hand side carries a natural Q-structure stemming from the isomor-
phisms H∗(Xan,R(m)) = H∗(Xan,Q(m))⊗QR and H∗(X

an
, F ∗Ω∗

X
an(logDan))G ∼=

H∗(XR, F
∗Ω∗,alg

XR

(logDR)) = H∗(X,F ∗Ω∗,alg

X
(logD))⊗QR (GAGA). We use the

above isomorphism to carry over the Q-structure to the left hand side.
If X is (smooth and) proper, the degeneration of the Hodge-de Rham spectral

sequence and weight reasons give us short exact sequences (loc. cit.)

0→ Hi(Xan,R(m))(−1)m → Hi
dR(XR)/F

m → Hi+1
D (X,m)→ 0 (2.2)

for i− 2m ≤ −2 and, for i− 2m ≥ 0,

0→ Hi
D(X,m)→ Hi(Xan,R(m))(−1)m → Hi

dR(XR)/F
m → 0, (2.3)
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respectively. In this case, each individual Deligne cohomology group carries a Q-
structure, as opposed to the general case of a merely smooth X/Q.

Now, we recall Beilinson’s notion of weak absolute Hodge cohomology. It is
relevant to us because of its relation to archimedean factors of L-functions, see (3.2).
It is based on Deligne’s abelian category MHSQ(R) of mixed Hodge structures
[Del71, 2.3.1]. The subscript Q indicates that we are considering Q-vector spaces,
”(R)” means that the structure is endowed with an action of G = Gal(C/R). For
example, 1(n) is the one-dimensional Q-space, such that it is pure of weight −2n
and the Hodge filtration is concentrated in degree −n, and the non-trivial element
of G acts as multiplication by (−1)n. Let

Comb
H = {C = (CdR, CB, Cc, idR, iB)}

be the category of bounded Hodge complexes [Bĕı86, 3.2]. Its objects consist of a
bounded bifiltered complex of Q-vector spaces (CdR,W∗, F

∗), a filtered complex of
Q[G]-modules (CB,W∗) and a filtered complex of C-modules with C-antilinear G-
action, (Cc,W∗), a filtered G-equivariant quasi-isomorphism iB : (CB,W∗)⊗QC →
(Cc,W∗) (G acts on the left hand term by the action on CB and complex conjugation
on C) and finally a filtered G-equivariant quasi-isomorphism idR : (CdR,W∗)⊗QC→
(Cc,W∗) (on the left, G acts by conjugation on C). These data are subject to the
requirement that the cohomology quintuple Hi(C) defined by the cohomologies of
the various complexes and comparison maps has to be an object of MHSQ(R).
Morphisms in the category Comb

H are required to respect the filtrations and the
comparison quasi-isomorphisms. To any Hodge complex, we can associate its weak
Hodge cohomology [Bĕı86, 3.13]

RΓw(C) := cone[−1]
(
CG

B⊗R⊕ F 0CdR⊗R
iB−idR−→ CG

c

)
∈ Com(R).

This descends to a functor

RΓw : Db
H := Comb

H/quasi-isomorphisms→ Db(R)Q−det.

Indeed, taking G-invariants and applying the Hodge filtration are exact operations,
since morphisms of Hodge structures respect the Hodge filtration strictly [Del71,
2.3.5(iii)]. The Q-structure on RΓw(C) is the one stemming from the very definition,
where CG

c is endowed with aQ-structure using the one on CdR via idR. Set H
i
w(C) :=

Hi(RΓw(C)). A spectral sequence argument yields an exact sequence:

0→ H1
w(H

i−1C)→ Hi
w(C)→ H0

w(H
iC)→ 0. (2.4)

Unlike absolute Hodge cohomology, i.e., the derived functor of V 7→ ΓMHS(V ) :=
HomMHS(1, V ) = H0

w(W0V ), the weak variant has a duality: the natural pairing
(induced by A×A∨ → R for any R-vector space A),

Hi
w(C)×H1−i

w (C∨(1))→ H1
w(1(1)) = R, (2.5)

is perfect for all i [FPR94, Prop.III.1.2.3].
The following well-known lemma states that weak Hodge cohomology is the same

as Deligne cohomology. Recall the Hodge complex RΓ(X,m) of [Bĕı86, Section 4]
whose cohomology objects are the Hodge structures Hi(Xan,Q(m)).

Lemma 2.2. For X/Q smooth and projective and any i,m, we have

Hi
w(RΓ(X,m)) = Hi

D(X,m). (2.6)

The induced isomorphism detH∗
w(RΓ(X,m)) = detH∗

D(X,m) respects the Q-
structure.
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Proof: The Hodge structures Li := Hi(RΓ(X,m)) = Hi(Xan,Q(m)) are pure of
weight i − 2m. For i − 2m < 0, H0

w(Li) = ΓMHS(Li) = 0. By duality, H1
w(Li) =

H0
w(L

∨
i (1))

∨ = 0 for i− 2m > −2. Hence, by (2.4),

Hi
wRΓ(X,m) =

{
H1

w(Li−1) i− 2m < 0
H0

w(Li) i− 2m ≥ 0

The map in the exact sequences (2.2) between Betti and de Rham cohomology is
the one from the definition of RΓw(L∗). This shows (2.6). The identification of the
Q-structures follows similarly.

For archimedean factors of L-functions of arbitrary motives, we use the Hodge
realization functor (see [Bĕı86, Section 3] for an early avatar):

RΓH : DM
B,c(Q)op

∼=,(1.2)
−→ DMgm(Q)op → Db

H. (2.7)

The right hand functor is Huber’s Hodge realization functor [Hub00, 2.3.5]. It
maps Mgm(X)(−m) to RΓ(X,m). For any M ∈ DM

B,c(Q), the natural map
RΓH(Hom(M,1)) → Hom(RΓH(M),RΓH(1)) is an isomorphism. It is enough to
check this on generators M = M(X) with X/Q smooth and projective, where it fol-
lows from (M(X))∨ = M(X){dimX}. We obtain RΓH(M

∨(1)) = (RΓH(M))∨(−1).
We put

RΓwH := RΓw ◦ RΓH : DM
B,c(Q)→ Db(R)Q−det. (2.8)

The composition of these functors with η∗ : DM
B,c(Z) → DM

B,c(Q) will be de-
noted the same.

Finally, we recall the construction of the Deligne cohomology spectrum HD

[HS11]. We also sketch how to obtain similar spectra for Betti and de Rham co-
homology. The aim is (2.13), the Q-structure on Deligne cohomology groups of
general motives.

Let C be either the category SmG,an or Sm/Q. Consider simplicial presheaves
C(p) of pointed sets on C, for each p ≥ 0, together with a “product” map ·C : C(p)∧
C(p′)→ C(p+ p′). Moreover, we assume there is an element c1 ∈ C(1)(Gm), that
restricts to zero at the point 1 ∈ Gm (equivalently, a pointed map c1 : (Gm, 1) →
C(1)) such that for any two maps fi : U → Gm, U ∈ C, i = 1, 2,

f∗
1 (c1) ·C (f∗

2 (c1) ·C c′) = f∗
2 (c1) ·C (f∗

1 (c1) ·C c′). (2.9)

The element c1 is referred to as a bonding element . Under these assumptions, the

presheaves C(p) with the bonding maps Gm ∧C(p)
c1∧id
−→ C(1) ∧C(p)

·C−→ C(p+ 1)
form a symmetric Gm-spectrum C (where the Σp-action on C(p) is trivial). The
category of such spectra is denoted Spt(C). It is endowed with a model structure
whose homotopy category SH(Q) (or SH(Ran)) satisfies (cf. e.g. [Ayo10, Section 1]
for the analytic version):

HomSH(Σ∞(X ⊔ {∗}) ∧ Sn ∧G∧m
m , C) = πn+m+N (C(m+N)(X))

for any X ∈ C, and n,m ∈ Z and N ≫ 0, provided that

1. all levels C(p) are homotopy invariant: C(p)(−)→ C(p)(−×A1) (respectively,
−×(A1)an) is a weak equivalence,

2. all levels C(p) satisfy descent (with respect to the Nisnevich and the analytic
topology, respectively), and
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3. C is an Ω-spectrum. In the presence of the first two conditions, this is implied
by the bundle formula, which says that

⊕1
i=0p

∗
X(−) ·C p∗Gm

(c1)
i : ⊕πi+∗(C(p− i)(X))→ π∗(C(p)(X×Gm))

is an isomorphism, where pX , pGm
: X×Gm → X , Gm are the projections.

The spectra below are all obtained by putting C(p) := DK(τ≥0A(p)) for appropriate
complexes of abelian groups A(p). Here τ is the good truncation and DK the Dold-
Kan equivalence.

We now define four different (but isomorphic) spectra representing Betti coho-
mology with real coefficients by specifying the levels C(p) and the bonding elements
in C(1)(Gm). The product structure map on the level complexes is obvious for
these Betti cohomology spectra, and is strictly commutative and associative. For
any presheaf of abelian groups F on SmG,an, we define the Čech-complex in degrees
n ≥ 0

CnF (X) := lim
←−

F (Un+1).

The limit runs over the directed category of all open covers {Ui} of X ∈ SmG,an

and U := ⊔Ui. Given some involution ? : F → F , we write CGF for the subcomplex
consisting of elements that are fixed by Fr∗∞.

Let H
(1)
B,R be the spectrum whose levels are CG(R(p)[p]). To describe the bonding

element, we replace Gan
m by S1 (equipped with its usual topology). The inclusion

S1 ⊂ Gan
m is a homotopy equivalence, and an explicit description of a Čech cocycle

generating H1(Gan
m ,C) is left to the reader. As for S1, consider the standard covering

by U± = {z ∈ S1,±ℜ(z) > −0.5}. This covering is equivariant with respect to
z 7→ z. Frobenius Fr∞ acts on the Čech complex

R(1)(U+)⊕ R(1)(U−)→ R(1)(U+ ∩ U−) = R(1)2, (a, b) 7→ (v, w) := (b− a, b− a)

as (a, b) 7→ (a, b) and (v, w) 7→ (w, v). Hence (πi,−πi) ∈ R(1)(U+ ∩ U−) is a Fr∞-
invariant element which generates H1(Gan

m ,R(1))G. This determines the spectrum

H
(1)
B,R. It is well-known that H∗(C∗(R)(X)) = H∗(X,R). Thus

HomSH(Ran)(Σ
∞X,H

(1)
B,R(p)[n]) = Hn

B(X,R(p))(−1)p , (2.10)

where the superscript at the right denotes the subgroup of elements a satisfying
Fr∗∞(a) = (−1)pa. The complexes Tot(CG(E∗

R(p)[p])) and the bonding element
induced by the previous one via the inclusion R(1)[1] ⊂ E0

R(1)[1] yield a spectrum

H
(2)
B,R that is naturally isomorphic to H

(1)
B,R, since R→ E∗

R is a quasi-isomorphism of

sheaf complexes. Consider the spectrum H
(3)
B,R whose levels are the one of H

(2)
B,R, but

the bonding element is the 1-form

dz/z ∈ E1
R,P1(log {0,∞})→ C0E1

R(1)(G
an
m ) ⊂ Tot(C∗E∗

R(1))
1(Gan

m ).

Both H
(2)
B,R and H

(3)
B,R are Ω-spectra (the above bonding element and dz/z give the

same element in H1(Gan
m ,R(1)) by Cauchy’s residue formula). The identity map

between their level-0-complexes thus yields a canonical isomorphism of spectra (in

SH(Ran)). The complexes E∗,G
R (p)[p] (again ?G denotes invariants under Fr∗∞)

together with the bonding element dz/z form a spectrum denoted H
(4)
B,R. The obvious

quasi-isomorphism E∗,G
R = C0,GE∗

R → Tot(CGE∗
R) induces an isomorphism H

(4)
B,R →

H
(3)
B,R in SH(Ran). The purpose of the chain of isomorphisms H

(4)
B,R
∼= H

(1)
B,R is the

existence of H
(1)
B,Q, the obvious Q-linear variant of H

(1)
B,R. It induces a Q-structure

on the groups represented by H
(4)
B,R.
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As for de Rham cohomology, consider the complexes EF (p)G := cone(F pE∗ →
E∗)G[p− 1]. The product

(F pEn ⊕ En−1)⊗(F p′

En′

⊕ En′−1) → (F p+p′

En+n′

⊕ En+n′−1),

(f1, e1)⊗(f2, e2) 7→ (f1 ∧ f2, f1 ∧ e2)

is strictly associative, but in general commutative only up to homotopy [EV88,
Section 3]. However, putting c1 = (dz/z, 0) ∈ EF (1)(Gm) = (F 1E1 ⊕ E0)(Gm),

(2.9) clearly holds. We obtain a spectrum H
/F,an
dR ∈ SH(Ran). Using Fr∗∞-invariant

algebraic differential forms, i.e., Ω∗,alg,G instead of E∗,G, we get a similar spectrum

denoted H
/F,alg
dR ∈ SH(Q). For smooth X/Q, the obvious maps

Ω∗,alg(X)⊗QR→ Ω∗,alg(XR) = Ω∗,alg,G(XC)← Ω∗,G(X)→ E∗,G(X)

are filtered (with respect to the Hodge filtration) quasi-isomorphisms by flat base
change for Ω∗,alg, GAGA and [Bur94, Thm. 2.1]. We thus get an isomorphism

c∗an∗H
/F,an
dR = H

/F,alg
dR ⊗R in SH(Q). Here c : Spec R→ Spec Q.

Finally, the complex

D(p)G := cone(E∗,G
R (p)[p]→ EF (p)G)[−1] (2.11)

carries a product map ·D,α depending on some auxiliary parameter α ∈ R. It
is only commutative and associative up to homotopy (for each α). Again, c1 =
(dz/z, dz/z, 0) ∈ D(1)0(Gm) = (En+p

R (p) ⊕ F pEn+p ⊕ En+p−1)(Gm) satisfies (2.9)
(independently of α, see the multiplication table in loc. cit.). The resulting spectrum

HD sits in a distinguished triangle in SH(Ran), HD → H
(4)
B,R → H

/F,an
dR and thus, in

SH(Q),

c∗an∗HD → c∗an∗(H
(1)
B,Q⊗QR)→ H

/F,alg
dR ⊗QR→ c∗an∗HD[1]. (2.12)

From now on, we write HD for an∗c∗HD ∈ SH(Q). This is the spectrum estab-
lished in [HS11, Section 3], except for two inessential differences: instead of D(p),
loc. cit. used other complexes that are homotopic (including the product structure,
regardless of α) to D(∗). Secondly, the construction of loc. cit. builds a symmetric
P1-spectrum, but again this is inessential at the level of the homotopy categories,
since − ∧ P1 = − ∧ Gm ∧ S1

s , where S1
s is the simplicial sphere. By [HS11, Thm.

3.6],

HomDM
B

(Q)(M(X),HD(p)[n]) = HomSH(Q)(M(X),HD(p)[n]) = Hn
D(X, p)

for any X ∈ Sm/Q. For any M ∈ DM
B,c(Q), (2.12) induces an isomorphism

detH∗
D(M) = det c∗an∗H

(4),∗
B,R (M)⊗det−1 c∗an∗H

/F,an
dR (M)

=
(
det c∗an∗H

(1),∗
B,Q (M)⊗ det−1 H

/F,alg,∗
dR (M)

)
⊗QR. (2.13)

Here detH∗
D(M) := ⊗n∈Z det

(−1)n Hom(M,HD[n]) etc. is well-defined since M is
compact. This is the promised extension of (2.1) to Deligne cohomology groups of
general geometric motives.

Applied to the Betti realization, the exactness axiom (see Axiom 1.2(ii)) means

Hom(M,HB,R) = Hom(pH0(M),HB,R), for all M ∈ DM
B,c(Q) (2.14)

and likewise for de Rham cohomology. This implies that for any smooth projective
Xη/Q,

Hi
D(h

−b−1(Xη,−m)) =





Hb+1
D (Xη,m) i = 0 and b+ 1− 2m ≥ 0

Hb+2
D (Xη,m) i = 1 and b+ 1− 2m ≤ −2

0 else.

(2.15)
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2.2 Arakelov motivic cohomology

In order to formulate Conjecture 5.2 below, we need to recall some facts about
Arakelov motivic cohomology.

Theorem 2.3. [HS11, Sch12a] In DM
B

(Z), there is a unique map ch : 1→ η∗HD

representing the Chern class map from motivic cohomology to Deligne cohomology,
i.e.

HomDM
B

(Z)(M(X),1(p)[n])
ch(p)[n]
−→ HomDM

B

(Z)(M(X), η∗HD(p)[n])

agrees with the Chern class K2p−n(X)
(p)
Q → Hn

D(XQ, p) (also known as Beilinson
regulator) for all regular projective schemes X/Z. There is a certain, canonically
defined object 1̂ ∈ DM

B

(Z) called Arakelov motivic cohomology spectrum such
that there is a distinguished triangle

1̂
f
→ 1

ch
−→ η∗HD

δ
−→ 1̂[1]. (2.16)

Moreover, given another object 1̂′ in a similar triangle, there is a unique isomor-
phism 1̂ → 1̂′ in DM

B

(Z) fitting in the obvious commutative diagram of distin-
guished triangles.

Definition 2.4. Given a motive M ∈ DM
B,c(Z), its Arakelov motivic cohomology

is defined as
Ĥi(M,m) := HomDM

B

(Z)(M, 1̂(m)[i]).

We write Ĥi(X,m) := Ĥi(M(X),m). We also consider the R-linear variant of these

groups, denoted Ĥi
R(X,m), obtained by replacing 1 by 1R in (2.16). This amounts

to tensoring the motivic cohomology groups with R.

The triangle (2.16) induces long exact sequences

Ĥi
R(M,m)→ Hi(M,m)R → Hi

D(M,m)→ Ĥi+1
R (M,m). (2.17)

On the other hand, we have the notion of arithmetic K-theory. For a regular
and projective scheme X over Z, such groups K̂T

n (X) have been defined by Gillet
and Soulé for n = 0 and for higher n by Takeda [GS90b, Section 6], [Tak05, p. 621].
These groups sit in an exact sequence

Kn+1(X)→ ⊕p∈ZD(p)2p−n−1,G(X)/ imdD → K̂T
n (X)→ Kn(X)→ 0

where D(p)G is the complex defined in (2.11). Moreover, they come with a Chern

class map ch : K̂T
n (X)→ ⊕p∈ZD(p)2p−n,G(X). The group K̂n(X) := ker ch fits in a

long exact sequence

. . .→ ⊕p∈ZH
2p−n−1
D (X, p)→ K̂n(X)→ Kn(X)→ ⊕H2p−n

D (X, p)→ . . . (2.18)

The group K̂T
0 (X)Q is also isomorphic, via the arithmetic Chern class to⊕pĈH

p

GS(X)Q,

where ĈHGS denotes the arithmetic Chow group of Gillet and Soulé [GS90a, 3.3.4].
It is generated by arithmetic cycles (Z, gZ), i.e., cycles Z ⊂ X and Green currents,
i.e., such that ωZ := δZ −2∂∂gZ is a differential form. Here δZ is the Dirac current.
Under the arithmetic Chern class, the subgroup K̂0(X)Q ⊂ K̂T

0 (X)Q corresponds

to the subgroup ĈH∗(X) ⊂ ĈH
∗

GS(X) generated by arithmetic cycles (Z, gZ) such
that ωZ = 0 [GS90b, Thm. 7.3.4].

For a smooth schemeX over S ⊂ Spec Z, the resulting decomposition of K̂0(X)Q
in Adams eigenspaces is extended to higher K̂-theory [Sch12a, Cor. 6.2]: K̂n(X)Q
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decomposes as a direct sum of Adams eigenspaces ⊕K̂n(X)
(p)
Q , compatibly with

(2.18). In fact, this statement is derived from a canonical isomorphism

Ĥi(X,m) = K̂2m−i(X)
(m)
Q (= ĈHm(X)Q for i = 2m). (2.19)

Definition 2.5. Let S ⊂ Spec Z be an open subscheme and let M ∈ DM
B

(S)
be any motive. The natural pairing of motivic homology (see (1.2)) and Arakelov
motivic cohomology,

πM : H−2(M,−1)R×Ĥ
0
R(M)→ Ĥ2

R(1S , 1)

given by the composition of morphisms in DM
B

(S) is called Arakelov intersection
pairing.

Remark 2.6. (i) For M ∈ DM
B,c(S), we often tacitly identify H−2(M,−1) ∼=

H2(M∨, 1), cf. (1.4).

(ii) The Arakelov intersection pairing is functorial in M in an obvious sense.

(iii) Let M ∈ DM
B,c(S). Consider

Ĥ0
R(M) × H2

R(M
∨, 1) −→ Ĥ2(1, 1)

↓ ↑ ↓=

H0
R(M) × Ĥ2

R(M
∨, 1) −→ Ĥ2(1, 1)

↓ ↑ ↑∼=
H0

D(M) × H1
D(M

∨, 1) −→ H1
D(1, 1),

(2.20)

where in the first row (a : M → 1̂, b : M∨ → 1{−1}) is mapped to µ ◦ (a⊗b) ◦
coev, where the coevaluation 1→M⊗M∨ is obtained from (1.4), µ : 1⊗1̂→ 1̂

is the 1-module structure map for 1̂. This is just another way to write πM .
Likewise, the second row pairing is πM∨{−1}. The pairing in the third row is
defined similarly using the product of the ring spectrum µD : HD⊗HD → HD

instead. This diagram is commutative. This follows from the commutativity
of the following diagram, which in turn is a rephrasing of the fact that (2.16)
is a distinguished triangle of 1-modules.

1̂⊗1̂

id⊗f

��

f⊗id // 1⊗1̂

µ

��

1⊗HD[−1]
δ

oo

ch⊗id

��
1̂⊗1

µ // 1̂ HD[−1]
δ

oo HD⊗HD[−1].µD

oo

(iv) The pairing H0
D(M)×H1

D(M
∨, 1)→ R is a perfect pairing for anyM . It suffices

to see this for M = M(X)(p)[n] for X/Z regular and projective, in which case
it follows from the identification of Deligne cohomology with weak Hodge
cohomology (Lemma 2.2) and the duality of weak Hodge cohomology, (2.5).
This plays an important role in the compatibility of our L-values conjecture
with respect to the functional equation, see Theorem 5.5(ii).

Example 2.7. Consider a motive M = i∗N , where i : Spec Fp → Spec Z and
N ∈ DM

B,c(Fp) (for example M = M(Fp) = i∗i
∗1{−1}). The forgetful map

f : Ĥ0
R(M) → H0(M)R = H−2(N,−1)R is an isomorphism and the pairing πM

coincides with the natural pairing H−2(N,−1)R×H
−2(N,−1)R → H0(1Fp

, 0)R = R

followed by the pushforward i∗ : Ĥ0(1Fp
, 0)R → Ĥ2

R(1Z, 1), which is log p : R → R
[Sch12a, Theorem 6.4.(i)].
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Example 2.8. Let X be a regular projective scheme over S ⊂ Spec Z of constant
dimension d. We pick some open j : U ⊂ S such that XU is smooth over U . Let

M := M(X){m − d}[i] ∈ DM
B,c(S). Then H−2(M,−1) = Ki(X)

(m)
Q by absolute

purity. Let MU := j∗M ∈ DM
B,c(U). Consider

Ki(XU )
(m)
Q ×K̂−i(XU )

(d−m)
Q

∪ // K̂0(XU )
(d)
Q

fU∗ // K̂0(U)
(1)
Q

H−2(MU ,−1)×Ĥ
0(MU )

∼=

OO

πMU [−i] // Ĥ2(1U , 1) = R/
∑

p/∈U log pQ

∼=

OO

H−2(M,−1)×Ĥ0(M)

j∗

OOOOOOOO

πM[−i] // Ĥ2(1S , 1) = R/
∑

p/∈S log pQ

j∗
OOOO

In the first row, the pushforward fU∗ is not the pushforward on arithmetic K-
theory, but the one on arithmetic Chow groups using the arithmetic Chern class
isomorphism (2.19). The top square is commutative by [Sch12a, Thm. 7.4.]. The
bottom square is commutative by definition. See also Remark 5.7.

3 L-functions of motives over number rings

Let F be a number field and OF its ring of integers. For every finite prime p of
OF we fix a rational prime ℓ that does not lie under p. Moreover, fix for every ℓ an
embedding σℓ : Qℓ → C. All subsequent definitions of L-functions are taken with
respect to these choices.

Definition 3.1. The L-series of a mixed motive Mη over F is defined by

LF (Mη, s) :=
∏

p<∞

det
(
Id− Fr−1 ·N(p)−s|(Mηℓ⊗Qℓ,σℓ

C)Ip
)−1

.

The L-series of a geometric motive M over OF is given by

LSpec OF
(M, s) := L(M, s) :=

∏

p<∞

det
(
Id− Fr−1 ·N(p)−s|(i!pM)ℓ⊗Qℓ,σℓ

C
)−1

.

The first definition is classical, the second is a natural adaptation to motives over
OF . The products run over all finite primes of OF , Fr is the arithmetic Frobenius
map (given on residue fields by a 7→ aN(p)), N(p) is the norm of p, ip denotes the
immersion of the corresponding closed point and −ℓ denotes the ℓ-adic realization
functor, see (1.6). The determinants are understood in the sense of Section 1.1.
The superscript Ip denotes the invariants under the action of the inertia group.

Remark 3.2. By [Sch12b, Axiom 4.5.], the ℓ-adic realization Mηℓ is in fact an

ℓ-adic sheaf. For example, (h−b−1(Xη,−m))ℓ = Hb+1(Xη,Qℓ(m)) for some scheme
Xη over F .

The independence of the choices of ℓ and the embeddings σℓ is discussed around
Lemma 3.10. See also Theorem 4.3.

The L-series for motives over OF is multiplicative, i.e., given a triangle M →
M ′ →M ′′ in DM

B,c(OF ), one gets

L(M ′, s) = L(M, s) · L(M ′′, s).

A similar property does not hold for L-functions of motives over F [Sch91]. See
also [FPR94, 1.3.3].
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By definition and the calculation of ℓ-adic cohomology of P1
Fp

, one has

L(M(−m), s) = L(M,m+ s), m ∈ Z. (3.1)

For an open subscheme j : Spec OF \Z → Spec OF with complement i : Z →
Spec OF , the L-function of j∗j

∗M is the one of M , but the Euler factors for the
points in Z are omitted. This follows from i!j∗ = 0.

The following lemma is well-known, see [Del73, Prop. 3.8.(ii)] or [Neu92,
VII.10.4.(iv)] for similar statements. It permits to replace any number ring OF

by Z and to study L-values of motives over Z, only.

Lemma 3.3. The L-series is an absolute invariant of a motive, i.e., for any geo-
metric motive M over Spec OF we have LSpec OF

(M, s) = LSpec Z(f∗M, s), where
f : Spec OF → Spec Z denotes the structural map.

We now relate L-series of motives over Q to ones over Z. Recall the notion of
smooth motives from Definition 1.1. The following lemma is proven in [Sch12b,
Section 5.5] as a corollary of the exactness axiom for ℓ-realization functors (see
around (1.7)).

Lemma 3.4. Let M be a mixed smooth motive over U , where j : U → Spec Z[1/ℓ]
is an open subscheme. Let i be the complementary closed immersion to j and let
η′ and η be the generic point of U and Spec Z[1/ℓ], respectively. Then (i!j!∗M)ℓ =
i∗(R0η∗η

′∗Mℓ[1])[−1].

The following proposition relates L-series of motives over Q and Z. Our main
example is Mη = h−b−1(Xη,−m) and M = h−b(X,−m) where X/Z is some pro-
jective scheme whose generic fiber Xη/Q is smooth.

Proposition 3.5. Let Mη ∈ MM(Q). Pick some M ∈ MM(Z) with Mη =
η∗[−1]M . Then

LQ(Mη, s)
−1 = LZ(η!∗η

∗M, s).

Proof: For sufficiently small j : U → Spec Z, the right hand side is equal to

LZ(j!∗j
∗M, s)

3.4
=

(∏

p

det
(
Id− Fr−1 p−s|i∗p(R

0η∗η
∗Mℓ[1])[−1]

)
)−1

=
∏

p

det
(
Id− Fr−1 p−s|i∗pR

0η∗Mηℓ

)

=
∏

p

det
(
Id− Fr−1 p−s|(Mηℓ)

Ip
)
= LQ(Mη, s)

−1.

3.1 Hasse-Weil ζ-functions – Motives with compact support

Definition 3.6. (see e.g. [Ser65]) The Hasse-Weil zeta function of a scheme X/Z
(always separated and of finite type) is defined as ζ(X, s) :=

∏
x(1 − N(x)−s)−1.

The product is over all closed points x of X , and N(x) denotes the cardinality of
the (finite) residue field of x.

Recall from (1.1) the motive with compact support Mc(X) of some scheme X .

Proposition 3.7. For any scheme X/Z, we have

ζ(X, s) = L(Mc(X), s).
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Proof: Writing ip : Spec Fp → Spec Z and Xp := X×Fp, base-change implies
ip∗i

!
p Mc(X) = Mc(Xp). (At the right hand side, Xp is seen as a Z-scheme.) There-

fore, L(Mc(X), s) =
∏

p L(Mc(Xp), s). A similar decomposition for the ζ-function
allows us to assume that X is an Fp-scheme. The ℓ-adic realization functor satisfies
(f∗f

!1)ℓ = f!f
∗Qℓ. Grothendieck’s trace formula (see e.g. [Mil80, Sections VI.12,

13]) says

ζ(X, s) =

2 dimX∏

i=0

(
det
(
Id− Fr−1 ·p−s|Hi

c(X×Fp
Fp,Qℓ)

))(−1)i+1

= det(Id− Fr−1 ·p−s|f!f
∗Qℓ)

−1,

where Hi
c(X×Fp,Qℓ) = Hi(f!f

∗Qℓ) denotes ℓ-adic cohomology with compact sup-
port.

The L-series of a motive over Q is conjectured to be independent of the choice
of ℓ and σℓ in every factor (assuming p 6= ℓ). This is known for the individual Euler
factors at p if the motive is hi(Xη, n), where Xη is a variety with good reduction
at p, by Deligne’s work on the Weil conjectures [Del74, Th. 1.6]. From Proposition
3.7 we now immediately obtain another statement concerning independence of ℓ.

Definition 3.8. The smallest triangulated subcategory of DM
B,c(Z) containing

the motives M(X)(n) (n ∈ Z) of all regular schemes X which are projective and flat
over Z, and the image of i∗ : DM

B,c(Fp) → DM
B,c(Z) for all primes p, is called

DM
B,tr(Z) and called category of accessible motives. Its triangulated subcategory

generated by M(X)(n) where X is regular and projective, but not necessarily flat
over Z (such as a smooth projective X/Fp) is called the category of easily accessible
motives.

Remark 3.9. (i) By de Jong’s resolution of singularities using alterations, the
thick closure (i.e., closure under direct summands and triangles) of the cat-
egory of easily accessible motives contains the motives M(X)(n) of all X
schemes (of finite type) over Z. Therefore, this thick closure is the entire
category DM

B,c(Z) of geometric motives.

(ii) By the proof of [Sch12b, Prop. 5.6], DM
B,tr(Z) is contained in the trian-

gulated category generated by i∗DM
B,c(Fp) and motives of the form E :=

η!∗η
∗ h−b(X,−m), where X/Z is regular, flat and projective.

The following lemma shows that the question of independence of L-functions of
ℓ is solely about the behavior of L-functions under direct summands.

Lemma 3.10. For any easily accessible motive M over Z, the L-series L(M, s)
does not depend on the choices of ℓ (provided p ∤ ℓ) and σℓ.

Proof: Using (3.1), we may assume M = M(X) = Mc(X) for some X which is
projective over Z (and regular). Then the claim immediately follows from Proposi-
tion 3.7.

3.2 Meromorphic continuation and functional equation

Properties of L-series for motives over Q tend to generalize to ones over Z, given
that the property in question is known for motives over Fp. We illustrate this by
the absolute convergence, meromorphic continuation, and the functional equation.
Recall from [Del79, 5.2.] or [Sch88, p. 4] the definition of the archimedean Euler
factor L∞(V, s) for a mixed Hodge structure V . Essentially, L∞(V, s) is a product
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of Γ-functions. The pole order at s = 0 is given by ([Bĕı86, Lemma 7.1.] or [FPR94,
III.1.2.5 + III.1.2.3]):

ords=0 L∞(V, s) = − dimR H1
w(V

∨(1)). (3.2)

For V∗ ∈ Db
H, we put L∞(V∗, s) :=

∏
i∈Z L∞(Hi(V∗), s)

(−1)i . Here Hi(V∗) denotes
the i-th cohomology Hodge structure of the complex V∗.

Definition 3.11. Let M be a geometric motive over Z or a mixed motive over Q.
The function

L∞(M, s) := L∞(RΓH(M), s)

is called the archimedean factor of the L-function of M . Here RΓH is the Hodge
realization functor (2.7). The completed L-function of M is defined as

Λ(M, s) := L(M, s)L∞(M, s).

Much the same way as L-functions of motives over Q, archimedean factors are
not multiplicative with respect to short exact sequences of Hodge structures. (See
[FPR94, 1.1.9, 1.2.5] for a necessary and sufficient criterion for multiplicativity.)

The following is a long-standing conjecture concerning L-functions [Del73],
[Del79, 5.2, 5.3] or [FPR94, p. 610, 699]:

Conjecture 3.12. Let Mη be a mixed motive over Q. The L-series LQ(Mη, s)
converges absolutely for ℜ(s) ≫ 0 and has a meromorphic continuation to the
complex plane. There is a functional equation relating the Λ-functions of Mη and
M∨

η (−1):
Λ(Mη, s) = ǫ(M, s)Λ(M∨

η (−1),−s),

where ǫ(M, s) is of the form abs, with nonzero constants a and b depending on M .

Lemma 3.13. Conjecture 3.12 implies the following: for any accessible motive M
over Z (Definition 3.8), the L-series L(M, s) converges absolutely for ℜ(s) ≫ 0,
has a meromorphic continuation to the complex plane, and there is a functional
equation Λ(M, s) = ǫ(M, s)Λ(M∨(−1),−s), where ǫ(M, s) is of the form abs, with
nonzero constants a and b depending on M .

Proof: The claim is triangulated, since the assignments M 7→ L(M, s), and
M 7→ L∞(M, s)/L∞(M∨(−1),−s) are multiplicative for M ∈ DM

B,c(Z), the latter
up to sign [FPR94, Prop. III.1.2.8]. By Remark 3.9(ii), it is enough to show the
claim for M = i∗N , N ∈ DM

B,c(Fp) and M = E := η!∗η
∗ h−b(X,−m), where X/Z

is regular, flat and projective. For M = E, we have L(M, s) = LQ(h
−b−1(Xη), s)

−1.
This and the formula (5.2) for M∨(−1) in this case shows that the conjectural
(see 3.12) properties of LQ(h

−b−1(Xη), s) implies the same properties for L(M, s).
The L-series of M = i∗N is a rational function in p−s (a priori with complex
coefficients), which immediately yields the convergence for ℜ(s)≫ 0 and the mero-
morphicity. Noting that (i∗N)∨{−1} = i∗(N

∨), the functional equation also holds
unconditionally, as is well-known.

Remark 3.14. Under Conjecture 1.5 the constant a above is rational for M = i∗N ,
where i : Spec Fp → Spec Z. To see this, we may assume by triangulatedness that
N is a pure motive with respect to numerical or homological equivalence, so that its
L-function is a rational function in p−s with rational coefficients (see the reference
in the proof of Theorem 5.20).
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4 Is the Arakelov intersection pairing perfect?

Conjecture 4.1. For any geometric motive M over Z, M ∈ DM
B,c(Z) (see Section

1.2 for the notation), the Arakelov intersection pairing between motivic homology
and Arakelov motivic cohomology (Definition 2.5)

πM : H−2(M,−1)R×Ĥ
0
R(M)→ R (4.1)

is a perfect pairing of finite-dimensional R-vector spaces.

Remark 4.2. (i) The shape of (4.1) is similar to the situation of étale con-
structible sheaves over Spec Z: thinking of M ∈ DM

B,c(Z) as being anal-
ogous to a complex of constructible sheaves F over Z, the groups H∗

D(M)
correspond (in spirit) to the Tate cohomology groups H∗

Tate(R,F|R) at the

archimedean place. Given that, Ĥi(M) parallels Hi
c(F) := HiRΓc(Z,F),

that is to say, cohomology with compact support, which is defined via
RΓc := cone[−1] (RΓ(Z,F)→ RΓTate(R,F|R)), much the same way as (2.16),
(2.17). Finally, the Arakelov intersection pairing corresponds to the perfect
pairing of Artin-Verdier duality, see e.g. [Mil06, Ch. II.3]

Hi
c(Z,F)×Ext3−i

Z (F ,Gm)→ H3
c(Z,Gm).

A higher-dimensional extension was conjectured by Milne [Mil06, Conjecture
II.7.17] and proven by Geisser [Gei10].

(ii) For any fixedM ∈ DM
B,c(Z), Conjecture 4.1 for allM [k] (k ∈ Z) is equivalent

to the one for M∨{−1}[k]. This follows from Remark 2.6(iii), (iv) and the five
lemma.

(iii) Gillet and Soulé conjecture that the intersection product

ĈH
m

GS(X)R×ĈH
d−m

GS (X)R → R (4.2)

is non-degenerate for any regular scheme X that is projective and flat over Z
of constant dimension d [GS94, Conjecture 1]. By Example 2.8, at least for
X smooth, this pairing is compatible with the Arakelov intersection pairing
πM(X){m−d}, i.e., there is a commutative diagram of pairings,

0 → Ĥ0(M) = ĈHm(X)R → ĈH
m

GS(X)R
ω
→ imω → 0

× × ×

0 ← H−2(M,−1) = CHd−m(X)R ← ĈH
d−m

GS (X)R ← im a ← 0
↓ ↓ ↓
R R R

where ω : ĈH
m

GS(X)→ Am,m(X) and a : Ad−m−1,d−m−1(X)/(im ∂ + im ∂)→

ĈH
d−m

GS (X) are defined in [GS90a, Section 3.3.4]. I don’t know whether the
pairing on the right is a non-degenerate pairing, so the relation of Gillet-Soulé’s
conjecture and 5.2 is unclear. Note that imω and im a are infinite-dimensional
R-vector spaces.

Next, we show that Conjecture 4.1 recovers all the axioms on mixed motives over
Fp we were willing to assume. Previously, it was known that Tate’s conjecture about
the pole order of ζ-functions over finite fields and Conjecture 1.5 together imply the
Beilinson-Parshin conjecture [Gei98, Thm. 1.2.], and that the Beilinson-Parshin
conjecture is equivalent to Bondarko’s weight functor DMeff

gm(Fp)→ Kb(Meff
rat) be-

tween the triangulated category of effective motives with the bounded homotopy
category of effective Chow motives (with rational coefficients) being an equivalence
of categories [Bon09, Section 8.3.2].
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Theorem 4.3. Conjecture 4.1 for motives of the form M = i∗N (N any geometric
motive over Fp, i : Spec Fp → Spec Z) is equivalent to the conjunction of Conjecture
1.5 and the Beilinson-Parshin conjecture stating

Kr(X)Q = 0 (4.3)

for any smooth projective variety X over Fp and all r > 0.
Under the axioms concerning the existence and cohomological dimension of

mixed motives over Fp and the weight formalism (see Axiom 1.2), Conjecture 4.1
for all motives i∗N is equivalent to Conjecture 1.5.

Proof: Using the axioms about mixed motives, we first show that Conjecture
1.5 implies the perfectness. By construction, cf. (2.17), Ĥ∗

R(i∗N) = H∗(N)R. By
[Sch12b, Axiom 4.1.], the cohomological dimension of DM

B,c(Fp) is zero, so that
Hj(N) = H0(pHjN) and similarly for N∨. By the same axiom, only finitely many
j yield a non-zero term. Therefore, we may replace N by pHjN and assume that
N is a mixed motive. Using the weight filtration we reduce to the case where N is
a pure motive. Under Conjecture 1.5, all adequate equivalence relations agree, so
we may regard N as a Chow motive or as a pure motive with respect to numerical
equivalence. By the semi-simplicity of pure numerical motives there is a decompo-
sition N = 1r ⊕ R, where R satisfies H0

DM
B,c(Fp)

(R∨) = H0
DM

B,c(Fp)
(R) = 0. By

functoriality of the pairing we get a commutative diagram

H0(N)R × H0(N∨)R −→ R
↓∼= ↑∼= ↓=

H0(1r)R × H0(1r)R −→ R

The lower line is a perfect pairing, since the one for 1Fp
is by Example 2.7.

We now show the second statement. Let X be a smooth equidimensional pro-
jective variety over Fq. We regard it as a Z-scheme. By Example 2.7, the Arakelov
intersection pairing

K̂2m−k(X)(m)×Kk−2m(X)
(dimX−m)
Q = K2m−k(X)

(m)
R ×Kk−2m(X)

(dimX−m)
R → R

is the usual multiplication on Adams eigenspaces in K-theory, followed by the mul-
tiplication with log p (which is irrelevant for the question of the perfectness). For
2m−k > 0 the second factors vanishes, hence the perfectness is equivalent to (4.3).
For 2m = k is perfectness is equivalent, by definition, to the agreement of numerical
and rational equivalence (up to torsion). This shows one implication of the second
statement. By resolution of singularities, the category DM

B,c(Fp) is generated as a
thick category by motives M(X)(m) as above. Since the perfectness only has to be
checked on such generators, we are done with the converse implication as well.

The following corollary was pointed out to me by Bruno Kahn.

Corollary 4.4. The perfectness of πM for all motives M = i∗N implies a canonical
equivalence DM

B,c(Fp) = Db(Mrat(Fp)), which in turn implies among other things
the independence of L-functions of ℓ.

Proof: That description of DM
B,c(Fp) is a consequence of ∼num=∼rat and the

Beilinson-Parshin conjecture [Kah05, proof of Theorem 56].

We now give some interesting consequences of Conjecture 4.1 for motives which
are truly motives over Z, i.e., not coming from a motive over Fp. It would be
interesting to know whether other axioms on mixed motives over Q, such as the
agreement of homological and numerical equivalence on smooth projective varieties
Xη/Q can be derived from Conjecture 4.1.

22 90



Theorem 4.5. As in Example 2.8, consider the motive M = M(X){m−d}[p−2m],
X/Z regular, flat, projective and of equidimension d. Then Conjecture 4.1 for M
is equivalent to the Beilinson-Soulé vanishing conjecture

K2m−p(X)
(m)
Q = 0 (for p < 0 and for p = 0, m > 0).

Proof: The group Ĥ0(M) appears in the long exact sequence

. . .→ H−1
D (M) = H2d−p−1

D (X, d−m)→ Ĥ0(M)→ H0(M) = Kp−2m(X)(d−m)

︸ ︷︷ ︸
=0

→ . . .

where the right hand vanishing is because p− 2m < 0 for p < 0 and p = 0, m > 0.
The left hand vector space is dual to Hp

D(X,m) by (2.5) (note that d = dimXC+1).
It vanishes for p < 0 for trivial reasons. For p = 0, the short exact sequence (2.3)
gives H0

D(X,m) = 0 for m > 0. Indeed, the Hodge structure on H0
dR(X) only

lies in the (0, 0)-part of the Hodge diamond, i.e., Fm = 0 for m > 0. Hence

the injectivity of H0
B(X,R(m))→ H0

B(X,C)
∼=
→ H0

dR(XC) gives the claim. Therefore
Conjecture 4.1 forM is equivalent to H−2(M,−1) = H2m−p−2(M(X){m−d},−1) =

K2m−p(X)
(m)
R = 0.

Example 4.6. Using the notation of Theorem 4.5, the group H−2(M,−1) vanishes
for 2m− p < 0. Therefore, 4.1 asserts that the Chern class map

H0(M)R = Kp−2m(X)
(d−m)
R → H0

D(M) = H2d−p
D (X, d−m) (4.4)

is injective for p − 2m > 0 and an isomorphism for p − 2m > 1. In particular,
the non-torsion part of higher K-theory of X is finitely generated—a weakening of
Conjecture 5.1.

Proposition 4.7. Assuming the existence of motivic t-structure on DM
B,c(Z) such

that Betti and de Rham realization are exact (see Axiom 1.2(ii) and (2.14)), the
perfectness of the Arakelov intersection pairing for all motives M ∈ DM

B,c(Z)
implies that the cohomological dimension of mixed motives over Z is two, i.e.,
Hom(1[1],M [n]) = 0 for any n > 2 and M ∈MM(Z).

Proof: Let M be a mixed motive. The group H1−n(M,−1)R = Hom(1[1 −
n](−1),M)R is zero for n < 0: in this case 1[1−n] lies in degree n < 0 (with respect
to the motivic t-structure). On the other hand this group is dual, via πM [n−3], to

Ĥ3−n
R (M). In (2.17), this group lies between H3−n

R (M) which vanishes for n > 2 for
the same reason and the Deligne cohomology group H3−n

D (M) = Hom(M,HD[3−n])
which in turn vanishes by exactness of Betti and de Rham realization, except for
n = 1, 2, as in (2.15). Consequently, H1−n(M) = 0 except for n = 0, 1, 2.

Lemma 4.8. Under Conjecture 4.1, Hi(M) is nonzero only for finitely many i ∈ Z.

This is a consequence of the spectral sequence Ha(pHb(M)) ⇒ Ha+b(M), the
boundedness of the motivic t-structure and of the cohomological dimension [Sch12b,
Axiom 4.1.]. It also follows from the perfectness of the Arakelov intersection pairing
(not using the axioms on mixed motives):

Proof: It suffices to check the claim forM = M(X)(m), whereX is as in Example
4.6 and m ∈ Z, since these objects generate DM

B,c(Z) as a thick category by
resolution of singularities. Now, the claim follows as in Proposition 4.7 using the
vanishing Kk(X) for k < 0 and the vanishing of almost all Deligne cohomology
groups of X .
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5 Are special L-values given by the Arakelov in-

tersection pairing?

Throughout this section, let M be any geometric motive over Z. In this chapter,
wherever ranks of motivic cohomology groups are involved, we assume that the Bass
conjecture holds up to torsion:

Conjecture 5.1. For any regular scheme X/Z, dimQ Ki(X)Q <∞.

We need the following consequence (by resolution of singularities): motivic co-
homology of all geometric motives over Z is finitely generated.

By [Sch12b, Axiom 4.1.] (see also Lemma 4.8) and (2.17) only finitely many

Hi(M) and Ĥi(M) are nonzero as i ∈ Z varies. Thus, the Euler characteristic

χ(M) :=
∑

i

(−1)i dimHi(M) (5.1)

and similarly χ̂(M), χD(M) are well-defined. We write detH∗ := ⊗i∈Z det
(−1)i Hi

for any bounded family Hi of finite-dimensional vector spaces, such as Hi(M) etc.
The determinant of Arakelov motivic cohomology groups carries a Q-structure by
the isomorphism induced by (2.13) and (2.17),

det Ĥ∗
R(M) =

(
detH∗(M)⊗det−1 H∗

B,Q(M)⊗ detH
/F,alg,∗
dR (M)

)
⊗QR.

Conjecture 5.2. The order of the L-function of M (Definition 3.1) is given by

ords=0 L(M, s) = −χ(M∨(−1)).

As usual, negative orders mean a pole, positive ones a zero of the L-function. More-
over, assuming the perfectness of the Arakelov intersection pairings πM [k] (Definition
2.5) for all k ∈ Z asserted by Conjecture 4.1, the special L-value is given by

L∗(M, 0) ≡ 1/ΠM (mod Q×).

Here ΠM means the following: the perfectness of the Arakelov intersection pairing
yields a map

detH−2+∗(M,−1)R⊗det Ĥ∗
R(M)→ R.

The Q-structure on the left maps to a real number denoted ΠM . Note that ΠM is
well-defined up to multiplication by a non-zero rational number.

Notation 5.3. For a projective flat scheme X/Z with smooth generic fiber
Xη/Q, we write E := η!∗η

∗ h−b(X,−m) ∈ MM(Z) and Mη = η∗[−1]E =

h−b−1(Xη,−m) ∈ MM(Q). The definition of E is recalled in Section 1.2. In
particular, whenever E is considered, we need to assume the axioms on mixed mo-
tives mentioned in Section 1.2. The motive E only depends on Xη, not on X . It is
pure of weight w := wt(E) = 2m − b. Putting d := dimX and dη = dimXη, the
dual

E∨ = (η!∗η
∗ h−2d+4+b(X, 1− d+m))[−2] (5.2)

is pure of weight −w, while Mη is pure of weight w − 1.

Under Conjecture 4.1, the pole order conjecture is equivalent to

ords=0 L(M, s) = −χ̂(M).

We expound some structural properties of the conjecture. In order to state the
compatibility with the functional equation, we shall need the following conjecture
due to Deligne. It implies the compatibility of the L-values conjecture for critical
pure motives Mη over Q (i.e., motives such that Hi

w(Mη) = 0, i = 0, 1) with the
functional equation [Del79, Theorem 5.6].
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Conjecture 5.4. [Del79, Conjecture 6.6] Let M be a pure motive over Q with
respect to homological equivalence, i.e., a direct summand in Mhom(Q) of h(Xη,m)
where Xη/Q is smooth projective. Assume that M is of rank one, that is to say, its
Betti realization (or, equivalently, de Rham or ℓ-adic realization) is one-dimensional.
ThenM is of the formM(ǫ)(n), where n is an integer and ǫ : Gal(Q)→ Q× is a finite
character and M(ǫ) denotes the Dirichlet motive attached to the one-dimensional
representation, ǫ, of Gal(Q) (loc. cit.).

Theorem 5.5. (i) Conjecture 5.2 is triangulated: given a distinguished triangle
M1 →M2 →M3 in DM

B,c(Z), the conjecture predicts

L∗(M1, 0)L
∗(M3, 0) = L∗(M2, 0)

and additively with the pole orders. In particular, the subcategory of DM
B,c(Z)

of motives for which the conjecture holds is triangulated.

(ii) Assume Deligne’s Conjecture 5.4, Conjecture 1.5 (∼rat=∼num), the functional
equation for completed L-functions over Q (Conjecture 3.12) and 4.1. Then
Conjecture 5.2 for any accessible motive M (Definition 3.8) is equivalent to
the one for M∨{−1}.

Note that accessible motives generate DM
B,c(Z) as a thick category (Remark

3.9).

Proof: (i): The pole order additivity is clear. The multiplicativity of the spe-
cial values formula follows easily by considering the long exact sequences made of
Ĥ∗

R(Mi) and H∗(M,−1)R. By construction, the Q-structure on Arakelov motivic

cohomology is triangulated, i.e., there is a canonical isomorphism det Ĥ∗
R(M2) =

det Ĥ∗
R(M1)⊗det Ĥ∗

R(M3) of R-vector spaces, respecting the Q-structure.
(ii): By Remark 3.9(ii), it is enough to show the claim for all M contained in the

triangulated subcategory ofDM
B,c(Z) generated by the image of i∗ : DM

B,c(Fp)→
DM

B,c(Z) for all primes p and motives E as in Notation 5.3.
We put ord := ords=0 and χa

w(M) :=
∑

i∈Z(−1)
i dimHa

w(H
i(RΓH(M)) for a =

0, 1, where RΓH denotes the Hodge realization functor defined in (2.7). Conjecture
5.2 for M , ordL(M, s) = −χ(M∨(−1)), is equivalent to

ordΛ(M)
(3.2)
= ordL(M)− χ1

w(M
∨(−1))

= −χ(M∨(−1))− χ1
w(M

∨(−1))
4.1
= −χ̂(M)− χ1

w(M
∨(−1))

(2.5)
= −χ(M) + χD(M)− χ0

w(M)

= −χ(M)− χ1
w(M)

Indeed, χD(M) = χ0
w(M)−χ1

w(M) (at least) for all M as in the claim: for M = E,
this follows from (2.4), (2.6), and (2.15), while for M = i∗N , these terms are
zero. By Lemma 3.13, the functional equation for mixed motives over Q implies
the one for motives over Z, so that ordΛ(M∨(−1)) = ordΛ(M). Again invoking
the pole order calculation of L∞-functions we get ordL(M∨(−1)) = −χ(M), that
is, the conjectural prediction of the pole order of L(M∨(−1)). This settles the
compatibility of the pole order prediction with the functional equation.

As for the special L-values, the claim is again triangulated. For motives M =
i∗N , where i : Spec Fp → Spec Z and N is any geometric motive over Fp we have
M∨{−1} = i∗N

∨. The functional equation reads L(i∗N, s) = absL(i∗N
∨,−s), with

a and b in Q× (Remark 3.14; this uses the agreement of numerical and homological
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equivalence, implied by Conjecture 1.5.) On the other hand Πi∗N ≡ Πi∗N∨ mod Q×

by Example 2.7.
To check the claim for M = E as above, we may assume X is of equidimension

d. Each individual Deligne cohomology group Hr
D(E) carries the Q-structure men-

tioned in (2.2). We can assume w := wt(E) = 2m− b ≤ 2, since otherwise we can
replace E by E∨(−1)[2]. Let Mη := η∗M [−1] = h−b−1(Xη,m), where Xη is the
generic fiber of X . For w = 2, the hard Lefschetz axiom implies an isomorphism
E ∼= E∨(−1)[2] (see (5.10)), so that there is nothing to show in that case. Let now
w ≤ 1. We write L∗(−) := L∗(−, 0). Deligne’s conjecture 5.4 implies (see loc. cit.)

L∗(E)

L∗(E∨(−1))

3.5
=

L∗(M∨
η (−1))

L∗(Mη)

5.4
≡

a1
a2

mod Q×

where a1 is an element in the Q-lattice of detH0
D(E

∨(−1))(= R) given by the Q-
structure on this Deligne cohomology group, and a2 is an element in the Q-lattice
of det−1 H1

D(E), regarded as an element of det H0
D(E

∨(−1)) using the isomorphism
H1

D(M
∨
η (−1))

∨ → H0
D(Mη), cf. (2.5). In other words, the isomorphism detH1

D(E)→
detH0

D(E
∨(−1)) is multiplication by a1/a2 with respect to the Q-structures on both

sides.
For r 6= 1, the group Hr

D(E) and itsQ-structure is trivial, since the corresponding
Betti and (truncated) de Rham cohomology groups vanish. Therefore there is a
canonical isomorphism

detH∗
D(E) ∼= det−1 H1

D(E) (5.3)

(including the Q-structure). Thus

det Ĥ∗
R(E)⊗ detH∗(E,−1)R = detH∗(E)R⊗det−1 H∗

D(E)⊗ detH∗(E∨, 1)R
∼= detH∗(E)R⊗det−1 HD(E

∨(−1))⊗ detH∗(E∨, 1)R

= detH∗(E
∨)R⊗det Ĥ∗

R(E
∨, 1)

Both the left hand side and the last term on the right hand side map to R via the
Arakelov intersection pairings for E and E∨{−1}, respectively. The two pairings are
compatible with the isomorphism by the commutativity of (2.20). By Conjecture
5.2 for E, the image of the Q-structure on the left hand side is L∗(E)−1, while the
one from the right hand side is, by 5.2, just 1/L∗(E∨(−1)). Hence the two cases of
the conjecture are equivalent.

In the remainder of this paper, we show how certain special cases of 5.2 are
related to conjectures of Beilinson, Soulé, and Tate. In order to formulate our main
result as succinctly as possible, we formulate the following

Conjecture 5.6. For the motive E defined in Notation 5.3 with w := wt(E) =

2, the Arakelov intersection pairing πE[−2] : H0(E,−1)×Ĥ2(E) → R agrees with
Beilinson’s height pairing (5.6).

Remark 5.7. By Theorem 1.3 and (2.15), we know H0(E,−1) = CHd−m(Xη)Q and

Ĥ2(E) = H2(E) = CHm(Xη)Q (cf. the proof of Proposition 5.16), so this conjecture
only concerns the pairing itself. Moreover, (5.6) is induced by the Gillet-Soulé
intersection pairing

CHd−m(X)Q×ĈH
m(X)Q → ĈHd(X)Q

f∗
−→ ĈH1(Z) = R,

which in turn is induced by (4.2). As mentioned in Example 2.8, this pairing
agrees with the Arakelov intersection pairing for M(X){−m} at least up a Q-linear
combination of log pi, where pi are the primes such that the restriction of X is
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smooth over Z[1/
∏

pi]. It is worth mentioning that this comparison is an entirely
formal consequence of the use of stable homotopy category. Its definition as the
homotopy category of spectra of simplicial presheaves on smooth schemes yields
immediate comparison results such as [Sch12a, Thm. 7.4] for smooth schemes, but
not easily for other schemes. Therefore, it is a natural idea to overcome this hurdle
by studying (Arakelov) motivic cohomology for log-smooth schemes. By de Jong’s
resolution of singularities, motives of all log-smooth Z-schemes should generate a
category of motives of logarithmic schemes over Z. This would allow to bypass
Conjecture 5.6. I plan to return to this question in a subsequent paper.

The following two theorems summarize the remainder of this paper: under
standard assumptions on motives and their L-functions, it shows that Beilinson’s,
Soulé’s, and Tate’s conjectures are essentially equivalent to the conceptual reformu-
lation made possible by the use of the Arakelov intersection pairing.

Theorem 5.8. The following are equivalent:

(i) The conjecture of Soulé (5.11), restricted to regular, projective (but not nec-
essarily flat) schemes.

(ii) The restriction of the pole order formula (Conjecture 5.2) to the category of
easily accessible motives (Definition 3.8).

Proof: This follows immediately from Theorem 5.12 by Theorem 5.5.

By Remark 3.9, the thick closure of the category of easily accessible motives is
the entire category DM

B,c(Z). Thus, the pole order formula of Conjecture 5.2 can
be regarded as an extension of Soulé’s conjecture to direct summands.

Theorem 5.9. We assume the existence of mixed motives as formulated in Axiom
1.2 and the agreement of Beilinson’s height pairing with the Arakelov intersection
pairing (Conjecture 5.6). Moreover, in order to incorporate the compatibility of L-
values with respect to the functional equation, we assume Deligne’s conjecture 5.4
on rank one motives, and the functional equation for completed L-functions over Q
(Conjecture 3.12). Finally, we assume that the pole order formula of Conjecture
5.2 holds for all motives in DM

B,c(Z).
Then, the following are equivalent:

(i) The conjunction of the conjectures of Beilinson (L-values and ∼num=∼rat,
5.14, 1.5), and Tate (5.19).

(ii) The restriction of the conjunction of the perfectness of the Arakelov intersec-
tion pairings (Conjecture 4.1) and the special L-values formula (Conjecture
5.2) to the subcategory DM

B,tr(Z) ⊂ DM
B,c(Z) of accessible motives (Defi-

nition 3.8).

Proof: By Remark 3.9(ii), DM
B,tr(Z) is contained in the triangulated category

generated by motives M = E as in Notation 5.3, and motives of the form M = i∗N ,
N ∈ DM

B,c(Fp), i : Spec Fp → Spec Z. For the latter type of motives, Conjecture
4.1 is equivalent to Conjecture 1.5 by Theorem 4.3 and 5.2 is equivalent to the Tate
conjecture by Theorem 5.20.

The subcategory of DM
B,c(Z) of motives M for which all pairings πM [k] are

perfect is triangulated since motivic and Arakelov motivic cohomology behave well
under triangles. Moreover, 4.1 forM(∈ DM

B,tr(Z)) is equivalent to 4.1 forM
∨{−1}

by Remark 4.2(ii). In a similar vein, Conjecture 5.2 is stable under distinguished
triangles, and 5.2 for M is equivalent to 5.2 for M∨{−1} (Theorem 5.5).
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To finish (i) ⇒ (ii), using the calculation of E∨{−1} in (5.2), we therefore only
need to consider M = E with w := wt(E) = 2m − b ≤ 2. Beilinson’s pole order
conjecture for Mη, 5.14(A), is equivalent (see (5.14)) to

ords=0 L(E, s) = −χ(E∨(−1)) + dimH1(E∨(−1)). (5.4)

By assumption, L(E, s) = −χ(E∨{−1}) = −χ(E∨(−1)), so that we get H1(E∨(−1)) =
0. Using this vanishing, part (B) of Beilinson’s conjecture is equivalent to the
perfectness of the intersection pairings πE[k], k ∈ Z (with w = wt(E) ≤ 2), by
Proposition 5.16. This shows that 1.5, 5.11, and 5.14(B) together imply 4.1 for all
M ∈ DM

B,tr(Z). Then parts (A), (C) of Beilinson’s conjecture are equivalent to
5.2 for all motives of the form E (of weight ≤ 2), by Theorem 5.18.

The converse implication (ii) ⇒ (i) is shown using the same arguments.

Remark 5.10. It is natural to ask for the equivalence of the following two state-
ments:

(i) The conjectures of Beilinson, Soulé, and Tate (5.14, 1.5, 5.11, 5.19).

(ii) The restriction of Conjectures 4.1 and 5.2 to the category of accessible motives.

Under the assumptions of 5.9, except for the pole order formula assumption, the
above proof does show (ii)⇒ (i). The latter addditional assumption is only needed
to prove the converse, and is actually only needed for motives of the form M = E
as above. Moreover, it holds unconditionally if M(Xη) is an Artin-Tate motive
(Theorem 1.4). The vanishing H1(E∨(−1)) = 0 also follows from the Soulé+Tate
conjecture if one can show E ∈ DM

B,tr(Z), which in its turn would follow if the
motivic t-structure on DM

B,c(Z) restricts to a t-structure on DM
B,tr(Z). In this

case, the proof of [Sch12b, Prop. 5.6] referred to in Remark 3.9(ii) could be adapted
to DM

B,tr(Z).

5.1 Relation to a conjecture of Soulé

Conjecture 5.11. (Soulé, [Sou84, Conjecture 2.2.]) Let Y/Z be quasiprojective.
Let m ∈ Z be arbitrary. Then

ords=m ζ(Y, s) =
∑

i≥0

(−1)i+1 dimQ K ′
i(Y )(m),Q (5.5)

We refer to loc. cit. for the definition of the Adams eigenspace K ′
i(Y )(m),Q. For Y

regular, it agrees with Ki(Y )
(dimY −m)
Q .

Soulé’s conjecture extends a previous conjecture of Tate [Tat65, p. 105]. A
formally similar conjecture was also expressed by Lichtenbaum [Lic84]. The right
hand side of (5.5) makes sense under the Bass conjecture 5.1 and the vanishing of
almost all K ′-groups, which in turn is a consequence of [Sch12b, Axiom 4.1.]. See
also Lemma 4.8. As the thick closure of DM

B,tr(Z) is all of DM
B,c(Z), the follow-

ing statement can be paraphrased by saying that Soulé’s conjecture is essentially
equivalent to the pole order part of Conjecture 5.2. This proof does not make use
of mixed motives.

Theorem 5.12. Conjecture 5.11 for Y and m is equivalent to the pole order pre-
diction of Conjecture 5.2 for M = Mc(Y )(−m).

Proof: Proposition 3.7 says ζ(Y, s+m) = L(Mc(Y )(−m), s). The statement for
Y is implied by the conjunction of the one for some open subscheme U of Y and Z :=
Y \U , since Adams eigenspaces in K ′-theory have a localization sequence [Sou84,
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1.3.], and motives with compact support behave well: Mc(Z)→ Mc(Y )→ Mc(U) is
a distinguished triangle. In particular we may assume that Y is integral. Thus, there
is an open affine subscheme U of Y that is either smooth over Z or over some Fp:
if Y/Z is flat, one can take an open neighborhood of a smooth point of the generic
fiber of Y , otherwise Y lies over some Spec Fp and one can take a neighborhood of
a smooth point of Y . Let f : Y → Z be the projection. By Noetherian induction,
we may replace Y by U and hence assume Y is regular and affine of dimension d,
so that (Mc(Y )(−m))∨{−1} = f!f

∗1(m){−1} = f!f
!1(m){−d} by purity. Hence

χ((Mc(Y )(−m))∨{−1}) = χ(M(Y )(m− d)[−2d])

=
∑

i∈Z

(−1)i dimHi+2d(Y,m− d)

=
∑

i∈Z

(−1)i dimKi(Y )
(d−m)
Q .

Example 5.13. We continue Examples 2.8 and 4.6 and look at the special values
of the ζ-function of X : by Proposition 3.7 we have L(M, s) = ζ(X, s+ d−m). The
Arakelov intersection pairing πM [i] concerns the following groups

0 × 0 i ≤ −1

K0(X)
(m)
R × Ĥ0

R(M) i = 0

K1(X)
(m)
R × cokerK0(X)

(d−m)
R → H

2(d−m)
D (X, d−m) i = 1

Ki(X)
(m)
R × H

2(d−m)+i−1
D (X, d−m) i > 1.

The pairing for i ≥ 1 is given by the Chern classKi(X)
(m)
R → H2m−i

D (X,m) together
with the cup product on Deligne cohomology, followed by the push-forward f∗ :
H2d−1

D (X, d) → H1
D(U, 1) = R. I expect that the group Ĥ0

R(M) is isomorphic to

CHd−m(X)R and that the pairing πM is the natural pairing of (arithmetic) Chow
groups (cf. Remark 5.7). We do know that these two pairings agree up to a Q-linear
combination of log

∏
pi, where pi are the primes such that the restriction of X is

smooth over Z[1/
∏

pi].
These pairings assemble to a map

⊗
πM [i] :

⊗

i

det(−1)i(H−2−i(M,−1)R⊗Ĥ
i
R(M))

∼=
→ R.

(Even though the groups Ĥi(M) vanish for i < 0, the determinant carries a non-
trivial information related to these groups, namely the determinants of the Chern
class map, see (4.4).) Conjecture 5.2 asserts that—modulo Q×—L∗(M, 0) is the
reciprocal of the image of 1 in R via the Q-structure map of the left hand term.
The class number formula has been interpreted in terms similar to the one above,
see [Sou92, III.4.3].

5.2 Relation to Beilinson’s conjecture

In this section, we use the notation of 5.3. The following is Beilinson’s conjecture
[Bĕı84, Bĕı86]. Part (A) concerns the pole order of L-functions, part (B) is about
the relation of Deligne cohomology and motivic cohomology, and (C) expresses the
special L-value up to Q× in terms of determinants of the isomorphisms asserted in
(B). The pole order conjecture in case w = 3 is due to Tate [Tat65].

Conjecture 5.14. Let Xη/Q be smooth and projective.
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(A)

ords=m LQ(h
−b−1(Xη), s) = ords=0 LQ(Mη, s) =





0 w ≥ 4
− dimCHn(Xη)Q/hom w = 3
dimCHn(Xη)Q,hom w = 2
dimHb+2(Xη, n)Z w ≤ 1

Here n := b+2−m = m+2−w, and the groups at the right have been defined
in Section 1.2.

(B) For w = 2, the height pairing

CHm(Xη)Q,hom⊗CH
d−m(Xη)Q,hom → R (5.6)

is perfect.

For w = 1, the map

r∞ : (CHm(Xη)Q/hom⊕H2m+1(Xη, n)Z)⊗QR→ H2m+1
D (X,n). (5.7)

obtained by the composition

CHm(Xη)Q/hom⊗R→ H2m
dR (XR)→ H2m+1

D (X,n)

(see (2.2) for the right hand map) and the realization map, is an isomorphism.

For w ≤ 0, the statement is the same, except that (5.7) gets replaced by

r∞ : Hb+2(Xη, n)Z⊗QR→ Hb+2
D (Xη, n). (5.8)

(C) The special L-value L∗(Mη, 0) is conjecturally given up to a nonzero rational
multiple by the following:

For w = 2, by the determinant of the height pairing (5.6) multiplied with the
period of Mη, that is to say, the determinant of the isomorphism

αMη
: H2m−1(Xη(C),R(m))(−1)m → H2m−1

dR ((Xη)R)/F
m

with respect to the usual Q-structures on both sides (compare (2.2)).

For w = 1, the L-value is given, mod Q×, by d∞(1), where

d∞ := det r∞ : det(Hb(Xη,m)Z ⊕ CHm(Xη)/hom)R = R→ detHb
D(X,n) = R,

the left hand term is endowed with the obvious Q-structure, the right one gets
the one stemming from the identification of Hb

D(Xη, n) = H1
w(H

b−1(X,Q(n)))
with the dual of H0

w(H
b−1(X,Q(n))∨(1)).

For w ≤ 0, the statement is the same, except that the term CHm(Xη)/hom is
omitted.

This concludes the statement of Beilinson’s conjecture. It predicts L-values of
motives h−b−1(Xη,m) with w = 2m− b ≤ 2, up to a nonzero rational factor. The
remaining weights are adressed by the functional equation (Conjecture 3.12).

We compare Beilinson’s conjecture with Conjecture 4.1 and 5.2 applied to the
generic intermediate extension E := η!∗η

∗ h−b(X,−m), where X is any projective
model of Xη (see Notation 5.3).

Recall from [And04, 5.4.2.1] that the agreement of homological and numerical
equivalence (which is part of Axiom 1.2) implies the hard Lefschetz isomorphism:

h−b−1(Xη,m− b− 2)
∼=
−→ h−2dη+b+1(Xη,−dη +m− 1) = M∨

η (−1). (5.9)

For b + 1 ≤ dη the map is given by the (dη − b − 1)-st power of cup product with
a hyperplane section, with respect to some embedding Xη ⊂ PN

Q . The right hand
term of (5.9) is M∨

η (−1) by relative purity, applied to the smooth map Xη/Q.
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Lemma 5.15. The hard Lefschetz isomorphism (5.9) yields an isomorphism

E∨(−1)[2] = E(m− n) = E(w − 2). (5.10)

It induces isomorphisms of motivic and Deligne cohomology groups (respecting the
Q-structure of the latter):

CHm(Xη)Q/hom ∼= CHd−m−1(Xη)Q/hom,

CHm(Xη)Q,hom
∼= CHd−m(Xη)Q,hom [Bĕı87, Conj. 5.3.(a)],

Hb(Xη, b−m)Z ∼= H2d−b(Xη, d−m)Z for w = 2m− b ≤ 1

Hb
D(Xη, b−m) ∼= H2d−b

D (Xη, d−m) for w ≤ 1.

Proof: (5.10) is obtained from (5.9) by applying η!∗[1]. Now apply Theorem 1.3
and the calculation of Deligne cohomology in (2.15).

The following proposition compares the perfectness of certain Arakelov intersec-
tion pairings with the statements in part (B) in Beilinson’s conjecture.

Proposition 5.16. Let E be as in Notation 5.3 with weight w = wt(E) ≤ 2. If the
weight of E is 2, we assume Conjecture 5.6. The following are equivalent:

(i) The pairings πE[i] and πE∨{−1}[i] (i ∈ Z) are perfect.

(ii) Part (B) of Beilinson’s conjecture and H3(E∨(−1)[2]) = H1(E∨, 1) = 0 (only
needed if w ≤ 1).

Remark 5.17. The group H1(E∨, 1) vanishes unconditionally if Xη is such that
Mη is a mixed Artin-Tate motive over Q (as opposed to a general mixed motive)
by Theorem 1.4. Recall from Theorem 1.3 that H3(E) = 0 for w := wt(E) ≤ 2.

Proof: The proof combines the hard Lefschetz isomorphism (Lemma 5.15) and
the calculation of motivic and Deligne cohomology of E and E∨(−1) (Theorem 1.3,
(2.15)).

The map Hb+2(Xη, n)Z → Hb+2
D (Xη, n) featuring in (5.7), (5.8) in the cases

w ≤ 1 of Conjecture 5.14 is the Chern class map H2(E(m− n))→ H2
D(E(m− n)).

Via hard Lefschetz, this is the same as the Chern class map

ch(E∨(−1)) : H0(E∨(−1))→ H0
D(E

∨(−1)). (5.11)

Consider the case w = 1. By Fontaine’s reformulation [Fon92, 9.5], the map (5.7)
being an isomorphism is equivalent to the existence of an exact sequence whose right
hand map is the composition of the Poincaré duality isomorphism φ stemming from
(2.5), the hard Lefschetz isomorphism and the Chern class map.

0 // CHm(Xη)R/hom
ch // H2m

D (Xη ,m) //

φ ∼=

��

H2m+1(Xη,m+ 1)∨Z⊗R // 0

H
2dη−2m+1

D (Xη , dη + 1−m)∨
(5.9)
∼=

// H2m+1
D (Xη,m+ 1)∨.

ch∨

OO

In terms of motivic and Deligne cohomology groups, it reads

0 // H1(E)R
ch1(E) // H1

D(E) //

φ ∼=

��

H0(E∨(−1))∨R
// 0

H0
D(E

∨(−1))∨.

ch0(E∨(−1))∨

66♠♠♠♠♠♠♠♠♠♠♠♠

(5.12)
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These groups also occur in the following exact sequences, whose terms are paired
by the pairings indicated on top:

πE[−1] : πE∨(−1)[−1] : πE[−2] : πE∨(−1) :

Ĥ1
R(E) → H1(E)R → H1

D(E) → Ĥ2
R(E) → H2(E)R

× × × × ×

H1(E∨, 1)R ← Ĥ1
R(E

∨, 1) ← H0
D(E

∨, 1) ← H0(E∨, 1)R ← Ĥ0
R(E

∨, 1)
(5.13)

We have H2(E) = 0, so the injectivity of ch0(E∨(−1)) is equivalent to πE∨(−1) being

perfect. The identification of coker ch1(E) with H0(E∨, 1)∨R of (5.12) is equivalent to
πE[−2] being perfect. The Chern class map H1(E)R = CHm(Xη)/hom→ H1

D(E) =
H2m

D (Xη,m) ⊂ H2m
B (Xη,R(m)) is injective by definition of homological equivalence.

Hence Ĥ1
R(E) = 0 so that H1(E∨, 1) = 0 is equivalent to πE[−1] being perfect. By

the five lemma, πE∨(−1)[−1] is then perfect, too. All other Deligne, motivic, and
hence Arakelov motivic cohomology groups of E∨(−1) and E, except for the ones
displayed above, vanish.

The case w < 1 is done similarly: in addition to the above, we have H1(E) = 0.

Accordingly, (5.12) reduces to an isomorphism H1
D(E)

∼=
→ H0(E∨(−1))∨R . The details

are omitted.
For w = 2, all Deligne cohomology H∗

D(E) and H∗
D(E

∨, 1) vanish for weight
reasons. Moreover Ha(E) = Ha−2(E∨(−1)) = 0 for a 6= 2, so that πE∨(−1)[−1] and
πE[−1] are perfect. The height pairing (5.6) is just πE[−2] according to Conjecture
5.6. Its perfectness is equivalent to the one of πE∨(−1).

Theorem 5.18. We assume the perfectness of the Arakelov intersection pairing
for motives of the form M = E[n], with E as in Notation 5.3 and n ∈ Z. We also
assume Conjecture 5.6 if E is of weight 2. Then Beilinson’s conjecture (parts (A),
(C)) for Mη is equivalent to Conjecture 5.2 for E.

Proof: By hard Lefschetz (Lemma 5.15) and calculation of motivic cohomology
of E, Theorem 1.3, part (A) of Beilinson’s conjecture reads

ords=0 LQ(Mη, s)
3.5
= − ords=0 LQ(E, s) =

∑

a 6=1

(−1)a dimHa(E∨(−1)). (5.14)

In fact, Ha(E∨(−1))
(5.10)
= Ha+2(η!∗η

∗ h−b(X,−n)). For example, in case w =
2m − b ≤ 1, this equals Hb+2(Xη, n)Z for a = 0 and vanishes for a 6= 0, 1. As was
mentioned above, the perfectness of πE[−1] conjectured in 4.1 implies H1(E∨(−1)) =
0. (In case w ≥ 2, we know this vanishing without invoking 4.1.) This settles the
pole order part (A) of Beilinson’s conjecture.

For the special L-values, we revisit the proof of Proposition 5.16 and look
at the involved Q-structures. Again using hard Lefschetz, we replace the map
Hb+2(Xη, n)Z⊗R→ Hb+2

D (Xη, n) occurring in (5.7), (5.8) by ch(E∨(−1)), see (5.11).
The involved Q-structures remain unchanged.

We first treat the case w = 1. By [Fon92, 9.5], [FPR94, Conj. III.4.4.3], Beilin-
son’s conjecture is equivalent to saying that the L-value of Mη is given by the
reciprocal of the image (in R) of the Q-structure on the right hand side:

R ∼= det−1 H0(E∨(−1))R⊗ det−1 H1
D(E)⊗ detH1(E)R

(5.3)
= det−1 H∗(E∨(−1))R⊗ detH∗

D(E)⊗ det−1 H∗(E)R.

Here the isomorphism stems from the exact sequence (5.12) and the Q-structure on
H1

D(E) is the natural one defined in Section 2.1. (This Q-structure is distinct from
the one on the isomorphic group H0

D(E
∨(−1))∨, as is apparent from the discussion of
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the functional equation in Theorem 5.5.) Moreover, all groups H∗(E∨(−1)) except
H0 and H∗(E) except H1 vanish. By construction of Arakelov motivic cohomology
the above is isomorphic, including the Q-structure, to

det−1 H∗(E∨(−1))R⊗ det−1 Ĥ∗
R(E).

The above identification with R agrees with the dual of the Arakelov intersection
pairing for E, so that L∗(E, 0) = L∗(Mη, 0)

−1 is indeed the inverse of ΠE . This
accomplishes the case w = 1.

Again, the case w ≤ 0 is similar but simpler, since in addition H1(E) = 0.
Correspondingly, only the determinant of the realization map ch(E∨(−1)) (5.11),
as opposed to the one of (5.12), appears in Beilinson’s conjecture.

Finally, consider the special value at the central point, i.e., w = 2. In this case
all groups H∗

D(E) are trivial, but the Q-structure on

det−1 H∗
D(E) = detH∗

D(Mη) = detHb+1
B (Xη,R(m))(−1)m

︸ ︷︷ ︸
=:B

⊗det−1 Hb+1
dR (Xη×R)/F

m)︸ ︷︷ ︸
=:dR

is non-trivial since the period isomorphism α : B → dR does not respect the natural
Q-structures. By linear algebra, detα agrees (modulo Q×) with the image (in R) of

the Q-lattice under the natural isomorphism induced by α: detB⊗ det−1 dR
∼=
→ R.

Except for H2(E) and H0(E∨(−1)), all motivic cohomology groups of E and E∨(−1)
vanish (Theorem 1.3). The Arakelov intersection pairing πE[−2] agrees with the
height pairing under Conjecture 5.6. By (2.17), we have an isomorphism of R-
vector spaces respecting the Q-structure

det Ĥ∗
R(E) = detH∗(E)R⊗ det−1 H∗

D(E),

so Beilinson’s conjecture is indeed equivalent to saying that L∗(E, 0) = L∗(Mη, 0)
−1

is the reciprocal of the image of the Q-lattice under det Ĥ∗
R(E)⊗ detH∗(E∨(−1))R →

R.

5.3 Relation to the Tate conjecture over Fp

Conjecture 5.19. (Tate conjecture over finite fields [Tat65]) Let X/Fq be smooth
and projective. Let ℓ be a prime such that ℓ ∤ q. Any Gal(Fq)-invariant element of
H2i(X×Fq

Fq,Qℓ(i)) is a Qℓ-linear combination of algebraic elements, i.e., elements

in the image of the cycle class map CHi(X)→ H2i(X×Fq
Fq,Qℓ(i)).

Theorem 5.20. In addition to the general assumptions on mixed motives over Fp

(Section 1.2), we assume Conjecture 1.5. Then the Tate conjecture 5.19 is equivalent
to Conjecture 5.2 for motives M = i∗N , where N is any geometric motive over Fp,
i : Spec Fp → Spec Z. More precisely, the special value prediction of 5.2 in this
case is

L∗(i∗N, 0) ≡ (log p)−χ(N∨(−1)) (mod Q×), (5.15)

where χ(N∨(−1)) is the Euler characteristic of motivic cohomology (see (5.1), com-
puted in the category DM

B,c(Fp)).

Proof: ⇒: to show Conjecture 5.2 and (5.15) for i∗N , we may replace N by
grW∗

pH∗N , the weight graded pieces of the truncations with respect to the mo-
tivic t-structure, since both the weight filtration and the t-structure are bounded
[Sch12b, Axiom 4.1.]. The subcategory of MM(Fp) consisting of pure objects is,
by [Sch12b, Axiom 4.11], the category of pure motives with respect to numer-
ical equivalence, Mnum(Fp). Under Conjecture 1.5, this agrees with Chow mo-
tives Mrat(Fp). Finally, χDM

B

(Z)((i∗N)∨(−1)) = χDM
B

(Fp)(N
∨(−1)), so we have
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to show ords=0 L(i∗N) = − dimH0(N∨, 1) = − dimH0(N,−1) and L∗(i∗N) ≡
(log p)− dimH0(N,−1) (mod Q×).

Consider first N = H := MFp
(X){−n} with X/Fp smooth and projective. Then

L(i∗H) = L(MZ(X){1−n}). Let Zn(X)/num be the group of codimension n cycles
on X modulo numerical equivalence. Then

dimH0(H) = rkCHn(X)
1.5
= rkZn(X)/num = − ords=n ζ(X, s),

so the pole order claim holds for H by assumption: the Tate conjecture and the
agreement of the ℓ-adic homological and numerical equivalence relations on X (up
to torsion) together are equivalent to the rightmost equality [Tat94, Thm. 2.9].

In general, N is a direct summand of H as above. Let N ⊕ N ′ = H , which as
an object in Mrat(Fp) is denoted h(X)(n). By the previous case,

dimH0N + dimH0N ′ = − ordL(N)− ordL(N ′). (5.16)

Let −ℓ : Mrat(Fp) → ⊕Qℓ[Gal(Fp)], πh(X)(n) 7→ ⊕aπ
∗Ha(X,Qℓ(n)) be the

ℓ-adic realization functor taking values in graded continuous ℓ-adic Gal(Fp)-

representations. We write H0(Nℓ) := N
Gal(Fp)
ℓ , the Galois cohomology of the ℓ-adic

Galois module Nℓ. The following way of reasoning is borrowed from loc. cit. We
have the following chain of inequalities:

− ords=0 L(N, s) ≥ dimQℓ
ker(Id− Fr−1)|Nℓ

≥ dimQℓ
(Nℓ)

Gal(Fp)

= dimQℓ
H0(Nℓ)

≥ dimQ H0(N)

The last inequality is by the injectivity of the cycle class map H0(N) → H0(Nℓ),
which follows from the injectivity of H0(H) → H0(Hℓ) = H2n(X,Qℓ(n)), i.e., the
agreement of homological and rational equivalence, which holds under Conjecture
1.5. Therefore, in (5.16) equality of dimensions must hold for the individual sum-
mands, so the pole order part is shown.

The claim (5.15) and the special values formula of 5.2 trivially hold for N =
1(−1): the residue of L(i∗1(−1), s) = ζ(Spec Fp, s) = (1 − p−s)−1 at s = 0 is
(log p)−1, which is the inverse of the determinant of πM(Fp) = πi∗i∗1{−1} (Example
2.7). Jannsen’s semisimplicity theorem for Mnum(Fp) yields a decomposition N =
1(−1)r ⊕ R with HomMnum(Fp)(1(−1), R) = HomMnum(Fp)(R,1(−1)) = 0. Hence
we can assume N = R. By the Lefschetz trace formula, the L-function of any
pure motive over Fp is a rational function in p−s with rational coefficients that
are independent of ℓ, see e.g. [And04, Section 7.1.4]. By the preceding part, the
L-function of i∗R does not have a pole at s = 0, therefore the leading term of the
Laurent series L(i∗R, s) is simply the value at this point, a nonzero rational number
(as opposed to an ℓ-adic or, via σℓ, a complex number).
⇐: we again use the theorem of Tate cited above: the Tate conjecture for

X/Fp is implied by ords=j ζ(X, s) = − rkZj(X)/num. Under 1.5, that term is
− rkCHj(X) = − dimH2j(M(X)(−j)). Thus, Conjecture 5.2 for i∗M(X)(−j) im-
plies the Tate conjecture on the j-th Chow group of X .
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[Del71] Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ.
Math., 40:5–57, 1971.

[Del73] Pierre Deligne. Les constantes des équations fonctionnelles des fonctions L.
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f -COHOMOLOGY AND MOTIVES OVER NUMBER RINGS

Jakob Scholbach

Abstract

This paper is concerned with an interpretation of f -cohomology, a modification of

motivic cohomology of motives over number fields, in terms of motives over number

rings. Under standard assumptions on mixed motives over finite fields, number fields

and number rings, we show that the two extant definitions of f -cohomology of mixed

motives Mh over a number field F—one via ramification conditions on l-adic

realizations, another one via the K-theory of proper regular models—both agree

with motivic cohomology of h!�Mh½1�. Here h!� is constructed by a limiting process

in terms of intermediate extension functors j!� defined in analogy to perverse sheaves.

The aim of this paper is to give an interpretation of f -cohomology in terms
of motives over number rings. The notion of f -cohomology goes back to
Beilinson who used it to formulate a conjecture about special L-values [6, 7].
The most classical example is what is now called H1

f ðF ; 1ð1ÞÞ, f -cohomology of
1ð1Þ, the motive of a number field F , twisted by one. This group is O�F nZ Q, as
opposed to the full motivic cohomology H1ðF ; 1ð1ÞÞ ¼ F�nQ. Together with
the Dirichlet regulator, it explains the residue of the Dedekind zeta function zF ðsÞ
at s ¼ 1. This idea has been generalized in many steps and many ways, for
example to the notion of Selmer complexes [36]. This work is concerned with
the f -cohomology of a mixed motive Mh over F . There are two independent yet
conjecturally equivalent ways to define H1

f ðF ;MhÞHH1ðF ;MhÞ. We interpret
the two definitions of f -cohomology as motivic cohomology of suitable motives
over OF . This idea is due to Huber.

There are two approaches to H1
f ðMhÞ. The first is due to Beilinson [8,

Remark 4.0.1.b], Bloch and Kato [11, Conj. 5.3.] and Fontaine [20, 22]. It is
given by picking elements in motivic cohomology acted on by the local Galois
groups in a prescribed way (Definition 6.1, Definition 6.4, Definition 6.6). The
second definition of H1

f ðMhÞ, due to Beilinson [7, Section 8], applies to Mh ¼
h i�1ðXhÞðnÞ, with Xh smooth and projective over F , i � 2n < 0. It is given by
the image of K-theory of a regular proper model X of Xh (Definition 6.10).
Such a model may not exist, but there is a unique meaningful extension of this
definition to all Chow motives over F due to Scholl [44].
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Our main results (Theorems 6.8, 6.11, 6.13) show that both definitions of
H1

f ðMhÞ agree with H0ðh!�h i�1ðXh; nÞ½1�Þ. Here h!� is a functor that attaches
to any suitable mixed motive over F one over OF . It is defined by a limiting
process using the intermediate extension j!� familiar from perverse sheaves [10]
along open immersions j : U ! Spec OF . Even to formulate such a definition,
one has to rely on profound conjectures, namely the existence of mixed motives
over (open subschemes of ) Spec OF . The proof of the main theorems also
requires us to assume a number of properties related to weights of motives.

We point out that previously Jannsen and Scholl have shown the agreement
of these two notions (in the case Mh ¼ hiðXhÞðnÞ, Xh=F smooth and proper) under
weaker hypotheses than the ones considered here [42]. Also Scholl uncondi-
tionally proved the agreement for products of smooth projective curves over F
(op. cit.). Our motivation for studying and employing this stronger set of
assumptions about motives lies in an application to special L-values conjectures
[40]. Very briefly, Beilinson’s conjecture concerning special L-values for mixed
motives Mh over Q has f -cohomology as motivic input. L-functions of such
motives can be generalized to motives over Z such that the classical L-function of
Mh agrees with the L-function (over Z) of h!�Mh½1�. Thereby the L-function and
the motivic data in Beilinson’s conjecture belong to the same motive over Z, thus
giving content to a more general conjecture about special L-values for motives
over Z. In this light it is noteworthy that H0ðh!�h2n�1ðXh; nÞ½1�Þ identifies with
the group that occurs in the part of Beilinson’s conjecture that describes special
values at the central point.

The contents of the paper are as follows: Section 1 is the basis of the
remainder; it lists a number of axioms on triangulated categories of motives.
Such categories DMgmðSÞ have been constructed by Voevodsky [45] and Hana-
mura [24] (over fields) and Levine [33] (over bases S over a field). The various
approaches are known to be (anti-)equivalent, at least for rational coe‰cients
[33, Section VI.2.5], [12, Section 4]. Over more general bases S, the category
DMðSÞ has been constructed by Ivorra [30] and Cisinski and Déglise [13]. We
sum up the properties of this construction by specifying a number of axioms
concerning triangulated categories of motives that will be used in the sequel.
They are concerned with the ‘‘core’’ behavior of DMðSÞ, that is: functoriality,
compacity, the monoidal structure and the relation to algebraic K-theory, as well
as localization, purity, base-change and resolution of singularities. We work
with motives with rational coe‰cients only, since this is su‰cient for all our
purposes. We use a contravariant notation for motives, that is to say the functor
that maps any scheme X to its motive MðXÞ shall be contravariant. This is in
line with most pre-Voevodsky papers.

Section 2 is a very brief reminder on realizations. The existence of various
realizations, due to Huber and Ivorra [25, 27, 30], is pinning down the intuition
that motives should be universal among (reasonable) cohomology theories.

After Section 3, a brief intermezzo on perverse l-adic sheaves over OF ,
Section 4 spells out a number of conjectural properties (also called axioms in the
sequel) of DMgmðSÞ, where S is either a finite field Fp, a number field F or a
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number ring OF . The first group of these properties centers around the existence
of a category of mixed motives MMðSÞ, which is to be the heart of the so-called
motivic t-structure. The link between mixed motives over OF and Fp or F is
axiomatized by mimicking the exactness properties familiar from perverse sheaves
(Axiom 4.2). A key requirement on mixed motives is that the realization
functors on motives should be exact (Axiom 4.5). For the l-adic realization
over Spec OF ½1=l�, this requires a notion of perverse sheaves over that base
(Section 3). Another important conjectural facet of mixed motives are weights.
Weights are an additional structure encountered in both Hodge structures and
l-adic cohomology of algebraic varieties over finite fields, both due to Deligne
[16, 17]. They are important in that morphisms between Hodge structures or
l-adic cohomology groups are known to be strictly compatible with weights,
moreover, they are respected to a certain extent by smooth maps and proper
maps. It is commonly assumed that this should be the case for mixed motives,
too. We show in a separate work that the t-structure axioms and the needed
weight properties hold in the triangulated subcategory DATMðOF ÞHDMgmðOF Þ
of Artin-Tate motives (as far as they are applicable) [41].

The remaining two sections assume the validity of the axiomatic framework
set up so far. The first key notion in Section 5 is the intermediate extension
j!�M of a mixed motive M along some open embedding j inside Spec OF . This
is done as in the case of perverse sheaves, due to Beilinson, Bernstein and Deligne
[10]. Quite generally, much of this paper is built on the idea that the abstract
properties of mixed perverse sheaves (should) give a good model for mixed
motives over number rings. Next we develop a notion of smooth motives, which
is an analog of lisse étale sheaves. This is needed to use a limiting technique
to get the extension functor h!� that extends motives over F to ones over OF .
Finally, we apply the axiom on the exactness of l-adic realization to show that
intermediate extensions commute with the realization functors. This will be a
stepstone in a separate work on L-functions of motives [40].

Section 6 gives the comparison theorems on f -cohomology mentioned above.
The two definitions of f -cohomology being quite di¤erent, the proofs of the
comparison statements are di¤erent, too: the first is essentially based on the
Hochschild-Serre spectral sequence. The crystalline case of that definition of
f -cohomology is disregarded throughout. The second proof is a purely formal,
if occasionally intricate bookkeeping of cohomological degrees and weights.

The problem of finding a motivic interpretation of terms such as H1
f ðMhÞ

underlying the formulation of Beilinson’s conjecture has been studied by Scholl
[43, 44, 42], who develops an abelian category MMðF=OF Þ of mixed motives over
OF by taking mixed motives over F , and imposing additional non-ramification
conditions. Conjecturally, the group Ext iMMðF=OF Þð1; h

iðXh; nÞÞ for Xh=F smooth
and projective, i ¼ 0; 1, agrees with what amounts to H i�1ðh!�h2n�1ðXh; nÞ½1�Þ.

No originality is claimed for Sections 1, 2, and 4, except perhaps for the
formulation of the relation of mixed motives over OF and F and the residue
fields Fp, which however is a natural and immediate translation of the theory of
perverse sheaves. I would like to thank Denis-Charles Cisinski and Frédéric
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Déglise for communicating to me their work on DMgmðSÞ over general bases [13]
and Baptiste Morin for explaining me a point in étale cohomology. Most of all,
I gratefully acknowledge Annette Huber’s advice in writing my thesis, of which
this paper is a part.

1. Geometric motives

Throughout this paper, F is a number field, OF its ring of integers, p stands
for a place of F . For finite places, the residue field is denoted Fp. By scheme
we mean a Noetherian separated scheme. Actually, it su‰ces to think of schemes
of finite type over one of the rings just mentioned. In this section S denotes a
fixed base scheme.

This section is setting up a number of axioms describing a triangulated
category DMgmðSÞ of geometric motives over S. They will be used throughout
this work. As pointed out in the introduction, the material of this section is due
to Cisinski and Déglise [13], who build such a category of motives using Ayoub’s
base change formalism [4].

Axiom 1.1 (Motivic complexes and functoriality).
� There is a triangulated Q-linear category DMðSÞ. It is called category of
motivic complexes over S (with rational coe‰cients). It has all limits and
colimits.

� (Tensor structure) The category DMðSÞ is a triangulated symmetric mono-
idal category (see e.g. [33, Part 2, II.2.1.3]). Tensor products commute
with direct sums. The unit of the tensor structure is denoted 1S or 1. Also,
there are internal Hom-objects in DM, denoted Hom. The dual M4 of an
object M A DMðSÞ is defined by M4 :¼ HomðM; 1Þ.

� For any map f : X ! Y of schemes, there are pairs of adjoint functors

f � : DMðYÞ. DMðXÞ : f�ð1Þ

such that f �1Y ¼ 1X and, if f is quasi-projective,

f! : DMðX Þ. DMðYÞ : f !:

The existence of f! and f ! is restricted to quasi-projective maps since the
abstract construction of these functors in Ayoub’s work [4, Section 1.6.5], on
which Cisinski’s and Déglise’s construction of motives over general bases [13]
relies, has a similar restriction.

Recall that an object X in a triangulated category T closed under arbitrary
direct sums is compact if HomðX ;�Þ commutes with direct sums. The sub-
category of T of compact objects is triangulated and closed under direct
summands (a.k.a. a thick subcategory) [35, Lemma 4.2.4]. The category T is
called compactly generated if the smallest triangulated subcategory closed under
arbitrary sums containing the compact objects is the whole category T.
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Axiom 1.2 (Compact objects). The motive 1 A DMðSÞ is compact. The
functors f � and f !, whenever defined, and n and Hom preserve compact objects.
The same is true for f� and f! if f is of finite type. The canonical map M !
ðM4Þ4 is an isomorphism for any compact object M.

Definition 1.3. The subcategory of compact objects of DMðSÞ is denoted
DMgmðSÞ and called the category of geometric motives over S.

For any map f : X ! S of finite type, the object MSðX Þ :¼MðXÞ :¼
f� f

�1 A DMgmðSÞ is called the motive of X over S. By adjunction, M is a
contravariant functor from schemes of finite type over S to DMgmðSÞ. For any
quasi-projective f : X ! S, the motive with compact support of X , McðX Þ, is
defined as f! f

�1 A DMgmðSÞ.
The smallest thick subcategory of DMðSÞ containing the image of M is

denoted DMe¤
gmðSÞ and called the category of e¤ective geometric motives. The

closure of that subcategory under all direct sums is called the category of e¤ective
motives, DMe¤ ðSÞ.

Axiom 1.4 (Tensor product vs. fiber product). The functor M is an additive
tensor functor, i.e., maps disjoint unions of schemes over S to direct sums and fiber
products of schemes over S to tensor products in DMgmðSÞ.

Axiom 1.5 (Compact generation). The categories DMðSÞ and DMe¤ ðSÞ are
compactly generated.

The category DMðSÞ, being closed under countable direct sums is pseudo-
abelian [33, Lemma II.2.2.4.8.1], i.e., it contains kernels of projectors. In par-
ticular, the projector MðP1

SÞ !MðSÞ !MðP1
SÞ has a kernel K (the first map is

induced by the projection onto the base, the second map stems from the rational
point 0 A P1

S). The object

1ð�1Þ :¼ K ½2�;

is called Tate object or Tate motive. The resulting decomposition MðP1
SÞ ¼

1l 1ð�1Þ½�2� implies 1ð�1Þ A DMe¤
gmðSÞ.

Axiom 1.6 (Cancellation and E¤ectivity). In DMgmðSÞ (and thus in DMðSÞ),
the Tate object 1ð�1Þ has a tensor-inverse denoted 1ð1Þ. For any M A DMðSÞ,
n A Z, set MðnÞ :¼Mn 1ð1Þnn

. Then there is a canonical isomorphism called
cancellation isomorphism (n A Z, M;N A DMðSÞ):

HomDMðSÞðM;NÞGHomDMðSÞðMðnÞ;NðnÞÞ:

The smallest tensor subcategory of DMgmðSÞ that contains DMe¤
gmðSÞ and 1ð1Þ

is DMgmðSÞ. In other words, DMgmðSÞ is obtained from DMe¤
gmðSÞ by tensor-

inverting 1ð�1Þ.

5f -cohomology and motives over number rings

111



Definition 1.7. Let M be any geometric motive over S. We write
H iðMÞ :¼ H iðS;MÞ :¼ HomDMðSÞð1;M½i�Þ. For M ¼MðXÞðnÞ for any X

over S we also write H iðX ; nÞ :¼ H iðMðXÞðnÞÞ ¼ HomDMgmðSÞð1;MðX ÞðnÞ½i�Þ ¼
ð1Þ

HomDMgmðX Þð1; 1ðnÞ½i�Þ. This is called motivic cohomology of M and X , respec-
tively.

Axiom 1.8 (Motivic cohomology vs. K-theory). For any regular scheme X ,
there is an isomorphism H iðX ; nÞGK2n�iðX ÞðnÞQ , where the right hand term denotes
the Adams eigenspace of algebraic K-theory tensored with Q [39].

This is a key property of motives, since algebraic K-theory is a universal
cohomology theory in the sense that Chern characters map from algebraic
K-theory to any other (reasonable) cohomology theory of algebraic varieties [23].
For S a perfect field, this axiom is given by [45, Prop. 4.2.9] and its non-e¤ective
analogue. See also [33, Theorem I.III.3.6.12.].

Recall Grothendieck’s category of pure motives M@ðKÞ with respect to an
adequate equivalence relation@, see e.g. [3, Section 4]. For rational equivalence
they are also called Chow motives, since, for any smooth projective variety X
over a field K ,

HomMratðKÞð1ð�nÞ; hðXÞÞ ¼ CHnðX Þ;ð2Þ

where hðX Þ denotes the Chow motive of X and the right hand term is the Chow
group of cycles of codimension n in X . This way, the above axiom models the
fact [45, 2.1.4] that Chow motives are a full subcategory of DMgmðKÞ. Under
the embedding MratðKÞHDMgmðKÞ, hðX ; nÞ maps to MðXÞðnÞ½2n�.

Remark 1.9. We do not need to assume expressis verbis homotopy in-
variance (i.e., 1!G pr�pr

�1 A DMgmðSÞ for pr : S � A1 ! S) nor the projective
bundle formula [45, Prop. 3.5.1]. (Note, however, that K 0-theory does have such
properties.)

Axiom 1.10 (Localization). Let i : Z ! S be any closed immersion and
j : V ! S the open complement. The adjointness maps give rise to the following
distinguished triangles in DMðSÞ:

j! j
� ! id! i�i

�;

i�i
! ! id! j� j

�:

(In particular, f� f
�G id, where f : Xred ! X denotes the canonical map of the

reduced subscheme structure.) In addition, one has j �j� ¼ id and i�i� ¼ id, equiv-
alently j �i� ¼ i�j! ¼ 0.

Axiom 1.11 (Purity and base change).
� For any quasi-projective map f , there is a functorial transformation of
functors f! ! f�. It is an isomorphism if f is projective.
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� (Relative purity): If f is quasi-projective and smooth of constant relative
dimension d, there is a functorial (in f ) isomorphism f ! G f �ðdÞ½2d�.

� (Absolute purity): If i : Z ! U is a closed immersion of codimension c
of two regular schemes Z and U , there is a natural isomorphism i !1G
1ð�cÞ½�2c�.

� (Base change): For any two quasi-projective maps f and g let f 0 and g 0

denote the pullback maps:

X 0 �X Y ���!g 0 Y???y f 0

???y f

X 0
g

X

ð3Þ

������!
Then there is canonical isomorphism of functors

f �g! !
G

g 0! f
0�:

This axiom is proven by Cisinski & Déglise using Ayoub’s general base
change formalism. See in particular [4, 1.4.11, 12] for the construction of the
base change map. See also [33, Theorem I.I.2.4.9] for a similar statement in
Levine’s category of motives.

Definition 1.12. Let f : S ! Spec Z be the structural map. Assume f is
quasi-projective. Then DðMÞ :¼ HomðM; f !1ð1Þ½2�Þ is called Verdier dual of M.

By the preceding axioms, D induces a contravariant endofunctor of DMgmðSÞ.
The shift and twist in the definition is motivated as follows: given some complex
analytic space X , the Verdier dual of a sheaf F on X is defined by

DðFÞ :¼ RHomDðShvðX ÞÞðF; f !ZÞ;

where f denotes the projection to a point, see e.g. [29, Ch. VI]. When X is
smooth of dimension d, one has f !Z ¼ f �ZðdÞ½2d� ¼ ZðdÞ½2d�. A similar fact
holds for l-adic sheaves (see e.g. [31, Section II.7–8]). The above definition
mimics this situation insofar as Spec Z is seen as an analogue of a smooth a‰ne
curve.

Let us give a number of consequences of the preceding axioms, in particular
purity, base change and localization: in (3), suppose that f is smooth and
g : X 0 ! X is a codimension one closed immersion between regular schemes.
Then there is a canonical isomorphism

g!MX ðYÞ ¼MX 0 ðX 0 �X Y Þð�1Þ½�2�:ð4Þ

Let ZHX be a closed immersion of quasiprojective schemes over S. Then
there is a distinguished triangle of motives with compact support

McðZÞ !McðX Þ !McðXnZÞ:
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Let S be a scheme of equidimension d such that the structural map
f : S ! Spec Z factors as

S !j S 0 !i An
Z or Pn

Z !
p
Spec Z;

where j is an open immersion into a regular scheme S 0, i is a closed immer-
sion and p is the projection map. Then f !1 ¼ 1ðd � 1Þ½2d � 2�, as one sees by
applying relative purity to p and to j, and absolute purity to i. In particular,
the Verdier duality functor on any open subscheme S of Spec OF is given by
DDMgmðSÞð?Þ ¼ Homð?; 1ð1Þ½2�Þ while on DMgmðFpÞ it is given by Homð?; 1Þ ¼ ?4.

Axiom 1.13 (Verdier dual). The Verdier dual functor D exchanges ‘‘!’’ and
‘‘�’’ throughout, e.g., there are natural isomorphisms Dð f !MÞG f �DðMÞ for any
quasi-projective map f : X ! Y and M A DMðYÞ and similarly with f! and f�.

Lemma 1.14. Let S be such that f !1 ¼ f �1ðdÞ½2d� for some integer d, where
f : S ! Spec Z is the structural map. For example, S might be regular and a‰ne
or projective over Z (see above), or smooth over Spec Z ( purity). Then, for any
compact object M A DMgmðSÞ, the canonical map M ! DðDðMÞÞ is an isomor-
phism. This will be referred to as reflexivity of Verdier duality.

Proof. By Axiom 1.5, it su‰ces to check it for M ¼ p�p
�1, where

p : X ! S is some map of finite type. In this case it follows for adjointness
reasons and the assumption. r

Axiom 1.15 (Resolution of singularities). Let K be a field. As a triangu-
lated additive tensor category (i.e., closed under triangles, arbitrary direct sums and
tensor product), DMðKÞ is generated by 1ð�1Þ and all MðXÞ, where X=K is a
smooth projective variety.

When S is an open subscheme of Spec OF , the generators of DMðSÞ are
1ð�1Þ, ip�MðXpÞ, and MðXÞ, instead, where Xp is any projective and smooth
variety over Fp, ip denotes the immersion of any closed point Fp of S, and X is any
regular, flat projective scheme over OF .

Consequently, the subcategories of compact objects DMgmð�Þ are generated
as a thick tensor subcategory by the mentioned objects. In Voevodsky’s theory
of motives over a field of characteristic zero, this is [45, Section 4.1]. This uses
Hironaka’s resolution of singularities. Over a field of positive characteristic and
number rings, one has to use de Jong’s resolution result, see [28, Lemma B.4].

We also need a limit property of the generic point. Let S be an open
subscheme of Spec OF , let h : Spec F ! S be the generic point.

Axiom 1.16 (Generic point). Let M be any geometric motive over S. The
natural maps j� j

�M ! h�h
�M give rise to an isomorphism lim�! j� j

�M ¼ h�h
�M,
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where the colimit is over all open subschemes j : S 0 ! S. It induces a distinguished
triangle in DMðSÞ

0
p AS

ip�i
!
pM ! id! h�h

�M;ð5Þ

where the sum runs over all closed points p A S and ip is the closed immersion.

2. Realizations

One of the main interests in motives lies in the fact that they are explaining
(or are supposed to explain) common phenomena in various cohomology theories.
These cohomology functors are commonly referred to as realization functors.
They typically have the form DMgmðSÞ ! DbðCÞ, where C is an abelian category
whose objects are amenable with the methods of (linear) algebra, such as finite-
dimensional vector spaces or finite-dimensional continuous group representations
or constructible sheaves.

For example, let l be a prime and let S be either a field of characteristic
di¤erent from l or a scheme of finite type over Spec OF ½1=l�. The l-adic
cohomology maps any scheme X of finite type over S to

RGlðX Þ :¼ Rp�p
�Ql A Db

c ðS;QlÞ;

where p : X ! S is the structural map and the right hand category denotes the
‘‘derived’’ category of constructible Ql-sheaves on S (committing the standard
abuse of notation, see e.g. [31, II.6., II.7.]). This functor factors over the l-adic
realization functor ([27, p. 772], [30]) RGl : DMgmðSÞ ! Db

c ðS;QlÞ. When S is
of finite type over Fp, the realization functor actually maps to Db

c;mðS;QlÞ, the
full subcategory of complexes C in Db

c ðS;QlÞ such that all HnðCÞ are mixed
sheaves [17, 1.2].

Further realization functors include Betti, de Rham and Hodge realization.
See e.g. [27, 2.3.5]. The following axiom says (in particular) that the l-adic
realization of MðX Þ does give the l-adic cohomology groups.

Axiom 2.1 (Functoriality and realizations). The l-adic realization functor
commutes with the six Grothendieck functors f�, f!, f !, f �, n and Hom (where
applicable). For example, for any map f : S 0 ! S and any geometric motive M
over S 0:

ð f�MÞl ¼ f�ðMlÞ:

3. Interlude: Perverse sheaves over number rings

This section is devoted to a modest extension of l-adic perverse sheaves [10]
to the situation where the base S is an open subscheme of Spec OF ½1=l�. It is
needed to formulate Axiom 4.5 for the l-adic realization of motives over number
rings. This section may be considered a reformulation in ‘‘perverse language’’ of
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the well-known duality for cohomology of the inertia group. In a nutshell, the
theory of perverse sheaves on varieties over Fq stakes on relative purity, that is
f !Zl ¼ f �ZlðnÞ½2n� for a smooth map f of relative dimension n. The analogous
identity for a closed immersion i : Spec Fp ! S reads

i !Zl ¼ i�Zlð�1Þ½�2�:ð6Þ

It is a reformulation of well-known cohomological properties of the inertia
group: H1ðIp;VÞ ¼ ðVð�1ÞÞIp for any l-adic module with continuous Ip-action

ðpF lÞ. All higher group cohomologies of Ip vanish.
Let DbðS;ZlÞ be the bounded ‘‘derived’’ category of Zl-sheaves on S as

constructed by Ekedahl [19]. All following constructions can be done for Ql

instead of Zl, as well. We keep writing j� for the total derived functor,
commonly denoted Rj� etc. However, Rnj� etc. keep their original meaning.

As in loc. cit., see especially [2.2.10, 2.1.2, 2.1.3, 1.4.10]1, one first defines a
notion of stratification, and secondly obtains a t-structure on the subcategory
Db
ðS;LÞðS;ZlÞ that are constructible with respect to a given stratification S ¼ fSig

and a set L of irreducible lisse sheaves on the strata. Thirdly, one takes the
‘‘limit’’ over the stratifications. The union of all Db

ðS;LÞðS;ZlÞ is the ‘‘derived’’

category Db
c ðS;ZlÞ of constructible sheaves. In order to extend the t-structure

on the subcategories to one on Db
c ðS;ZlÞ, one has to check that the inclu-

sion Db
ðS 0;L 0ÞðS;ZlÞ ! Db

ðS;LÞðS;ZlÞ is t-exact for any refinement of stratifications.

Here we employ a di¤erent argument. The proof of [2.1.14, 2.2.11] relies on
relative purity for l-adic sheaves [2, Exp. XVI, 3.7]. As in the proof of [2.1.14]

we have to check the following: let Si !
a
S 0i !

b
S be the inclusions of some strata

and let C A Db;b0
ðS 0;L 0ÞðS;ZlÞ. Then C A Db;b0

ðS;LÞðS;ZlÞ. We can assume dim Si ¼ 0,
dim S 0i ¼ 1, since all other cases are clear. Thus, b is an open immersion. We
may also assume for notational simplicity that Si ¼ Spec Fp. Let j be the com-
plementary open immersion to a. By definition, Hnb!C ¼ b!HnC ¼ b�HnC is
locally constant and vanishes for n < �1. In the parlance of Galois modules this
means that, viewed as a p1ðS 0i Þ-representation, the action of the inertia group
Ip H p1ðS 0i Þ on that sheaf is trivial. Thus

a!Hnb�C ¼ a�ðR1j� j
�Hnb�CÞ½�2� ¼ H1ðIp;Hnb�CÞ½�2� ¼ a�Hnb�Cð�1Þ½�2�:

(We have used pF l at this point.) The spectral sequence

Hp�2a�Hqb!Cð�1Þ ¼ Hpa!Hqb!C ) Hna!b!C

is such that the left hand term vanishes for p0 2 since a� is exact w.r.t.
the standard t-structure. It also vanishes for q < �1 by the above. Hence
the right hand term vanishes for n ¼ pþ q < 1. A fortiori it vanishes for
n < �dim Fp ¼ 0.

1 In the sequel, any reference in brackets refers to [10].
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Objects in the heart of this t-structure on Db
c ðS;ZlÞ are called perverse

sheaves on S. For example Zl½1� and i�Zl for any immersion i of a closed point
are perverse sheaves on S. The Verdier dual of any C A Db

c ðS;ZlÞ is defined by
DðCÞ :¼ HomðC;Zlð1Þ½2�Þ. As above, we have dropped ‘‘R’’ from the notation,
so that this Hom means what is usually denoted RHom.

Lemma 3.1. Let j : S 0 ! S be an open immersion and i : Z ! S a closed
immersion. Let h : Spec F ! S be the generic point. Then j�, j!, i�, h

�½�1�, j �

and D are t-exact, while i� ði !Þ is of cohomological amplitude ½�1; 0� ð½0; 1�Þ,
in particular right-exact (left-exact, respectively). Finally, the t-structure on
Db

c ðS;ZlÞ is non-degenerate [10, p. 32].

Proof. The only non-formal statement is the exactness of j�. The corre-
sponding precursor result [4.1.10] is a reformulation of [1, Th. 3.1., Exp. XIV],
which says for any a‰ne map j : X ! Y over schemes over a field K , and any
(honest) sheaf F which is torsion (prime to char K)

dðRqj�FÞa dðFÞ � q

where dðGÞ :¼ supfdimfxg;Gx 0 0g for any sheaf G. In our situation, we are
given a locally constant sheaf F on S 0 whose torsion is prime to all character-
istics of S. The conclusion of the theorem also holds for j, as follows from the
cohomological dimension of Ip, which is one. r

Let F be any perverse sheaf on S 0. Following [1.4.22], let the intermediate
extension j!�F be the image of the map j!F! j�F of perverse sheaves on S.
As in [2.1.11] one sees that it can be calculated in terms of the good truncation
with respect to the standard t-structure: j!�F ¼ tcan

a�1 j�F: If F ¼ G½1�, where
G is a lisse (honest) sheaf on S 0, this gives ðR0j�GÞ½1�.

4. Mixed motives

Throughout this section, let S ¼ Spec F or Spec Fp or an open subscheme of
Spec OF .

This section formulates a number of axioms concerning weights and the
motivic t-structure on triangulated categories of motives over S. In contrast to
the axioms listed in Section 1, the axioms mentioned in this section are wide
open, so it might be more appropriate to call them conjectures instead.

Axiom 4.1 (Motivic t-structure and cohomological dimension). The category
of geometric motives DMgmðSÞ has a non-degenerate t-structure [10, Def. 1.3.1]
called motivic t-structure. Its heart is denoted MMðSÞ. Objects of MMðSÞ are
called mixed motives over S.

For any M A DMgmðSÞ, there are a; b A Z such that taaM ¼ tbbM ¼ 0.
Here and in the sequel, ta� and tb� denote the truncation functors with respect to
the motivic t-structure.
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The cohomological dimension of DMgmðFpÞ and DMgmðFÞ is 0 and 1,
respectively, in the sense that

HomDMðFpÞðM;N½i�Þ ¼ 0

for all mixed motives M, N over Fp and i > 0 and similarly for mixed motives over
F and i > 1. (For i < 0 the term vanishes by the t-structure axioms.)

The t-structures are such that over S ¼ Spec F or Spec Fp, 1 A MMðSÞ, while
for an open subscheme SH Spec OF , 1½1� A MMðSÞ.

The existence of the motivic t-structure on DMgmðKÞ satisfying the axioms
listed in this section is part of the general motivic conjectural framework, see
e.g. [8, App. A], [3, Ch. 21]. The idea of building a triangulated category of
motives and descending to mixed motives by means of a t-structure is due to
Deligne. The existence of a motivic t-structure on DMgmðKÞ is only known
in low dimensions: the subcategory of Artin motives, i.e., motives of zero-
dimensional varieties, carries such a t-structure [45, Section 3.4.]. By loc. cit.,
[37], the subcategory of DMgmðKÞ generated by motives of smooth varieties
of dimensiona 1 is equivalent to the bounded derived category of 1-motives
[16, Section 10] up to isogeny. Finally, if K is a field satisfying the Beilinson-
Soulé vanishing conjecture, such as a finite field or a number field, the category
of Artin-Tate motives over K enjoys a motivic t-structure [32, 46]. The results
on Artin-Tate motives are generalized to bases S which are open subschemes of
Spec OF in [41].

The conjecture about the cohomological dimension is due to Beilinson. A
(fairly weak) evidence for this conjecture is the cohomological dimension of Tate
motives over F and Fp, which is one and zero, respectively. This follows from
vanishing properties of K-theory of these fields.

The normalization in the last item is merely a matter of bookkeeping, but is
motivated by similar shifts in perverse sheaves (Section 3). The existence of a
motivic t-structure is not expected to hold for motives with integral coe‰cients.

We do not (need to) assume that the canonical functor DbðMMðSÞÞ !
DMgmðSÞ is an equivalence of categories or, equivalently [9, Lemma 1.4.],

Ext iMMðSÞðA;BÞ ¼ HomDMgmðSÞðA;B½i�Þ for all mixed motives A and B.

Axiom 4.2 (Exactness properties). Let SH Spec OF be an open subscheme,
let i : Spec Fp ! Spec OF be a closed point, j : U ! S an open immersion and
h : Spec F ! S the generic point.

Then j � ¼ j !, h�½�1�, i�, j� and j! are exact with respect to the motivic t-
structures on the involved categories of geometric motives. Further, i� is right-
exact, more precisely it maps objects in cohomological degree 0 to degrees ½�1; 0�.
Dually, i ! has cohomological amplitude ½0; 1�. Verdier duality D is ‘‘anti-exact’’,
i.e., maps objects in positive degrees to ones in negative degrees and vice versa.

The axiom is motivated by the same exactness properties in the situation of
perverse sheaves over Spec OF ½1=l� (Section 3). The corresponding exactness
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properties of the above functors on Artin-Tate motives, where the motivic
t-structure is available, are established in [41].

Definition 4.3. The cohomology functor with respect to the motivic
t-structure on DMgmðSÞ is denoted pH�. For any scheme X=S, we write

h iðX ; nÞ :¼ pH iMSðXÞðnÞ:

Axiom 4.4. Let Xh=F be any smooth projective variety. Then numerical
equivalence and homological equivalence (with respect to any Weil cohomology)
agree on Xh.

Let either S be a field and let C stand for the l-adic realization (in
case char S0 l), Betti, de Rham or absolute Hodge realization or let SH
Spec OF ½1=l� be an open subscheme and let C be the l-adic realization. We
write RGC : DMgmðSÞ ! DbðCÞ for the realization functor, where DbðCÞ is
understood as a placeholder of the target category of C. (We abuse the notation
insofar as that target category is not a derived category in the strict sense when
C is the l-adic realization.) For all realizations over a field, this category is
endowed with the usual t-structure on the derived category of an exact category,
e.g. on Db

c ðK ;QlÞ for l-adic realization. When C is the l-adic realization over
an open subscheme S of Spec OF ½1=l�, we take the perverse t-structure on
Db

c ðS;QlÞ defined in Section 3. Using this, we have the following axiom:

Axiom 4.5 (Exactness of realization functors). Realization functors RGC are
exact with respect to the motivic t-structure on DMgmðSÞ. Equivalently, as the
t-structure on DbðCÞ is non-degenerate, RGCðpH0MÞ ¼ pH0RGCðMÞ for any
geometric motive M over S. On the left, pH0 denotes the cohomology functor
belonging to the motivic t-structure on DMgmðSÞ, while on the right hand side it

is the one belonging to the t-structure on DbðCÞ.

This axiom is, if fairly loosely, motivated by a similar fact in the theory of
mixed Hodge modules: let X be any complex algebraic variety. Then, under the
faithful ‘‘forgetful functor’’ from the derived category of mixed Hodge modules to
the derived category of constructible sheaves with rational coe‰cients

DbðMHMðXÞÞ ! Db
c ðX ;QÞ

the category MHMðX Þ corresponds to perverse sheaves on X .
Recall that in an abelian category C, a morphism f : ðX ;W �Þ ! ðY ;W �Þ

between filtered objects is called strict if f ðWnXÞ ¼ f ðX ÞVWnY for all n.

Axiom 4.6 (Weights). Any mixed motive M over S has a functorial finite
exhaustive separated filtration W�M called weight filtration, i.e., a sequence of
subobjects in the abelian category MMðSÞ

0 ¼WaMHWaþ1MH � � �HWbM ¼M:
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Any morphism between mixed motives is strict with respect to the weight fil-
tration.

Tensoring any motive with 1ðnÞ shifts its weights by �2n.
Let RGC : DMgmðSÞ ! DbðCÞ be any realization functor that has a notion of

weights (such as the l-adic realization when S ¼ Spec Fp or the Hodge realization
when S ¼ Spec Q). Then

grWn RGCðMÞ ¼ RGCðgrWn MÞ
for any mixed motive M over S.

Definition 4.7. For any M A MMðSÞ, we write wtðMÞ for the (finite)
set of integers n such that grWn M0 0. For M A DMgmðSÞ, define wtðMÞ :¼
6

i AZ wtðpH iðMÞÞ � i.

Axiom 4.8 (Preservation of weights). Let f : X ! S be a quasi-projective
map. Then the functors f! f

� preserve negativity of weights, i.e., given a geometric
motive M over S with weightsa 0, f! f

�M also has weightsa 0. Dually, f� f
!

preserves positive weights.
In the particular case SH Spec OF (open), let j : U ! S and h : Spec F ! S

be an open immersion into S and the generic point of S, respectively. Let
i : Spec Fp ! S be a closed point. Then, i� and j! preserve negativity of weights
and dually for i ! and j�. Finally, j � and h� both preserve both positivity and
negativity of weights.

The preceding weight axioms are motivated by the very same properties of
l-adic perverse sheaves on schemes over C or finite fields [10, 5.1.14], number
fields [26] as well as Hodge structures [16, Th. 8.2.4] and Hodge modules (see
[38, Chapter 14.1] for a synopsis). In these settings, actually f! and f � preserve
negative weights, but we do not need weights for motives over more general bases
than the ones above. The weight formalism we require is stronger than the one
provided by the di¤erential-graded interpretation of DMgm over a field [12] or
[5, 6.7.4].

Remark 4.9. Over S ¼ Spec OF , we actually only use the following weight
properties: for any M A DMgmðSÞ, the interval wtðMÞ containing the weights
of M satisfies the following two properties: first, it is compatible under functor-
iality as in 4.8 and, second, j!� preserves weights of pure smooth motives. (See
Definitions 5.3, 5.7 for these two notions and the proof of Theorem 6.11.)

Example 4.10. For any projective (smooth) scheme X of finite type over S,
the weights of h iðX ÞðnÞ area i � 2n (b i � 2n, respectively).

Axiom 4.11 (Mixed vs. pure motives). For any field K, the subcategory of
pure objects in MMðKÞ identifies with MnumðKÞ, the category of numerical pure
motives over K.
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By Axiom 4.1, there is an exact sequence

0! H1ðh2n�1ðXh; nÞÞ ! H2nðXh; nÞ ! H0ðh2nðXh; nÞÞ ! 0:

By Axioms 4.4 and 4.11, it reads

0! CHnðXhÞQ;hom ! CHnðXhÞQ ! CHnðXhÞQ=hom! 0:ð7Þ

Here CHmðXhÞQ;hom and CHmðXhÞQ=hom are by definition the kernel and the
image (seen as a quotient of the Chow group) of the cycle class map from the
m-th Chow group to l-adic cohomology of Xh, CHmðXhÞQ ! H2mðXh;QlðmÞÞ
[34, VI.9].

As a consequence of the weight filtration, every mixed motive is obtained in
finitely many steps by taking extensions of motives in MnumðKÞ. Recall also that
for any X=Fq which is smooth and projective the spectral sequence

Extp
MMðFqÞð1; h

qðX ÞÞ ) HomDMgmðFqÞð1;MðX Þ½pþ q�Þ

degenerates by Axiom 4.1 and yields an agreement

CHqðXÞ=num ¼ HomMnumðFqÞð1; h
q
numðX ÞÞð8Þ

¼4:11 HomMMðFqÞð1; h
qðXÞÞ ¼ CHqðXÞ;

i.e., the agreement of rational and numerical equivalence (and thus, of all adequate
equivalence relations).

Remark 4.12. Recall that the agreement of numerical and homological
equivalence on all smooth projective varieties over F implies the motivic hard
Lefschetz [3, 5.4.2.1]: for such a variety Xh=F of constant dimension dh, let ia dh
and a any integer. Then, taking the ðdh � iÞ-fold cup product with the cycle
class of a hyperplane section with respect to an embedding of Xh into some
projective space over F yields an isomorphism (‘‘hard Lefschetz isomorphism’’)

h iðXh; aÞ !
G

h2dh�iðXh; dh � i þ aÞ:ð9Þ
The hard Lefschetz is known to imply a non-canonical decomposition [18]

MðXhÞG0 hnðXhÞ½�n�:
We need to assume the following generalization of this. It will be used in

Lemma 5.10, which in turn is crucial in Section 6. Note that the index shift in
the second part is due to the normalization in Axiom 4.1: for S ¼ Spec OF and a
closed point i as above, take for example X ¼ S, MðSÞ ¼ 1 ¼ h1ðSÞ½�1� (sic) and
i�MðSÞ ¼ 1Fp

¼ h0ðSpec FpÞ.

Axiom 4.13 (Decomposition of smooth projective varieties). Let X=S be
smooth and projective. In DMgmðSÞ, there is a non-canonical isomorphism

fX : MðXÞG0
n

hnðX Þ½�n�:
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For open subschemes SH Spec OF , this isomorphism is compatible with pullbacks
along all closed points i : Spec Fp ! S in the following sense: let Xp be the fiber of
X over Fp, and let c be the isomorphism making the following diagram commuta-
tive. Its left hand isomorphism is an instance of base change.

i�MðXÞ ���!i �fX 0
n

i�hnðXÞ½�n�???yG
???yc

MðXpÞ ���!fXp
0
m

hmðXpÞ½�m�

Then c respects the direct summands, i.e., induces isomorphisms

i�hnðXÞ½�n�G hn�1ðXpÞ½�nþ 1�:

5. Motives over number rings

In the following sections we assume the axioms of Sections 1, 2, and 4.
Unless explicitly mentioned otherwise, let S be an open subscheme of Spec OF ,
let i : Spec Fp ! Spec OF be a closed point, j : S 0 ! S an open subscheme and
h : Spec F ! S the generic point.

This section derives a number of basic results about motives over S from
the axioms spelled out above. We define and study the intermediate extension
j!� : MMðS 0Þ !MMðSÞ in analogy to perverse sheaves (Definition 5.3). An
‘‘explicit’’ set of generators of DMgmðSÞ (Proposition 5.6) is obtained using j!�.
We introduce a notion of smooth motives (Definition 5.7), which should be
thought of as analogs of lisse sheaves. Using this notion, we extend the
intermediate extension to a functor h!� spreading out motives over F with a
certain smoothness property to motives over S, cf. Definition 5.13. This functor
will be the main technical tool in dealing with f -cohomology in Section 6. In
Lemma 5.15 we express the l-adic realization of motives of the form j!�M in
sheaf-theoretic language.

5.1. Cohomological dimension
The following is an immediate consequence of Axiom 4.2:

Lemma 5.1. For any scheme X over S we have h�½�1�h iðX ; nÞ ¼
h i�1ðX �S F ; nÞ.

The following lemma parallels (and is a consequence of ) Axiom 4.1.

Lemma 5.2. The cohomological dimension of DMgmðSÞ is two, that is to say,
for any two mixed motives M, N over S,

HomDMgmðSÞðM;N½i�Þ ¼ 0

for all i > 2. In particular H iðMÞ vanishes for jij > 1.
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Proof. Apply HomðM;�Þ to the localization triangle 0
p AS ip�i

!
pN ! N !

h�h
�N of Axiom 1.16, where ip are the immersions of the closed points

of S. The terms adjacent to HomðM;N½i�Þ are HomðM;0
p
ip�i

!
pN½i�Þ ¼

0
p
Homði�pM; i !pN½i�Þ (as M is compact) and HomðM; h�h

�N½i�Þ ¼
Homðh�M; h�N½i�Þ. The latter term vanishes for i > 1 since h�½�1� is exact and
the cohomological dimension of DMgmðFÞ is one.

To deal with the former term, we have to take into account that i !p and i�p
are not t-exact, but of cohomological amplitude ½0; 1� and ½�1; 0�, respectively.

By decomposing i !pN into its pH1- and pH0-part and similarly with i�pM and
using that the cohomological dimension of DMgmðFpÞ is zero, the term vanishes
for i > 2. Using general t-structure properties, the second claim is a particular
case of the first one. r

5.2. Intermediate extension

Definition 5.3 (Motivic analog of [10, Def. 1.4.22]). The intermediate
extension j!� of some mixed motive M over S 0 is defined as

j!�M :¼ imð j!M ! j�MÞ:

The image is taken in the abelian category MMðSÞ, using the exactness of j! and
j�, Axiom 4.2.

Remark 5.4. Let i : Z ! S be the complement of j. The localization
triangles (Axiom 1.10) and cohomological amplitude of i� (Axiom 4.2) yield
short exact sequences in MMðSÞ

0! i�
pH�1i�j�M ! j!M ! j!�M ! 0;ð10Þ

0! j!�M ! j�M ! i�
pH0i�j�M ! 0:ð11Þ

These triangles are the same as for perverse sheaves in the situation that the
analog of Axiom 4.2, [10, 4.1.10], is applicable.

Lemma 5.5. � Given any mixed motive M over S 0, j!�M is, up to a unique
isomorphism, the unique mixed extension of M (i.e., an object X in MMðSÞ
such that j �X ¼M) not having nonzero subobjects or quotients of the form
i�N, where i : Z ! S is the closed complement of j and N is a mixed motive
on Z.

� For any two composable open immersions j1 and j2 we have j1!� � j2!� ¼
ð j1 � j2Þ!�.

� j!� commutes with duals, i.e., Dð j!��ÞG j!�Dð�Þ.

Proof. The proofs of the same facts for perverse sheaves [10, Cor. 1.4.25,
2.1.7.1] carry over to this setting. The first statement easily implies the last
one. r
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The following proposition makes precise the intuition that any motive M
over S should be reconstructed by its generic fiber (over F ) and a finite number
of special fibers (over various Fp).

Proposition 5.6. As a thick subcategory of DMðSÞ, DMgmðSÞ is generated
by motives of the form

� i�MðXpÞðmÞ, where Xp=Fp is smooth projective, m A Z and i : Spec Fp ! S is
any closed point and

� j!� j
�hkðX ;mÞ, where X is regular, flat and projective over S with smooth

generic fiber, and j : S 0 ! S is such that X �S S 0 is smooth over S 0 and k
and m are arbitrary.

Proof. Let DHDMgmðSÞ be the thick category generated by the objects in
the statement. By resolution of singularities over S (Axiom 1.15), DMgmðSÞ is
the thick subcategory of DMðSÞ generated by objects i�MðXpÞðmÞ and MðXÞðmÞ,
where Xp and X are as in the statement and m A Z.

It is therefore su‰cient to see M :¼MðX Þ A D. Let j : S 0 ! S be such that
XS 0 is smooth over S 0. By 1.10 it is enough to show j� j

�M A D, since motives
over finite fields are already covered. Applying the truncations with respect to
the motivic t-structure to j� j

�M and exactness of j�, j � (Axiom 4.2) shows that
we may deal with j� j

�hkðX ;mÞ for all k instead of j� j
�M. (Only finitely many

k yield a nonzero term by Axiom 4.1.) By Remark 5.4, there is a short exact
sequence of mixed motives

0! j!� j
�hkðX ;mÞ ! j� j

�hkðX ;mÞ ! i�
pH0i�j� j

�hkðX ;mÞ ! 0:

Here i is the complement of j. The left and right hand motives are in D, hence
so is the middle one. r

5.3. Smooth motives
The notion of smooth motives (a neologism leaning on lisse sheaves) is a

technical stepstone for the definition of the generic intermediate extension h!�, cf.
Definition 5.13. Roughly speaking, smoothness for mixed motives M means that
i�M and i !M do not intermingle in the sense that their cohomological degrees are
disjoint.

Definition 5.7. Let M be a geometric motive over S. It is called smooth
if for any closed point i : Spec Fp ! S there is an isomorphism

i !MG i�Mð�1Þ½�2�:

M is called generically smooth if there is an open (non-empty) immersion
j : S 0 ! S such that j �M is smooth.

Let X=S be a scheme with smooth generic fiber Xh. Then MSðXÞ is a
generically smooth motive.
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The isomorphism in Definition 5.7 is not required to be canonical in any
sense. Therefore, the subcategory of smooth motives is not triangulated in
DMgmðSÞ.

Lemma 5.8. Let M be a smooth mixed motive over S. Let i : Z ! S
be proper closed subscheme, let j : S 0 ! S be its complement. Then i !M ¼
ðpH1i !MÞ½�1� and dually i�M ¼ ðpH�1i�MÞ½1�.

Proof. By assumption i !MG i�Mð�1Þ½�2�. By Axiom 4.2, the left hand
side of that isomorphism is concentrated in degrees ½0; 1�. The right hand side is
in degrees ½1; 2�. This shows i !M ¼ pH1ði !MÞ½�1� by Axiom 4.1 and similarly
for i�M. r

The following is the key relation of smooth motives and the intermediate
extension. Note the similarity with Lemma 5.14.

Lemma 5.9. Let M be a smooth mixed motive over S. Then M is canoni-
cally isomorphic to j!� j

�M.

Proof. Let i : Z ! S be the complement of j. Given any i�NHM with
N A MMðZÞ, we apply the left-exact functor i ! and see NH pH0ði !MÞ ¼5:8 0.
Quotients of M of the form i�N are treated dually. We now invoke Lemma 5.5.

r

Lemma 5.10. Let X be any smooth projective scheme over S. Set M :¼
MðXÞ. Then all hnX ¼ pHnM are smooth.

Proof. Let fm;n be the ðm; nÞ-component of the bottom isomorphism
making the following commutative:

i !M
G; see ð4Þ

i�Mð�1Þ½�2�???yG;4:13

???yG;4:13

0
m

Am :¼0 i !ðpHmMÞ½�m� ����!G
0
n

Bn :¼0 i�ðpHnMÞð�1Þ½�n� 2�:

�����������������������!

We claim fm;n ¼ 0 for all m0 n, from which the lemma follows. By Axiom 4.13
we have Bn G hn�1ðXpÞ½�n� 1�ð�1Þ. Using this and the reflexivity of the Verdier
dual functor, we obtain an isomorphism Am G ðpHmþ1i !MÞ½�1�m�. Hence Bn

is concentrated in cohomological degree nþ 1, while Am is in degree nþ 2.
(The a priori bounds of Axiom 4.2 would be ½m;mþ 1� and ½nþ 1; nþ 2�,
respectively.) As the cohomological dimension of motives over Fp is zero
(Axiom 4.1), the only way for fm;n 0 0 is m ¼ n. r
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5.4. Generic intermediate extension

Lemma 5.11 (Spreading out morphisms). Given two geometric motives M
and M 0 over S together with a map fh : h

�M ! h�M 0, there is an open sub-
scheme j : S 0HS and a map fS 0 : j

�M ! j �M 0 which extends fh. Any two such
extensions agree when restricted to a possibly smaller open subscheme. In par-
ticular, if fh is an isomorphism, then fS 0 is an isomorphism for su‰ciently small S 0.

Proof. The adjunction map M ! h�h
�M and h�fh give a map M !

h�h
�M 0, hence by (5) a map M !0

p
ip�i

!
pM

0½1�. As M is compact, it factors

over a finite sum 0
p AT ip�i

!
pM

0½1�. Let j : S 0 ! S be the complement of the
points in T . The map M ! h�h

�M 0 factors over j� j
�M 0 and gives a map

j �M ! j �M 0 which extends fh. The first claim is shown.
For the unicity of the extension, we may assume that fh is zero, and show

that fS 0 is zero for some suitable S 0. This is the same argument as before: the
map M ! j� j

�M 0 constructed in the previous step factors over 0
p AS 0 ip�i

!
pM

0,
since M ! h�h

�M 0 is zero. By compacity of M, only finitely many primes in
the sum contribute to the map, discarding these yields the claim.

If fh is an isomorphism, ch :¼ f�1h can be extended to some cS 0 . As both
fS 0 � cS 0 and idS 0 extend idh, they agree on some possibly smaller open sub-
scheme of S and similarly with cS 0 � fS 0 . r

Remark 5.12. The lemma shows the full faithfulness of the functor

lim�!
S 0HS

DMgmðS 0Þ !
h�

DMgmðFÞ:

Its essential surjectivity is a consequence of Axiom 1.5, so we have an equiv-
alence. However, we will stick to the more basic language of colimits in DMðSÞ
instead of colimits of the categories of geometric motives.

Definition 5.13. Let Mh A DMgmðFÞ be a motive such that there exists
a generically smooth mixed motive M over S (Definition 5.7) with h�MGMh.
Then the generic intermediate extension h!�Mh is defined as

h!�Mh :¼ j!� j
�M

where j : S 0 ! S is an open immersion such that j �M is smooth.

This is independent of the choices of j and M (Lemmas 5.9, 5.11) and
functorial (5.11). For a mixed, non-smooth motive M, there need not be a
map j!� j

�M !M. Therefore, lim�! j!� j
�M does not make sense unless there is

some smoothness constraint on Mh.

5.5. Intermediate extension and l-adic realization
This subsection deals with the interplay of the (generic) intermediate extension

functor on mixed motives and the l-adic realization. In this subsection, S is an
open subscheme of Spec OF ½1=l�. The following lemma is well-known.
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Lemma 5.14. Let F be an étale (honest) locally constant sheaf on S. Let
h : Spec F ! Spec OF ½1=l� be the generic point. Then the canonical map F!
R0h�h

�F is an isomorphism.

Lemma 5.15. Let M be a mixed motive over S 0. Let j : S 0 ! S be an open
immersion. Then

ð j!�MÞl ¼ j!�ðMlÞ:

Let i be the complementary closed immersion to j : S 0 ! S and let h 0 and h be the
generic point of S 0 and S, respectively. If M is additionally smooth, one has

ði�j!�MÞl ¼ i�j!�Ml ¼ i�ðR0h�h
0�Ml½�1�Þ½1�:

To clarify the statement, note that the l-adic realization of M is a perverse
sheaf on S 0 by Axiom 4.5. Thus, j!� (Section 3) can be applied to it.

Proof. The first statement follows from Axiom 2.1, the definition of j!� and
the exactness of RGl (Axiom 4.5).

Let now M be mixed and smooth over S 0. As Ml is a perverse sheaf by
4.5, there is an open immersion j 0 : S 00 ! S 0 such that j 0�Ml½�1� is a locally
constant (honest) sheaf on S 00. As M is smooth we know from Lemmas 5.5
and 5.9

i�j!�M ¼ i�ð j � j 0Þ!� j 0�M:

By the interpretation of ð j � j 0Þ!� in terms of R0ð j � j 0Þ� (Section 3) we have

ði�j!�MÞl ¼ i�j!�Ml ¼ i�ðR0ð j � j 0Þ� j 0�Ml½�1�Þ½1� ¼
5:14

i�ðR0h�h
0�Ml½�1�Þ½1�: r

6. f -cohomology

6.1. f -cohomology via non-ramification
Let F be a number field. For any place p of F , let Fp be the completion,

Gp the local Galois group. For finite places, Ip denotes the inertia group. For
brevity, we will usually write H�ðMÞ for H�ðS;MÞ, where M is any motive over
some base S.

Definition 6.1 [11, Section 3]. Let V be a finite-dimensional l-adic vector
space, endowed with a continuous action of Gp, where p is a finite place of F not
over l. Set

H i
f ðFp;VÞ :¼

H0ðFp;VÞ i ¼ 0

ker H1ðFp;VÞ ! H1ðIp;VÞ i ¼ 1

0 else:

8><
>:
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Remark 6.2. If p lies over l, the definition is completed by H1
f ðFp;VÞ :¼

ker H1ðFp;VÞ ! H1ðFp;Bcrys nVÞ, where Bcrys denotes the ring of p-adic periods
[21]. We will disregard this case throughout.

Lemma 6.3. Let hp : Spec Fp ! Spec OFp
be the generic point of the com-

pletion of OF at p. Using the above notation, for p not over l, there is a canonical
isomorphism H1

f ðFp;VÞGH1ðOFp
;R0hp�VÞ. (The right hand side denotes l-adic

cohomology over OFp
.)

Proof. For any ln-torsion sheaf F on Fp we write AðFÞ :¼ ker H1ðFp;FÞ
! H1ðIp;FÞ. The Ql-sheaf V is, by definition, of the form U nZl

Ql, where
U ¼ ðUnÞn is a projective system of Z=ln-sheaves. By definition

H1ðFp;VÞ ¼ lim �
n AN

H1ðFp;UnÞnQl

and similarly for H1ðIp;VÞ. Both lim � n
and �nZl

Ql are left-exact functors, so
one has

H1
f ðFp;VÞ ¼ lim �

n

AðUnÞ
 !

nQl:

Thus it is su‰cient to show AðUÞ ¼ H1ðOFp
;R0hp�UÞ for any ln-torsion sheaf U

over Fp.
Recall the description of étale sheaves on OFp

from [34, II.3.12, II.3.16].
Let i : Spec Fp ! Spec OFp

be the closed point. As OFp
is a henselian ring [34,

Prop. I.4.5], for any sheaf F on Spec OFp
, the global sections depend only on the

special fiber and

GSpec Fp
¼ GSpec OFp

� ðhp�Þ ¼ GSpec OFp
� ði�i�hp�Þ:

These functors can be interpreted using group cohomology: GSpec OFp
� i� ¼ GFp

and ð�Þ Ip ¼ i�hp� (loc. cit.). The Hochschild-Serre spectral sequence for ð�ÞGp ¼
ð�ÞGalðFpÞ � ð�Þ Ip can be translated to

HpðSpec OFp
; i�i

�Rqhp�UÞ ) HnðFp;UÞ:

In addition we have the Leray spectral sequence

HpðSpec OFp
;Rqhp�UÞ ) HnðFp;UÞ:

The exact sequence of low degrees of the Hochschild-Serre sequence maps to the
sequence below:

0 ���! H1ðSpec OFp
;R0hp�UÞ ���! H1ðFp;UÞ ���! H0ðSpec OFp

;R1hp�UÞ???y¼
???y

0 AðUÞ H1ðFp;UÞ H1ðIp;UÞ���������! ���������! ��������!
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As H0ðGalðFpÞ;H1ðIp;UÞÞHH1ðIp;UÞ and GOFp
¼ GOFp

� i�i�, the right hand
map is injective, therefore there is a unique isomorphism between the left hand
terms making the diagram commutative. r

In order to proceed to a global level, the following definition is done:

Definition 6.4 [22, II.1.3]. Given an l-adic continuous representation V of
G ¼ GalðF Þ, define H i

f ðF ;VÞ to be such that the following diagram is cartesian.
In the lower row, V is considered a Gp ¼ GalðFpÞ-module by restriction.

H i
f ðF ;VÞ H iðF ;VÞ???y

???yQ
H i

f ðFp;VÞ ���! Q
H iðFp;VÞ

������!

The product ranges over all finite places p of F . We define H i
f ;ncrysðF ;VÞ

similarly, except that in the lower row of the preceding diagram only places p
that do not lie over l occur.

Lemma 6.5. Let V be an l-adic étale sheaf on Spec F. Then there is a
natural isomorphism

H i
f ;ncrysðF ;VÞGH1ðOF ½1=l�;R0h�VÞ:

Proof. By the same argument as in the previous proof, we may assume that
V is a sheaf of Z=ln-modules, since the isomorphism we are going to establish
is natural in V and

H i
f ;ncrysðF ;VÞ ¼ ker H iðF ;VÞ !

Y
pF l

ðH iðFp;VÞ=H i
f ðFp;VÞÞ:

Consider the following cartesian diagram (pF l)

Spec Fp

hp
Spec OFp

ip
Spec Fp???yb

???ya

???y¼
Spec F ���!h Spec OF ½1=l�  ���

i
Spec Fp

�����!  �����

In the derived category of Z=ln-sheaves on Spec OF ½1=l�, there is a
triangle R0h�V ! Rh�V ! R1h�½�1�V . Likewise, R0hp�b

�V ! Rhp�b
�V !

R1hp�b
�V ½�1�. (We have used pF l, since the inertia group has cohomological

dimension bigger than one for p j l.) This yields exact horizontal sequences, the
vertical maps are adjunction maps
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0 �! H1ðSpec OF ½1=l�; h�VÞ H1ðF ;VÞ H0ðSpec OF ½1=l�;R1h�VÞ???y
???y

???ya

0 �! Q
pF l

H1ðOFp
;R0hp�b

�VÞ ��! Q
pF l

H1ðFp; b
�VÞ

Q
pF l

H0ðOFp
;R1hp�b

�VÞ

�����! ����!
��!

We will show that a is injective. Hence, the left square is cartesian and by
definition and Lemma 6.3 the claim is shown. Indeed, a factors as

H0ðOF ½1=l�;R1h�VÞH
Y
pF l

H0ðFp; i
�
pR

1h�VÞ

!
Y
pF l

H0ðOFp
;R1hp�b

�VÞ ¼G
Y
pF l

H0ðFp; i
�
pR

1hp�b
�VÞ

 !
:

using i�R1h�V ¼ i�pa
�R1h�V ¼ i�pR

1hp�b
�V . r

Definition 6.6 [8, Remark 4.0.1.b], [11, Conj. 5.3], [20, Section 6.5], [22,
III.3.1.3]. Let Mh be a mixed motive over F . Let, similarly to Definition 6.4,
H i

f ðMhÞ be defined such that the following diagram, in which the bottom products
are taken over all primes l, is cartesian. As usual, Mhl is the l-adic realization,
seen as a G-module.

H i
f ðF ;MhÞ H iðF ;MhÞ???y

???yQ
l

H i
f ðF ;MhlÞ ���! Q

l

H iðF ;MhlÞ

������!

Again, to rid ourselves from crystalline questions at p j l, we define H i
f ;ncrysðF ;MhÞ

by replacing
Q

l H i
f ðF ;MhlÞ in the bottom row by

Q
l H i

f ;ncrysðF ;MhlÞ.

We are now going to exhibit an interpretation of f -cohomology thus defined
in terms of the generic intermediate extension h!�. Recall that we are assuming
in this section the axioms of Sections 1, 2, and 4. Mixed motives are needed to
even define h!�. Moreover, for the comparison result, we need to assume the
following conjecture.

Lemma 6.7. Let N be any mixed motive over Fp. The l-adic realization

map H0ðFp;NÞ ! H0ðFp;NlÞ :¼ N
GalðFpÞ
l is injective.

Proof. By the strictness of the weight filtration, the canonical maps

H0ðgrW0 NÞ  H0ðW0NÞ ! H0ðNÞ
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are both isomorphisms. Moreover, the l-adic realization functor commutes with
grW0 by Axiom 4.6, so that we can replace N by grW0 and assume that N is pure
of weight 0. In view of our assumptions on motives, cf. (8), all adequate
equivalence relations agree, so that we may regard N as a pure motive with
respect to any adequate equivalence relation. As the injectivity is stable under
taking direct summands, we may assume N ¼ hðX ; nÞ for X smooth and pro-
jective over Fp, by definition of pure motives and Axiom 4.11. The left hand
side is given by CHnðX Þ, so the map is injective by (8). r

Theorem 6.8. Let M be a generically smooth mixed motive over OF

(Definition 5.7). Set h�M½�1� ¼: Mh. There is a natural isomorphism

H0ðOF ; h!�h
�MÞ !G H1

f ;ncrysðF ;MhÞ:

Proof. Notice that h!�h
�M is well-defined by the assumptions. We want to

show that there is a cartesian commutative diagram

H0ðh!�h�MÞ H0ðh�h�MÞ ¼ H1ðMhÞ::::::::: b

???yQ
l

H1
f ;nlðF ;MhlÞ

Q
l

H1ðF ;MhlÞ

�����!

������!
Let j : U ! Spec OF be any open immersion such that j �M is smooth. We have
h!�h

�M ¼ j!� j
�M. The left hand term of the exact sequence

0
p AU

H0ðip�i
!
pMÞ ! H0ð j� j �MÞ ! H0ðh�h�MÞ ! 0

p AU

H1ðip�i
!
pMÞ

induced by (5) vanishes as i !pM is concentrated in cohomological degree 1
for p A U (Lemma 5.8). Any a A H0ðh�MÞ maps to a finite sub-sum of
0

p A Spec OF
H1ðip�i !pMÞ, so letting j be the open complement of these points,

a lies in (the image of ) H0ð j� j �MÞ:

H0ðh�MÞ ¼ lim�!
j:U!Spec OF

j �M smooth

H0ð j� j �MÞ:

By Lemma 6.9 below, the map H0ð j!� j �MÞ ! H0ð j� j �MÞ ! H0ðh�MÞ is injective.
Therefore, taking the colimit over all U such that MjU is smooth, the exact
localization sequence

0! H0ð j!� j �MÞ ! H0ð j� j �MÞ ! 0
p BU

H0ðpH0i�p j� j
�MÞ

stemming from (11) gives

0! H0ð j!� j �MÞ ! H0ðh�h�MÞ !0
p

H0ðpH0i�p jp� j
�
pMÞ:
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Here jp is the complementary open immersion to ip and the direct sum is over all
(finite) places p of OF . We have i�ph�h

�M ¼ i�p jp� j
�
pM, so the top sequence in the

following commutative diagram is exact:

ð12Þ
0 H0ð j!� j �MÞ H1ðMhÞ 0

p

H0ðpH0i�ph�h
�MÞ???y

???y
???y

0 ���! Q
l

H0ðð j �l j!� j �MÞlÞ ���! Q
l

H1ðMhlÞ ���! Q
l

0
pF l

H0ððpH0i�ph�h
�MÞlÞ

������! �������! ������!

The lower row denotes l-adic cohomology over OF ½1=l�, F , and the various
Fp, respectively. Moreover, jl : Spec OF ½1=l� ! Spec OF is the open immersion.
The remainder of the proof consists in the following steps: we show that the
diagram is commutative, that the second row is exact, identify its lower leftmost
term and show that the rightmost vertical map is injective. This implies that the
left square is cartesian, hence the theorem follows.

We write i and il for the open immersions of U V Spec OF ½1=l� into
Spec OF ½1=l� and U , respectively. By Lemma 5.15 and the exactness of j �l
we have

ð j �l j!� j �MÞl ¼ ði!�i�j �lMÞl ¼ i!�i
�ð j �lMÞl:

Thus (12) is commutative since every term at the bottom just involves the l-adic
realization of the motive above it, restricted to Spec OF ½1=l�.

The exactness of the bottom row is shown separately for each l, so l is fixed
for this argument. By the characterization just mentioned, i!�i

�ð j �lMÞl does not
change when shrinking U , since j!� j

�M is independent of U (as soon as M is
smooth over U). On the other hand, by the exactness of the l-adic realization
functor (Axiom 4.5) ð j �lMÞl is a perverse sheaf on Spec OF ½1=l�, so is a locally
constant sheaf (shifted into degree �1) on a suitable small open subscheme.
Hence we may assume that i�ð j �lMÞl is a locally constant sheaf in degree �1.
By Section 3, i!�i

�ð j �lMÞl ¼ ðR0i�i
�ð j �lMÞl½�1�Þ½þ1�, so the lower row is the exact

cohomology sequence belonging to the distinguished triangle of sheaves on
Spec OF ½1=l�

R0hl�ðMhÞl ! Rhl�ðMhÞl ! ðR1hl�ðMhÞlÞ½�1�:
Here hl : Spec F ! Spec OF ½1=l� is the generic point. As is well-known, there is
an isomorphism

D :¼ R1hl�h
�
lA!

G
0
pF l

ip�i
�
pR

1hl�h
�
lA ¼: 0 Bpð13Þ

for any generically locally constant constructible l-adic sheaf A, such as Ml½�1�.
Indeed, the adjunction map a : D!

Q
pF l Bp factors over the direct sum: note

that ð0 BpÞ=ln ¼0ðBp=l
nÞ and likewise with the product. Then

HomðD;0 BpÞ ¼ lim �
n

HomðD=ln;0ðBp=l
nÞÞH lim �

n

Hom D=ln;
Y
ðBp=l

nÞ
� �
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and to see that a lies in the left hand subgroup, it is enough to consider the Z=ln-
sheaves D=ln etc. The corresponding map H1ðGalðF Þ;A=lnÞ !

Q
H1ðIp;A=lnÞ

(Galois cohomology of the inertia groups) factors over the direct sum, since the
left hand term agrees with H1ðGalðF 0=F Þ;AÞ for some finite extension F 0=F .
This uses that A=ln is constructible. The extension F 0=F is ramified in finitely
many places (only), so the claimed factorization follows. This implies (13) and
thus the exactness of the lower row of (12). By Lemma 6.5 and Lemma 5.14,
the factors in the lower left-hand term of (12) agree with H1

f ;ncrysðF ; h�Ml½�1�Þ.
To show that the rightmost vertical map of (12) is an injection, let a ¼

ðapÞp A Spec OF
be a nonzero element of the rightmost upper term. Only finitely

many ap are nonzero. Pick some l not lying under any of these prime ideals p.
Then the image of a in 0

pF l
H0ððpH0i�ph�h

�MÞlÞ is nonzero by Lemma 6.7.
r

Lemma 6.9. Let M be a mixed motive over S such that j �M is smooth for
some open immersion j : U ! S. Then both maps H0ð j!� j �MÞ ! H0ð j� j �MÞ !
H0ðh�MÞ are injective.

Proof. Indeed the kernels are H�1ðpH0i�j� j
�MÞ ¼ 0 and 0

p AU H0ði !pMÞ,
which vanishes since i !pM sits in cohomological degree þ1, for M is smooth
around p A U (Lemma 5.8). r

6.2. f -cohomology via K-theory of regular models

Definition 6.10. Let Xh be a smooth and projective variety over F . Let
X=OF be any projective model, i.e., X �OF

F ¼ Xh. Then we define

H iðXh; nÞOF
:¼ imðH iðX ; nÞ ! H iðXh; nÞÞ:

Recall that we are assuming the axioms of Sections 1, 2, and 4; the full force
of mixed motives will be made use of in the sequel.

Theorem 6.11. The above is well-defined, i.e., independent of the choice of
the model X. More precisely we have natural isomorphisms:

H0ðh!�h i�1ðXh; nÞ½1�Þ ¼
H iðXh; nÞOF

i < 2n

CHnðXhÞQ;hom i ¼ 2n

(

Moreover

H�1ðh!�h i�1ðXh; nÞ½1�Þ ¼ H0ðh i�1ðXh; nÞÞ:

When X is regular, the definition and the statement are due to Beilinson [7,

Lemma 8.3.1]. In this case one has H iðXh; nÞOF
¼ im K 02n�iðX Þ

ðnÞ
Q ! K 02n�iðXhÞðnÞQ ,

but that expression does in general depend on the choice of the model [14, 15].
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An extension of Beilinson’s definition to all Chow motives over F due to Scholl is
discussed in the theorem below. We first provide a preparatory lemma.

Lemma 6.12. Let M A MMðSpec OF Þ be a mixed, generically smooth motive
with strictly negative weights (Definition 5.7). Let j : U ! Spec OF be an open
non-empty immersion such that MjU is smooth. The natural map j!� j

�M ! h�h
�M

gives rise to an isomorphism

H0ð j!� j �MÞ ¼ imðH0ðMÞ ! H0ðh�h�MÞÞ:

Proof. By Lemma 6.9, H0ð j� j �MÞ ! H0ðh�h�MÞ is injective. Hence it
su‰ces to show H0ð j!� j �MÞ ¼ imðH0M ! H0ð j� j �MÞÞ. Let i be the comple-
ment of j. From (10), (11), we have a commutative exact diagram

H0ð j! j �MÞ
a

H0ðMÞ H0ði�i�MÞ???y??y
???y

0 ¼ H�1ði� pH0i�j� j
�MÞ H0ð j!� j �MÞ H0ð j� j �MÞ???y

H1ði� pH�1i�j� j �MÞ ¼ 0

�������! ��!

����! f�����!

The indicated vanishings are because of t-structure reasons and Axiom 4.1,
respectively. It remains to show that a is surjective. As i�M is concentrated in
cohomological degrees ½�1; 0� (Axiom 4.2), there is an exact sequence

0 ¼ H1ðpH�1i�MÞ ! H0ði�MÞ ! H0ðpH0i�MÞ:
However H0ðpH0i�MÞ ¼ 0 as i� preserves negative weights (Axiom 4.8) and by
strictness of the weight filtration and compatibility with the t-structure (Axiom
4.6). r

Proof. Let j : U ! Spec OF be an open nonempty immersion (which
exists by smoothness of Xh) such that XU is smooth over U . By definition
of h!� and Lemmas 5.1 and 5.10, the left hand term in the theorem agrees with
H0ð j!�h iðXU ; nÞÞ. In the sequel, we write M :¼ h iðX ; nÞ and Mh :¼ h�½�1�M ¼
h i�1ðXh; nÞ.

We first do the case i < 2n. The spectral sequences

HaðhbðX ; nÞÞ ) HaþbðX ; nÞ; HaðhbðXh; nÞÞ ) HaþbðXh; nÞ
resulting from repeatedly applying truncation functors of the motivic t-structure
converge since the cohomological dimension is finite (Axiom 4.1 over F , Lemma
5.2 over OF ). By Lemma 5.2, H ið�Þ, applied to mixed motives over OF , is non-
zero for i A f�1; 0; 1g only. We thus have to consider two exact sequences.
The exact functor h�½�1� maps to similar exact sequences for motivic cohomology
over F (the indices work out properly, see Lemma 5.1):
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0 ���! K ���! H iðX ; nÞ H�1ðh iþ1ðX ; nÞÞ 0???y
???y

???y
0 ���! Kh ���! H iðXh; nÞ ���! H0ðh iðXh; nÞÞ ¼

4:6;4:10
0 ���! 0

ð14Þ

������! �����!

0 H1ðh i�1ðX ; nÞÞ K ���! H0ðMÞ ���! 0???y
???y

???y
0 ���! H2ðh i�2ðXh; nÞÞ ¼

4:1
0 ���! Kh ���! H1ðMhÞ ���! 0

ð15Þ

�����! �����!

Here, K and Kh are certain E3-terms of the spectral sequences above. The
rightmost vertical map in (14) is injective as one sees by combining (5) with the
left-exactness of i !p. Hence

H iðXh; nÞOF
¼ imðH iðX ; nÞ ! H iðXh; nÞÞ ¼ imðK ! KhÞ

¼ imðH0ðMÞ ! H1ðMhÞÞ

The motive M ¼ h iðX ; nÞ is a generically smooth (mixed) motive by Lemma
5.10. (Recall that this uses the decomposition axiom 4.13 for smooth projective
varieties.) By Example 4.10, its weights are strictly negative. Thus Lemma 6.12
applies and the case i < 2n is shown.

We now do the case i ¼ 2n. The motive j �M is pure of weight zero
(Example 4.10), hence by strictness of the weight filtration for motives over OF

and (10), (11) the same is true for E :¼ j!� j
�M. (This is an avatar of [10, Cor.

5.3.2].) Thus pH1i !E has strictly positive weights because of Axiom 4.8 and the
compatibility of weights and the motivic t-structure, i.e., wtpH1ð�ÞHwtð�Þ þ 1.
Therefore H0ðpH1i !EÞ ¼ 0. Here i is any closed immersion. The localization
triangle (5) yields

H0ðEÞ !a H0ðh�h�EÞ ¼
ð7Þ

CHnðXhÞQ;hom !0
p

H1ði !pEÞ ¼0 H0ðpH1ði !EÞÞ ¼ 0:

Therefore, a is surjective. The injectivity of a is Lemma 6.9.
To calculate H�1ðh!�Mh½1�Þ, let j : U ! Spec OF be as above. The natural

map H�1ðSpec OF ; j!� j
�MÞ ! H�1ðU ; j �MÞ is an isomorphism by the exact coho-

mology sequence belonging to (11). Thus we have to show

H�1ðSpec OF ; j� j
�MÞ ¼ H�1ðSpec OF ; h�h

�MÞ:

This follows from the localization axiom 1.10 and i !pM being in cohomolog-

ical degree þ1 for all points p in U (Lemma 5.8), so that H0ðFp; i
!
pMÞ ¼

H�1ðFp; i
!
pMÞ ¼ 0. r

By a theorem of Scholl [44, Thm. 1.1.6], there is a unique functorial and
additive (i.e., converting finite disjoint unions into direct sums) way to extend
the definition of H iðXh; nÞOF

as the image of the K-theory of a regular proper
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flat model (Definition 6.10) to all Chow motives over F , in particular to ones of
smooth projective varieties Xh=F that do not possess a regular proper model X .
The following theorem compares this definition with the one via intermediate
extensions.

Theorem 6.13. Let hh be a direct summand in the category of Chow motives
of hðXh; nÞ where Xh=F is smooth projective. Let i A Z be such that i � 2n < 0.
Let i : MratðF Þ ! DMgmðFÞ be the embedding. Then, the group

H iðhhÞOF
:¼ H0ðh!�ðpH i�2n�1ðiðhhÞÞ½1�ÞÞ:

is well-defined and agrees with the aforementioned definition by Scholl.

Proof. Recall iðhðXh; nÞÞ ¼MðXh; nÞ½2n� A DMgmðFÞ. We first check that
the group is well-defined: let X=OF be a projective model of Xh. By Lemma
5.11, there is some model M A MMðOF Þ of pH i�2n�1iðhhÞ½1� and an open sub-
scheme U of Spec OF such that M is a direct summand of pH i�1MðXÞðnÞ and
such that X �U is smooth over U . Then h i�1ðX ; nÞ is a smooth motive when
restricted to U (Lemma 5.10). Hence so is M. Thus h!� can be applied to
ðpH i�2n�1iðhhÞÞ½1�.

The assignment hh 7! H0ðh!�ðpH i�2n�1iðhhÞÞ½1�Þ is functorial and additive and
hðXhÞðnÞ maps to

H0ðh!�ðpH
i�1MðXh; nÞÞ½1�Þ ¼6:11 H iðXh; nÞOF

:

Thus the two definitions agree by Scholl’s theorem. r
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[13] D.-C. Cisinski and F. Déglise, Triangulated categories of motives, preprint, 2010.

[14] R. de Jeu, Appendix to the paper of Scholl: a counterexample to a conjecture of Beilin-

son, The arithmetic and geometry of algebraic cycles, Ban¤, AB, 1998, NATO Sci. Ser. C.

Math. Phys. Sci. 548, Kluwer Acad. Publ., Dordrecht, 2000, 491–493.

[15] R. de Jeu, Further counterexamples to a conjecture of Beilinson, J. K-Theory 1 (2008),

169–173.
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a b s t r a c t

This paper studies Artin–Tate motives over bases S ⊂ Spec OF , for a number field F . As a
subcategory of motives over S, the triangulated category of Artin–TatemotivesDATM(S) is
generated by motives φ∗1(n), where φ is any finite map. After establishing the stability of
these subcategories under pullback and pushforward along open and closed immersions,
a motivic t-structure is constructed. Exactness properties of these functors familiar from
perverse sheaves are shown to hold in this context. The cohomological dimension of
mixed Artin–Tate motives (MATM(S)) is two, and there is an equivalence DATM(S) ∼=

Db(MATM(S)).
© 2010 Elsevier B.V. All rights reserved.

Geometric motives, as developed by Hanamura [5], Levine [8] and Voevodsky [14], are established as a valuable tool
in understanding geometric and arithmetic aspects of algebraic varieties over fields. However, the stupefying ambiance
inherent tomotives, exemplified by Grothendieck’s motivic proof idea of theWeil conjectures, remains largely conjectural—
especially what concerns the existence of mixed motives MM(K) over some field K . That category should be the heart of
the so-called motivic t-structure on DMgm(K), the category of geometric motives. Much the same way as the cohomology
groups of a variety X over K , e.g. Hn

ét(X×KK ,Qℓ), ℓ-adic cohomology for ℓ ≠ char K are commonly realized as cohomology
groups of a complex, e.g. RΓℓ(X,Qℓ), there should bemixedmotives hn(X) that are obtained by applying truncation functors
belonging to the t-structure to M(X), the motive of X . However, progress on mixed motives has proved hard to come by. To
date, such a formalism has been developed for motives of zero- and one-dimensional varieties, only. This is due to Levine
[7], Voevodsky [14], Orgogozo [9] and Wildeshaus [16].

Building upon Voevodsky’swork, Ivorra [6] and recently Cisinski andDéglise [3] developed a theory of geometricmotives
DMgm(S) over more general bases. The purpose of this work is to join the ideas of Beilinson et al. on perverse sheaves [2]
with the ones on Artin–Tate motives over fields to obtain a workable category of mixed Tate and Artin–Tate motives over
bases S which are open subschemes of Spec OF , the ring of integers in a number field F . As over a field, this provides some
evidence for the existence and properties of the conjectural category of mixed motives over S.

The triangulated category DTM(S) (DATM(S)) of Tate (Artin–Tate) motives is defined 2.2 to be the triangulated
subcategory ofDMgm(S) (with rational coefficients) generated by direct summands of 1(n) and i∗1(n) (φ∗1(n), respectively).
Here, 1 is a shorthand for the motive of the base scheme, (n) denotes the Tate twist, i : Spec Fp → S is a closed point,
φ : V → S is any finite map and φ∗ : DMgm(V ) → DMgm(S) etc. denotes the pushforward functor on geometric motives. In
case S is a finite disjoint union of Spec Fp, the usual definition of (Artin–)Tate motives over S is recalled in Definition 2.1.

The following theorem and its ‘‘proof’’ is an overview of the paper.

Theorem 0.1. The categories DTM(S) and DATM(S) are stable under standard functoriality operations such as i!, j∗ etc. for open
and closed embeddings j and i, respectively.

Both categories enjoy a non-degenerate t-structure called motivic t-structure. Its heart is denoted MTM(S) or MATM(S),
respectively and called category of mixed (Artin–)Tate motives.

The functors i∗, j∗ etc. feature exactness properties familiar from the corresponding situation of perverse sheaves. For example,
i! is left-exact, and j∗ is exact with respect to the motivic t-structure.

E-mail address: jakob.scholbach@uni-muenster.de.
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The cohomological dimension ofMTM(S) and MATM(S) is one and two, respectively. We have an equivalence of categories

Db(MATM(S)) ∼= DATM(S)

and likewise for Tate motives.
The ‘‘site’’ of mixed Artin–Tate motives over S has enough points in the sense that a mixed Artin–Tate motive over S is zero if

and only if its restrictions to all closed points of S vanish.

Proof. The first statement is Theorem2.4. It is proven using the localization, purity and base-change properties of geometric
motives.

We will write T (S) for either DTM(S) or DATM(S). The existence of the motivic t-structure on T (S) is proven in three
steps. The first ingredient is the well-known motivic t-structure on Artin–Tate motives over finite fields (Lemma 3.6). The
second step is the study of a subcategory T̃ (S) ⊂ T (S) generated by φ∗1(n), where φ is finite and étale (Artin–Tate motives),
or just by 1(n) (Tatemotives). This category is first equippedwith an auxiliary t-structure. Using the cohomology functor for
the auxiliary t-structure, amotivic t-structure on T̃ (S) is defined in Section 3. This statement uses (and its proof imitates) the
corresponding situation for Artin–Tate motives over number fields due to Levine and Wildeshaus. Thirdly, the t-structure
on T̃ (S) is glued with the one over finite fields, using the general gluing procedure of t-structures of [2], see Theorem 3.8.
Much the sameway as with perverse sheaves, there are shifts accounting for dim S = 1, that is to say, i∗1(n) and 1(n)[1] are
mixed Tate motives. Beyond the formalism of geometric motives, the only non-formal ingredient of the motivic t-structure
are vanishing properties of the algebraic K -theory of number rings, number fields and finite fields due to Quillen, Borel and
Soulé.

The exactness statements are shown in Theorem4.2. This theoremgives some content to the exactness axioms for general
mixedmotives over S [11, Section 4]. The key step stone is the following: for any immersion of a closed point i : Spec Fp → S,
the functor i∗ maps the heart T 0(S) of T (S) to T [−1,0](Spec Fp), that is, the category of (Artin–)Tate motives over Fp whose
only nonzero cohomology terms are in degrees −1 and 0. The proof is a careful reduction to basic calculations relying on
facts gathered in Section 3 about the heart of T̃ (S).

The cohomological dimensions are calculated in Proposition 4.4. The Artin–Tate case is a special (but non-conjectural)
case of a similar fact for general mixed motives over S. The difference in the Tate case is because the generators of DTM(S)
have a good reduction at all places.

By an argument of Wildeshaus, the identity on T 0(S) extends to a functor Db(T 0(S)) → T (S) (Theorem 4.5). While it is
an equivalence in the case of Tate motives for formal reasons, the Artin–Tate case requires some localization arguments.

The last statement is Proposition 4.6. It might be seen as a first step into motivic sheaves. �

Deligne and Goncharov define a category of mixed Tate motives over rings OS of S-integers of a number field F
[4, 1.4., 1.7.]. Unlike themixed Tatemotiveswe study, their category is a subcategory ofmixed Tatemotives over F , consisting
of motives subject to certain non-ramification constraints, akin to Scholl’s notion of mixed motives over OF [12].

This paper is an outgrowth of part of my thesis. I owe many thanks to Annette Huber for her advice during that time. I
am also grateful to Denis-Charles Cisinski and Frédéric Déglise for teaching me their work on motives over general bases.

1. Geometric motives

This section briefly recalls some properties of the triangulated categories of geometric motives DMgm(X), where X is
either a number field F or an open or closed subscheme of Spec OF . All of this is due to Cisinski and Déglise [3]. In this
section, all references in brackets refer to op. cit., e.g. [Section 14.1].

Let X be any of the afore-mentioned bases. There is the triangulated category DM(X) of Beilinson motives and its
subcategory DMgm(X) of compact objects.1 Objects of the latter category will be referred to as geometric motives. The
categories are related by adjoint functors

f ∗
: DM(X) � DM(Y ) : f∗, (1)

where f : Y → X is any map [13.2.11, 1.1.11]. If f is separated and of finite type this adjunction restricts to an adjunction
between the subcategories of compact objects [14.1.5, 14.1.26] and there is an adjunction [13.2.11, 2.4.2]

f! : DMgm(Y ) � DMgm(X) : f !. (2)

If f is smooth in addition, f ∗
: DMgm(X) → DMgm(Y ) also has a left adjoint f♯ [13.2.11, 1.1.2]. These five functors respect

composition of morphisms in the sense that there are natural isomorphisms

f∗ ◦ g∗ = (f ◦ g)∗, f ∗
◦ g∗

= (g ◦ f )∗ etc. (3)

for any two composable maps f and g [Section 1.1, 2.4.21]. The category DMgm(X) enjoys inner Hom’s, denoted Hom, and a
tensor structure such that pullback functors f ∗ are monoidal [13.2.11, 1.1.28]. The unit of the tensor structure is denoted 1.

1 DM(X) is denoted DMB(X) in [3, Sections 13.2, 14.1].

140



2108 J. Scholbach / Journal of Pure and Applied Algebra 215 (2011) 2106–2118

In particular f ∗1X = 1Y for f : Y → X . The motive of any separated scheme f : Y → X of finite type is defined as f!f !1
and denoted M(Y ). (For f smooth, [Section 1.1.] puts M(Y ) := f♯f ∗1. The two agree, see Lemma 1.2.) The tensor structure in
DMgm(X) is such that

M(Y )⊗M(Y ′) = M(Y×XY ′) (4)
for any two smooth schemes Y and Y ′ over X [1.1.35]. There is a distinguished object 1(1) such that M(P1

X ) = 1 ⊕ 1(1)[2].
Tensoring with 1(1) is an equivalence on DMgm(X) [2.1.5], and 1(n) is defined in the usual way in terms of tensor powers of
1(1).We exclusivelyworkwith rational coefficients, i.e., all morphism groups areQ-vector spaces. If X is regular,morphisms
in DMgm(X) are given by

HomDMgm(X)(1, 1(q)[p]) ∼= K2q−p(X)
(q)
Q , (5)

the q-th Adams eigenspace in algebraic K -theory of X , tensored with Q [Section 13.2]. Having rational coefficients (or
coefficients in a bigger number field) is vital when it comes to vanishing properties of Hom-groups in DMgm(X). (With
integral coefficients, the existence of a t-structure is unclear even in the case of Artin motives over a field.)

For any closed immersion i : Z → X with open complement jwe have the following functorial distinguished localization
triangles in DMgm(X) [2.2.14, 2.3.3]:

j!j∗ → id → i∗i∗. (6)
Moreover i∗i∗ = id [2.3.1], so that

i∗j! = 0, (7)
and i∗ is fully faithful. There is an isomorphism of functors

f!
∼=

−→ f∗ (8)
for any proper map f [2.2.14, 2.2.16]. For smooth and quasi-projective maps f of constant relative dimension d there is a
relative purity isomorphism [Theorem 1, p. 5]

f ! ∼= f ∗(d)[2d]. (9)
Moreover, when i : Z → X is a closed immersion of constant relative codimension c and Z and X are regular, we have an
isomorphism

i!1 ∼= i∗1(−c)[−2c]. (10)
This is called absolute purity [Sections 2.4, 13.4]. Finally, for f : Y → X , g : X ′

→ X , f ′
: Y ′

:= X ′
×XY → X ′ and g ′

: Y ′
→ Y ,

there is a natural base-change isomorphism of functors [Section 2.2]
f ∗g!

∼= g ′

!
f ′∗. (11)

The Verdier dual functor DX : DMgm(X)op → DMgm(X) is defined by DX (M) := Hom(M, π !1(1)[2]) for any M ∈ DMgm(X),
where π : X → Spec Z denotes the structural map.
Lemma 1.1. For an open subscheme X of Spec OF we have

DX (−) = Hom(−, 1(1)[2]).

Secondly, we have DSpec Fq(−) = Hom(−, 1).
Proof. The structural map π : X → Spec Z factors as

X
j

→ Spec OF
i

→ An
Z

p
→ Spec Z,

where j is an open immersion, i is a closed immersion and p is the projection. Thus we have π !1 = π∗1 by absolute purity
(10), applied to i, and relative purity (9), applied to j and p. Using (10) we get the second statement. �

The Verdier dual functor exchanges ‘‘!’’ and ‘‘∗’’, that is, there are natural isomorphisms [Section 14.3]
D(f !M) ∼= f ∗D(M), f!D(M) ∼= D(f∗M). (12)

For example, the Verdier dual of (6) yields a distinguished triangle
i∗i! → id → j∗j∗. (13)

Lemma 1.2. For f : X → Y smooth, we have a natural isomorphism f!f !1 = f♯f ∗1.
Proof. This is well known.We can assume f is of constant relative dimension d. Then the claim follows from the adjunctions

f♯ � f ∗
(9)
= f !(−d)[−2d] and f!(d)[2d] � f !(−d)[−2d]. �

Let X = Spec OF . The colimit over the triangles (13) over increasingly small open subschemes j : U ⊂ X is still a
distinguished triangle. For any geometric motiveM over X we get the following distinguished triangle in DM(X):

⊕pip∗
i!pM → M → η∗η

∗M, (14)
where η : Spec F → Spec OF is the generic point, the sum runs over all closed points p ∈ X , ip is the closed immersion.
Indeed colimj∗j∗M = η∗η

∗M for any M ∈ DMgm(X) [Section 14.2].

141



J. Scholbach / Journal of Pure and Applied Algebra 215 (2011) 2106–2118 2109

2. Triangulated Artin–Tate motives

Recall the following classical definition. We apply it to a number field or a finite field:

Definition 2.1. Let K be a field. The category of Tate motives DTM(K) over K is by definition the triangulated subcategory
of DMgm(K) generated by 1(n) where n ∈ Z. The smallest full triangulated subcategory DATM(K) stable under tensoring
with 1(n) and containing direct summands of motives f∗1, where f : K ′

→ K is any finite map, is called a category of
Artin–Tate motives over K . For a scheme S of the form S = ⊔Spec Ki, a finite disjoint union of spectra of fields, we put
DATM(S) := ⊕iDATM(Ki) and likewise for DTM.

This section gives a generalization of that definition to bases S which are open subschemes of Spec OF based on the idea
that Artin–Tate motives over S should be compatible with the ones over F and Fp under standard functoriality.

Definition 2.2. The categories DTM(S) ⊂ DMgm(S) of Tate motives and DATM(S) ⊂ DMgm(S) of Artin–Tate motives over S
are the triangulated subcategories generated by the direct summands of

1(n), i∗1(n) (Tate motives)

and

φ∗1(n), (Artin–Tate motives)

respectively, where n ∈ Z, φ : V → S is any finite map (including those that factor over a closed point) and i : Spec Fp → S
is the immersion of any closed point of S.

Remark 2.3. • We can assume by localization (see (6), (13)) that the domain of φ is a reduced scheme.
• The category of Tate motives DTM(S) agrees with the triangulated category generated by the above generators (without

taking direct summands). Indeed, by (5), the endomorphism rings End(1(n)), End(i∗1(n)) identify with K0(S)
(0)
Q and

K0(Fp)
(0)
Q , respectively, which are both one-dimensional over Q. Hence these objects do not have any proper direct

summands.

For brevity, we write T (S) or T for DATM(S) or DTM(S) in the sequel. In most proofs, we will only spell out the case of Artin–Tate
motives.

Theorem 2.4. Let j : S ′
→ S be any open immersion, i : Z → S be any closed immersion and f : V → S any finite map such that

V is regular. Let η : Spec F → S be the generic point. Then the functors f∗
(8)
= f!, f ∗ and f ! preserve Artin–Tate motives. Similar

statements hold for Artin–Tate and Tate motives for j and i. Moreover, η∗, the Verdier dual functor D and the tensor product on
DMgm(S) respect the subcategories of (Artin–)Tate motives.

The functor η∗ does not respect Artin–Tate motives: we will see in Proposition 4.6 that any Artin–Tate motive M of the
formM = η∗Mη , whereMη is a geometric motive over F , necessarily satisfiesM = 0.

Proof. The stability of (Artin–)Tate motives under j∗, η∗, i∗ and i∗, f ∗ and — for Artin–Tate motives, under f∗ — is immediate
from the definition, (8), and (11). For example, i∗φ∗1(n) = φ′′

∗
1(n). Here φ : S ′

→ S is any finite map and φ′′
: Z ′

→ Z

is its pullback along i. Let i′ : Z ′
→ S ′ be the pullback of i. For the stability under i! we use i!φ∗1

(11)
= φ′′

∗
i′!1. We can

assume S ′ is reduced and, since the zero-dimensional case is easy, one-dimensional. Let n : S ′′
→ S ′ be the normalization

map; let v : Y ′
⊂ S ′ be the ‘‘exceptional divisor’’, i.e., the smallest (zero-dimensional) closed reduced subscheme such that

n−1(S ′
\Y ′) → S ′

\Y ′ is an isomorphism. Moreover, put z : Y ′′
:= Y ′

×S′S ′′
→ S ′′

→ S ′. Consider the the distinguished
triangle

1S′ → v∗1Y ′ ⊕ n∗1S′′ → z∗1Y ′′ .

It is a special case of [3, Theorem 4, p. 5] or can alternatively be derived from localization. Note that i!n∗1S′′

(11)
= n′

∗
i′′!1S′′

(10)
=

n′
∗
1(−1)[−2] by the regularity of S ′′. Here, again, n′ and i′′ denote the pullback maps. Similar considerations for i!v∗1Y ′ and

i!z∗1Y ′′ show that i!1S′ is an Artin–Tate motive.
For the stability under j∗ it is sufficient to show j∗φ′

∗
1 is an Artin–Tate motive over S for any finite flat map φ′

: V ′
→ S ′.

Choose some finite flat (possibly non-regular) model φ : V → S of φ′, i.e., V×SS ′
= V ′, so that j∗φ∗1 = φ′

∗
1 is an Artin–Tate

motive over S ′. The localization triangle (13)

i∗i!φ∗1 → φ∗1 → j∗j∗φ∗1

and the above steps show that j∗φ′
∗
1 is an Artin–Tate motive over S.

To see the stability under the Verdier dual functor D, it is enough to see that

D(φ∗φ
∗1)

(12)
= φ!φ

!D(1) 1.1
= φ∗φ

!1(1)[2]
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is an Artin–Tate motive for any finite map φ : V → S with reduced domain (Remark 2.3). If V is zero-dimensional, this
follows from purity (10), (9) and the regularity of S. If not, there is an open (non-empty) immersion j : S ′

→ S such that
V ′

:= V×SS ′ is regular (for example, take S ′ such that V ′/S ′ is étale). Let i be the complement of j. We apply the localization
triangle (13) to φ∗φ

!1. By base-change (11) we obtain

i∗φ′′

∗
φ′′!i!1 → φ∗φ

!1 → j∗φ′

∗
φ′!j∗1.

Here φ′′ and φ′ is the pullback of φ along i and j, respectively. By the regularity of S and purity we have i!1 = 1(−1)[−2], so
the left hand term is an Artin–Tate motive. The right one also is by purity. This shows the claim for D.

The stability under f !, i!, and j! now follow for duality reasons.

As for the stability under tensor products we note that φ∗1⊗φ′
∗
1
(4)
= (φ×φ′)∗1 if φ and φ′ are (finite and) smooth, cf. (4).

Using the localization triangle (6), it is easy to reduce the general case of merely finite maps φ, φ′ to this case. �

Remark 2.5. Theorem 2.4 also holds for a similarly defined category of Artin–Tate motives over open subschemes S of a
smooth curve over a field.

Proposition 2.6. Let M ∈ DATM(S) be any Artin–Tate motive. Then there is a finite map f : V → S such that f ∗M ∈ DTM(S) ⊂

DATM(S). We describe this by saying that f splitsM.

Proof. As f ∗ is triangulated, this statement is stable under triangles (with respect to M), and also under direct sums and
summands. Therefore, we only have to check the generators, i.e., M = φ∗1(n) with φ : S ′

→ S a finite map with
reduced domain. The corresponding splitting statement for Artin–Tate motives over finite fields is well-known. Therefore,
by localization (6), (13), it is sufficient to find a splitting map f after replacing S by a suitable small open subscheme, so we
may assume φ étale. We first assume that φ is moreover Galois of degree d, i.e., S ′

×SS ′ ∼= S ′⊔d, a disjoint union of d copies of
S ′. In that case one has φ∗φ∗1 = 1⊕d by base-change (11), so the claim is clear. In general φ need not be Galois, so let S ′′ be
the normalization of S in some normal closure of the function field extension k(S ′)/k(S). Both µ : S ′′

→ S and ψ : S ′′
→ S ′

are generically Galois. By shrinking S we may assume both are Galois. From Hom(1S′ , ψ∗1S′′) = Hom(1S′′ , 1S′′) = Q and
Hom(ψ∗1S′′ , 1S′) = Hom(1S′′ , ψ !1S′) = Hom(1S′′ , 1S′′) = Qwe see that 1S′ is a direct summand ofψ∗1S′′ . Thereforeµ∗φ∗1S′

is a summand of µ∗φ∗ψ∗1S′′ = µ∗µ∗1S′′ = 1⊕ deg S′′/S , a Tate motive. �

3. The motivic t-structure

In this section, we establish the motivic t-structure on the category of Artin–Tate motives over S (Theorem 3.8). It is
obtained by the standard gluing procedure, applied to the t-structures on Artin–Tate motives over finite fields and on a
subcategory T̃ (S ′) ⊂ T (S ′) for open subschemes S ′

⊂ S. Under the analogy of mixed (Artin–Tate) motives with perverse
sheaves, the objects in the heart of the t-structure on T̃ (S ′) correspond to sheaves that are locally constant, i.e., have good
reduction. We refer to [2, Section 1.3.] for generalities on t-structures.

Definition 3.1 (Compare [7, Def. 1.1]). For −∞ ≤ a ≤ b ≤ ∞, let T̃[a,b] denote the smallest triangulated subcategory of
T (S) containing direct factors of φ∗1(n), a ≤ −2n ≤ b, where φ : S ′

→ S is a finite étalemap. For Tatemotives, φ is required
to be the identity map. (We will not specify this restriction expressis verbis in the sequel.) Furthermore, T̃[a,a] and T̃[−∞,∞]

are denoted T̃a and T̃ . If it is necessary to specify the base, we write T̃[a,b](S) etc.

We need the following vanishing properties of the K -theory of number fields, related Dedekind rings and finite fields up
to torsion. In order to weigh the material appropriately, it should be said that the content of the theorem below is the only
non-formal part of the proofs in this paper, and all complexity occurring with Artin–Tate motives ultimately lies in these
computations.

Theorem 3.2 (Borel, Quillen, Soulé). Let φ : S ′
→ S and ψ : V → S be two finite maps with zero-dimensional domains.

HomS(φ∗1, ψ∗1(n)[m]) =


finite-dimensional n = m = 0
0 else.

Now let φ : S ′
→ S and ψ : V → S be two finite étale maps over S. Then

HomS(φ∗1, ψ∗1(n)[m]) =

 finite-dimensional n = m = 0
finite-dimensional m = 1, n odd and positive
0 else.

Proof. By (5)

HomV (1, 1(q)[p]) ∼= K2q−p(V )
(q)
Q ,
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for a regular scheme V . For the first statement, we may assume that S ′ and V are finite fields. Then the statement follows
from adjunction, base-change, purity and

Kn(Fq) =


µqi−1 n = 2i − 1, i > 0
0 n = 2i, i > 0
Z n = 0

[10]. K -theory of Dedekind rings R whose quotient field is a number field is known (up to torsion) by Borel’s work. The
relation to the K -theory of number fields is given by an exact sequence (due to Soulé [13, Th. 3]; up to two-torsion) for
n > 1

0 → Kn(R)
η∗

−→ Kn(F) → ⊕pKn−1(Fp) → 0.

Here η : Spec F → Spec R is the generic point and the direct sum runs over all (finite) primes in R. Also, K0(R) = Z ⊕ Pic(R)
andK1(R) = R×. In particular, for all n andm,Kn(R)

(m)
Q vanisheswhenKn(F)

(m)
Q vanishes, sinceη∗ respects the Adams grading.

One has the following list (see e.g. [15])

K2q−p(F)
(q)
Q =



0 q < 0
0 q = 0, p ≠ 0
Q q = p = 0
0BS q > 0, p ≤ 0
0 q > 0, even, p = 1
F×

⊗ZQ q = p = 1
Qr1+r2 q > 1, q ≡ 1 (mod 4), p = 1
Qr2 q > 0, q ≡ 3 (mod 4), p = 1
0 q > 0, p > 1.

As usual, r1 and r2 are the numbers of real and pairs of complex embeddings of F , respectively. (The agreement of K2q−1(F)
and K2q−1(F)(q) for odd positive q is not mentioned in [15].) The spot marked 0BS is referred to as Beı̆linson–Soulé vanishing
(see e.g. [7]). As first realized by Levine [7], this translates into the non-existence of morphisms in the ‘‘wrong’’ direction
with respect to the motivic t-structure.

For the last claim, put V ′
= V×SS ′:

V ′
φ′

//

ψ ′

��

V

ψ

��
S ′

φ // S.

To save space, we omit the twist and the shift in writing the Hom-groups. By (2), (11), and (1) we have

HomS(φ∗1, ψ∗1) = HomS′(1, φ!ψ∗1) = HomS′(1, ψ ′

∗
φ′!1) = HomV ′(1, φ′!1).

Now, V ′ is (affine and) étale over V , so φ′!1
(9)
= φ′∗1 = 1 by (9) and we are done in that case by the above vanishings of the

K -theory up to torsion. �

The following lemma is a variant of [7, Lemma 1.2], [16, Lemma 1.9] and can be proven by faithfully imitating the
technique in loc. cit.

Lemma 3.3. For any −∞ ≤ a < b ≤ c ≤ ∞, (T̃[a,b−1], T̃[b,c]) is a t-structure on T̃[a,c].

Definition 3.4. The resulting truncation and cohomology functors are denoted F≤b and F>b and grFb , respectively.

The following definition is modeled on [7, Def. 1.4]. We also refer to [1, Section 2.1.3] for a general way (due to Morel)
of constructing a t-structure starting from a given set of generators. For any odd integer n set 1(n/2) := 0, for notational
convenience.

Definition 3.5. Let S be an open subscheme of Spec OF . Let T̃≥0
a (S) (T̃≤0

a (S)) be the full subcategory of T̃a(S) (Definition 3.1)
generated by direct summands of

φ∗1

−

a
2


[n + 1]

for any n ≤ 0 (n ≥ 0, respectively), and any finite étale map φ. ‘‘Generated’’ means the smallest subcategory containing
the given generators stable under isomorphism, finite direct sums, and cone(f )[−1] (cone(f ), resp.) for any morphism f in
T̃≥0
a (S) (T̃≤0

a (S), respectively).
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For any −∞ ≤ a ≤ b ≤ ∞, let T̃≥0
[a,b](S) be the triangulated subcategory generated by objects X , such that for all

a ≤ c ≤ b, grFc (X) ∈ T̃≥0
c (S) and similarly for T̃≤0

[a,b](S). For a = −∞ and b = ∞ we simply write T̃≤0(S), T̃≥0(S). We may
omit S in the notation, if no confusion arises.

In particular 1(−a/2)[1] ∈ T̃ 0
a (S). This shift is as in the situation of perverse sheaves [2], [11, Section 3]. Before stating

and proving the existence of the motivic t-structure, we need some preparatory steps. Levine has established the existence
of the motivic t-structure on Tate motives over number fields and finite fields [7, Theorem 1.4.]. This has been generalized
to Artin–Tate motives byWildeshaus [16, Theorem 3.1]. We briefly recall these precursor statements. Let K be either a finite
field or a number field. For any −∞ ≤ a ≤ b ≤ ∞, let T[a,b](K) be the triangulated subcategory of T (K) generated by
1(n) with a ≤ −2n ≤ b (Tate motives) and direct summands of φ∗1(n), φ : Spec K ′

→ Spec K a finite map (Artin–Tate
motives, respectively). For any a ≤ c < b, the datum


T[a,c], T[c+1,b]


forms a t-structure on T[a,b]. Let grF∗ be the cohomology

functor corresponding to that t-structure. Write Ta(K) for T[a,a](K) and let T≥0
a (K) and T≤0

a (K) be the subcategories of Ta(K)
generated by 1(−a/2)[n] with n ≤ 0 and n ≥ 0, respectively. Here, ‘‘generated’’ has the same meaning as in Definition 3.5.
Let T≥0

[a,b] and T≤0
[a,b] be the subcategories of T[a,b] of objects X such that all grFc X ∈ T≥0

c (grFc X ∈ T≤0
c , respectively) for all

a ≤ c ≤ b. Then,

T≤0
[a,b](K), T

≥0
[a,b](K)


is a non-degenerate t-structure on T[a,b].

The following well-known fact is a consequence of vanishing of all K -theory groups of finite fields except for K0(Fp)
(0)
Q ,

see Theorem 3.2.

Lemma 3.6. Let p be a closed point in S with residue field Fp. The inclusions Ta(Fp) ⊂ T (Fp) induce an equivalence of categories
a∈Z

Ta(Fp) = T (Fp).

There are canonical equivalences of categories

T (Z) :=


p∈Z,a∈Z

Ta(Fp) =


p,a

Db(Q[Perm,Gal(Fp)]) =


p,a

Q[Perm,Gal(Fp)]
Z−graded.

Here and in the sequel, Q[Perm,Gal(Fp)] denotes finite-dimensional rational permutation representations of the absolute
Galois group. By means of that equivalence, T (Z) is endowed with the obvious t-structure. The heart T 0

a (Fp) = T≤0
a (Fp) ∩

T≥0
a (Fp) is semisimple and consists of direct sums of summands of φ∗1(a), φ finite.
We now provide the motivic t-structure on T̃ (S), which stems from the one on T (F). The two together will then be glued

to give the t-structure on T (S). Recognizably, the following is again an adaptation of Levine’s proof of the t-structure on Tate
motives over number fields.

Proposition 3.7. For any −∞ ≤ a ≤ b ≤ ∞,

T̃≤0
[a,b], T̃

≥0
[a,b]


is a non-degenerate t-structure on T̃[a,b](S) (Definitions 3.1 and

3.5). The cohomology functors associated to it are denoted pH∗. The functor η∗
[−1] : T̃[a,b](S) → T[a,b](F) is t-exact.

Any motive in T̃ 0
a (S) is a finite direct sum of summands of motives φ∗1(−a/2)[1] with φ finite étale. The closure of the direct

sum of the T̃ 0
a (S), a ∈ Z, under extensions (in the abelian category T̃ 0(S)) is T̃ 0(S).

Proof. Wemay assume that a and b are finite, since

T̃ (S) =


−∞<a≤b<∞

T̃[a,b](S)

and the inclusion functors given by the identity between the various T[−,−] are exact.
The proof proceeds by induction on b − a. The case b = a is treated as follows: the category T̃a := T̃a(S) is generated

by φ∗1(−a/2)[n], n ∈ Z, φ étale and finite. The functor η∗
[−1](a/2) : T̃a(S) → T0(F) is fully faithful. To see this it

suffices to remark HomS(φ∗1(−a/2)[n + 1], ψ∗1(−a/2)[n′
+ 1]) = HomF (φη∗

1[n], ψη∗
1[n′

]), for any finite étale maps
φ and ψ with generic fiber φη and ψη . This equality follows from the K -theory computations, see the proof of Theorem 3.2.
Therefore, the image of η∗

[−1](a/2) is a triangulated subcategory of T0(F) which contains the generators of T0(F), so the
functor establishes an equivalence between T̃a(S) with the derived category of finite-dimensional rational permutation
representations of Gal(F) by [14, 3.4.1]. Hence T̃a(S) carries a non-degenerate t-structure.

The remainder of the proof is done as in Levine’s proof. One shows

Hom

T̃≤0
[a+1,b], T̃

≥0
c


= 0 (15)

for any c ≤ a. This reduces to the Beı̆linson–Soulé vanishing. Then the t-structure axioms follow for formal reasons.
The exactness of η∗

[−1] is obvious from the definitions. The statement about the heart T̃ 0
a is done as follows: the exact

functor η∗
[−1](a/2) identifies T̃ 0

a (S) = T̃≥0
a (S)∩ T̃≤0

a (S)with the semi-simple category T 0
0 (F) = Q[Perm,Gal(F)]. We claim

that for any object X ∈ T̃a(S), all pHn(X) are direct summands of sums ofmotivesφ∗1(−a/2)[1],φ finite and étale. This claim
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does hold for the generators of T̃a(S). We now show that the condition is stable under triangles, which accomplishes the
proof of the claim and thus the proof of the statement. Let A → X → B be a triangle in T̃a(S) such that A and B satisfy the
claim. The long exact cohomology sequence

· · · →
pHn−1B

δn−1
−→

pHnA →
pHnX →

pHnB
δn

−→
pHn+1A → · · ·

yields the short exact sequence in T̃ 0
a (S)

0 → coker δn−1
→

pHnX → ker δn → 0.

By the semi-simplicity of T̃ 0
a (S) (this is the key point!), the sequence splits and there is a non-canonical isomorphism

pHnX ∼= coker δn−1
⊕ ker δn and coker δn−1 and ker δn are direct summands of pHnA and pHnB, respectively.

For the statement concerning T̃ 0(S) one uses the finite exhaustive F-filtration of any X ∈ T̃ 0(S):

0 = FaX ⊂ F[a,a+1]X ⊂ · · · ⊂ F[a,b]X = X .

The successive quotients grF
∗
X of that chain are in T̃ 0

∗
(S), since truncations with respect to the t-structure related to F are

exact with respect to the motivic t-structure, by definition. Thus the claim about T̃ 0(S) follows. �

Theorem 3.8. The motivic t-structures on T (Z) and T̃ (S ′) glue to a non-degenerate t-structure on the category T (S) of
(Artin–)Tate motives over S (Definition 2.2). It is called motivic t-structure. Here S ′ runs through open subschemes of S and
Z := S\S ′.

Proof. We apply the gluing procedure of t-structures of [2, Theorem 1.4.10]: for any open subscheme j : S ′
⊂ S, we write

TS′(S) for the full triangulated subcategory of objects X ∈ T (S) such that j∗X ∈ T̃ (S ′) ⊂ T (S ′). Let i : Z ′
→ S be the closed

complement of j. Put

T≤0
S′ (S) := {X ∈ TS′(S), j∗X ∈ T̃≤0(S ′), i∗X ∈ T≤0(Z ′)},

T≥0
S′ (S) := {X ∈ TS′(S), j∗X ∈ T̃≥0(S ′), i!X ∈ T≥0(Z ′)}.

The assumptions of the gluing theorem, [2, 1.4.3], namely the existence of i∗, i∗, i!, j∗, j!, j∗ satisfying the usual adjointness
properties, j∗i∗ = 0, localization sequences and full faithfulness of i∗, j! and j∗ are met, since they are in the surrounding
categories of geometric motives, cf. Section 1, and the stability of the subcategories of Artin–Tate motives under these
functors (Theorem 2.4). Thus, the above defines a t-structure on TS′(S).

The field F is of characteristic zero, so any finite map φ : V → S with V reduced and one-dimensional is generically
étale. This implies T (S) = ∪S′⊂STS′(S). We set

T≥0(S) :=


S′⊂S

T≥0
S′ (S)

and dually for T≤0(S). The t-structure axioms on T (S) and the non-degeneracy are implied by the exactness of the identical
inclusion TS′(S) → TS′′(S) for any S ′′

⊂ S ′.
To see the exactness of the identity, let j′′ : S ′′

⊂ S and i′′ : Z ′′
⊂ S be its complement. Let X ∈ T≤0

S′ (S). It is clear
that j′′∗X ∈ T̃≤0(S ′′). Let us check i′′∗X ∈ T≤0(Z ′′). The pullback i′′∗X decomposes as a direct sum parametrized by the
points of Z ′′ and we only have to deal with the points that are not contained in Z ′. Let p : Spec Fp → S be such a point;

it factors over S ′: p = j ◦ q, where q : Spec Fp → S ′ is the same point as p. Thus p∗X
(3)
= q∗j∗X ∈ q∗T̃≤0(S ′). The

containment q∗T̃≤0(S ′) ⊂ T≤0(Spec Fp) follows from q∗T̃≤0
a (S ′) ⊂ T≤0

a (Spec Fp), since q∗ clearly commutes with the F-
truncation functors belonging to the auxiliary t-structure. To see the latter containment, it suffices to check the generators
(in the sense of Definition 3.5) of T̃≤0

a (S ′), that is, it is sufficient to remark

q∗φ∗1(−a/2)[n + 1]
(11)
= φ′

∗
1(−a/2)[n + 1] ∈ T≤−1

a (Spec Fp) ⊂ T≤0
a (Spec Fp),

where n ≥ 0 and φ is a finite étale map with pullback φ′. This shows that the identity is left-exact. The right-exactness is
done dually. �

4. Mixed Artin–Tate motives

Definition 4.1. The heart T 0(S) of themotivic t-structure is called the category ofmixed (Artin–)Tatemotives over S, denoted
MTM(S) and MATM(S), respectively. The cohomology functors belonging to the motivic t-structure are denoted pH∗.

We now study the categories of mixed Tate motives over S in some detail. The key is Theorem 4.2 below, establishing
exactness properties of pullback and pushforward functors along closed and open immersions. The exactness axioms for
mixedmotives over number rings (see [11, Section 4]) are modeled on this theorem. Of course, the theorem is an Artin–Tate
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motivic analog of a similar fact about perverse sheaves [2, Prop. 1.4.16, 4.2.4.], suggesting that the theory of perverse sheaves
is to some extent quite formal. Proposition 4.4 calculates the cohomological dimension of mixed (Artin–)Tate motives. We
obtain an equivalence DTM(S) ∼= Db(MTM(S)), using a result of Wildeshaus, and likewise for Artin–Tate motives. Finally,
we do a first step into (Artin–Tate) motivic sheaves, in Proposition 4.6.

All exactness statements below are with respect to the motivic t-structure of Theorem 3.8. Recall from Theorem 2.4
that the functors discussed below do preserve (Artin–)Tate motives. For brevity, we write T [a,b] for the full subcategory of
objects M satisfying pHnM = 0 for all n < a and n > b. We say that a triangulated functor F between categories of Artin–
Tate motives has cohomological amplitude [a, b] if F(T 0) is contained in T [a,b]. Note that F is right exact iff b ≤ 0 and left
exact iff a ≥ 0.

Theorem 4.2. Let j : S ′
→ S be an open immersion, i : Z → S a closed immersion with dim Z = 0. Finally, let f : V → S be a

finite map with regular one-dimensional domain.
(i) The Verdier duality functor D is exact in the sense that it maps T≥0 to T≤0 and vice versa. Therefore, it induces an endofunctor

on T 0(S).
(ii) The functors j∗, j!, j∗, as well as i∗ = i! are exact.
(iii) The functor i∗ has cohomological amplitude [−1, 0]. Dually, i! has cohomological amplitude [0, 1].
(iv) The functor f∗ = f! is exact. The cohomological amplitude of f ∗ and f ! is [−1, 0] and [0, 1], respectively. If f is also étale,

f ∗
= f ! is exact.

(v) The functor η∗
[−1] : T (S) → T (Spec F) is exact.

Proof. (i) This is clear from (12) and the definitions of the t-structures on T (S), T̃ (S ′) and T (Z), for open and closed
subschemes S ′ and Z of S, respectively. Notice that this requires putting 1[1] in degree 0.

(ii) The following exactness properties are immediate from the definition: j∗ and i∗ are exact, j∗ and i! are left-exact and
j! and i∗ are right-exact. For example, let us show the left-exactness of j∗. Given somemotiveM ∈ T≥0(S ′), we have to show
j∗M ∈ T≥0(S). Let j1 : S1 ⊂ S ′ be an open immersion such that j∗1M ∈ T̃≥0(S1). Let i1 be the immersion of Z1 := S ′

\S1 into
S ′, then i!1M ∈ T≥0(Z1). The situation is as follows:

Z1

i1����
��

��
�

!!CC
CC

CC
CC

S1

''OOOOOOOOOOOOOOO
j1 // S ′

j

��?
??

??
??

? S\S1

i
}}{{

{{
{{

{{

S

Now (j ◦ j1)∗j∗M = j∗1M ∈ T≥0(S1). Let i : S\S1 → S be the complement of j ◦ j1. By (7), i!j∗M is supported only in Z1, where
it agrees with i!1M . This shows j∗M ∈ T≥0(S).

To prove (iii) we first show

i∗j∗T̃ 0(S ′) ⊂ T [−1,0](Z) (16)

for any two complementary immersions i : Z → S (closed) and j : S ′
→ S (open). By Proposition 3.7, T̃ 0(S) is generated by

means of direct sums and extensions by summands of φ∗1(n)[1], where n ∈ Z is arbitrary and φ is finite and étale. For any
short exact sequence

0 → A → X → B → 0

in T̃ 0(S), such that i∗j∗A ∈ T [−1,0](Z) and i∗j∗B ∈ T [−1,0](Z), it follows i∗j∗X ∈ T [−1,0](Z). This uses the non-degeneracy of
the motivic t-structure on Z . A similar remark applies to direct summands and sums. Therefore we only have to check that
the generators X = φ∗1(n)[1] of T̃ 0(S ′) are mapped to T [−1,0](Z) under i∗j∗. By (13), there is a distinguished triangle in T (Z)

i∗φ∗1(n)[1] → i∗j∗j∗φ∗1(n)[1]
(11)
= i∗j∗φ′

∗
1(n)[1] → i!φ∗1(n)[2] → i∗φ∗1(n)[2].

Here φ′ is the pullback of φ along j. The first term is in degree−1. The third term is in degree 0 by absolute purity (10), using
the regularity of S. The claim (16) is shown.

We now show i∗T 0(S) ⊂ T [−1,0](Z). Any X ∈ T 0(S) is in some T 0
S′(S) for sufficiently small S ′. We shrink S ′ if necessary

to ensure that S ′
∩ Z = ∅. Let j : S ′

→ S be the open immersion and let p : W → S be its closed complement. There is a
triangle

p!X → p∗X → p∗j∗j∗X → p!X[1].

By the above, p! (p∗) is left-exact (right-exact), that is to say, the first (second) term is in degrees ≥0 (≤0, respectively). By
assumption j∗X ∈ T̃ 0(S ′), so p∗j∗j∗X ∈ T [−1,0](W ) by (16). As the t-structure on W is non-degenerate p∗X is in degrees
[−1, 0]. As W is the disjoint union of Z and some more (finitely many) closed points, this also shows i∗X ∈ T [−1,0](Z).
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Now let i : Z → S and j : S ′
→ S be complementary. We claim i∗j∗T 0(S ′) ⊂ T [−1,0](Z). Given an object X ∈ T 0(S ′),

there is some open immersion j′ : S ′′
→ S ′ such that j′∗X ∈ T̃ 0(S ′′). We have i∗j∗X = i∗j∗j′∗j

′∗X . The motive i∗i∗j∗j′∗j
′∗X is a

direct summand of p∗p∗(j ◦ j′)∗j′∗X , where p is the complement of j ◦ j′. By the above, p∗(j ◦ j′)∗j′∗X ∈ T [−1,0](Z), so the full
faithfulness and exactness of p∗ implies the claim. Part (iii) is shown.

The cohomological amplitude of i∗j∗ implies the exactness of j∗: given amixed (Artin–)TatemotiveM ∈ T 0(S ′), the terms
in the localization triangle

j!M → j∗M → i∗i∗j∗M

are in degrees ≤0, ≥0 and [−1, 0], respectively, by the above. From the non-degeneracy of the t-structure we see that j∗M
is then in degree 0. This implies the exactness of j∗ by the non-degeneracy of the t-structure. The exactness of j! follows by
the Verdier duality, as does the cohomological amplitude of i!. Thus, (ii) is shown.

(iv) It is easy to see that f ∗
: T̃ (S) → T̃ (V ) is exact. Using this and (6), one sees that f ∗ has cohomological amplitude

[−1, 0] and dually for f !. By a general criterion on t-exactness of adjoint functors [2, 1.3.17], the adjunctions f ∗ � f∗
(8)
=

f! � f ! imply that f∗ is exact. If f is étale then f !
(9)
= f ∗, so that their exactness is clear in that case, too.

(v) This follows from the exactness of j∗ : T (S) → T (S ′) and the exactness of η′∗
[−1] : T̃ (S ′) → T (Spec F)

(Proposition 3.7), where η′ is the generic point of S ′. �

Definition 4.3 (Compare [2, 1.4.22]). Let j : S ′
→ S be an open immersion. For any mixed (Artin–)Tate motive M over S ′,

put

j!∗M := im j!M → j∗M.

This is called the intermediate extension ofM along j.

The image is taken in the (abelian) category ofmixed (Artin–)Tatemotives over S, using the exactness of j! and j∗. Thereby,
j!∗ is a (non-exact) functor T 0(S ′) → T 0(S). Given anymixedmotiveM over S, such that i!M is concentrated in cohomological
degree −1 (as opposed to the general range [−1, 0]), and such that i∗M is in degree +1, there is a canonical isomorphism

j!∗j∗M = M. (17)

In particular, this applies to M ∈ T̃ 0(S), such as M = 1[1]. Moreover, taking the intermediate extension commutes with
compositions of open immersions. These features will be used below, see [11, Section 4] for a proof. The reader may want to
check that that proof only uses themotivic t-structure and exactness properties of i! etc., which are established by Theorems
3.8, 4.2.

Proposition 4.4. The cohomological dimension of DTM(S) and DATM(S) is one and two, respectively.

Proof. We have to show Hom(M,M ′
[n]) = 0 for any mixed motivesM ,M ′ over S and n > 1 (Tate) and n > 2 (Artin–Tate).

Let j : S ′
→ S be an open immersion such that j∗M , j∗M ′

∈ T̃ 0(S ′). Let i be the complementary closed immersion of j. In the
sequel we write (−,−)n for Hom(−,−[n]) for brevity.

The case n ≥ 3 is done as follows: the localization triangle (13) forM ′ and adjunction (1) gives a long exact sequence

( i∗M
[−1,0]

, i!M ′
[n]  

[−n,−n+1]

)0 → (M,M ′)n → (M, j∗j∗M ′)n → ( i∗M
[−1,0]

, i!M ′
[n + 1]  

[−n−1,−n]

)0.

We have written the cohomological degrees of the motives underneath, using the cohomological range of i∗ and i!. The
cohomological dimension zero of (Artin–)Tate motives over finite fields makes the outer terms vanish. Similar vanishings
will be used below without further discussion. Hence we only have to look at (j∗M, j∗M ′)n, i.e., we may assume M and
M ′

∈ T̃ 0(S). In that case one reduces (exactly as below) to M = φ∗1(a)[1] and M = φ′
∗
1(a′)[1], where φ and φ′ are finite

and étale. In that case the vanishing is given by Theorem 3.2.
The vanishing in the case n = 2 for Tate motives needs a more involved localization argument. A similar reasoning for

Artin–Tate motives fails—the difference is because the motives 1(n)[1], which generate T̃ 0(S) in the case of Tate motives,
have good reduction at all places by absolute purity.

The localization triangle (6) for M ′ gives an exact sequence

(M, j!j∗M ′)2 → (M,M ′)2 → (M, i∗i∗M ′)2
(1)
= ( i∗M

[−1,0]

, i∗M ′
[2]  

[−3,−2]

)0 = 0.

Therefore, in order to show that themiddle termvanishes,wemay replaceM ′ by j!j∗M ′. Similarly,wemay replaceM by j∗j∗M .
In particular M ∈ j∗T̃ 0(S ′), M ′

∈ j!T̃ 0(S ′). By Proposition 3.7 and Remark 2.3, T̃ 0(S ′) is generated by means of extensions
by 1(a)[1] where a ∈ Z. The claim is stable under extensions so that we may assume M = j∗A, A := 1(a)[1], M ′

= j!A′,
A′

:= 1(a′)[1]. Let Ã := 1(a)[1] ∈ T̃ 0(S) and define Ã′ similarly. We have j∗Ã = A and similarly with A′.
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The localization triangle j∗A′
→ i∗i∗j∗A′

→ j!A′
[1] maps to j∗A′

→ i∗pH0i∗j∗A′
→ (j!∗A′)[1] = Ã[1]. We apply

(Ã,−)1 to this map, which gives the last two exact rows in the diagram. The first exact row maps to the second via the
map Ã = j!∗A → j∗A.

(j∗A, j∗A′)1 // (j∗A, i∗i∗j∗A′)1 // (j∗A, j!A′)2

��

// 0

(Ã, j∗A′)1 // (Ã, i∗i∗j∗A′)1 // (Ã, j!A)2

��

// 0

(Ã, j∗A′)1 // (Ã, i∗pH0i∗j∗A′)1 // (Ã, Ã)2 // 0.

The = signs in the leftmost column are by adjunction (1) and j∗j∗A = j∗Ã = A. The = signs in the second column all use
the adjunction i∗ � i∗ as well as the cohmological dimension zero of Tate motives over finite fields and cohomological
amplitude of i∗, which imply

(i∗j∗A
[−1,0]

, i∗j∗A′
[1]  

[−2,−1]

)0 = (pH−1i∗j∗A, pH
0i∗j∗A′)0.

Applying i∗ to the triangle i∗pH−1i∗j∗A → j!A → j!∗A andusing i∗j!
(7)
= 0we see (pH−1i∗j∗A, pH0i∗j∗A′)0 = (i∗j!∗A, pH0i∗j∗A′)1.

This justifies the upper = in the second column. The lower = in that column follows by the same argument. However,
(Ã, Ã′)2 = 0, by vanishing of the K -theory in the relevant range (see Theorem 3.2). �

Theorem 4.5. For both Tate and Artin–Tate motives, the inclusion T 0(S) ⊂ T (S) extends to a triangulated functor

Db(T 0(S)) → T (S). (18)

This functor is an equivalence of categories.

Proof. The category DMgm(S) and thus the subcategories of (Artin–)Tate motives embed into some unbounded derived
category D(A), where A is an exact category. This implies the first statement by a general fact in homological algebra
[17, Theorem 1.1.]. Indeed, the interpretation of DMgm(S) in terms of h-sheaves shows that (using the notation of [3] and
abbreviating Shv for the category of Q-linear sheaves with respect to the h-topology on the big site of schemes of finite type
over S)

DMgm(S) ∼= DA1(Shv) ⊂ Deff
A1(Sp(Shv)) ⊂ D(Sp(Shv)).

More precisely, DMgm(S) identifies with the subcategory of WΩ-local objects in the middle category, which identifies with
the subcategory ofWA1-local objects in the right hand category [3, Sections 5.2, 5.3].

The t-structure on T (S) is bounded and non-degenerate, so it remains to show the full faithfulness of (18) or equivalently
that the map

fn : ExtnT0(M,M
′) → HomT (M,M ′

[n])

is an isomorphism for any M , M ′
∈ T 0(S). The general theory (see e.g. [4, 1.1.5]) shows that f0 and f1 are isomorphisms and

that f2 is injective for all M and M ′. For Tate motives, f2 is therefore an isomorphism, since the right hand side is zero by
Proposition 4.4. We now show that f2 is an isomorphism for Artin–Tate motives. The motives M and M ′ are fixed, so there
is some open embedding j : S ′

→ S such that j∗M and j∗M ′ are in T̃ 0(S ′). Let i be the complement of j. The following exact
sequences are a consequence of (6) and Theorem 4.2:

0 → i∗pH
−1i∗M

a
→ j!j∗M → K := coker a → 0 (19)

0 → K → M → i∗pH
0i∗M → 0. (20)

We write n(−,−) for Extn and n(−,−) for HomT (−,−[n]). (19) induces a commutative diagram with exact rows

1(i∗pH−1i∗M,M ′) // 2(K ,M ′) //
��

��

2(j!j∗M,M ′)��

��
1(i∗pH−1i∗M,M ′) //

2(K ,M ′) //
2(j!j∗M,M ′) = 2(j∗M, j∗M ′).
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The rightmost lower term is zero by the vanishing of the K -theory (cf. the argument in the proof of Proposition 4.4), so all
vertical maps are isomorphisms. This and (20) yields a similar diagram:

2(i∗pH0i∗M,M ′) //
��

��

2(M,M ′) //
��

r

��

2(K ,M ′) // 3(i∗pH0i∗M,M ′)

��
2(i∗pH0i∗M,M ′) //

2(M,M ′) //
2(K ,M ′) //

3(i∗pH0i∗M,M ′).

The outer terms in the lower row vanish because the cohomological dimension of Artin–Tate motives over Fp is zero and i!
has cohomological amplitude [0, 1]. We now show that the rightmost upper term is zero. Altogether, this implies that r is
also surjective. We write A :=

pH0i∗M; it is a mixed motive over Fp. Any element of the Yoneda-Ext-group in question is
represented by an exact sequence

0 → i∗A → X1
s

→ X2 → X3 → M ′
→ 0

in MATM(S). This extension is the image under the concatenation mapping
2(i∗A, coker s)×1(coker s,M ′) →

3(i∗A,M ′).

The left hand factor is a subgroup of 2(i∗A, coker s) = 2(A, i! coker s) = 0 (see above). Therefore, the extension above splits
and we have shown that the second Ext-groups and Hom-groups agree.

This shows that the Hom(M,M ′
[n]) form an effaceable δ-functor, so they are universal and agree with Extn(M,M ′) for

all n ≥ 0. Indeed, for n ≤ 2 the groups are effaceable since they agree with Ext’s by the above, for n > 2 the groups are zero
by Proposition 4.4. �

The functor η∗ : DM(F) → DM(S) does not preserve Artin–Tate motives:

HomDM(S)(1, η∗1(1)[1])
(1)
= HomDM(F)(1, 1(1)[1])

(5)
= K 1(F)(1)Q = F×

⊗Q,

which is a countably infinite-dimensional Q-vector space. However, the dimensions of all Hom-groups in T (S) are finite
(Theorem 3.2). This example is sharpened by the following proposition. It might be paraphrased by saying that the ‘‘site’’ of
mixed Artin–Tate motives over S has enough points.

Proposition 4.6. For any Artin–Tate motive M over S ⊂ Spec OF , the following are equivalent:

(i) M = 0.
(ii) M = η∗Mη , where Mη is some geometric motive over F .
(iii) i∗pM = 0 for all closed points p of S.
(iv) i!pM = 0 for all closed points p of S.

Proof. The equivalence of (ii), (iii), and (iv) is an easy consequence of Verdier duality (12) and the limiting localization
triangle (14). We now show (iii) ⇒ (i). Using localization (6), the claim for M is implied by the one for j∗M for any open
immersion j. Therefore we may assume M ∈ T̃ (S). Using the (−1)-exactness of i∗p : T̃ (S) → T (Fp) we can even assume
M ∈ T̃ 0(S). Given a short exact sequence in the abelian category T̃ 0(S)

0 → A → M → B → 0

with η∗η
∗M = M , it follows that η∗η

∗A = A and likewise for B. This is shown as follows: for all closed points p ∈ S,
ip∗

i!pM = 0 implies i!pB = i!pA[1], by the full faithfulness of ip∗
. The long exact pH−-sequence and the cohomological

amplitude of i!p (Theorem 4.2) shows pH0i!pB =
pH1i!pA and all other pH∗i!pB,

pH∗i!pA vanish. However, for any B ∈ T̃ 0(S),
i!pB is in cohomological degree 1 (as opposed to the general range [0, 1]): this may be checked on generators of T̃ 0

a (S) for all
a, where it follows directly from the definitions (see the proof of Theorem 4.2). Thus pH0i!pB = 0, whence i!pB = i!pA[1] = 0
for all p.

Thus the statement forM is implied by the one forA and B. By the characterization of T̃ 0(S) of Proposition 3.7,we therefore
only need to check the statement for generators of T̃ 0

−2n(S).
We first do this in the case of Tate motives. Then T̃ 0

−2n(S) consists of direct sums of motives G := 1(n)[1]. In that case the
claim is clear, since none of the (nonzero) generators G satisfy η∗η

∗G = G: we can twist it so that n = 1. Then H0(η∗η
∗G) is

infinite-dimensional, namely the group of units in some number field (tensored with Q), but H0(G) is the group of units in
some ring of S-integers, which are of finite rank.

In the case of Artin–Tate motives, the category T̃ 0
−2n(S) is generated by means of direct sums and summands by motives

G := φ∗1(n)[1], φ : V → S finite and étale. Actually, we may assume φ is Galois: by the same argument as in the proof of
Proposition 2.6, after shrinking S sufficiently, 1V is a direct summand of φ̃∗1 where φ̃ : Ṽ → V is the map corresponding
to some normal closure of the function field extension k(V )/k(S). Let M be a summand of G satisfying η∗η

∗M = M . There
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is a map f : S ′
→ S such that f ∗M is a Tate motive, Proposition 2.6. By base-change (11) and the preceding step, we get

f ∗M = 0. The map End(M) ⊂ End(G)
a

→ End(f ∗G) factors over End(f ∗M) = 0, so we have to show that a is injective. This
is done with the same argument as in the proof of Proposition 2.6: we may shrink S so that f is étale. Since φ is Galois, we
have

End(G)
(1),(9)
= Hom(1V , φ

∗φ∗1V )
(11)
= Hom(1V , 1

⊕ degφ
V )

and

End(f ∗G) = Hom(1V ′ , φ′∗φ′

∗
1V ′) = Hom(1V ′ , 1⊕ degφ′

V ′ ),

where φ′
: V ′

:= V×SS ′
→ S ′ is the pullback of φ along f . It is also Galois and degφ = degφ′. �
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Abstract We show that the algebraic K -theory of generalized archimedean valuation
rings occurring in Durov’s compactification of the spectrum of a number ring is given
by stable homotopy groups of certain classifying spaces. We also show that the “residue
field at infinity” is badly behaved from a K -theoretic point of view.

Keywords Algebraic K -theory · Complexes of groups · Infinite place

1 Introduction

In number theory, it is a universal principle that the spectrum of Z should be completed
with an infinite prime. This is corroborated, for example, by Ostrowski’s theorem, the
product formula

∏

p≤∞
|x |p = 1, x ∈ Q

×,

the Hasse principle, Artin–Verdier duality, and functional equations of L-functions.
This “compactification” Spec Ẑ := SpecZ ∪ {∞} was just a philosophical device

until recently: Durov has proposed a rigorous framework which allows for a discussion
of, say, Z(∞), the local ring of Spec Ẑ at p = ∞ [1]. The purpose of this work is to
study the K -theory of the so-called generalized rings intervening at the infinite place.

Algebraic K -theory is a well-established, if difficult, invariant of arithmetical
schemes. For example, the pole orders of the Dedekind ζ -function ζF (s) of a number
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field F are expressible by the ranks of the K -theory groups of OF , the ring of integers.
By definition, K -theory only depends on the category of projective modules over a
ring. Therefore, this interacts nicely with Durov’s theory of generalized rings which
describes (actually: defines) such a ring R by defining its free modules. For example,
the free Z(∞)-module of rank n is defined as the n-dimensional octahedron, i.e.,

Z(∞)(n) :=
{

(x1, . . . , xn) ∈ Q
n,
∑

i

|xi | ≤ 1

}
.

The abstract theory of such modules is a priori more complicated than in the classical
case since Z(∞)-modules fail to build an abelian category. Nonetheless, using Wald-
hausen’s S•-construction it is possible to study the algebraic K-theory of Z(∞) and
similar rings occurring for other number fields (Theorem 3.10, Definition 3.12).

Theorem 3.14. The K -groups of Z(∞) are given by

Ki (Z(∞)) = π s
i (Bμ2 � {∗}, ∗) =

⎧
⎪⎨

⎪⎩

Z i = 0 (Durov[Dur, 10.4.19])
Z/2 ⊕ μ2 i = 1

a finite group i > 1.

The Z/2-part in K1 stems from the first stable homotopy group π s
1 , while μ2 =

{±1} arises as the subgroup of Z(∞) of elements of norm 1, i.e., the subgroup of
(multiplicative) units of Z(∞). The finite K -group for i > 1 is the abutment of an
Atiyah–Hirzebruch spectral sequence.

This theorem is proven for more general generalized valuation rings including
OF (σ ), the ring corresponding to an infinite place σ of a number field F . In this
case the group μ2 above is replaced by the group {x ∈ F, |σ(x)| = 1}. The basic
point is this: the only admissible monomorphisms (i.e., the ones occurring in the
S•-construction of K -theory)

Z(∞)(1) = [−1, 1] ∩ Q → Z(∞)(2)

are given by mapping the interval to one of the two diagonals of the lozenge. Thereby,
the Waldhausen category structure on free Z(∞)-modules turns out to be equivalent
to the one of finitely generated pointed {±1}-sets, whose K -theory is well-known. In
the course of the proof we also show that other plausible definitions, such as the S−1

S-construction, the Q-construction, and the +-construction yield the same K -groups.
We finish this note by pointing out two K -theoretic differences of the infinite place:

we show that K0(F∞) = 0 (Proposition 4.2), as opposed to K0(Fp) = Z. Also, the
completions at infinity are not well-behaved from a K -theoretic viewpoint. These
remarks raise the question whether the “local” ring Z(∞) should be considered regular
or, more precisely, whether

K0(Z(∞)) → K ′
0(Z(∞)) :=Z[finitely presented Z(∞)−Mod]/short exact sequences
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is an isomorphism. Unlike in the classical case, there does not seem to be an easy
resolution argument in the context of Waldhausen categories. Another natural question
is whether there is a Mayer–Vietoris sequence of the form

Ki (Ẑ) → Ki (Z) ⊕ Ki (Z(∞)) → Ki (Q) → Ki−1(Ẑ),

where Ẑ is a generalized scheme obtained by glueing SpecZ and Spec Z(∞) along
SpecQ. The usual proof of this sequence proceeds by the localization sequence, which
is not available in our context.

Throughout the paper, we use the following notation: F is a number field with ring
of integers OF . Finite primes of OF are denoted by p. We write �F for the set of real
and pairs of complex embeddings of F . The letter σ usually denotes an element of
�F . It is referred to as an infinite prime of OF .

2 Generalized rings

In a few brushstrokes, we recall the definition of generalized rings and their modules
and some basic properties. Everything in this section is due to Durov. All references
in brackets refer to [1], where a much more detailed discussion is found.

A monad in the category of sets is a functor R : Sets → Sets together with natural
transformations μ : R ◦ R → R and ε : Id → R required to satisfy an associativity
and unitality axiom akin to the case of monoids. We will write R(n) := R({1, . . . , n}).
An R-module is a set X together with a morphism of monads R → End(X), where
the endomorphism monad End(X) satisfies End(X)(n) = HomSets(Xn, X). In other
words, X is endowed with an action

R(n)×Xn → X

satisfying the usual associativity conditions. Thus, R(n) can be thought of as the n-ary
operations (acting on any R-module).

Definition 2.1 (Durov [5.1.6]) A generalized ring is a monad R in the category of
sets satisfying two additional properties:

• R is algebraic, i.e., it commutes with filtered colimits. Since every set is the filtered
colimit of its finite subsets, this implies that R is determined by R(n) for n ≥ 0
[4.1.3].

• R is commutative, i.e., for any t ∈ R(n), t ′ ∈ R(n′), any R-module X (it suffices
to take X = R(n×n′)) and A ∈ Xn×n′

, we have

t (t ′(A)) = t ′(t (A)),

where on the left hand side t ′(A) ∈ Xn is obtained by letting act t ′ on all rows of
A and similarly (with columns) on the right hand side.

For a unital associative ring R (in the sense of usual abstract algebra), let

R(S) := ⊕s∈S R
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be the free R-module of rank �S, where S is any set. The addition and multiplication
on R turn this into an (algebraic) monad which is commutative iff R = R(1) is [3.4.8].
Indeed, the required map

R(1)×R(1) → R(1) (1)

is just the multiplication in R, while the addition is reformulated as

R(2)×(R(1)×R(1)) → R(1), ((x1, x2), (y1, y2)) �→
∑

xi yi .

Note that (1) is required to exist for any monad, so multiplication is in a sense more
fundamental than addition, which requires the particular element (1, 1) ∈ R(2) [3.4.9].

Reinterpreting a ring as a monad in this way defines a functor from commutative
rings to generalized rings, which is easily seen to be fully faithful: given two classical
rings R, R′, and a map of monads, i.e., a collection of maps R(n) = Rn → R′(n) =
R′n , one checks that the maps for n ≥ 2 are determined by R → R′. In the same
vein, R-modules in the classical sense are equivalent to R-modules (in the generalized
sense). Henceforth, we will therefore not distinguish between classical commutative
rings and their associated generalized rings.

The initial generalized ring is the monad F0 : Sets → Sets, M �→ M . Its modules
are just the same as sets. The monad Sets � M �→ M � {∗} is denoted F1. Neither of
these two generalized rings is induced by a classical ring. See Definition 3.2 for our
main example of a non-classical ring.

Given a morphism φ : R → S of generalized rings, the forgetful func-
tor Mod(S) → Mod(R) between the module categories has a left adjoint φ∗ :
Mod(R) → Mod(S) called base change. We also denote it by − ⊗R S. Being a
left adjoint, this functor preserves colimits [4.6.19]. For example, for a generalized
ring R, the unique map F0 → R of generalized rings induces an adjunction

Sets = Mod(F0) � Mod(R) : forget

Its left adjoint is explicitly given by X �→ R(X), the so-called free R-module on some
set X . That is,

HomMod(R)(R(X), M) = HomSets(X, M),

as in the classical case.
Coequalizers and arbitrary coproducts exist in Mod(R), for any generalized ring

R [4.6.17]. Therefore, arbitrary colimits exist. Base change functors φ∗ commute
with coequalizers. Moreover, arbitrary limits exist in Mod(R), and commute with the
forgetful functor Mod(R) → Sets [4.6.1].

An R-module M is called finitely generated if there is a surjection R(n) � M
for some 0 ≤ n < ∞ [4.6.9]. Unless the contrary is explicitly mentioned, all our
modules are supposed to be finitely generated over the ground generalized ring in
question. An R-module M is projective iff it is a retract of a free module, i.e., if there
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are maps M
i→ R(n)

p→ M with pi = idM . As in the classical case this is equivalent
to the property that for any surjection of R-modules N � N ′, HomMod(R)(M, N )

maps onto HomMod(R)(M, N ′) [4.6.23]. The categories of (finitely generated) free
and projective R-modules are denoted Free(R) and Proj(R), respectively.

As usual, an ideal I of R is a submodule of R(1). A proper ideal I � R(1) is called
prime if R(1)\I is multiplicatively closed [6.2.2].

3 Archimedean valuation rings

3.1 Definitions

Let K be an integral domain equipped with a norm | − | : K → R
≥0. We will write

Q for the quotient field of K . We put E := {x ∈ K , |x | = 1}. We also write |x | for
the L1-norm on K n , i.e., |x | =∑i |xi |. Throughout, we assume:

Assumption 3.1 (A) |K ×| = {|k|, k ∈ K ×} ⊂ R
≥0 is dense.

(B) E ⊂ K ×.

Definition 3.2 The (generalized) valuation ring associated to (K , | − |) is the sub-
monad O of K given by

O(S) :=
{

x = (xs) ∈
⊕

s∈S

K , |x | :=
∑

s∈S

|xs | ≤ 1

}
.

This is clearly algebraic. Moreover, the multiplication of the monad, i.e.,O◦O → O
is well-defined by restricting the one of K (and is therefore commutative):

O(O(n)) =
⎧
⎨

⎩(yx ) ∈
⊕

x∈O(n)

K ,
∑

x

|yx | ≤ 1

⎫
⎬

⎭→ O(n)

sends (yx ) to (the finite sum)
∑

x yx · x . A priori, this expression is an element of K n ,
only, but is actually contained in O(n) since

∣∣∣∣∣
∑

x

yx · x

∣∣∣∣∣ ≤
(
∑

x

|yx |
)

· sup |x | ≤ 1.

In the case of an archimedean valuation, this definition of O is the one of Durov
[1, 5.7.13]. For non-archimedean valuations, Durov’s original definition gives back
the (generalized ring corresponding to the) ordinary ring {x ∈ K , |x | ≤ 1} which is
different from Definition 3.2 (see Example 3.4).

By definition, an O-module M is therefore a set such that an expression
∑n

i=1 λi mi

is defined for n ≥ 0, mi ∈ M , λi ∈ K such that
∑ |λi | ≤ 1, obeying the usual laws

of commutativity, associativity and distributivity. Maps f : M → N of O-modules
are described similarly: they satisfy f (

∑
i λi mi ) =∑i λi f (mi ). The set {0}, with its
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obvious O-module structure is both an initial and terminal O-module. Given a map
f : M ′ → M of O-modules, the (co)kernel is defined to be the (co)equalizer of the
two morphisms f and M ′ → 0 → M . As was noted above, the forgetful functor
O −Mod → Sets preserves limits, so the kernel ker f is just f −1(0). The cokernel is
described by the following proposition. Also see Remark 3.11 for an explicit example
of a cokernel computation.

Proposition 3.3 Given a map f : M ′ → M of O-modules, the cokernel is given by

coker( f ) = M/ ∼, (2)

where ∼ is the equivalence relation generated by
∑

i∈I λi mi ∼∑i∈I λi m̃i , where I
is any finite set, λ = (λi ) ∈ O(�I ) and mi , m̃i ∈ M are such that either mi = m̃i or
both mi , m̃i ∈ f (M ′) ⊂ M. This set is endowed with the O-action via the natural
projection π : M → coker( f ).

Proof This follows from the description of cokernels given in [1, 4.6.13]. It is also
easy to check the universal property directly: we clearly have π ◦ f = 0. Given a map
t : M → T of O-modules such that t f = 0, we need to see that t factors uniquely
through coker f . The unicity of the factorization is clear since M → coker f is onto.
The existence is equivalent to t (m1) = t (m2) whenever π(m1) = π(m2). This is
obvious from the definition of the equivalence relation ∼ above. ��

The base change functor resulting from the monomorphism O ⊂ K of generalized
rings is denoted

(−)K : Mod(O) → Mod(K ).

Actually, using Assumption 3.1, we may pick t ∈ K × such that |t | < 1. Then, K is
the unary localization K = O[1/t]. This is shown in [1, 6.1.23] for K = R. The proof
for a general domain is the same. Therefore K is flat over O, so (−)K preserves finite
limits, in particular kernels [1, 6.1.2, 6.1.8]. Recall from p. 4 that (−)K also preserves
colimits, such as cokernels.

Let E(n) := {x ∈ K (n) = K n, |x | = 1} be the “boundary” of O(n). (This is
merely a collection of sets, not a monad.) We write O for O(1) and E for E(1), if no
confusion arises. In particular, x ∈ O means x ∈ O(1). The i-th standard coordinate
vector ei = (0, ..., 1, ..., 0) is called a basis vector of O(n) (1 ≤ i ≤ n).

Example 3.4 Let F be a number field with ring of integers OF . We fix a complex
embedding σ : F → C and take the norm | − | induced by σ . Let K be either
OF [1/N ] where N ∈ Z has at least two distinct prime divisors, or F , or F̂σ , the
completion of F with respect to σ . The respective generalized valuation rings will be
denoted OF,1/N ,(σ ), OF,(σ ), and OF,σ , respectively. For example, OF,(σ ) = OF,(σ ).
Assumption 3.1(A) is satisfied: for OF [1/N ], pick two distinct prime divisors p1 �= p2
of N . The elements pn1

1 pn2
2 ∈ K are invertible for any n1, n2 ∈ Z. The subgroup

{log(|pn1
1 pn2

2 |), ni ∈ Z} ⊂ R is dense: otherwise it was cyclic, in contradiction to the
Q-linear independence of log p1 and log p2 (Gelfand’s theorem).
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As for Assumption 3.1(B), let x ∈ K with |x | = 1. If σ is a real embedding,
x = ±|x | = ±1. If σ is a complex embedding, let σ be its complex conjugate and
x ∈ K be such that σ(x) = σ(x). Then σ(x)σ (x) = σ(x)σ (x) = |σ(x)|2 = 1
implies x ∈ K ×.

According to Durov, OF,(σ ) is the replacement for infinite places of the local rings
OF (p) at finite places. However, the analogy is relatively loose, as is shown by the
following two remarks: first, for p < ∞, let |x |p := p−vp(x) for x ∈ Q

×. Then
the generalized ring Z|−|p (in the sense of Definition 3.2) maps injectively to the
localization Z(p) of Z at the prime ideal p, but the map is a bijection only in degrees
≤ p. (Less importantly, Assumption 3.1(A) is not satisfied for Z|−|p .)

Secondly, recall that the semilocalization OF (p1,p2) = OF (p1) ∩ OF (p2) at two
finite primes is one-dimensional. In analogy, pick two σ1, σ2 ∈ �F and consider
O := O(σ1) ∩ O(σ2) ⊂ F , i.e.,

O(n) :=
{

(x1, . . . , xn) ∈ Fn,
∑

k

|σi (xk)| ≤ 1 for i = 1, 2

}
.

Let pi = {x ∈ O, |σi (x)| < 1} and p := {x ∈ O, |σ1(x)σ2(x)| < 1}. These are ideals:
for example, for x = (x j ) ∈ O(n), s1, . . . , sn ∈ p, we need to check

∑
s j x j ∈ p: if,

say, |σ1(s1)| < 1 then

∣∣∣∣∣∣
σ1

⎛

⎝
∑

j

s j x j

⎞

⎠

∣∣∣∣∣∣
≤
∑

|σ1(s j )||σ1(x j )| <
∑

|σ1(x j )| ≤ 1.

The complement O\p = {x, |σ1(x)| = |σ2(x)| = 1} is multiplicatively closed (and
contains 1). We get a chain of prime ideals

0 � p1 ⊂ p � O.

The middle inclusion is, in general, strict, namely when F = Q[t]/p(t) with some
irreducible polynomial p(t) having zeros a1, a2 ∈ C with |a1| = 1, |a2| < 1. That is,
SpecO is not one-dimensional.

3.2 Projective and free O-modules

In this section we gather a few facts about projective and free O-modules. We
begin with a handy criterion for monomorphisms of certain O-modules (Lemma
3.5). Lemma 3.6 concerns a particular unicity property of the basis vectors ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ O(n). This is used to prove Theorem 3.7: every projective
O-module is free, provided that the norm is archimedean. This improves a result of
Durov which treats only the cases where O is either the “unclompeted local ring” of a
number ring at an infinite place σ , OF,(σ ), in the case where σ is a real embedding or
the “completed local ring” OF,σ for both real and complex places. Therefore, we only
study the K -theory of free O-modules in this paper (but see Remark 3.18). We also
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use Lemma 3.6 to establish a highly combinatorial flavor of automorphisms of free
O-modules (Proposition 3.9), which will later give rise to the computation of higher
K -theory of O.

Lemma 3.5 (compare [1, 2.8.3.]) Let f : M ′ → M be a map of O-modules. We
suppose both M ′ and M are submodules of free O-modules. (For example, they might
be projective.) Then the following are equivalent:

a) fQ : M ′
Q → MQ is injective, where Q is the quotient field of K ,

b) fK : M ′
K → MK is injective,

c) f is injective (as a map of sets),
d) f is a monomorphism of O-modules,

Proof Consider the diagram

M ′

f

��

� � �� M ′
K

fK

��

� � �� M ′
Q

fQ

��
M

� � �� MK
� � �� M ′

Q .

Its horizontal maps are injective since both modules are submodules of free modules
and, for these, O(n) ⊂ K (n) = K n ⊂ Q(n) = Qn . This shows (a) ⇒ (b) ⇒
(c). (c) implies (d) since the forgetful functor Mod(O) → Sets is faithful. (d) ⇒
(b): by Assumption 3.1, we may pick t ∈ K × with |t | < 1. Any two element of
M ′

K are of the form m′
1/tn , m′

2/tn , where m′
1, m′

2 ∈ M ′ and n ≥ 0. Suppose that
fK (m′

1/tn) = f (m′
1)/tn agrees with fK (m′

2/tn). The multiplication with t−n is
injective on M ′

K , since M ′ (M ′
K ) is a submodule of a free O- (K -, respectively)

module. Thus f (m′
1) = f (m′

2) so the assumption (d) implies our claim. Finally (b)
⇒ (a) follows from the flatness of Q over K . ��

The following lemma can be paraphrased by saying that the basis vectors ei =
(0, . . . , 1, . . . 0) ∈ O(n) cannot be generated as a nontrivial O-linear combination of
other elements of O(n).

Lemma 3.6 Suppose that K is a field (as opposed to a domain). Suppose further that

ei =
m∑

j=1

λ j f j (3)

with f j ∈ O(n) and (λ j ) j ∈ O(m), λ j �= 0. Then for each j , f j = μ j · ei with
μ j ∈ E.

Proof The proof proceeds by induction on m, the case m = 1 being trivial.
Each f j can be written as f j =∑n

l=1 κ jl el with (κ jl)l ∈ O(n). We get

1 = |ei | (3)= |
∑

λ j f j | ≤
∑

|λ j || f j | ≤
∑

|λ j | ≤ 1. (4)
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Therefore equality holds throughout. We have ei =∑ j,l λ jκ jl el . This K -linear rela-
tion between the basis vectors of K n yields 1 =∑ j λ jκ j i . Hence

1 ≤
∑

j

|λ jκ j i | ≤
(∑

|λ j |
)

︸ ︷︷ ︸
(4)=1

· max
j

|κ j i |.

On the other hand, |κ j i | ≤ 1, so there is some j0 such that |κ j0i | = 1. Using
∑

l |κ j0l | ≤
1 we see κ j0l = 0 for all l �= i , thus f j0 = κ j0i ei . Put μ j0 := κ j0i (∈ E), so

(1 − λ j0μ j0)ei =
∑

j �= j0

λ j f j

holds. If |λ j0μ j0 | = 1, we are done since all other λ j , j �= j0 must vanish in this case.
If |λ j0μ j0 | < 1, then

ei =
∑

j �= j0

λ j

1 − λ j0μ j0
f j .

This finishes the induction step since the right hand side is actually an O-linear com-
bination of the f j , for

∑

j �= j0

|λ j | (4)= 1 − |λ j0 | = 1 − |λ j0μ j0 | ≤ |1 − λ j0μ j0 |.

��
Theorem 3.7 Suppose that the norm |−| giving rise to the generalized valuation ring
O is archimedean. Then every projective O-module M is free.

Proof Let K ′ be the completion (with respect to the norm |−|) of Q, the quotient field
of K . By Ostrowski’s theorem, we have either K ′ = R or K ′ = C (with their usual
norms). Let us write −′ := − ⊗O O′, where O′ := OK ′ is the generalized valuation
ring belonging to K ′. We consider the following maps of O′-modules, where Oi are
certain free O-modules that are defined in the course of the proof:

O ′
3 → O ′

2 → O ′
1

p′
−→ M ′ φ,∼=−→ O ′

0.

First, M ′ is a projective O′-module: given a projector p : O1 := O(n1) → O(n1)

with M = imp, we get M ′ = imp′. By the afore-mentioned result of Durov [1,

10.4.2], there is an isomorphism of O′-modules, φ : M ′ ∼=→ O ′
0 := O′(n0). The

composition φ ◦ p′ is surjective, so for any basis vector ei ∈ O ′
0 (1 ≤ i ≤ n0),

there is some O′-linear combination
∑

j≤n1
λi j e j mapping to ei under φp′. Thus,∑

j λi jφp′(e j ) = ei . Therefore, by Lemma 3.6, φp′(e j ) ∈ E ′ · ei for each j . Here
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E ′ = {x ∈ O′, |x | = 1} (which is S1 ⊂ C or {±1} ⊂ R depending on K ′). We put
O2 := � j2∈J2 e j2O = O(J2), where the coproduct runs over

J2 := {1 ≤ j2 ≤ n1, φp′(e j2) ∈ E ′ei for some i ≤ n0}.

The inclusion J2 ⊂ {1, . . . , n1} induces a (O-linear!) injection f21 : O2 → O1.

According to the previous remark, O ′
2

φp′ f ′
21−→ O ′

1 is surjective. Consider the map
J2 → {1, . . . , n0} which maps j2 to the (unique) i with ei ∈ E ′φp′(e j2). This map
is onto. By Assumption 3.1, we may pick some J3 ⊂ J2 on which it is a bijection.
Let f32 : O3 := � j3∈J3 e j3O = O(J3) → O2 = O(J2) be the map induced by

J3 ⊂ J2. Set f31 = f21 ◦ f32. Then the composition O ′
3

f ′
31� O ′

1
p′
→ M ′ φ,∼=−→ O ′

0 is an
isomorphism of O′-modules. Note that f31 and p are O-linear maps, but φ is defined
over O′, only. Writing v := p ◦ f31, we must show the implication

v′ isomorphism ⇒ v isomorphism.

The elements m j := p(e j ) ∈ M , j ≤ n1, generate M . The map v′ ⊗O′ K ′ =
vQ ⊗Q K ′ is an isomorphism of K ′-vector spaces. The inclusion of the quotient field
Q → K ′ is fully faithful, so that vQ is also an isomorphism. Hence there is some
k j = a j/b j ∈ Q\{0} such that k j m j ∈ imv. According to Assumption 3.1, we can
pick some N ∈ K × such that |a j/N |, |b j/N | ≤ 1 for all j . Then m j a j/N ∈ imv.
Similarly, pick some t ∈ O with 0 < |t | ≤ min j |a j/N |. Then t M ⊂ imv.

To show the surjectivity of v, we fix m ∈ M and pick some o3 ∈ O3 with tm =
v(o3). Since M ⊂ M ′ and v′ is an isomorphism, there is a unique õ′

3 ∈ O ′
3 with

v′(õ′
3) = m. Hence v(o3) = v′(o3) = v′(t õ′

3), so that t õ′
3 = o3. In other words,

o′
3 = t−1o3 ∈ O ′

3 ∩ (O3)K = O3. This shows the surjectivity of v. The injectivity of
v is clear, since O3 ⊂ O ′

3 and v′ is injective. Consequently, v is an isomorphism. ��
Definition 3.8 Recall that Free(O) is the category of (finitely generated) free O-
modules. In Free(O) let cofibrations (�) be the monomorphisms whose cokernel (in
the category of all O-modules) lies in Free(O). Morphisms which are obtained as
cokernels of cofibrations are called fibrations and denoted �. Let weak equivalences
∼→ be the isomorphisms.

Proposition 3.9 Let f : M ′ → M be a monomorphism of free O-modules with pro-
jective cokernel M ′′ (for example, a cofibration). Then there is a unique isomorphism
φ : M ∼= M ′ � M ′′ such that the following diagram is commutative

M ′ �� f �� M
π �� ��

φ

��

M ′′

M ′ �� incl �� M ′ � M ′′ proj �� �� M ′′.

. (5)

Proof Let M ′ = O(n′), M = O(n) and let fi := f (ei ) ∈ M , 1 ≤ i ≤ n′ be the
images of the basis vectors.
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We claim that f factors through �i≤n,ei ∈ f (M ′)eiO = O(ñ′) ⊂ M = O(n), where
ñ′ := �{i ≤ n, ei ∈ f (M ′)}. To show this, write f (M ′) � m′ =∑i∈I λi ei , where all
λi �= 0 and the ei are the basis vectors of M . Put

m′ =
∑

ei /∈ f (M ′)
λi ei

︸ ︷︷ ︸
=:m′

1

+
∑

ei ∈ f (M ′)
λi ei

︸ ︷︷ ︸
=:m′

2

.

By Assumption 3.1, we can pick some t ∈ K × such that |t | ≤ 1/2. Then tm′
1 =

tm′ − tm′
2 ∈ f (M ′). Let i be such that ei /∈ f (M ′). We need to see λi = 0.

We write (−)Q for the functor − ⊗O OQ , where OQ is the generalized valuation
ring associated to the unique extension of the norm | − | in K to the quotient field Q
of K . The functor (−)Q preserves colimits, in particular coker( fQ) = (coker f )Q . In
addition, fQ is a monomorphism by Lemma 3.5. The assumption ei /∈ f (M ′) implies
ei /∈ fQ(M ′

Q): suppose that ei =∑i ′≤n′ κi ′ fi ′ where (κi ′) ∈ OQ(n′) and fi ′ := f (ei ′)
are the images of the basis vectors of M ′. By Lemma 3.6, we have fi ′ = εi ′ei for all
i ′, with some εi ′ ∈ OQ , |εi ′ | = 1. But fi ′ also lies in M (as opposed to MQ). Thus, εi ′
must lie in O, that is, ei ∈ f (M ′). Therefore, to prove the claim we may assume K is
a field.

Now, by Lemma 3.6, ei is not a non-trivial O-linear combination of other elements
of M . As ei /∈ f (M ′), Proposition 3.3 implies

π−1(π(ei )) = {ei }. (6)

Fix a section σ : M ′′ → M of π , which exists by the assumption that M ′′ be
projective. We obtain σ(π(ei )) = ei . Hence,

0 = σ(0M ′′) = σ(π(tm′
1)) =

∑

ei /∈ f (M ′)
tλiσ(π(ei )) =

∑

ei /∈ f (M ′)
tλi ei ,

so that λi = 0. The claim is shown.
By the claim, f induces a bijection f̃ : M ′ = O(n′) → O(ñ′), which gives rise to a

bijection K n′ → K ñ′
. This shows ñ′ = n′. We conclude that the basis vectors ei ∈ M ′

get mapped under f to εi eJ (i) where εi ∈ E and J : {1, . . . , n′} → {1, . . . , n} is an
injective set map. In fact, suppose f̃ −1(ei ) = ∑ j∈J λi j e j with (λi j ) ∈ O(J ) with

all λi j �= 0. Equivalently,
∑

λi j f̃ (e j ) = ei . Therefore, by Lemma 3.6 (applied with
Q instead of K ), f̃Q(e j ) ∈ EQ · ei for all j , where EQ = {q ∈ Q, |q| = 1}. Since
f̃ and therefore, by Lemma 3.5, f̃Q is injective, this implies that only one summand
appears in this sum, i.e., f̃ (e j ) = λ−1

i j ei for some j ∈ J . A priori, λ−1
i j only lies in Q,

but f̃ (e j ) ∈ O(n′) shows that εi := λ−1
i j ∈ O, hence in E .

By Assumption 3.1, εi ∈ E is a unit in K . We can therefore define φ′ : O(n′) → M ′
by mapping the basis vectors ei of O(n′) (which correspond, in the above notation, to
the basis vectors eJ (i) of M) to ε−1

i ei . Also, let φ′′ : O(n − n′) ⊂ M → M ′′ be the
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map which sends the remaining basis vectors e j ′ for j ′ /∈ imJ to π(e j ′). Put

φ := φ′ � φ′′ : M = O(n) = O(n′) � O(n − n′) → M ′ � M ′′.

Both φ′ and φ′′ are onto, hence so is φ. This follows from the construction of coprod-
ucts of modules over generalized rings [1, 4.6.15]. (Also see [1, 10.4.7] for an explicit
description of the coproduct for modules over archimedean valuation rings.) Alterna-
tively, the surjective maps φ′ and φ′′ are epimorphisms of O-modules. Hence their
coproduct φ is an epimorphism. As M ′ � M ′′ is projective, φ has a section, so it is also
surjective. The map φ is injective, as can be seen by checking the definition or using
Lemma 3.5(b) ⇒ (c). Hence φ is an isomorphism.

We finally show the unicity of φ or, in other words, that there are no non-trivial
automorphism of cofiber sequences

0 → M ′ � M � M ′′ → 0.

Suppose φ̃ is another isomorphism fitting into (5). We replace φ by φ̃φ−1 and φ̃ by
idM and assume f is the standard inclusion M ′ → M = M ′ � M ′′ and π is the
standard projection onto M ′′. Applying the base change functor (−)Q (see above), we
may assume that K is a field. Then M ′′

K is a free K -module, so the endomorphism
φK : MK → MK is given by a matrix

B =
(

IdM ′ A
0 IdM ′′

)
,

where A is the matrix corresponding to the map M ′′
K → M ′

K (of free K -modules). On
the other hand, φ is a map of free O-modules, so every column in B is in O(n). This
forces A = 0, so that φ = idM . ��
Theorem 3.10 The category (Free(O),�,

∼→) defined in 3.8 is a Waldhausen cate-
gory.

Proof The only non-trivial thing to show is the stability of cofibrations under cobase-

change. By Proposition 3.9, a cofibration sequence M ′ ι
� M

π
� M ′′ in Free(O) is

isomorphic to M ′ � M ′ � M ′′ � M ′′. Hence, given any map f : M ′ → M̃ ′, the
pushout of ι along f , M̃ ′ → M̃ ′ �M ′ M is isomorphic to M̃ ′ → M̃ ′ � M ′′ which is a
monomorphism with cokernel M ′′. ��
Remark 3.11 Mahanta uses split monomorphisms as cofibrations in the category of
finitely generated modules over a fixed F1-algebra (i.e., pointed monoid) to define G-
(a.k.a. K ′-)theory of such algebras [3]. In Free(O), we have seen that all cofibrations
are split, but not conversely: the cokernel of the split monomorphism ϕ : Z∞(1) →
Z∞(2), e1 �→ e1

2 + e2
2 is not free. This follows either from Proposition 3.9 or by

an explicit computation, using Proposition 3.3. Indeed, two elements xi e1 + yi e2 ∈
Z∞(2) (i = 1, 2) are identified in cokerϕ iff |y1 − x1| = |y2 − x2| < 1. On cokerϕ,
multiplication with 1/2 is therefore not injective. Thus cokerϕ is not a submodule of
a free Z∞-module, in particular it is not projective.
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3.3 K -theory

In this subsection, we compute the K -theory of the generalized valuation ring O
(Definition 3.2) or, more precisely, of the category of free O-modules. By Theorem
3.7, every projective O-module is free, provided that the norm is archimedean.

We define the K -theory using Waldhausen’s S•-construction, which has the advan-
tage of being immediately applicable (Theorem 3.10). Other constructions, such as
Quillen’s Q-construction can also be applied (slightly modified, since O-modules do
not form an exact category). The resulting K -groups do not depend on the choice of
the construction.

Recall the definition of K -theory of a Waldhausen category C (see e.g. [7, Section
IV.8] for more details). We always assume that the weak equivalences of C are its
isomorphisms. The category SnC consists of diagrams

0 = A00 �� �� A01 �� ��

����

A02 �� ��

����

. . . �� �� A0n

����
0 = A11 �� �� A12 �� ��

����

. . . �� �� A1n

����
0 = A22 �� �� . . . �� �� A2n

����
. . .

...

����
An−1,n

(7)

such that Ai, j � Ai,k � A j,k is a cofibration sequence. Varying n yields a sim-
plicial category S•C. The subcategory of isomorphisms is denoted wS•C. Apply-
ing the classifying space construction of a category yields a pointed bisimplicial set
S(C)n,m := BmwSnC. For example, S(C)n,0 = Obj(SnC). The K -theory of C is
defined as

Ki (C) := πi+1d(B∗wS•C),

where d(−) is the diagonal of a bisimplical set.
By Theorem 3.10, we are ready to define the algebraic K-theory of O. More pre-

cisely, we consider the Waldhausen category of (finitely generated) free O-modules,
which is the same as projective O-modules in all cases of interest by Theorem 3.7.

Definition 3.12

Ki (O) := Ki (Free(O)) = πi+1(d BwS•Free(O)), i ≥ 0.
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Lemma 3.13 Given two normed domains and a ring homomorphism f : K → K ′
between them satisfying | f (x)| = |x | (so that f restricts to a map f : O → O′),
the functor f ∗ : Free(O) → Free(O′), M �→ M ⊗O O′ is (Waldhausen-)exact and
therefore induces a functorial map

f ∗ : Ki (O) → Ki (O′).

Proof As pointed out at p. 4, f ∗ : Mod(O) → Mod(O′) preserves cokernels. Sec-
ondly, tensoring with O′ preserves cofibrations since a map M → M ′ of free (or
projective) O-modules is a monomorphism iff MQ → M ′

Q is one (where Q is the
quotient field of K , Lemma 3.5) and the statement is true for Q-modules: the map
Q → Q′ is injective since | f (1)| = |1| = 1 and therefore flat. ��

The group K0(O) is the free abelian group generated by the isomorphisms classes
of free O-modules modulo the relations

[O(n′) � O(n′′)] = [O(n′)] + [O(n′′)].

Indeed, any cofiber sequence satisfies additivity of the ranks of the involved free mod-
ules, as one sees by tensoring the sequence with the quotient field Q of K . Therefore,
K0(O) = Z.

We now turn to higher K -theory of O. Recall that E := {x ∈ O, |x | = 1} is the
subgroup of norm one elements. Let us write GLn(O) := AutO(O(n)). According to
Proposition 3.9,

GLn(O) = E � Sn = En
� Sn, (8)

where the symmetric group Sn acts on En by permutations. For E = μ2 = {±1}, this
group is known as the hyperoctahedral group. As usual, we write

GL(O) := lim−→
n

GLn(O)

for the infinite linear group, where the transition maps are induced by GLn(O(n) �
f �→ f � idO. For any group G, let Gab = G/[G, G] be its abelianization. We write
π s

i (−) for the stable homotopy groups of a space and abbreviate π s
i := π s

i (S0).

Theorem 3.14 Let O be a generalized valuation ring as defined in 3.2. Then for i ≥ 0,
there is an isomorphism

Ki (O) ∼= π s
i (B E+, ∗),

where the right hand side denotes the i-th stable homotopy group of the classifying
space of E (viewed as a discrete group), with a disjoint base point ∗. For a map f
as in Lemma 3.13, this isomorphism identifies f ∗ in K -theory with the map on stable
homotopy groups induced by E(O) → E(O′).
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For i = 1, 2 we get

K1(O) = GL(O)ab = E×Z/2

K2(O) = lim−→
n

H2([GLn(O), GLn(O)], Z) (9)

where the right hand side in (9) is group homology with Z-coefficients.

Before proving the theorem, we first discuss our main example, when O comes from
an infinite place of a number field, as in Example 3.4. Then, we prove a preliminary
lemma.

Example 3.15 Let us consider a number field F with the norm induced by some
complex embedding σ ∈ �F (see p. 3 for notation). The torsion subgroup Etor of
E := {x ∈ F×, |x | = 1} agrees with the finite group μF of roots of unity. The exact
localization sequence involving all finite primes of OF ,

1 → O×
F → F× → L := ker(⊕p<∞Z → cl(F)) → 0,

shows F×/μF ∼= O×
F /μF ⊕ L . Hence it is free abelian by Dirichlet’s unit theorem.

Thus

E ⊂ μF ⊕ Z
r1+r2−1 ⊕ L ,

where r1 and r2 are the numbers of real and pairs of complex embeddings. Therefore,
E = μF ⊕ Z

S , where S := rkE is at most countably infinite. Of course, E = {±1}
whenever σ is a real embedding, but also, for example, for any complex embedding
of F = Q[ 3

√
2]. For F = Q[√−1], E is the (countably) infinitely generated group

of pythagorean triples [2] (see also [8] for a description of the group structure of
pythagorean triples in more general number fields).

The group μF is cyclic of order w, so the long exact sequence of group homology,

Hi (μF , Z)
·n−→ Hi (μF , Z) → Hi (μF , Z/n) → Hi−1(μF , Z),

together with the Atiyah–Hirzebruch spectral sequence

Hp(μF , π s
q) = Hp(BμF , π s

q) ⇒ π s
p+q(BμF ) = π s

p+q((BμF )+, ∗)

yield at least for small p and q explicit bounds on π s
p+q((BμF )+, ∗): the E2-page

reads

q ↑
2 π s

2 = Z/2 Z/w′
Z/w′

1 π s
1 = Z/2 μF/2 = Z/w′

Z/w′
0 Z μF = Z/w 0

0 1 2 p →
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where w′ = (2, w). In general, π s
p+q((BμF )+, ∗) is finite for p + q > 0. For i > 0,

Ki (OF σ ) = Ki (OF (σ ))

= π s
i (B(μF ⊕ Z

⊕S)+, ∗)

= π s
i

(
(BμF )+ ∨

∨

S

S1, ∗
)

= π s
i (BμF ) ⊕

⊕

S

π s
i−1.

In particular

K1(OF (σ )) = Z/2 ⊕ μF ⊕ Z
⊕S,

K2(OF (σ )) = G ⊕ (Z/2)⊕S,

where G is a finite (abelian) group which is filtered by a filtration whose graded
pieces are subquotients of Z/2 and Z/w′. (Determining G would require studying the
differentials of the spectral sequence).

Lemma 3.16 The map

GL(O)ab → E×Z/2, (ε, σ ) �→
( ∞∏

i=1

εi , parity(σ )

)

is an isomorphism. Here the representation of elements of GL(O) is as in (8). The
group [GL(O), GL(O)] is perfect.

Proof For i ≥ 1 and ε ∈ E , let εi = (1, . . . , 1, ε, 1, . . . ) ∈ E×E× . . . be the vector
with ε at the i-th spot. Let σi = (i, i + 1) ∈ Sn be the permutation swapping the i-th
and i +1-st letter. The εi and σi , for i ≥ 1 and ε ∈ E , generate G := GL(O) as we have
seen in the proof of Proposition 3.9. In G, we have relations σiσi+1σi = σi+1σiσi+1,
which implies σi = σi+1 in Gab. Moreover, in G we have the relation εiσi = σi+1εi+1,
so that we get εi = εi+1 in Gab. This shows the first claim.

The perfectness of [GL(O), GL(O)] is a special case of [6, Prop. 3], for exam-
ple. Alternatively, the above implies that H := [Aut(O(n)), Aut(O(n))] is given
by H = L � An , where the alternating group An acts on L := ker(

∏n
i=1 E →

E, (ε1, . . . , εn) �→∏
εi )(∼= En−1) by restricting the Sn-action on En . Now, the per-

fectness of An for n ≥ 5 and a simple explicit computation shows Hab = 1 for n ≥ 5.
��

We now prove Theorem 3.14. This theorem is actually an immediate consequence
of Proposition 3.9, together with well-known facts about K -theory of G-sets, where G
is some group [7, Ex. IV.8.9]. For example, the K -theory of the Waldhausen category
of finite pointed sets (which would correspond to the impossible case E = 1) is

Ki (F1) := Ki ((finite pointed sets, injections, bijections)) = π s
i ,
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the stable homotopy groups of spheres. More generally, for some (discrete) group
G, the K -theory of the category Free(G) of finitely generated (i.e., only finitely
many orbits) pointed G-sets on which the G-action is fixed-point free, together with
bijections as weak equivalences and injections as cofibrations, is known to be the
stable homotopy group of (BG)+. By Proposition 3.9, the canonical functor

Free(E) → Free(O), (E X ) � {∗} �→ O(X)

induces an equivalence of the categories of cofibrations and therefore an isomor-
phism of K -theory. For the convenience of the reader, we recall the necessary argu-
ments, which also includes showing that other definitions of higher K -theory (of free
O-modules) yield the same K -groups.

Proof Let QFree(O) be Quillen’s Q-construction, i.e., the category whose objects
are the ones of Free(O) and

HomQFree(O)(A, B) := {A � A′ � B}/ ∼,

where two such roofs are identified if there is an isomorphism between them which
is the identity on A and B. It forms a category whose composition is given by the
composite roof defined by the cartesian diagram

A′′ := A′×B B ′

��������������� ��

�������������

A′

������
��

��
�

��

��������������� B ′
��

���
��

��
��

�

�����������������

A B C.

Here, we use that A′′ exists (in Free(O)) since it is the kernel of the composite B ′ �
B � B/A′, which is split by Proposition 3.9. The subcategory S := Iso(Free(O)) of
Free(O) consisting of isomorphisms only is a monoidal category under the coproduct.
Hence S−1S is defined. We claim

B QFree(O) = B(S−1S).

Indeed, the proof of [7, Theorem IV.7.1] carries over: the extension category EFree(O)

is defined as in loc. cit. and comes with a functor t : EFree(O) → QFree(O), (A �
B � C) �→ C . The fiber EC := t−1C (C ∈ Free(O)) consists of sequences A �
B � C . The functor

φ : S → EC , A �→ A � A � C � C

induces a homotopy equivalence B(S−1S) → B(S−1EC ) in the classical case of an
exact category (instead of Free(O)). In our situation, φ is an equivalence of categories
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since any extension in Free(O) splits uniquely (Proposition 3.9). Thus [7, Theorem
IV.4.10] gives

B QFree(O) = K0(S)×BGL(O)+,

where the right hand side is the +-construction with respect to the perfect normal
subgroup [GL(O), GL(O)] (Lemma 3.16). In the same vein, Waldhausen’s compari-
son of the Q-construction and his S•-construction carries over: d(BwS•Free(O)) is
weakly equivalent to B QFree(O).

Finally, by the Barratt–Priddy theorem (see e.g. [5, Th. 3.6])

πi (BGL(O)+) ∼= π s
i (B E+, ∗).

The identification of the low-degree K -groups is the standard calculation of the S−1

S-construction [7, IV.4.8.1, IV.4.10]. ��
Remark 3.17 The calculation of K1(O) could also be done using the description of
K1 of a Waldhausen category due to Muro and Tonks [4].

Remark 3.18 Recall that for an (ordinary) ring R the following two properties of an
R-module M are equivalent: (i) it is projective, (ii) there is another projective module
M ′ such that M � M ′ is free. I have not been able to show the corresponding statement
for projective O-modules. For example, for a projector p : O(n) → O(n) with
M = imp, it is not true that the canonical map

φ : M � ker p → O(n)

is an isomorphism of O-modules: for n = 2 and the projector p given by the matrix

(
1/2 1/2
1/2 1/2

)
,

ker p is the free O-module of rank 1, generated by (e1 − e2)/2 ∈ O(2). In this case, φ
induces an isomorphism of M � ker p with the free O-module of rank 2 generated by
(e1 ±e2)/2, but not with O(2) = (e1, e2). The analogous statement of Proposition 3.9
for cofibrations of projective O-modules, as well as the computation of Ki (Proj(O))

for i > 0 (using Waldhausen’s cofinality theorem) would carry over verbatim if the
above statement about projective O-modules holds. However, the distinction between
projective and free modules is only relevant for non-archimedean valuations, by The-
orem 3.7.

4 The residue field at infinity

We finish this work by noting two differences (as far as K -theory is concerned) to the
case of classical rings, namely the K -theory of the residue “field” at infinity, and the
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behavior with respect to completion. For simplicity, we restrict our attention to the
case F = Q.

Let p < ∞ be a (rational) prime with residue field Fp. There is a long exact
sequence

Kn(Fp) → Kn(Z(p)) → Kn(Q)
δ→ Kn−1(Fp)

which stems from the fact that Z(p) (the localization of Z at the prime ideal (p)) is
a Noetherian regular local ring of dimension one. Moreover, for n = 1 the map δ is
the p-adic valuation vp : Q

× → Z. The situation is less formidable at the infinite
places, as we will now see. The (generalized) valuation ring Z(∞) (Definition 3.2)
is not Noetherian: ascending chains of ideals need not terminate. Indeed, consider
a finitely generated ideal I = (m1, . . . , mn) ⊂ Z(∞). Then |I | = {|m|, m ∈ I } =
[0, maxi |mi |] ∩ |Z(∞)|. In particular, an ideal of the form {x ∈ Z(∞), |x | < λ}, λ ≤ 1
is not finitely generated, since |Z(∞)| is dense in [0, 1]. This should be compared with
the well-known fact that the valuation ring of a non-archimedian field is noetherian
iff the field is trivially or discretely valued.

Definition 4.1 [1, 4.8.13] Put F∞ := Z(∞)/Z̃(∞), where Z̃(∞) is the submonad given
by

Z̃(∞)(n) = {x ∈ Q
n, |x | < 1}.

We refer to loc. cit. for the general definition of strict quotients of generalized rings
by appropriate relations. For us, it is enough to note that every element of Z(∞)(n)

is uniquely represented by z = ∑i∈I λiεi ei , where I ⊂ {1, . . . , n}, 0 < λi ≤ 1,∑
λi ≤ 1, εi ∈ EZ(∞)

= {±1}, and ei is the standard basis vector. Two elements
z, z′ ∈ Z(∞)(n) get identified in F∞(n) (Notation: z ≡ z′) iff

|z| < 1 and |z′| < 1 (10)

or

|z| = |z′| = 1, Iz = Iz′ , and εi,z = εi,z′ for all i ∈ Iz . (11)

That is, as a set F∞(n) consists of the faces of the n-dimensional octahedron. Again,
0 is the initial and terminal F∞-module, so we can speak about (co)kernels.

As usual, we put

K0(F∞) :=
⎛

⎝
⊕

M∈Free(F∞)/I so

Z

⎞

⎠ /[M] = [M ′] + [M ′′],

with a relation for each monomorphism M ′ → M in Free(F∞) such that its cokernel
M ′′ (computed in Mod(F∞)) lies in Free(F∞). Similarly, we define K Proj

0 (F∞) using
projective F∞-modules. Using the above, one sees that F∞ is not finitely presented as
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a Z(∞)-module. Thus, one should not expect a natural map i∗ : K0(F∞) → K0(Z(∞)).
Actually, K -theory of F∞-modules behaves badly in the sense of the following propo-
sition:

Proposition 4.2 K Proj
0 (F∞) = 0, K0(F∞) = Z. In particular, there is no exact

localization sequence (regardless of the maps involved)

K1(Z(∞)) = Z/2×{±1} → K1(Q) = Q
× → K0(F∞) → K0(Z(∞))

= Z → K0(Q) = Z,

or similarly with K Proj
0 (F∞) instead.

Proof We first show that any projective F∞-module M which is generated by n ele-
ments contains F∞ as a submodule, such that the cokernel is a projective F∞-module
generated by n−1 elements. This implies that K Proj

0 (F∞) is generated by [F∞] (which
is obvious for K0(F∞)).

The projective module M is specified by a projector π : F∞(n) → F∞(n) with
M = π(F∞(n)). Let ai := π(ei ) ∈ F∞(n). We pick ai j ∈ [−1, 1] ⊂ R such that
ai ≡ ∑ j∈Ji

ai j e j with ai j �= 0 for all j ∈ Ji . Set A := (ai j ) ∈ R
n×n . We may

assume that the number n of generators of M is minimal, i.e., there is no surjection
p′ : F∞(n′) → M with n′ < n. Indeed, if there is such a surjection, it has a section
σ ′ since M is projective, and π ′ := σ ′ p′ would again be a projector.

The minimality of n implies that ai �≡ a j for all i �= j . Otherwise, the restriction
of π to F∞(n\{i}) ⊂ F∞(n) would be surjective. Similarly, the minimality implies
ai �≡ 0 ∈ F∞(n) for all i . Also, put B = (bi j ) := A2 ∈ R

n×n . Using (bi j ) j ≡
π(ai ) ≡ ai �≡ 0 ∈ F∞(n), we obtain

∑
j |bi j | = 1 and

∑
j |ai j | = 1 by (10).

The minimality of n implies i ∈ Ji or equivalently, aii �= 0: otherwise ai ≡ π(ai ) ≡∑
j∈Ji \{i} ai j a j would be an F∞-linear combination of the remaining columns of A.
For every i ≤ n,

1 =
∑

j

|bi j | =
∑

j

|
∑

k

aikak j |

≤
∑

j

∑

k

|aik ||akj | =
∑

k

|aik |
⎛

⎝
∑

j

|akj |
⎞

⎠

︸ ︷︷ ︸
=1

= 1,

so equality holds. In particular, the terms sgn(aikak j ) are either all (for arbitrary
i, j, k ≤ n) non-negative or non-positive. Picking k = j := i , we see that they
are non-negative, since sgn(a2

i i ) > 0, for aii �= 0.
Let I > := {i, aii > 0} and likewise with I <. Then I >� I − = {1, . . . , n}. Moreover,

for i ∈ I > and j ∈ I <, aii ai j ≥ 0 and ai j a j j ≥ 0 imply ai j = 0. In other words,
the matrix A decomposes as a direct sum matrix A> � A<, where A> and A< are
the submatrices of A consisting of the rows and columns with indices in I > and
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I <, respectively. We may therefore assume A = A>, say. For i(∈ I >), and any j ,
aii ai j ≥ 0 implies ai j ≥ 0, i.e., the entries of A are all non-negative.

Fix some i ≤ n. As π is a projector, ai ≡ π(ai ), i.e.,

ai ≡
∑

j∈Ji

ai j e j ≡
∑

ai jπ(e j ) ≡
∑

j∈Ji ,k∈J j

ai j a jkek ∈ F∞(n).

By (10), (11), this implies sgn(aik) = sgn(
∑

j ai j a jk), which gives

Ji = ∪ j∈Ji J j . (12)

Indeed, “⊂” is easy to see without using the non-negativity of the entries. Conversely,
for k /∈ Ji ,

∑
j ai j a jk = 0. Since all a∗∗ ≥ 0, this implies a jk = 0 for all j ∈ Ji , i.e.,

k /∈ ∪ j∈Ji J j .
Now, pick some i ≤ n such that Ji is maximal, i.e., not contained in any other J j ,

i �= j . Then i /∈ J j for any i �= j by (12). In other words, the i-th row only contains
a single non-zero entry. For simplicity of notation, we may suppose i = 1.

Consider the diagram

F∞ �� ι �� F∞(n)
ρ �� ��

����

F∞(n − 1)

����
F∞ �� �� M �� �� M ′

where ρ is the projection onto the last n − 1 coordinates, ι is the injection in the
first coordinate. The lower left-hand map is a monomorphism since the first row of
A is nonzero. Its cokernel M ′ is the projective module determined by the matrix
(ai j )2≤i, j≤n . This exact sequence shows that K Proj

0 (F∞) is generated by [F∞].
On the other hand, consider the projective F∞-module P defined by the projector(

1/2 0
1/2 1

)
[1, 10.4.20]. It consists of 5 elements and can be visualized as

P =

•

��
��

��
��

��
��

��
�� •

•

⊂ F∞(2) =

•

��
��

��
�

��
��

��
�

•

��
��

��
� • •

��
��

��
�

•

.

The composition F∞
(1/2,1/2)−→ F∞(2) � P is a monomorphism with cokernel F∞.

The pictured inclusion P → F∞(2) has cokernel F∞, spanned by e1. This shows that
[F∞(2)] = 2[F∞] = [P] + [F∞] = 3[F∞]. Hence K Proj

0 (F∞) = 0.
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Finally, we have to show K0(F∞) = Z. For this, consider a cofiber sequence

F∞(n′)
i

� F∞(n)
p

� F∞(n′′).

We have to show n = n′ +n′′. Pick a section σ of p. The natural map i �σ : F∞(n′)�
F∞(n′′) → F∞(n) is injective, as one easily shows. Thus n′ + n′′ ≤ n for cardinality
reasons. Conversely, for any basis vector ei ∈ F∞(n)\imi , p−1(p(ei )) = {ei }, as one
shows in the same way as for Z∞-modules, cf. (6). Thus σ(p(ei )) = ei , so there are
at most n′′ such basis vectors by the injectivity of σ . Moreover, at most n′ of the basis
vectors ei of F∞(n) are in imi by the injectivity of i . This shows n′ + n′′ ≥ n. ��
Remark 4.3 For p ≤ ∞, let Fib be the homotopy fiber of K (Z(p)) → K (Q) and

F̂ib the one of K (Zp) → K (Qp). The localization sequence for K -theory shows

in case p < ∞ that Fib and F̂ib are homotopy equivalent (and given by K (Fp)).
Here  is the loop space and K (−) is a space (or spectrum) computing K -theory, for
example the S•-construction. However, for p = ∞, we have

π1(Fib) �� K1(Z(∞)) �� K1(Q) = Q
×

�

��

�� π0(Fib) �� 0

π1(̂Fib) ��
K1(Z∞)︸ ︷︷ ︸
(Z/2)⊕2

�� K1(R) = R
× �� π0(̂Fib) �� 0,

so that π0(Fib) � π0(̂Fib).
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1. Introduction

This paper is devoted to the model-categorical study of operads and their algebras. The concept of an algebra
over a colored symmetric operad allows for a uniform treatment of algebraic structures which produce an output
from multiple inputs, subject to some symmetry constraints. For example, a commutative monoid X in a
symmetric monoidal category C is specified by Σn-equivariant maps X⊗n → X , subject to the usual associativity
and unitality constraints. In a seemingly artificial way, this can be rewritten as

Commn ⊗Σn
X⊗n → X,

where Comm is the so-called commutative operad, which satisfies Commn = 1, the monoidal unit. More generally,
an algebra of a single-colored operad O is an object A ∈ C together with maps

On ⊗Σn
A⊗n → A,

which are compatible with the multiplication in O in a suitable sense. Colored symmetric operads, also known as
symmetric multicategories, are a many-objects version of ordinary operads. They allow input from more than one
object. For example, there is a two-colored operad whose algebras are pairs (R,M), where R is a commutative
monoid in C and M is an R-module. Interestingly, operads themselves are algebras over a certain operad.

Symmetric operads and their algebras, which were first introduced by May, are ubiquitous in homotopy theory
and beyond. A prototypical example is the m-fold loop space ΩmX of some topological space X : concatenation
of paths yields a multiplication map

µn : (Ω
mX)n → ΩmX,

which is neither associative nor commutative, but only associative and commutative up to homotopy. This and
the compatibility of these homotopies for various n is concisely encoded in the fact that ΩmX is an algebra over
some operad O, meaning that there are maps (for all n, and compatible with each other):

On ×Σn
(ΩmX)n → ΩmX.

If On was just a point, then this would mean that the multiplication on ΩmX is strictly commutative and
associative, which it is not. However, O can be chosen to be the little disks operad Em. For m = ∞ these
levels On are contractible spaces, which can be interpreted as saying that infinite loop spaces are homotopy
coherent commutative monoids. Recently, En-algebras have been attracting a lot of attention in questions related
to factorization homology (also known as topological chiral homology) and Goodwillie calculus of functors.

Our first main theorem is a highly flexible existence criterion for a model structure on algebras over operads
in a model category. This is a powerful tool for homotopical computations related to algebras over operads, such
as the loop space.

Theorem 1.1. (See Theorems 5.10, 6.6.) Suppose C is a symmetric monoidal model category which is sym-
metric h-monoidal and satisfies some minor technical assumptions. Then any symmetric W -colored operad O

is admissible, i.e., the category AlgO(C) of O-algebras carries a model structure whose weak equivalences and
fibrations are inherited from C. Moreover, the forgetful functor AlgO(C) → C

W preserves cofibrant objects and
cofibrations between them if C is symmetroidal.

1
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This admissibility result is widely applicable because its assumptions are satisfied for many basic model
categories such as simplicial sets, topological spaces, simplicial presheaves, chain complexes of rational vector
spaces. It does not apply to chain complexes of abelian groups, and in fact the commutative operad is provably
not admissible in this category. Moreover, as was shown in [PS15], symmetric h-monoidality (and similarly with
symmetroidality and symmetric flatness) are stable under transfer and monoidal left Bousfield localizations,
which allows to easily promote these properties from basic model categories to more advanced model categories,
such as spectra. The latter are shown in [PS14] to be symmetric h-monoidal, symmetroidal, and symmetric flat.

The key condition of symmetric h-monoidality is a symmetric strengthening of the h-monoidality condition.
The latter was introduced by Batanin and Berger in [BB13] and is closely related to the monoid axiom. Es-
sentially, it means that for any object Y in ΣnC (objects of C with a Σn-action) and any cofibration f , the
map

Y ⊗Σn
s�n := (Y ⊗ s�n)Σn

is an h-cofibration, which is a weak equivalence if f is an acyclic cofibration. Here f�n is the n-fold pushout
product of f . Symmetroidality is a related condition, obtained by replacing “h-cofibration” above by “cofibration”
and Y ⊗− by y �− for some map y.

In practice, a frequent question is how to replace algebras over some operad by those over a weakly equivalent
operad. For example, the little disks operad is such that On is a contractible space and has a free Σn-action. It
is therefore called an E∞-operad. One can therefore ask whether Ω∞X , together with the multiplications µn, is
weakly equivalent to some space with a strictly commutative and associative multiplication. In this example, it
is well-known that connected E∞-spaces with nontrivial Postnikov invariants, e.g., the identity component of the
space Ω∞Σ∞S0, can not be strictified to a simplicial abelian group. Indeed by a classical result of Moore [Moo58,
Theorem 3.29], connected simplicial abelian groups have trivial Postnikov invariants.

The following rectification theorem identifies a criterion when a rectification of operadic algebras is possible.

Theorem 1.2. (See Theorem 7.5.) For any map of admissible operads O → P in a symmetric monoidal model
category, there is a Quillen adjunction

AlgO(C) ⇄ AlgP (C).

Provided that C satisfies some minor technical assumptions, it is a Quillen equivalence if and only if O → P is
a symmetric flat map in C.

The symmetric flatness condition essentially requires that the map

On ⊗Σn
X⊗n → Pn ⊗Σn

X⊗n

is a weak equivalence for all cofibrant objects X and all n ≥ 0. If C is the model category of rational chain
complexes, this condition holds for all weak equivalences O → P . In [PS14], we show that the same is true
for symmetric spectra in an abstract model category. However, this condition does not hold for all maps in
simplicial sets, in particular, it fails for the components of E∞ → Comm. This matches the above observation
of the nonrectifiability of E∞-algebras to strictly commutative simplicial monoids. Nevertheless, it is satisfied
for any pair of E∞ operads in simplicial sets, which shows that the algebras over such operads are all Quillen
equivalent to each other.

As a consequence of this rectification result, we obtain Theorem 7.10 which relates algebras over operads in
the strict sense, as above, and algebras over quasicategorical operads as introduced by Lurie.

Operads and their algebras in different model categories also behave as nicely as possible. Such a result allows
to replace C by a more convenient model category, which is often necessary in practice.

Theorem 1.3. (See Theorem 8.10). For any Quillen equivalence

F : C ⇄ D : G

between symmetric monoidal model categories as above, where F is symmetric oplax monoidal such that the
canonical maps FQ(1C) → 1D and F (C ⊗ C′) → F (C) ⊗ F (C′) are weak equivalences for all cofibrant objects
C,C′ ∈ C there is a Quillen equivalence of the categories of W -colored (symmetric) operads

F (s)Oper : (s)Oper(C) ⇄ (s)Oper(C′) : G.

Moreover, there is a Quillen equivalence for any cofibrant (symmetric) operad O,

FAlg : AlgO(C) ⇄ AlgF (s)Oper(O)(D) : G.

The admissibility and rectification of nonsymmetric and symmetric operads is a topic that was addressed
by various authors. Spitzweck has shown the existence of a semi-model structure for special symmetric oper-
ads, namely those whose underlying symmetric sequence is projectively cofibrant (which roughly means that
Σn acts freely on On) [Spi01, Theorem 4.7]. This rules out the commutative operad, whose algebras are com-
mutative monoids. The admissibility of the commutative operad was shown by Lurie under the assumption
of symmetroidality of the commutative operad, see Lemma 4.5.4.11.(1) and Proposition 4.5.4.6 of [Lur]. An
independent account of this result was later given by White [Whi14, Theorem 3.2]. The admissibility of all
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operads was shown by Elmendorf and Mandell for C = sSet [EM06, Theorem 1.3], Berger and Moerdijk [BM03]
and Caviglia [Cav14] for colored operads. The latter two results use an assumption on the path object which
serves to cut short a certain homotopical analysis of pushouts, which is performed in this paper. The path object
argument was also used by Johnson and Yau to establish a model structure on colored PROPs [JY09]. PROPs
are more general than symmetric operads in that not only multiple inputs, but also multiple outputs are allowed.
Harper showed the admissibility of all symmetric operads in simplicial symmetric spectra [Har09]. This was
generalized by Hornbostel to spectra in simplicial presheaves [Hor13]. Finally, Muro has shown the admissibility
of all nonsymmetric operads [Mur11, Mur15]. A more detailed review of these results is found in §5.

Harper also established a rectification result under the assumption that every symmetric sequence is pro-
jectively cofibrant [Har10, Theorem 1.4]. This strong assumption applies to categories such as rational chain
complexes. In this case, rectification is due to Hinich [Hin97]. Lurie [Lur] established rectification of E∞-algebras
in the context of∞-operads, again under a strong assumption that only applies to special model categories such
as rational chain complexes. These and further results are reviewed in §7.

Thus all previous results have either restrictions on the operad and/or on the category in which the operad
lives. Our results are applicable to all operads and to a very broad range of model categories. This wide
applicability results from the fact that conditions of symmetric h-monoidality, symmetroidality and symmetric
flatness occurring above are stable under transfer and left Bousfield localization. Thus, they are easily promoted
from simplicial sets to simplicial presheaves, say.

In §2, we recall the symmetricity properties introduced in [PS15]: symmetric h-monoidality, symmetroidality,
and symmetric flatness, and a few other basic notions on model categories. As was shown in [PS15, 5.2.1, 5.2.6,
6.2.1, 6.2.2], these properties are stable transfer and monoidal Bousfield localizations. Given that these two
methods are the most commonly used tools to construct model structures, the admissibility and rectification
results in this paper are applicable to a wide range of model categories.

In §3, we start with a brief review of colored symmetric collections and the substitution product. Symmetric
operads are defined as monoids in this category sCollW (C). In §5, we show that symmetric h-monoidality is
the key condition needed to ensure the admissibility of arbitrary symmetric operads O, i.e., the existence of
the transferred model structure on O-algebras. In §6, we show that symmetroidality is needed to additionally
guarantee the strong admissibility of O, i.e., the functor forgetting the O-algebra structure preserves cofibrations
with cofibrant source. In §7, we show the rectification of algebras of weakly equivalent symmetric operads. In
§8, we establish Quillen equivalences of operads and their algebras in different model categories.

We obtain the above-mentioned theorems by systematically using the symmetricity properties above. In
addition to that, this section uses Spitzweck’s and Berger–Moerdijk’s description of certain pushouts of operads
[Spi01, BM09]. In §9, we finish this paper with examples and applications ranging from low-dimensional category
theory to prefactorization algebras.

We thank Clemens Berger, Giovanni Caviglia, Denis-Charles Cisinski, John Harper, Jacob Lurie, Birgit
Richter, Brooke Shipley, and David White for helpful conversations. We thank Thomas Nikolaus for a dis-
cussion that led to Theorem 7.10. This work was partially supported by the SFB 878 grant.

2. Symmetricity properties

Let C be a symmetric monoidal model category in the sense of [Hov99, Definitions 4.1.6, 4.2.6], except that
we do not require the unit axiom. In this section we briefly recall from [PS15, §4] the symmetricity properties
which are the key conditions in the admissibility, strong admissibility and rectification results of this paper (see
Theorems 5.10, 6.6, 7.5).

We use the notation of [PS15, especially §3.1, Definition 4.2.1]. In particular, in the definitions below, n =
(n1, . . . , ne) is an arbitrary finite multiindex. For a family s = (s1, . . . , se) of maps in C, Σn :=

∏

iΣni
acts on

the pushout product s�n := �i s
�ni

i . A subscript Σn denotes the coinvariants of the Σn-action, such as −⊗Σn
−.

The concept of h-monoidality in Part (iii) is due to Batanin and Berger [BB13, Definition 1.7]. Recall from
op. cit. that an h-cofibration f : X → Y is a map such that in any pushout diagram

X

f

��

// A

��

g
// B

��

X ′ // A′ g′

// B′.

the map g′ is a weak equivalence if g is one. If, in addition, f is a weak equivalence, it is an acyclic h-cofibration.

Definition 2.1. Suppose C is a symmetric monoidal model category.

(i) C is admissibly generated if it is cofibrantly generated and if the (co)domains of a set I of generating
cofibrations (equivalently, by [Hir03, Corollary 10.4.9], all cofibrant objects) are small with respect to the
subcategory

cell(Y ⊗Σn
s�n)(2.2)
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for any finite family s of cofibrations, and any object Y ∈ ΣnC. As usual, cell denotes the closure of a class
of maps under pushouts and transfinite composition.

(ii) C is strongly admissibly generated if it is cofibrantly generated and if (co)dom(I) are (ℵ0-)compact (also
known as finite) relative to (2.2) [Hir03, Definition 10.8.1].

(iii) C is h-monoidal if the map Y ⊗ s is an (acyclic) h-cofibration for any (acyclic) cofibration s, and any
object Y ∈ C.

(iv) C is symmetric h-monoidal if Y ⊗Σn
s�n is an (acyclic) h-cofibration for any finite family s of (acyclic)

cofibrations, and any Y ∈ ΣnC.
(v) Let Y = (Yn)n≥1 be a collection of classes Yn of morphisms in ΣnC, where n ≥ 1 is any finite multi-index.

We suppose that for y ∈ Yn, y �− preserves injective (acyclic) cofibrations in ΣnC, i.e., those maps which
are (acyclic) cofibrations in C. Then C is Y-symmetroidal if the morphism

y �Σn
s�n

is an (acyclic) cofibration in C for all finite families s of (acyclic) cofibrations and all maps y ∈ Yn. If
Yn = CΣin

n C (injective cofibrations), we say that C is (acyclic) symmetroidal.

(vi) A weak equivalence y is flat if y � s is a weak equivalence in C for any cofibration s. C is flat if all weak
equivalences are flat.

(vii) C is symmetric flat with respect to a class Y = (Yn) of weak equivalences Yn ⊂ ΣnC if y �Σn
s�n is a weak

equivalence (in C) for any family s of cofibrations and any y ∈ Yn. For Y = (WΣnC), we just say C is
symmetric flat.

These conditions are usually stable under weak saturation, i.e., they only have to be checked for generating
(acyclic) cofibrations s. Simplicial sets with their standard model structure are symmetroidal, symmetric h-
monoidal, and flat (but not symmetric flat). The same is true for simplicial presheaves with the projective,
injective, or local (with respect to some topology) model structures, and also for simplicial modules.

For any commutative ring R, chain complexes of R-modules with their projective model structure are flat and
h-monoidal. They are symmetroidal, symmetric h-monoidal, and symmetric flat if and only if R contains Q.

The admissible generation is automatic if C is combinatorial [Lur09, Definition A.2.6.1]. Moreover, topological
spaces are admissibly generated, symmetric h-monoidal, and symmetroidal.

To check symmetricity properties of more involved model categories, one can use the fact that the properties
above are stable under transfer (appropriately compatible with the monoidal structure), and monoidal Bousfield
localizations. Combining these principles, we show in [PS14, Theorem 3.3.4] that spectra with values in a flat,
h-monoidal (but not necessarily symmetric flat nor symmetric h-monoidal) category C, with the positive stable
model structure, are symmetric flat, symmetroidal, and symmetric h-monoidal. In particular, this allows to
replace C by a Quillen equivalent, symmetric flat and symmetric h-monoidal model category.

The reader is referred to [PS15, Theorem 4.3.9, Theorem 5.2.6, Theorem 6.2.2, §7] for precise statements of
the above facts and further examples.

Many results below include a condition that weak equivalences in C are stable under transfinite compositions
or filtered colimits. This condition is satisfied if C is cofibrantly generated and its generating cofibrations I

have compact domain and codomain or, slightly more generally, if C is pretty small in the sense of [PS15,
Definition 2.0.2]. This condition is satisfied for sSet, Ch(ModR), and many other basic model categories, but
not for Top. However, Top is strongly admissibly generated, which is enough to conclude that the filtered
colimits of the weak equivalences that actually occur (as a result of a cellular presentation of cofibrant objects)
are indeed again weak equivalences. We call C quasi-tractable if its (acyclic) cofibrations are contained in the
weak saturation of (acyclic) cofibrations with cofibrant source (and target). Again, this holds for sSet, Top,
Ch(ModR). All three conditions are stable under localization and transfer, turning them into viable and
effectively checkable conditions.

3. Colored collections

In §3–4, let C be a closed symmetric monoidal category. In this section we give a very brief overview of
W -colored (symmetric) operads and colored modules over them (e.g., algebras over operads). The reader can
consult Gambino and Joyal [GJ14] for more details. Constructions in this section involve a set W , whose elements
are called colors. The reader may assume that W has exactly one element, which yields ordinary operads.

W -colored symmetric operads in C are defined as monoids in a certain monoidal category (sCollW (C), ◦)
and V -colored modules over a given W -colored (symmetric) operad O are defined as left modules over O in
the category (sCollV,W (C), ◦), which itself is a left module over the monoidal category (sCollW (C), ◦). The
idea behind (sCollW (C), ◦) is that an object in sCollW (C) encodes all possible operations, whereas the monoid
structure encodes the composition of operations. Operations have a multisource, consisting of a finite family of
colors, and a target, which is a single color. Furthermore, for any operation we can permute elements in its source
and obtain another operation. Operations with a fixed multisource and target form an object of sCollW (C).
Likewise, an object in sCollV,W (C) encodes operands that can be acted upon from the left by operations in a
W -colored operad and the left module structure encodes these actions. The operands are encoded by a V -valued
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multisource and a target in W . Thus the data of all operations can be encoded as a C-valued presheaf on a
certain groupoid sSeqW or sSeqV,W , which we define first.

We simultaneously treat symmetric and nonsymmetricW -colored operads with values in a symmetric monoidal
category C, indicating the modifications necessary for the symmetric case in parentheses. I.e., we write (s)Oper

to mean either sOper (symmetric operads) or Oper (nonsymmetric operads) etc.

Definition 3.1. Given two sets V , W , define the groupoid of (symmetric) V,W -sequences as

(s)SeqV,W := (s)Seq×
V ×W,

where W denotes a category with objects W and identities as morphisms and (s)Seq
×
V is the category of

functions s : I → V , where I is a finite ordered set (respectively, finite unordered set, in the symmetric case) set
and morphisms s → s′ are isomorphisms of ordered (respectively unordered) sets f : I → I ′ such that s = s′f .
We abbreviate (s)SeqW := (s)SeqW,W .

The idea is that an object (s, t) in (s)Seq
×
W×W encodes multisource s and target t ∈ W . Morphisms in sSeq×

W

account for the fact that one can permute sources in the symmetric case. In the nonsymmetric variant Seqs
W , no

permutation of multisources is allowed. If W = {∗}, then (s)SeqW is the category N of finite ordered sets and
identity morphisms (respectively, the category Σ of symmetric sequences, i.e., finite sets and bijections). Their
objects can be interpreted as arities. For some s : I → W , we write Σs := Aut(s)Seq×

W
(s). In the nonsymmetric

case this group is trivial. In the symmetric case, there is an isomorphism

Σs =
∏

w∈W

Σs−1(w).(3.2)

For example, if W = {∗}, then Σs = Σ♯I .
Given a (symmetric) sequence X ∈ (s)SeqW , we write X0 ∈ CW for the restriction to objects with empty

multisource, i.e., s : ∅ →W . We refer to this by saying that X0 is concentrated in degree 0. We refer to the Xs,w

with s : I → W satisfying ♯I = 1, s(i) = w as the unit degrees and will write Xw,w in this case. The remaining
components are called the nonunit degrees.

Definition 3.3. Given symmetric monoidal categories V and C such that C is enriched over V , for a given pair
of sets V and W define the categories

(s)CollV,W (C) := Fun((s)Seq
op
V,W , C)

where Fun denotes the V-enriched category of functors. Set

(s)CollW (C) = (s)CollW,W (C),

which we call the category of W -colored (symmetric) collections in C. The category (s)CollW (C) is a monoidal
category and the category (s)CollV,W (C) is a left module over (s)CollW (C) via the substitution product

◦ : (s)CollV,W (C)× (s)CollU,V (C)→ (s)CollU,W (C).(3.4)

The substitution product of F ∈ sCollV,W (C) and G ∈ sCollU,V (C) can be computed as the left Kan extension

TU,V,W
F∗G //

proj.

��

C

(s)SeqU ×W,

F◦G

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

where TU,V,W is the category whose objects are quadruples (u : I → U, v : J → V,w : 1 → W, f : I → J), where
I and J are finite sets, and morphisms are commutative diagrams

I

i ∼=

��

u

~~⑦⑦
⑦⑦
⑦

f
// J

j∼=

��

v

  ❆
❆❆

❆❆

U V

I ′
u′

__❅❅❅❅❅

f ′

// J ′
v′

>>⑥⑥⑥⑥⑥

where i and j are isomorphisms and w = w′. The functor F ∗ G sends an object (u, v, w, f) to F (v, w) ⊗
⊗

p∈J G(u|f−1(p), p) and a morphism (i, j) to the isomorphism F (j)⊗
⊗

p∈J G(i|f−1(p)).

The monoidal unit of (s)CollW is the W -colored collection that assigns the monoidal unit 1 ∈ C to all unit
degrees (w,w), w ∈ W and the initial object of C to anything else. We denote it by 1[1].
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See Theorem 10.2 and Remark 11.7 in Gambino and Joyal [GJ14] for additional details. In the notation of
Gambino and Joyal R stands for C.

Example 3.5. For example, for U = ∅ which is the special case relevant for algebras over colored operads,

(F ∗G)(v, w) = F (v, w)⊗
⊗

p∈J

G(p)

and (F ∗G)(j) = F (j)⊗ id.
In the case W = {∗} the substitution product in sColl can be expressed concisely using the symmetric smash

product ⊗ on symmetric sequences, see Kelly [Kel05, §3 and §4]:

F ◦G =

∫ m∈Σ

F (m)⊗G⊗m =
∐

m≥0

F (m)⊗Σm
G⊗m.

Recall that a category I is sifted if for all finite sets k the diagonal functor I → Ik is cofinal. Filtered
categories are sifted. An example of a sifted category that is not filtered is given by the walking reflexive pair
category, consisting of two objects 0 and 1 with two parallel arrows f, g : 0 → 1 and another arrow h : 1 → 0
such that fh = gh = id1. Sifted colimits of this type are precisely reflexive coequalizers. Any colimit can be
expressed using reflexive coequalizers and coproducts, which explains why reflexive coequalizers appear constantly
in constructions involving monoids and algebras over monoids.

Proposition 3.6. The substitution product (3.4) is associative and unital. Moreover, it is cocontinuous in the
first variable and preserves sifted colimits in the second variable. In particular, the substitution product is right
closed, i.e., the functor − ◦G has a right adjoint for any G.

Proof. See [GJ14, Proposition 10.9 and Theorem 14.8]. The bicategory of distributors used there is the opposite of
the bicategory of finite sets, symmetric collections (with ◦ as the composition) and morphisms of collections. �

We emphasize that the substitution product does not preserve nonsifted colimits in the second variable, for
example, coproducts, because the functorX 7→ X⊗k in general does not preserve nonsifted colimits. In particular,
the substitution product is not left closed. The substitution product is also not braided (in particular, not
symmetric). Note that the definition of the associator of ◦ in the nonsymmetric case needs C to be symmetric
monoidal, see Muro [Mur11, Remark 2.2].

Definition 3.7. The category (s)Oper := (s)OperW (C) of W -colored (symmetric) operads in C is the category
of monoids in ((s)CollWC, ◦), i.e., O ∈ (s)CollW C together with a unit map 1[1]→ O and a multiplication map
O ◦ O → O satisfying the associativity and unitality conditions. For any set V the category of V -colored (sym-
metric) modules over a (symmetric) W -colored operad O is the category of left modules over O in (s)CollV,W (C).

It is denoted by ModV
O . Explicitly, its objects are given by M ∈ (s)CollV,W (C) together with a map O◦M →M

subject to the standard associativity and unitality requirements. For V = ∅ and V = W , we speak of O-algebras
and O-modules, respectively and denote them by AlgO and ModO. Note that any O-algebra is naturally an
O-module whose non-zero degrees are ∅.

The following result describes the categorical properties of colored modules over colored operads.

Theorem 3.8. Suppose (C,⊗) is a symmetric monoidal category that is enriched over a symmetric monoidal
category V. Fix two sets V and W , and a W -colored (symmetric) operad O in C.

(i) If C is complete then so is ModV
O and the forgetful functor U : ModV

O → (s)CollV,W creates limits.

(ii) If C admits sifted colimits (respectively filtered colimits or reflexive coequalizers), which are preserved in

each variable by the monoidal product in C, then ModV
O admits sifted colimits, which are created by U .

(iii) If C admits reflexive coequalizers, which are preserved in each variable by the monoidal product in C, then
ModV

O is cocomplete.

(iv) If C is locally presentable and ⊗ preserves filtered colimits in each variable, then ModV
O is locally presentable.

(v) Suppose f : O → P is a morphism of W -colored (symmetric) operads in C. If C admits reflexive coequalizers

that are preserved in each variable by the monoidal product in C, then the pullback functor f∗ : ModV
P →

ModV
O admits a left adjoint f∗.

Proof. Via Proposition 3.6, these statements are reduced to similar statements about modules in (nonsymmetric,
nonbraided) monoidal categories. (i), (iv), and (v) are then special cases of [BW05, Theorem 3.4.1], [Bor94b,
Theorem 5.5.9], and [Lin69, Corollary 1], respectively.

(ii): [Bor94b, Proposition 4.3.2] implies that Mod
V
O has sifted colimits, which are preserved by U . Re-

flection of sifted colimits by U is then implied by [Bor94a, Proposition 2.9.7] applied to the opposite func-

tor Uop : (ModV
O)

op → (ModV
O)

op. The cases of filtered colimits and reflexive coequalizers are treated identically.

(iii): By (ii), ModV
O admits reflexive coequalizers, which are created by U . Now apply [Lin69, Corollary 2],

which in our case says that ModV
O has small colimits if it has reflexive coequalizers and (s)CollV,W (C) has small

coproducts. �
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4. The enveloping operad

The enveloping operad (see for example [BM09, Propositions 1.5], [BM03, Proposition 5.4]) turns a module
or algebra over an operad back into an operad. This is used to relate properties of operadic algebras to those of
operads, for example pushouts (Proposition 5.7) and transports along weak monoidal Quillen adjunctions (see
Theorem 8.10(ii) and its proof). We continue using the notation of §3.

Definition 4.1. The category Pairs consists of pairs (O,A), where O ∈ (s)OperW is a (symmetric) W -colored
operad in C and A ∈ (s)CollW is an O-module, and a morphism of pairs (O,A) → (P,B) is a morphism
f : O → P of operads together with a morphism g : A → f∗B of O-modules, where f∗ is the restriction functor
from P -modules to O-modules.

Lemma 4.2. There are adjunctions

(s)CollW

1[1]×id

⇄
U

Pairs
Env

⇄
id×U

(s)OperW(4.3)

The functor id × U sends an operad O to (O,U(O)), where U(O) is regarded as an O-module in the obvious
way. The functor 1[1]× id sends X to (1[1], X), where 1[1] is the initial operad. The functor U at the left sends
(O,M) to U(M), i.e., it forgets the O-module structure on M . The functor Env is called the enveloping operad.
It satisfies Env(1[1], X) = Free(X), where Free : (s)CollW ⇄ (s)OperW : U is the free-forgetful adjunction.

Proof. The left adjunction holds since

Pairs((1[1], X), (O,M)) = (s)CollW (X, η∗M) = (s)CollW (X,U(M)).

Here η : 1[1]→ O is the unit of O, which is the unique morphism of operads 1[1]→ O. The right adjunction is a
special case of Theorem 3.8(v) since Pairs are algebras over an operad similar to the operad of operads (§9.4).
The last statement follows from the two adjunctions. �

Proposition 4.4. Fix a (symmetric) operad O and consider the functor Env(O,−) : ModO → (s)OperW . (We
also apply this functor to O-algebras.)

(i) The enveloping monoid of the initial O-algebra is given by Env(O,O ◦ ∅) = O.
(ii) The enveloping operad functor Env(O,−) preserves connected colimits of O-algebras, in particular transfi-

nite compositions.
(iii) Given a map x : X → X ′ in (s)CollW , an O-module A, and a map X → U(A) in (s)CollW , we form the

pushout square in ModO,

O ◦X

O◦x
��

f
// A

a

��

O ◦X ′ // A′.

(4.5)

Then the following diagram is cocartesian in (s)OperW , where the top horizontal map is Free(X)
4.2
=

Env(1[1], X)
Env(η,f)
−−−−−−−→Env(O,A):

Free(X) //

Free(x)

��

Free(U(A))

Free(u)

��

counit // Env(O,A)

��

Free(X ′) // Free(U(A) ⊔X X ′) // Env(O,A′).

(4.6)

(iv) For any A ∈ AlgO, there is an equivalence of categories with the undercategory of A in AlgO:

AlgEnv(O,A) = A ↓ AlgO.

In particular Env(O,A)0 = A.

Proof. (i): For any operad T , we have by adjunction

(s)OperW (Env(O,O ⊗ ∅), T ) = {(f ∈ (s)Oper(O, T ), g : O ◦ ∅ → f∗U(T ) ∈ AlgO)}.

As O ◦ ∅ is initial in AlgO, g is unique, so that this Hom-set is isomorphic to (s)OperW (O, T ). Hence our claim.
(ii): For a connected index category I, O is the colimit of the constant diagram i 7→ O. Therefore,

(O, colimAi) = colim(O,Ai).

Now apply the cocontinuity of the enveloping operad functor Pairs→ (s)Oper.
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(iii): By Lemma 4.2, the diagram (4.6) is obtained by applying Env to the following diagram of pairs, which
is easily seen to be cocartesian. We conclude using that Env preserves all colimits, in particular pushouts.

(1[1], X)
(1[1],f)

//

(1[1],x)

��

(1[1], U(A))

��

(η,id)
// (O,A)

��

(1[1], X ′) // (1[1], U(A) ⊔X X ′)) // (O,A′ = A ⊔O◦X O ◦X ′).

(iv): Since the monoidal product in (s)CollWC is right closed, an Env(O,A)-module structure on some
X ∈ (s)CollW is the same as a morphism of operads Env(O,A) → End(X), where End(X) := Hom(X,X) ∈
(s)OperW is the endomorphism operad. The adjunction (4.3) tells us that morphisms Env(O,A) → End(X)
correspond to morphisms of pairs (O,A) → (End(X), U(End(X))). This is the same as an O-module structure
on X and a map A→ End(X) of O-modules, where End(X) is regarded as an O-module via the chosen O-module
structure on X . Giving A → End(X) is the same as A = A ◦ X → X . The last equality uses that A is an
algebra, i.e., concentrated in degree 0.

The second claim holds since Env(O,A)0 = Env(O,A) ◦ ∅ is the initial Env(O,A)-module, which by the
previous step is A. �

5. Admissibility of operads

The following definition of admissibility of operads is standard, see, e.g., [BM09, §2]. Strong admissibility
does not seem to have been studied before as an independent notion. See [Man01, Lemma 13.6], [Shi04, Propo-
sition 4.1], and [HH13, Proposition 5.17] for strong admissibility statements for operads in chain complexes,
simplicial symmetric spectra, and arbitrary model categories, though.

Definition 5.1. A W -colored (symmetric) operad O in a symmetric monoidal model category C is admissible if
the product model structure on CW transfers to AlgO via the forgetful functor

CW ← AlgO : U,

i.e., if the classes WAlgO
= U−1(WCW ) of weak equivalences and FAlgO

= U−1(FCW ) of fibrations define a model
category structure on AlgO. Moreover, O is strongly admissible if it is admissible and if in addition U preserves
cofibrations with cofibrant source, i.e., for a cofibration a : A→ A′ of O-algebras, U(a) is a cofibration and U(A)
is cofibrant in CW .

The admissibility of symmetric operads is a central problem in homotopical algebra. It was addressed by Berger
and Moerdijk [BM03, Theorem 3.2] using the path object argument. Their theorem requires the existence of
a symmetric monoidal fibrant replacement functor and the monoidal unit to be cofibrant. A well-known result
due to Lewis [Lew91, Theorem 1.1] precludes the existence of such data for a stable monoidal model category
of spectra. The conditions of their theorem were weakened by Kro [Kro07, Corollary 2.7], whose version does
not require the monoidal unit to be cofibrant. Previously, Spitzweck had shown the existence of a semi-model
structure for operads whose underlying symmetric sequence is projectively cofibrant (which roughly means that
Σn acts freely on On) [Spi01, Theorem 4.7]. This covers the Barratt-Eccles operad, for example, which satisfies
On = EΣn, but excludes, say, the commutative operad Comm which is given by Commn = 1, the monoidal unit.
This is one of the most important examples of a symmetric operad, since its algebras are commutative monoid
objects.

The admissibility of Comm, i.e., the model structure on commutative monoid objects in C, was established by
Harper [Har09, Proposition 4.20] and Lurie [Lur, Proposition 4.5.4.6] if C is freely powered. Their proofs actually
only use the weaker condition that the map f�n

Σn
is an acyclic cofibration whenever f is. This property was later

called the commutative monoid axiom by White, who also suggested a weakening similar to the one discussed in
Remark 5.12 [Whi14, Theorem 3.2, Remark 3.3].

The admissibility of arbitrary operads was also shown by Harper under the hypothesis that all objects in
ΣnC are projectively cofibrant. Again this is much stronger than being symmetric h-monoidal (see [PS15, Re-
mark 4.2.10, §7]). Subsequently to the present paper, White and Yau reproduced the admissibility of arbitrary
operads under the condition that X ⊗Σn

f�n is an (acyclic) cofibration when f is [WY15, Theorem 6.1.1]. This
is a stronger assumption than symmetric h-monoidality, and is inapplicable to various flavors of spectra (e.g.,
symmetric, orthogonal, etc.) and other constructions used in stable homotopy theory, e.g., L-spaces.

For nonsymmetric operads, the situation is quite a bit simpler, since no modding out by Σn occurs in the
definition of the circle product on nonsymmetric sequences. Muro has shown the admissibility of all nonsymmetric
operads under assumptions on C [Mur11, Theorem 1.2], [Mur15], which by [PS15, Lemma 3.2.6] are very closely
related to the nonsymmetric part of Theorem 5.10 below. See Remark 5.12.

A technical key part in all proofs below is the analysis of pushouts of free O-algebra maps and free operad
maps. We will start with pushouts of operads and then deduce the pushouts of algebras from this. The following
description of pushouts of free (symmetric) operads is due to Spitzweck [Spi01, Proposition 3.5] and, in the
slightly different formulation given below, to Berger and Moerdijk [BM09, Lemma 3.1], [BM03, §5.11].
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The description of such pushouts is based on the groupoid (s)TreeW of W -colored (symmetric) marked trees.
These are finite planar trees whose edges are labeled with colors w ∈ W . The root vertex has a half-open (i.e.,
having only one boundary vertex) outgoing edge without called the root edge. It also has a (finite) number of
vertices having half-open ingoing edges called the input edges. Any edge that is not a root edge nor an input
edge is called an internal edge. Their boundary consists of two vertices. Moreover, a (finite) number of vertices
of the tree is marked, the others are not marked. The markings is required to be such that every internal edge
has at least one marked vertex at its boundary. Automorphisms of symmetric trees are isomorphisms of trees
which don’t respect the planar structure, but do respect the markings, the colors of the edges and send input
edges to input edges. Automorphisms of nonsymmetric trees are only identity morphisms. For a vertex r in a
tree, the valency val(r) ∈ (s)SeqW is given by (s, w), where the multisource s : I → W is given by the set I of
the incoming edges of r, ordered according to the planar structure (which is only needed to make this notion
unambiguous) and their corresponding colors, and target w given by the color of the outgoing edge. In a similar
vein, the valency val(T ) of the tree is given by the colors of the input edges and the root edge. The subgroupoid

of trees with k marked vertices and valency (s, w) ∈ (s)SeqW is denoted (s)Tree(k)s,w.

Using the notation of Proposition 5.2, the intuitive meaning of these notions is that a tree T with valency (s, w)
stands for an operation in O′ with inputs given by the multi-source s and target w. Such operations are nested
applications of the more elementary operations given by vertices. If T contains no marked vertices, i.e., k = 0,
then T is just a corolla consisting of a root edge and finitely many input edges, corresponding to the operations
that are present in O. More generally, for k ≥ 0, k operations coming from Free(X) have been identified by their
image in Free(X ′).

Proposition 5.2. (Spitzweck, Berger–Moerdijk) Let C be a symmetric monoidal model category. For any map
x : X → X ′ in (s)CollW and any pushout diagram in (s)OperW ,

Free(X)

Free(x)

��

// O

o

��

Free(X ′) // O′

(5.3)

the map U(o)s,w ∈ ΣsC is the transfinite composition of maps O
(k)
s,w → O

(k+1)
s,w , for k ≥ 0, which arise as the

following pushouts in ΣsC:
∐

T Σs ·AutT x∗(T ) //

∐
T
Σs·AutT ǫ(T )

��

O
(k)
s,w

��
∐

T Σs ·AutT x(T ) // O
(k+1)
s,w .

(5.4)

The coproducts run over all isomorphism classes of (s)Tree(k)s,w as defined above. For such a tree T , the map

ǫ(T ) : x∗(T )→ x(T ) is inductively defined as

ǫ(T ) := ǫ(r(T ))��
i

ǫ(Ti)
�ti

︸ ︷︷ ︸

=:ǫ′(T )

,

where ǫ(r(T )) ∈ Σval(r(T ))C is defined as

ǫ(r(T )) :=

{
xval(r(T )), if r(T ) is marked;
(ηO)val(r(T )), if r(T ) is not marked.

(5.5)

where ηO : 1[1] → U(O) is the unit map of O and val(r(T )) is the valency of the root r(T ) of T . Isomorphic
subtrees (with markings, colors, and input edges induced from T ) of the root are grouped together and denoted by

Ti, 1 ≤ i ≤ k. The number of subtrees isomorphic to Ti is denoted ti, so that
∑k

i=1 ti equals the cardinality of
the multisource of r(T ). The group

Aut(T ) =

k∏

i=1

Aut(Ti)
ti
⋊

k∏

i=1

Σti

acts on ǫ(r(T )) via the quotient
∏

Σti and in the natural way on ǫ′(T ) ∈ (
∏

Aut(Ti)
ti)C.

Proof. This is exactly the statement of Berger and Moerdijk cited above, if we replace ǫ(T ) by ǫu(T ), which
is defined as above, except that ǫ(r(T )) := uval(r(T )) if the vertex r(T ) is marked, where u : U(O) → U(O) ⊔X
X ′ is the pushout of x. We conclude using the pushout square Σs ·AutT ǫ(T ) → Σs ·AutT ǫu(T ) and [PS15,
Proposition 3.1.6]. �
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Proposition 5.2 has the following model-categorical consequence, which again is due to Spitzweck [Spi01,
Lemma 3.6] and, in the form below, to Berger-Moerdijk [BM03, Proposition 5.1]. We will show in Lemma 6.1(i)
that U(ηO) is a cofibration for any cofibrant operad O, so the corollary is applicable to such pushouts. This will
be important in the study of strong admissibility. Recall that (s)CollW (C) is equipped with the projective model
structure. Unless the contrary is explicitly stated, all cofibrations in categories of the form GC, for a finite group
G, are understood as projective cofibrations. (The distinction between injective and projective model structures
only matters in the symmetric case, for the category of nonsymmetric collections CollW (C) is just a product of
copies of C.)

Corollary 5.6. In the situation of Proposition 5.2, suppose that U(ηO) is a cofibration in (s)CollW . Also
suppose that x is a cofibration in (s)CollW . Then the vertical maps in (5.4) are cofibrations in ΣsC. Therefore,
U(o) is also a cofibration in (s)CollW .

The following description of pushouts of free O-algebras is due to Fresse [Fre09, Proposition 18.2.11], Elmendorf
and Mandell [EM06, §12], Harper [Har09, Proposition 7.12].

Proposition 5.7. Let C be a symmetric monoidal model category and O a (symmetric) operad. Let

O ◦X

O◦x
��

// A

a

��

O ◦X ′ // A′

(5.8)

be a pushout diagram of O-algebras, where x : X → X ′ is a map in CW . For any color w ∈W , the map U(a)w ∈ C
lies in the weak saturation of morphisms of the form

Env(O,A)s,w ⊗Σs �
r∈W

x�s−1(r)
r , s : I →W ∈ (s)Seq

×
W , I 6= ∅.(5.9)

(The pushout product is finite, since I is a finite set.) For example, if W consists of a single color and we
consider symmetric operads, U(a) lies in

cof({Env(O,A)n ⊗Σn
x�n, n ≥ 1}).

Proof. By Proposition 4.4(iv), the map U(a)w is the level (∅, w) of Env(O,A) → Env(O,A′) which by the
pushout diagram (4.6) and the description of pushouts in Proposition 5.2 is a transfinite composition of pushouts
of the maps (5.4) (where the O there is now Env(O,A)). The map x is concentrated in degree 0, so the only
trees T such that the map ǫ(T ) defined in (5.5) is not an isomorphism are the trees (with valence (∅, w)) whose
marked vertices have valency 0, i.e., are stumps. Since any internal edge has at least one marked vertex, the
only such trees T are corollas whose root is not marked and has valence (t : I → W,w) and whose leaves are
marked. We get ǫ(T ) = Env(O,A)t,w ⊗�i∈I xt(i and Aut(T ) = Σt. Hence the left hand vertical map in (5.4)
agrees with (5.9). �

The next result identifies (symmetric) h-monoidality as the key condition for admissibility of all (symmetric)
operads. We emphasize that symmetric h-monoidality requirement is stable under weak saturation, transfer of
model structures and left Bousfield localization (see [PS15, Theorem 4.3.9, Theorem 5.2.6 and Theorem 6.2.2]
for the precise statements). Basic examples of symmetric h-monoidal model categories include simplicial sets,
simplicial presheaves, topological spaces, chain complexes of rational vector spaces, and symmetric spectra. See
[PS15, §7]. Chain complexes of abelian groups are not symmetric h-monoidal and, in fact, the commutative
operad is provably not admissible in chain complexes of abelian groups. Recall the definitions of the terms below
from Definition 2.1.

Theorem 5.10. Suppose C is a symmetric monoidal model category and W is a set. Furthermore, suppose that
either (a) C is combinatorial and weak equivalences are closed under transfinite compositions or (b) C is strongly
admissibly generated and quasi-tractable. If C is (symmetric) h-monoidal (the acyclic part is sufficient), then
any W -colored (symmetric) operad O in C is admissible.

Proof. We apply [Hir03, Theorem 11.3.2] to the adjunction O ◦ − : CW ⇄ AlgO : U . By Theorem 3.8, U
preserves sifted colimits and AlgO is complete and cocomplete.

We now show that transfinite compositions of the images under U of cobase changes of elements in F (J)
are weak equivalences in CW . Consider a cocartesian diagram of O-algebras as in (5.8), where x : X → X ′ is
generating acyclic cofibration in CW which is also an acyclic (symmetric) h-cofibration. By Proposition 5.7, the
morphism U(a) is the (countable) transfinite composition of cobase changes of morphisms

Env(O,A)s,w ⊗Σs �
r∈W

x�s−1(r)
r , s : I →W ∈ (s)Seq

×
W .(5.11)

Here Env is the enveloping operad (Lemma 4.2) and Σs is the group of automorphisms of the multi-source s,
which is trivial for nonsymmetric operads, and as in (3.2) for symmetric operads. Each of the above morphisms is
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a couniversal weak equivalence or, equivalently [BB13, Lemmas 1.6 and 1.8], an acyclic h-cofibration since x is an
acyclic (symmetric) h-cofibration, i.e., each xr is one. Their transfinite composition is again a couniversal weak
equivalence: in case (a) by [PS15, Lemma 2.0.6(iii)] and in case (b) since the above weak equivalences lie in the
class (2.2), whose transfinite composition is again a weak equivalence as discussed in [PS15, Proposition 7.5.2].

We finally show that F (I) and F (J) permit the small object argument [Hir03, Definition 10.5.15]. If C is
combinatorial, this is tautological since all objects are small. Suppose now that C is admissibly generated and
quasi-tractable. By Definition 2.1, all cofibrant objects, in particular the (co)domains of I are small relative to
cell(−) applied to the maps in (5.11) where x is a cofibration. Therefore, they are small relative to U(cell(O◦I)).
By adjunction, the (co)domains of O ◦ I are therefore small relative to cell(O ◦ I). Again using the quasi-
tractability, the same argument shows that O◦J is small relative to cell(O◦I), a fortiori relative to cell(O◦J). �

Remark 5.12. The proof also shows the following statement: suppose C is a symmetric monoidal category, C′

is a combinatorial (more generally, admissibly generated) and such that C′ is a commutative C-algebra. Finally
suppose that for a finite family of generating cofibrations xr1 , . . . , xrk in C′, and n1, . . . , nk ≥ 1, any object

E ∈ (
∏k

j=1 Σnj
)C, the map

E ⊗∏
j
Σnj �

j

x�nj
rj

(5.13)

lies in a class whose saturation under transfinite composition and pushouts consists of weak equivalences (in C′).
Then any W -colored symmetric operad O in C is admissible, i.e., the O-algebras in C′ carry a transferred model
structure. Since the differences are purely grammatical, we omit the proof of this assertion.

The same statement holds for nonsymmetric operads after dropping
∏

Σnj
in (5.13). If, in addition, the

monoidal product of C′ turns C′ into a monoidal model category it can be further simplified to requiring the
above condition only for the maps E ⊗ x, where E ∈ C and x ∈ C′ is a generating acyclic cofibration. This is
exactly the monoid axiom [SS00, Definition 3.3], so the above proof reproduces the one of Muro’s aforementioned
admissibility result of nonsymmetric operads [Mur11, Theorem 1.2], [Mur15].

In particular, the nonacyclic part of (symmetric) h-monoidality is not necessary for the admissibility statement.
We mention the nonacyclic part in the definition of (symmetric) h-monoidality, since the combination of the
acyclic and the nonacyclic part of (symmetric) h-monoidality is easier to localize. Also, for concrete model
categories, it is usually easier to establish both properties simultaneously. For the same reason, we have separated
the saturation with respect to transfinite compositions and the one with respect to pushouts (governed by
(symmetric) h-monoidality). See [PS15, Theorem 6.2.2(ii), §7] and the remarks at the end of §2.

6. Strong admissibility of operads

In addition to the admissibility of operads it is in practice desirable to know when the forgetful functor

CW ← AlgO : U

preserves cofibrant objects or even cofibrations with cofibrant source, i.e., when O is strongly admissible. We
present two results in this direction: Proposition 6.2 is a result for levelwise projectively cofibrant operads. It
works in any symmetric monoidal model category. Theorem 6.6 is a much more flexible criterion for levelwise
injectively cofibrant operads. Here, the additional key condition is the symmetroidality of C.

The following preparatory lemma captures the preservation of cofibrant objects under various forgetful func-
tors. We don’t claim originality for this lemma, for example Part (ii) is similar to [BM09, Proposition 2.3].

Lemma 6.1. With C and W as before, the following claims hold:

(i) Let f : O → O′ be a cofibration in (s)OperW such that U(ηO) is a cofibration in (s)CollW . Then U(f) is
a cofibration in (s)CollW . In particular:
(1) For any cofibrant operad O, the unit map U(ηO) : 1[1]→ U(O) is a cofibration in (s)CollW . In other

words, the levels Os,w are cofibrant in Σpro
s C for all s : I →W if ♯I 6= 1 or if ♯I = 1 and s(∗) 6= w and

the unit map 1→ Ow,w is a cofibration in C for all w ∈W .
(2) The forgetful functor U sends cofibrations with cofibrant source to cofibrations.
(3) If the unit 1 ∈ C is cofibrant, U also preserves cofibrant objects, i.e., the underlying (symmetric)

sequence U(O) ∈ (s)CollW of any cofibrant operad O is cofibrant.
(ii) For any (symmetric) operad O, the functor AlgO → (s)OperW , A 7→ Env(O,A) preserves cofibrations.

For example, O → Env(O,A) is a cofibration for any cofibrant O-algebra A.

Proof. (i): The map f is a retract of a transfinite composition of pushouts of maps Free(x) as in (5.3), where x

is a cofibration in (s)CollW and, by assumption and cellular induction, O is such that U(ηO) is a cofibration.
The functor U commutes with retracts and transfinite compositions. Cofibrations (in (s)CollW ) are stable
under these two types of saturation. Therefore the statement follows from Corollary 5.6, using that U(ηO) is a
cofibration.
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The remaining statements are special cases: (i1) follows by applying the general statement to ηO : 1[1]→ O.
(i2) follows by combining the general statement and (i1). Finally, (i3) holds since 1[1] is the initial operad, whose
underlying symmetric sequence is cofibrant in (s)CollW if and only if 1 is cofibrant in C.

(ii): The claim about Env(O,−) follows from Proposition 4.4: if a is a pushout of a free O-algebra map
O ◦ x on a cofibration x ∈ (s)CollW as in (5.8), the map Env(O, a) : Env(O,A)→ Env(O,A′) is the pushout of
Free(x), which is a cofibration (in (s)OperW ). For a transfinite composition of cofibrations of O-algebras, we
use that both U and Env(O,−) preserve filtered colimits. By Proposition 4.4(i), the last statement is the special
case a : O0 = O ◦ ∅ → A. �

The following result guarantees strong admissibility for those operads whose levels are projectively cofibrant
(except for unit degrees, in which case the map from the monoidal unit to the level is required to be a cofibration).
The condition that U(ηO) be a cofibration has previously been referred to as well-pointedness or Σ-cofibrancy of
O [BM03, BM09]. By [Spi01, Theorem 4], any cofibrant operad O is admissible if C satisfies the monoid axiom,
so it is strongly admissible in this case by the result below.

Proposition 6.2. Suppose C is a symmetric monoidal model category. Any admissible (symmetric) operad
O ∈ (s)OperW (C) such that U(ηO) is a cofibration in (s)CollW (C) is strongly admissible. For example, any
admissible cofibrant operad is strongly admissible.

Proof. Suppose A is a cofibrant O-algebra, i.e., a : O0 = O ◦ ∅ → A is a cofibration in AlgO. The level 0 of the
cofibration U(ηEnv(O,A)) is, by Proposition 4.4(iv), ∅ → U(A). In other words U(A) is cofibrant in CW . �

The next theorem is a supplementary condition for strong admissibility of arbitrary symmetric operads. Recall
from [PS15, §7] that rational chain complexes and symmetric spectra (with an appropriate stable positive model
structure) are symmetroidal. The latter statement also shows that under very mild conditions, any monoidal
model category is Quillen equivalent to a symmetroidal model category. Moreover, symmetroidality is stable
under Bousfield localization and transfer, see [PS15, Theorem 5.2.6 and Theorem 6.2.2] for the precise statements.
These results turn Theorem 6.6 into a powerful tool ensuring strong admissibility of operads.

The following lemma is the key stepstone for strong admissibility. In order to keep the exposition brief, we
will again speak of “(symmetric) operads” in a symmetric monoidal category to simultaneously cover the case
of symmetric and of nonsymmetric operads. Note that in the latter case all the groups Σs and AutT appearing
below are trivial by definition.

Lemma 6.3. Let C be a symmetric monoidal model category. Let O be a (symmetric) W -colored operad and A

any cofibrant O-algebra. For any (s : I →W,w) ∈ (s)SeqW , the levels of the unit map

(ηEnv(O,A))s,w : 1[1]s,w → Env(O,A)s,w

in ΣsC are contained in cof((YO)s), where (YO)s is the smallest class of morphisms in ΣsC that contains all
isomorphisms, the generating cofibrations of C (for ♯I = 0 only), and finally contains

(ηO)s⊔t,w �Σt
x�t := (ηO)s⊔t,w �Σt�

r

x�nr
r(6.4) .

Here t : J → W is any multi-source and the multi-index n is given by nr = ♯t−1(r) for r ∈ W , and x = (xr)
is a finite family of generating cofibrations in C. (We use the convention that only the finitely many terms with
nr 6= 0 appear, unless J = ∅, in which case we interpret the above expression as (ηO)s,w.)

In particular, for any cofibrant O-algebra A, the map ∅ → U(A) ∈ CW is contained in

cof(CC ∪ {(ηO)t,w �Σt
x�t, (t, w) ∈ (s)SeqW }).

Proof. We prove this by cellular induction on A, using the properties of the enveloping operad established in
Proposition 4.4. We will write ϕ : GC → C for any functor that forgets the action of some finite group G, for
example G = Σs. For A = O ◦ ∅ = O0, O = Env(O,O0) is an isomorphism, so the claim is clear by assumption
For a pushout of O-algebras as in (5.8) where A is cofibrant and x is a cofibration, there is a pushout of operads

Free(X)

Free(x)

��

// Env(O,A)

o

��

Free(X ′) // Env(O,A′).

(6.5)

We now use Proposition 5.2, including the notation. We need to show

Σs ·AutT ǫ(T ) ∈ (YO)s.

By induction on the tree T , one sees that

ϕ(ǫ(T )) =�
r∈T

ϕ(ǫ(r)),
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where the pushout product runs over all vertices r of T . Recall that f � g is an isomorphism for all maps g

whenever f is an isomorphism. Hence, it is enough to prove our claim for those trees T such that none of the
ǫ(r)’s is an isomorphism.

If a vertex r ∈ T is marked, then ǫ(r) = uval(r), where u : U(Env(O,A))→ U(Env(O,A))⊔X X ′ is the pushout
of x along the map X → U(Env(O,A)) adjoint to the top horizontal map in (6.5). If r is marked and has positive
valency, i.e., (s, w) := val(r) with a multisource s : I → W of arity ♯I > 0, then us,w, which is a pushout of
xs,w = id∅, is an isomorphism. Thus we may assume that the marked vertices have valency 0, i.e., no incoming
edges. On the other hand, by definition of marked trees, any edge contains at most one nonmarked vertex.
Therefore, the only trees we need to consider are:

(1) The tree denoted w+ consisting of a single marked vertex with no incoming edge and the outgoing root
edge colored by w.

(2) The trees denoted w−t+
s consisting of a single nonmarked vertex which has a root edge of color w, some

noninput edges whose other end is marked, and some input edges. The valency of the input edges is
denoted s, the one of the noninput edges t.

Here is a picture of w+ and of w−t+
s . The different dashing styles indicate different colors, the two rightmost

lower arrows are input edges, the top arrows are the root edges, •+ is a marked vertex, •− is not marked.

•+

OO

•−

OO

•+

66

•+

>>

•+

OO ^^❂
❂
❂
❂
❂

ff▼
▼
▼
▼
▼
▼
▼

For T = w+, we have Σs = AutT = 1 and ǫ(T ) = xw, which is in YO being a cofibration. For T = w−t+
s , we

have Aut(T ) = Σs×Σt, where Σs and Σt are defined in (3.2). In the example above, Σt = Σ2×Σ1 and Σs = Σ2.
We group the noninput edges of •− according to their color, say ni noninput edges of color ti. Then

Σs ·AutT ǫ(T ) = (ηEnv(O,A))s⊔t,w �
∏

Σni �
i

x�ni

ti
,

which is in YO by the inductive hypothesis. This finishes the pushout step.
The handling of retracts and transfinite compositions of cofibrant O-algebras is clear, noting that the functor

AlgO → (s)CollW , A 7→ U(Env(O,A)) preserves filtered colimits and retracts.
The claim concerning U(A) is the restriction of the statement about the levels of Env(O,A) to degree 0. �

Theorem 6.6. Suppose C is a symmetric monoidal model category and O is an admissible (symmetric) W -colored
operad in C.

In the nonsymmetric case, suppose that (ηO)s,w �− : Ar(C)→ Ar(C) preserves (acyclic) cofibrations.
In the symmetric case, suppose that C is symmetroidal (Definition 2.1) with respect to the class YO = ((YO)n)

consisting of

(YO)n :=
⋃

(s,w)

(YO)s,

where as above s is such that nr = ♯s−1(r) (for r ∈W ), w ∈W is arbitrary, and (YO)s is the class of morphisms
in ΣsC defined in Lemma 6.3.

Then O is strongly admissible.
For example, if C is symmetroidal (i.e., symmetroidal with respect to the injective cofibrations in ΣnC) and

the unit map U(ηO) : 1[1]→ U(O) is an injective cofibration (i.e., Os,w is cofibrant in C for all nonunit degrees
(s, w) and 1→ Ow,w is a cofibration in C), then O is strongly admissible.

Proof. It is enough to show that the maps in (5.9) are cofibrations in CW for any cofibrant O-algebra A and any
cofibration x in CW .

To show this in the symmetric case, by the symmetroidality condition on C and [PS15, Lemma 4.3.2], which
allows to weakly saturate the symmetroidality class, we have to show that the map

(ηEnv(O,A)s,w : 1[1]s,w =

{
1, unit degrees;
∅, nonunit degrees.

−−→Env(O,A)s,w

lies (levelwise) in (YO)s. For unit degrees (s, w) = (w,w), this guarantees that Env(O,A)w,w ⊗x is a cofibration
by Lemma 8.4(i). This is exactly the content of Lemma 6.3.

In the nonsymmetric case, the argument is similar, but considerably easier since Σs is trivial: if the pushout
product with (ηO)s,w preserves (acyclic) cofibrations, then so does the pushout product with the maps in (6.4)
and therefore also the pushout product with (ηEnv(O,A))s,w. Again, this implies that the maps in (5.9) are

cofibrations in CW .
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The last statement is a special case: let C be symmetroidal, i.e., symmetroidal with respect to Yn := cofibΣin
n C .

Then Yn ⊇ (YO)n: indeed, the maps in (6.4) are injective cofibrations by the symmetroidality of C. �

The following corollary illustrates how to transfer the strong admissibility of operads. Note that the sym-
metroidality of C does not imply the symmetroidality of D, i.e., the symmetroidality with respect to cofibΣin

n D,
but only the symmetroidality with respect to F (cofibΣin

n C). See [PS15, Theorem 5.2.6(iii) and Remark 5.2.7].

Corollary 6.7. Let F : C ⇆ D : G be a Quillen adjunction of symmetric monoidal model categories such that
the model structure on D is transferred from C and such that F is strong symmetric monoidal. Suppose C is
symmetroidal (only required in the symmetric case) and let O be a (symmetric) operad in C such that U(ηO) is
an injective cofibration in sCollW (C). Let P be the operad in D given by Ps,w = F (Os,w). We assume P is
admissible. Then P is strongly admissible.

Proof. The strong monoidality of F gives the strong monoidality of the left adjoint in the adjunction F :
((s)CollW (C), ◦) ⇄ ((s)CollW (D), ◦) : G. The resulting adjunction of monoids, i.e., W -colored operads (see also
(8.11) below)

F (s)Oper : (s)OperW (C) ⇄ (s)OperW (D) : G

is therefore such that UDF
(s)Oper = FUC , where U? : sCollW (?)→? are the forgetful functors. Therefore, P as

defined above, is indeed an operad.
As in the proof of Theorem 6.6, we have to show that D is YP -symmetroidal. The generating cofibrations y of

D are of the form y = F (x), x ∈ CC . The (levels of) U(ηP ) are of the form FU(ηO). Finally, using the notation
of (6.4),

F ((ηO)t,w �Σt �x�t) = (ηP )t,w �Σt� y�t

by the strong monoidality of F . Consequently, YP is contained in F (YO). By [PS15, Theorem 5.2.6(iii)], D is
F (YO)-symmetroidal, so we are done. �

7. Rectification of algebras over operads

In this section we use the model structures on modules and algebras over colored operads constructed in the
previous section to prove a general operadic rectification result. Rectification theorems address the following
question: given a weak equivalence P → Q of admissible (symmetric) operads, when are their model categories
of algebras Quillen equivalent?

An early rectification for symmetric operads is due to Hinich [Hin97] in the category Ch(ModR), where R

is a commutative ring containing Q. In a similar vein, Harper [Har10, Theorem 1.4] showed rectification under
the assumption that every symmetric sequence is projectively cofibrant. Lurie [Lur, Theorem 4.5.4.7] showed
rectification of E∞-algebras to commutative algebras (using the language of ∞-operads). All three results have
in common that the model category is required to be freely powered [Lur, Definition 4.5.4.2].

Another class of rectification results applies to symmetric spectra with values in some model category C. For
individual model categories, such as C = Top, C = sSet and motivic spaces, rectification is due to Elmendorf and
Mandell [EM06, Theorem 1.3], Harper [Har09, Theorem 1.4], and Hornbostel [Hor13], respectively. For spectra
in an abstract model category C, Gorchinskiy and Guletskĭı [GG11, Theorem 11] have shown an important
special case of symmetric flatness. We show in [PS14, Theorem 3.3.4] that the stable positive model structure
on symmetric spectra in (essentially) any model category C is symmetric flat and give several applications of this
fact.

For nonsymmetric operads, Muro [Mur11, Theorem 1.3] has shown a rectification result for a weak equivalence
between levelwise cofibrant operads, under similar assumptions to the ones of Theorem 7.5.

Our rectification result, Theorem 7.5, identifies (symmetric) flatness as a necessary and sufficient condition for
the rectification of algebras over (symmetric) colored operads. It extends the first group of the above-mentioned
results since being freely powered is a much stronger condition than being symmetric flat. It also covers the
second group of results since the assumptions of 7.5 are satisfied for C = Top etc., see [PS15, §7].

We finish this section with Theorem 7.10, a rectification result relating operadic algebras in the strict sense
and in the ∞-categorical sense introduced by Lurie.

Theorem 7.1. Assume that C is (symmetric) h-monoidal, symmetric monoidal model category which is (a)
strongly admissibly generated, or (b) whose weak equivalences are stable under filtered colimits. Let g be a weak
equivalence in (s)CollW .

(i) If g is (symmetric) flat in C (Definition 2.1), then g is pseudoflat on the (s)CollW -module CW , meaning
g � b is a weak equivalence for any cofibration with cofibrant domain b : X → Y in CW , where � denotes
the pushout product of morphisms in (s)CollW (C)).

(ii) If g ◦X is a weak equivalence for any cofibrant object X in CW , then g is (symmetric) flat in C, provided
that the coproduct functor reflects weak equivalences and that C is quasi-tractable.
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Proof. Recall the multiindex conventions explained in §2. By definition,

(g � b)w =
∐

s∈π0((s)Seq
×

W
)

gs,w �Σs

⊗

r∈W

b⊗s−1(r)
r

︸ ︷︷ ︸

=:λs

.(7.2)

(sic, not �r∈W b
�s−1(r)
r ). The coproduct is taken in the category Ar(C) of morphisms in C and runs over all

isomorphism classes in (s)Seq
×
W and Σs is the group of automorphisms of some representative of this isomorphism

class. Recall that Σs is trivial in the nonsymmetric case. In the symmetric case, an isomorphism class amounts
to specifying the number of occurrences of each color r ∈W , and Σs is as in (3.2).

We define a multiindex n by nr := ♯s−1(r) and set mk := Σn ·Σn−k×Σk
X⊗n−k⊗ b�k for 0 ≤ k ≤ n. By [PS15,

Lemma 4.3.6], applied to the composition ∅−→X
b
−→Y , the map b⊗n is the (finite) composition of pushouts of

the maps mk, where 1 ≤ k < n and mn (which is not pushed out). By [PS15, Proposition 3.1.6, Lemma 3.1.7],
λs is therefore the composition of pushouts of

gs,w �Σs
mk.(7.3)

(i): We claim that λs appearing in (7.2) is a weak equivalence with h-cofibrant (co)domains. Recall that an
h-cofibrant object X is such that ∅ → X is an h-cofibration. Weak equivalences with h-cofibrant (co)domains
are stable under finite coproducts [BB13, Lemma 1.4(a)]. Presenting (7.2) as the filtered colimit over all finite
subsets of the indexing set and using the assumption (b), the claim implies (i). For assumption (a), we use that
the transition maps in the filtered diagram are cobase changes of morphisms of the form ∅ → λs, which in their
own turn can be presented as a composition of maps of the form (2.2).

To show the claim, we focus on the symmetric case and briefly explain the simpler argument in the nonsym-
metric case. By [PS15, Lemma 3.2.7] (more precisely, replace � by �Σs

there), for λs to be a weak equivalence it
is enough to show that the maps in (7.3) are weak equivalences and that (co)dom(gs,w)⊗Σs

mk is an h-cofibration.
The former holds by symmetric flatness, the latter holds by symmetric h-monoidality, using in both cases the
cofibrancy of the (co)domains of br.

We now show that (co)dom(λs) is an h-cofibrant object. Writing gs,w : A→ B, this is clear for codom(λs) =
B ⊗Σs

Y ⊗n which is h-cofibrant by symmetric h-monoidality, using the cofibrancy of Yr. For the domain of λs

we first observe that B ⊗Σs
X⊗n is h-cofibrant. The map from this object to dom(λs) is a cobase change of the

map A⊗Σs
b⊗n. Again using the above filtration, this map is a composition of pushouts of the maps A⊗Σs

mk,
which are h-cofibrations by symmetric h-monoidality, using the cofibrancy of X . Since h-cofibrations are stable
under pushout and composition [BB13, Lemma 1.3], this shows the claim.

(ii): First, observe that g� b is a weak equivalence for any cofibration with cofibrant source b : X → Y in CW .
Indeed, it suffices to show that A ◦ b is an h-cofibration, where A = dom(g), which follows from symmetric
h-monoidality and stability of h-cofibrations under colimits of chains [PS15, Lemma 2.0.6(iii)]. Indeed, in this
case the pushout of A ◦ b along g ◦ X is a homotopy pushout since C is left proper, so that g � b is a weak
equivalence by the 2-out-of-3 axiom. The coproduct in (7.2) is a weak equivalence, hence so are the λs because
the coproduct functor reflects weak equivalences. Now we use the filtration (7.3) and show by induction on n

that the map gs,w �Σm×Σs
(X⊗m ⊗ b�n) in the definition of symmetric flatness is a weak equivalence for any

cofibration b with cofibrant source X and any m ≥ 0. The case m = 0 then gives the symmetric flatness of g
relative to b.

The case n = 0 is true by assumption (recall that X is assumed to be cofibrant). For n 6= 0 consider the
filtration (7.3) (tensored with X⊗m) of the map gs,w �Σm×Σs

X⊗m ⊗ b⊗n, which is a weak equivalence by
assumption (extended to morphisms as explained in the previous paragraph). For k 6= n the term gs,w �Σm×Σs

X⊗m ⊗mk = gs,w �Σm×Σn−k×Σk
X⊗m+(n−k) ⊗ b⊗k is a weak equivalence by the inductive assumption, and the

argument in the previous part shows that its cobase change is a weak equivalence. Thus the remaining map in
the filtration, gs,w �Σm×Σs

X⊗m ⊗ b�n (we set k = n), is also a weak equivalence, as desired.
We have established the symmetric flatness property for the class of cofibrations with cofibrant source. Qu-

asitractability and the weak saturation property for symmetric flatness [PS15, Theorem 4.3.9(ii)] imply the full
symmetric flatness property. �

Remark 7.4. In the situation of Theorem 7.1, similar arguments show that for any weak equivalence f in
sCollW (C) and any cofibrant object B ∈ sCollW (C), f ◦B is a weak equivalence. For simplicity of notation, we
only consider the uncolored case: then B =

∐

n≥0 Gn(An), where Gn places An in degree n. Using the fact that

◦ preserves filtered colimits in its second variable and the stability of weak equivalences in C, hence sCollW (C),
under filtered colimits, we may assume that B is concentrated in finitely many degrees.

So let B =
∐k

i=1 Gni
(Ai) (finite coproduct), where Ai ∈ Σni

C is a projectively cofibrant object. The standard
formula for multinomial coefficients takes the following form, where Ai ∈ Σni

C, i = 1, . . . , k, k ≥ 0.

Gm(f) ◦

(
∐

i

Gni
(Ai)

)

=
∐

Gnm

(
Σnm ·Σm⋊Σm

n
f ⊗A⊗m

)
.
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The coproduct runs over all partitions m =
∑k

i=1 mi. The multi-index (m1, . . . ,mk) will also be denoted by m

and likewise for n. In line with the notation in §2, we write mn =
∑

mini, and Σm
n :=

∏
Σ×mi

ni
. The notation

mn, Σm and Σm
n is understood as in [PS15, Definition 4.2.1]. Moreover, A⊗m stands for

⊗

i A
⊗mi

i . By [PS15,
Lemma 4.1.2], there is an isomorphism of objects in C (i.e., disregarding the action of Σnm),

Σnm ·Σm⋊Σm
n
f ⊗A⊗m ∼=

(

f ⊗Σm′ A
⊗m′

)

⊗

(
Σnm′′

∏
Σm′′ ⋊ Σm′′

n

· A⊗m′′

)

.

Here m′ is the subindex of m consisting of those indices mi where ni = 0 and m′′ are the remaining ones.
Similarly as above Σnm′′ :=

∏
Σnjm′′

j
etc. The right factor involving the Aj is cofibrant in C by the pushout

product axiom. The left factor is a weak equivalence by the symmetric flatness of C. Our claim now follows from
the (nonsymmetric) flatness.

The following theorem addresses the question of Quillen invariance [SS03, Definition 3.11], also referred to
as rectification, rigidification, or strictification, i.e., when a weak equivalence of (admissible) operads induces a
Quillen equivalence of algebras.

Theorem 7.5. Suppose C is a quasi-tractable symmetric monoidal model category such that (a) weak equivalences
are stable under filtered colimits or (b) C is strongly admissibly generated. Given a weak equivalence f : O → P

of admissible (symmetric) W -colored operads in C, the induced Quillen adjunction

f∗ : AlgO ⇄ AlgP : f∗

of the corresponding categories of algebras is a Quillen equivalence if and only if f ◦A is a weak equivalence for any
cofibrant object A in CW . This condition is satisfied if C is (symmetric) flat with respect to f and (symmetric) h-
monoidal (Theorem 7.1). If the coproduct functor reflects weak equivalences (e.g., the model category is pointed,
or we work with simplicial sets or topological spaces), then the opposite is true: if the above adjunction is a
Quillen equivalence, then C is symmetric flat with respect to f .

Proof. The adjunction exists by Theorem 3.8(v). It is a Quillen adjunction since f∗ preserves (acyclic) fibrations.

By [Hir03, Definition 8.5.20] we have to show that a morphism f∗A
a
−→B is a weak equivalence if and only if its

adjoint, i.e., the composition A
η
−→ f∗f∗A

f∗a
−−−→ f∗B, is a weak equivalence for any cofibrant object A in AlgO

and any fibrant object B in AlgP . The functor f∗ preserves weak equivalences because both model structures
are transferred from CW , thus it remains to prove that η is a weak equivalence or, equivalently, that the canonical
morphism U(A)→ U(f∗A) is a weak equivalence in CW .

As usual, we perform a cofibration induction for A. Cofibrant objects in AlgO are retracts of cellular objects
and the latter are obtained as codomains of transfinite compositions of cobase changes of generating cofibrations,
starting with the initial O-algebra.

Given a transfinite composition S = colimSi in AlgO, the map U(S) → U(f∗S) is a weak equivalence if all
maps U(Si) → U(f∗Si) are weak equivalences because U creates filtered colimits and weak equivalences in CW

are stable under filtered colimits by assumption (a). In case (b), we additionally use that the transition maps
U(Si)→ U(Si+1) and similarly with f∗Si are transfinite compositions of cobase changes of maps of the form in
(2.2), as witnessed by the filtration (5.9).

To prove the induction step, we consider a cocartesian square of O-algebras as in (5.8) where X → X ′ is a
cofibration between cofibrant (by quasitractability) objects in CW . The vertical maps in (5.8) are cofibrations
in AlgO. Applying the left Quillen functor f∗ to this square gives a cocartesian square of P -algebras whose
vertical maps are again cofibrations and all three objects are cofibrant. Thus both cocartesian squares are also
homotopy cocartesian [Lur09, Proposition A.2.4.4]. Furthermore, applying the functor U we obtain a natural
transformation between the images of these squares, whose component U(A) → U(f∗A) is a weak equivalence
by induction and the other two components are the maps O ◦X → P ◦X and O ◦X ′ → P ◦X ′, which are weak
equivalences by assumption. Hence the three components of the original natural transformation are also weak
equivalences because U creates weak equivalences. Thus the map A′ → f∗(A

′) is also a weak equivalence because
homotopy pushouts preserve weak equivalences.

Finally, the flatness condition is necessary because the map f ◦A is the map U(X)→ U(f∗X) for the cofibrant
object X = O ◦A. The latter map is the underlying map of the (derived) unit map of X , which must be a weak
equivalence for any Quillen equivalence. �

Remark 7.6. Theorem 7.5 is also true for modules (as opposed to algebras) over weakly equivalent operads. This
follows from Remark 7.4.

Remark 7.7. Rectification also holds in a slightly more general context (cf. Remark 5.12): C is a symmetric
monoidal model category, C′ is a quasi-tractable model category whose weak equivalences are stable under
filtered colimits and that is a C-algebra (in the symmetric case, a commutative C-algebra). Finally suppose C′

is (symmetric) flat as an algebra (respectively, commutative algebra) over C (again using an obvious extension
of Definition 2.1). Then any weak equivalence of W -colored admissible operads O → P in C yields a Quillen
equivalence of their algebras in C′.
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We finish this section by establishing a quasicategorical rectification result, which generalizes [Lur, Theo-
rem 4.5.4.7] to the case of arbitrary symmetric quasicategorical operads (as opposed to just the commutative
operad) and uses conditions that are significantly weaker than freely poweredness. The following proposition
and theorem, as well as the fact that the former is relevant for the latter, were suggested to the first author by
Thomas Nikolaus. Our proofs are quite similar to that of Lurie in [Lur], the most noticeable difference being the
usage of notions of strong admissibility and symmetric flatness. In particular, strong admissibility allows us to
give a rather concise proof of the preservation of cofibrant objects in the following proposition.

Proposition 7.8. Suppose C is a V-enriched cofibrantly generated symmetric monoidal model category and O is
a symmetric colored operad in V that is admissible in C. If the unit map ηO : 1[1] → O is a cofibration in
(s)CollW (C) then the forgetful functor U : AlgO(C) → C creates (i.e., preserves and reflects) homotopy sifted
colimits.

Remark 7.9. We remind the reader that the notion of a sifted homotopy colimit is stronger than that of a sifted
colimit. For example, the reflexive coequalizer diagram is sifted but not homotopy sifted [Ros07, Remark 4.5.(e)].
This is unlike the filtered case, where both notions coincide for ordinary categories.

Proof. The proof is similar to the proof of [Lur, Lemma 4.5.4.12]. The functor U creates weak equivalences, so
the reflection property is implied by the preservation property. Denote by I an arbitrary homotopy sifted small
category, such as ∆op. We have a (strictly) commuting diagram

Fun(I,AlgO(C))
colim
−−→ AlgO(C)



yV



yU

Fun(I, C)
colim
−−→ C,

where V is also a forgetful functor. Preservation of homotopy colimits means that the diagram commutes up
to a weak equivalence after we derive it. Both U and V are automatically derived because they preserve weak
equivalences. We endow Fun(I,AlgO(C)) with the projective model structure (with respect to I) and the
transferred model structure on AlgO(C), which exists by assumption. Note that this model structure is the
same as the model structure transferred from the projective model structure on Fun(I, C), if we regard O as
an I-constant operad in Fun(I, C). Indeed, both model structures are transferred twice: once for the functor
category, and the other time for operadic algebras, and it doesn’t matter in which order to transfer.

The top colim (hence also U ◦ colim) can be derived by performing a cofibrant replacement in the source
category. If V preserves cofibrant objects, then it can also be derived in this way, which proves the desired
commutativity. To show that V preserves cofibrant objects, we observe that V can be rewritten as the forgetful
functor AlgO(Fun(I, C))→ Fun(I, C). It preserves cofibrant objects since O is strongly admissible in Fun(I, C)
by Proposition 6.2. �

We are now ready to state the conditions under which every quasicategorical algebra over a quasicategorical
operad corresponding to a strict colored symmetric operad can be rectified to a strict algebra over the strict
operad. We state the theorem for the simplicial case, because a detailed writeup of quasicategorical operads is
only available in this setting, however, the proof holds more generally as indicated in the remark below. This
extends results of Lurie [Lur, Theorems 4.1.4.4, 4.5.4.7] for the associative operad and the commutative operad,
Haugseng [Hau13, Theorem 2.16] for arbitrary nonsymmetric operads and Hinich [Hin13, Theorem 4.1.1] for
symmetric operads in the case C = Ch(ModR).

Theorem 7.10. Suppose C is a simplicial symmetric monoidal model category and O is a C-admissible simplicial
symmetric colored operad. Denote by COC and COAlgO(C) the full subcategories spanned by the corresponding
classes of cofibrant objects. The canonical comparison functor

N(COAlgO(C))[W
−1
AlgO(C)]→ HAlgN⊗O(N(COC)[W

−1
C ])

is an equivalence of quasicategories if and only if C is symmetric flat (Definition 2.1) with respect to QO → O,
the levelwise projective cofibrant replacement of the underlying symmetric sequence of O. Here HAlg is used in
the sense of Definition 2.1.3.1 (denoted by Alg there) in Lurie [Lur] and N⊗O denote the operadic nerve of O,
as explained in Definition 2.1.1.23 there.

Remark 7.11. If O is nonsymmetric, projective cofibrancy can be replaced by injective cofibrancy (tautologically
true for simplicial sets) because we don’t have to mod out symmetric group actions. Thus the condition of
symmetric flatness can be dropped and every nonsymmetric simplicial colored operad admits quasicategorical
rectification.

Proof. The symmetric sequence QO can be constructed by taking the levelwise product of the Barratt—Eccles
operad E∞ and O, which in fact gives us an operad and not just a symmetric sequence. The individual levels
have a free action of the symmetric group and therefore are projectively cofibrant. (Note here that the levels
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of O are injectively cofibrant, since any simplicial set is cofibrant.) They are weakly equivalent to those of O
because simplicial sets are flat and every simplicial set is cofibrant.

The morphism QO→ O induces an equivalence of the quasicategories of algebras over N⊗QO and N⊗O, and
below we will prove that the comparison functor is an equivalence of quasicategories for QO, so by the 2-out-of-3
property for equivalences of quasicategories the main statement is equivalent to QO → O inducing a Quillen
equivalence, which by Theorem 7.5 is equivalent to symmetric flatness over QO → O. It remains to show that
the comparison map is an equivalence of quasicategories when O is levelwise projectively cofibrant.

The rest of the proof coincides with the proof of [Lur, Theorem 4.5.4.7] (modified in the obvious fashion
for colored operads instead of the commutative operad), with the following modifications: for the part (d)
(preservation of homotopy colimits of simplicial diagrams) we use Proposition 7.8, whereas for part (e) we have
to establish that the free (strict) O-algebra on a cofibrant object C ∈ CW is also the free quasicategorical
O-algebra in the sense of [Lur, Definition 3.1.3.1]. Using Proposition 3.1.3.13 there this reduces to proving
that the free O-algebra O ◦ C =

∐

n≥0 On ⊗Σn
C⊗n is also the derived free O-algebra. By assumption O is

levelwise projectively cofibrant, so the individual terms in the coproduct are cofibrant in CW and compute the
corresponding derived tensor product. Coproducts of cofibrant objects are also homotopy coproducts, which
concludes the proof. �

Remark 7.12. The same proof works (and therefore the theorem holds) for enriched quasicategorical operads as
soon as one has the obvious analog of [Lur, Proposition 3.1.3.13]. We refer the reader to the upcoming work
of Haugseng on enriched quasicategorical operads for the case of an arbitrary enriching symmetric monoidal
quasicategory.

8. Transport of operads and operadic algebras

This section gives an answer to the following important question: When does a Quillen equivalence C ⇄ D
of symmetric monoidal model categories induce a Quillen equivalence of (symmetric) operads and their alge-
bras? The first result in this direction, for monoids and modules over monoids, is due to Schwede and Shipley
[SS03, Theorem 3.12]. This was generalized to nonsymmetric operads and their algebras by Muro [Mur14, The-
orem 1.1, 1.5], [Mur15]. In both statements, the monoidal unit was assumed to be cofibrant. This assumption,
however, is not satisfied in the very interesting stable positive model structure on symmetric spectra [PS14,
Theorem 3.3.4], so we pay special attention to not assuming the cofibrancy of the monoidal unit 1. For example,
Lemma 8.5, which governs certain cofibrant replacements, is trivial if 1 is cofibrant.

Definition 8.1. [SS03, Definition 3.6] An adjunction between symmetric monoidal categories

F : C ⇆ D : G(8.2)

is a (symmetric) oplax-lax adjunction if G is symmetric lax monoidal (see, for example, [Bor94b, Definition 6.4.1]).
It is a weak symmetric monoidal Quillen adjunction if in addition the oplax structural maps of F induced from
the lax structure of G,

F (Q1C)→ 1D,

F (C ⊗ C′)→ F (C)⊗ F (C′).

are weak equivalences for all cofibrant objects C,C′ ∈ C.

Definition 8.3. An object A in a monoidal model category is monoidally cofibrant if there is a cofibration
1→ A from the monoidal unit to A.

As far as their monoidal properties are concerned, monoidally cofibrant objects behave like cofibrant objects,
as is illustrated by the following lemmas:

Lemma 8.4. Let C be a monoidal model category.

(i) If B is monoidally cofibrant, then − ⊗ B : C → C is a left Quillen functor. (Thus monoidally cofibrant
objects are pseudocofibrant in the sense of Muro [Mur14, Appendix A].)

(ii) If a : A → A′ and b : B → B′ are two cofibrations with monoidally cofibrant source, then so is a � b. If
either A or B is cofibrant, then a⊡ b is also cofibrant.

Proof. (i): Pick a cofibration η : 1→ B. For any (acyclic) cofibration a, the map a⊗ B is the composition of a
pushout of a = a⊗ 1 and a� η. Both are (acyclic) cofibrations.

(ii): By (i), A ⊗B is monoidally cofibrant and a⊗B and A ⊗ b are cofibrations. Hence a⊡ b := dom(a � b)

is monoidally cofibrant as well. If, say, A is cofibrant, then ∅ → A
A⊗η
−−−−→A ⊗ B → a ⊡ b is a composition of

cofibrations. �

Lemma 8.5. Let A and B be two cofibrant or monoidally cofibrant objects in a quasi-tractable monoidal model
category satisfying the unit axiom, i.e., Q(1) ⊗ C ∼ C for all cofibrant objects C. Also assume that (a) weak
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equivalences are stable under filtered colimits or (b) C is strongly admissibly generated. Then the following map
is a weak equivalence:

Q(A)⊗Q(B)→ A⊗B.

Proof. If A and B are cofibrant, the claim is clear. We now show the statement if B is cofibrant and A is
monoidally cofibrant.

The cofibration 1→ A is a retract of a transfinite composition of maps A0 = 1→ · · · → A∞ = A where each
an : An → An+1 is the pushout of a generating cofibration s : S → S′. We write En : s → an for the pushout
square. The functor −⊗B is a left Quillen functor by Lemma 8.4(i). In particular, it preserves cofibrations, so
that En ⊗ B is a pushout of a cofibration between cofibrant objects along a map with cofibrant target An ⊗ B

(which holds by induction, starting with A0⊗B = B). Hence it is a homotopy pushout square. Similarly, Q(En)
is a pushout one of whose legs is a cofibration, and all objects in the square are cofibrant. Hence Q(En)⊗Q(B)
is also a homotopy pushout square. In the natural transformation of homotopy pushout squares

Q(En)⊗Q(B)−→En ⊗B

the two left maps in the depth direction are

Q(S)⊗Q(B)
∼
−→S ⊗B,(8.6)

since Q(S)→ S is a weak equivalence between cofibrant objects and similarly for B. (Only at this point we are
using the cofibrancy of B.) The same works for S′. The third map is

Q(An)⊗Q(B)→ An ⊗B(8.7)

which by induction on n is a weak equivalence, starting for n = 0 with the weak equivalence

Q(1)⊗Q(B) ∼ 1⊗Q(B) = Q(B) ∼ B

given by the unit axiom. Thus, the fourth map in the cube, Q(An+1)⊗Q(B)→ An+1⊗B, is a weak equivalence.
Thus, for all n < ∞, (8.7) is a weak equivalence. In other words, Q(An) ⊗ Q(B) is a cofibrant replacement of
An ⊗B. Then Q(A∞)⊗Q(B) ∼ colimQ(An)⊗Q(B) ∼ colimAn ⊗B = A∞ ⊗B, using that weak equivalences
are stable under filtered colimits by assumption and the preservation of filtered colimits by ⊗. In case (b) we
additionally use that the transition maps are cobase changes of generating cofibrations tensored with a fixed
object, hence in the class (2.2). We have shown the claim if B is cofibrant.

If B is merely monoidally cofibrant, we run the same argument again, noting that for a cofibrant object S,
the weak equivalence Q(S)⊗Q(B) ∼ S ⊗B used in (8.6) above is a weak equivalence by the previous step. �

The following variant can be proved using the same technique as Lemma 8.5. The left properness is used to
ensure that the pushouts appearing in the cellular induction are homotopy pushouts. The details are left to the
reader.

Lemma 8.8. Let A be a cofibrant or monoidally cofibrant object in a flat left proper quasi-tractable monoidal
model category C whose weak equivalences are stable under filtered colimits. Then A⊗− preserves weak equiva-
lences.

The following lemma of Berger and Moerdijk may be called an equivariant pushout product axiom.

Lemma 8.9. [BM06, Lemma 2.5.3] Let 1→ Γ1 → Γ→ Γ2 → 1 be a short exact sequence of finite groups. Then,
for a monoidal model category C,

⊗ : Γpro
2 C × Γpro′C → ΓproC

is a left Quillen bifunctor. Here Γpro′C denotes the model structure on ΓC whose cofibrations are Γ1-projective
cofibrations.

Theorem 8.10. Suppose F : C ⇆ D : G is a weak symmetric monoidal Quillen adjunction (Definition 8.1)
between quasi-tractable symmetric monoidal model categories such that (a) weak equivalences are stable under
filtered colimits or (b) C is strongly admissibly generated. Also suppose that both C and D are either left proper
or their monoidal unit is cofibrant.

(i) Suppose that the transferred model structures on the categories (s)OperW (C) and (s)OperW (D) exist.
(See Corollary 9.4.1 for a sufficient condition.) Then there is a Quillen adjunction of the categories of
(symmetric) operads

F (s)Oper : (s)OperW (C) ⇄ (s)OperW (D) : G(8.11) .

It is a Quillen equivalence if (F,G) is a Quillen equivalence.
(ii) For any admissible (symmetric) operad O in C, there is a Quillen adjunction

FAlg : AlgO(C) ⇄ AlgF (s)Oper(O)(D) : G.(8.12)

It is a Quillen equivalence if (F,G) is a Quillen equivalence and O is a cofibrant operad.
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(iii) If P is an admissible (symmetric) operad in D such that G(P ) is also admissible, there is a Quillen
adjunction

FAlg : AlgC
G(P ) ⇄ AlgD

P : G.(8.13)

It is a Quillen equivalence if (F,G) is a Quillen equivalence, P is fibrant, and C and D admit rectification
of (symmetric) operads.

Proof. Since G is symmetric lax monoidal, it induces a lax monoidal adjunction

F : ((s)CollWD, ◦)→ ((s)CollWC, ◦) : G(8.14) .

In particular, G preserves monoids, i.e., (symmetric) operads. This defines the right adjoint in (8.11). The right
adjoint in (8.12) sends an F (s)Oper(O)-algebra B to G(B) which is an O-algebra via

O ◦G(B)→ GF (s)Oper(O) ◦G(B)→ G(F (s)Oper(O) ◦B)→ G(B).

The left adjoints exist by [Bor94b, Theorem 4.5.6]. Moreover, the right adjoints are Quillen right adjoints since
(acyclic) fibrations are again created by the forgetful functors.

We now establish the advertised Quillen equivalences.
(i): We have to show that for any cofibrant operad O, the natural map

φO : F (Q(U(O)))→ U(F (s)Oper(O))

is a weak equivalence. In this case we have the following chain of equivalent statements for any cofibrant operad
O ∈ (s)OperW (C) and any fibrant operad P ∈ (s)OperW (D) which implies the Quillen equivalence (8.11):

F (s)Oper(O) ∼ P ⇔ UF (s)Oper(O) ∼ U(P )

⇔ F (Q(U(O)) ∼ U(P )

⇔ Q(U(O)) ∼ G(U(P )) = U(G(P ))

⇔ U(O) ∼ U(G(P ))

⇔ O ∼ G(P ).

The cellular induction starts with the initial operad O = 1C [1], for which F (s)Oper(O) = 1D[1]. Thus φ1[1] is
a weak equivalence by the weak monoidality of F .

Using the notation of Proposition 5.2, we now consider a pushout of operads along a map Free(x) where x is
a cofibration in sCollW (C). We will show that φO′ is a weak equivalence provided that φO is one.

Applying FQ to the filtration (see Proposition 5.2)

U(o) : O(0) := U(O)→ · · · → O(∞) := U(O′)

gives the front face of the following commutative cube in ΣsD. The back face is part of the filtration

U(õ) : Õ(0) := UF (s)Oper(O)→ · · · → Õ(∞) := UF (s)Oper(O′)

associated to the pushout of operads in D which is obtained by applying the left adjoint F (s)Oper to (5.3):

Free(X̃) := F (s)Oper(Free(X))

Free(x̃)

��

// Õ := F (s)Oper(O)

õ

��

Free(X̃ ′) := F (s)Oper(Free(X ′)) // Õ′ := F (s)Oper(O′).

Here and below, the notation ?̃ indicates the object or morphism that is obtained by considering the data in the
filtration of õ := F (s)Oper(o). For example, X̃ := F (X) and similarly for X ′, x. The coproduct runs over all

isomorphism classes of marked trees T in (s)Tree
(k+1)
s,w .

∐

T Σs ·AutT x̃∗(T )

��

// Õ
(k)
s,w

��

FQ(
∐

T Σs ·AutT x∗(T ))

∗

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

��

// FQ(O
(k)
s,w)

��

r(k)

99ssssssssss

∐

T Σs ·AutT x̃(T ) // Õ
(k+1)
s,w

FQ(
∐

T Σs ·AutT x(T )) //

∗∗

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

FQ(O
(k+1)
s,w )

r(k+1)

99ssssssssss
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At this point (and only here) we use the assumption that D is either left proper or its monoidal unit is cofibrant:

in the former case any pushout along a cofibration is a homotopy pushout. In the latter case, Õs,w = Õ
(0)
s,w is

cofibrant for all (s, w) by Lemma 6.1(i3) and therefore by induction the same is true for Õ
(k)
s,w. Hence the pushout

above is again a homotopy pushout. Likewise, the front square is a homotopy pushout, since FQ(−) preserves
those. Thus, r(k+1) is a weak equivalence if r(k), ∗ and ∗∗ are ones. The map r(k) is a weak equivalence by
induction on k, starting with

r(0) : FQ(O(0)
s,w) = FQ(U(O)s,w)→ Õ(0)

s,w = UF (s)Oper(O)s,w

which is the (s, w)-level of φO, which is a weak equivalence by the cellular induction on O. It remains to show
that the maps ∗ and ∗∗ are weak equivalences.

Let T ∈ (s)Trees,w be any tree. By induction on the height of T , we prove the following claims:

(A) The map ǫ(T ) is a cofibration in (Aut T )proC with cofibrant or monoidally cofibrant domain (Definition 8.3).

The domain is cofibrant for all trees except (possibly) for the tree T−
w := (

w
→

−
•

w
→) ∈ (s)Tree(0)w,w which

consists of a single nonmarked vertex with input edge and root edge colored by w. In particular, ǫ(T ) is a

cofibration with cofibrant domain for all T ∈ (s)Tree
(k+1)
s,w with k ≥ 0. (These are the trees appearing in

the cubical diagram above. In order to perform the induction, we also need to consider T ∈ (s)Tree(0)s,w.)

(B) There are weak equivalences in Ar(C) (i.e., both source and target of the morphisms are weakly equivalent)

FQ(ǫ(T ))→ ǫ̃(T ).

Let (t, w) := val(r(T )) be the valency of the root r(T ) of T . If T consists of a single vertex r(T ) (with an
outgoing root edge and finitely many input edges), then t = s and

ǫ(T ) = ǫ(r(T )) =

{
(ηO)(t,w), if the root r(T ) is not marked;
x(t,w), if the root r(T ) is marked.

Both are cofibrations in Σt(C)(= Aut(T )C), the former by Lemma 6.1(i). Since X = dom(x) is cofibrant by
quasitractability, the source of ǫ(T ) is monoidally cofibrant for (T =)r(T ) = T−

w and cofibrant else. This shows
claim (A).

For claim (B), we note that FQ(U(ηO)) is weakly equivalent to ηÕ by the unit part of the weak monoidality
of F and the cellular induction on O. To show FQ(u) ∼ ũ, we consider the pushout square in (s)CollW (C),
denoted E:

X //

x

��

U(O)

u

��

X ′ // U(O) ⊔X X ′

It is a homotopy pushout square in all degrees: for unit degrees, the left vertical map is id∅ and for nonunit degrees
Os,w is (Σs-projectively) cofibrant (and xs,w is a cofibration). Applying FQ to E gives a homotopy pushout

square in (s)CollW (D). The square Ẽ in sCollW (D) obtained by replacing X , X ′ and O by their ?̃-counterparts

is also a homotopy pushout square. By cellular induction FQU(O) ∼ UÕ. Of course FQ(X) ∼ X̃(= F (X))
by the cofibrancy of X (using the quasitractability of C) and similarly for X ′. We obtain the desired weak
equivalence

F (Q(U(O) ⊔X X ′)) ∼ U(Õ) ⊔X̃ X̃ ′

and hence claim (B) for the tree T consisting of a single (marked or unmarked) vertex.
We now perform the induction step. We may assume that T has at least two vertices. By definition,

ǫ(T ) = ǫ(r(T ))��
i

ǫ(Ti)
�ti

︸ ︷︷ ︸

=:ǫ′(T )

.

Recall that a map f in a model category C is a cofibration with cofibrant source if and only if it is a cofibrant
object in Ar(C), i.e., id∅ → f is a cofibration. Likewise, f is a cofibration with monoidally cofibrant source if
and only if there is a cofibration id1 → f in Ar(C).

We write ǫ(r(T )) : V →W and ǫ′(T ) : e∗(T )→ e(T ). Let val(r(T )) = (s, w). As was noted above, ǫ(r(T )) is a
cofibration in sCollW (C). Its domain Vs,w := dom(ǫ(r(T ))s,w) is monoidally cofibrant in ΣsC if T is of the form

(T1
w
→

−
•

w
→) where T1 is the subtree of the root vertex. In this case, we abusively write r(T ) = Tw. In all other

cases, Vs,w is cofibrant. Hence id1 → ǫ(r(T )) (respectively id∅ → ǫ(r(T ))) is a cofibration in Ar(ΣsC) = ΣsAr(C).
By induction on T , ǫ(Ti) is an Aut(Ti)-projective cofibration whose source is monoidally cofibrant (if Ti = Tw)
and cofibrant (otherwise). Again, we reinterpret this in terms of cofibrations in Ar(Aut(Ti)C).
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We now consider four cases:

(1) r(T ) 6= T−
w , at least one Ti 6= T−

w : By Lemma 8.9, applied to Ar(C) (with the pushout product), the
map

(id∅ → ǫ(r(T ))) � (id∅ → ǫ′(T )) = (id∅ → ǫ(r(T ))� ǫ′(T )) = (id∅ → ǫ(T ))

is a cofibration in Ar(Aut(T )C) in this case, i.e., ǫ(T ) is a cofibration with cofibrant source.
(2) r(T ) 6= T−

w , all Ti = T−
w : Then

(id∅ → ǫ(r(T )))� (id1 → ǫ′(T )) = (id∅ → ǫ(r(T )) � ǫ′(T )) = (id∅ → ǫ(T ))

is a cofibration in Ar(Aut(T )C).
(3) Similarly for r(T ) = T−

w , T1 6= T−
w .

(4) r(T ) = T−
w , T1 = T−

w : By definition of the trees in (s)Trees,w, any internal edge contains at least one

marked vertex. Thus this tree does not lie in (s)Trees,w unless T1 is empty, in which case we have shown
the claim above.

This shows claim (A).
We now show (B). We may assume that T consists of at least two vertices. Consider the diagram E whose

left square is by definition cocartesian,

Vt,w ⊗ e∗(T )
Vt,w⊗ǫ′(T )

//

ǫ(r(T ))t,w⊗e∗(T )

��

Vt,w ⊗ e(T )

�� ))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

Wt,w ⊗ e∗(T ) // P
ǫ(r(T ))t,w�ǫ′(T )

// Wt,w ⊗ e(T ).

(8.15)

We claim that the left pushout square is a homotopy pushout. By Lemma 8.4(i), both the left vertical and the
top horizontal maps are cofibrations (in C, say), hence the claim is clear if Vt,w ⊗ e∗(T ) is cofibrant, because in
this case the above pushout diagram is cofibrant as a diagram. By the above, Vt,w and e∗(T ) are either cofibrant
or monoidally cofibrant. Again using Lemma 8.4, the only way that Vt,w ⊗ e∗(T ) is only monoidally cofibrant is
that both Vt,w and e∗(T ) are monoidally cofibrant. By the above, the first only happens for r(T ) = T−

w and the

second happens only if all Ti = T−
w . As was noted in Case (4), this means T = (

w
→

−
•

w
→

−
•

w
→), which is excluded.

We have weak equivalences

FQ(Vt,w ⊗ e∗(T )) ∼ F (QVt,w ⊗Qe∗(T ))

∼ FQ(Vt,w)⊗ FQ(e∗(T ))

∼ Q(Ṽt,w)⊗Q(ẽ∗(T ))

∼ Ṽt,w ⊗ ẽ∗(T ).

The first equivalence holds by Lemma 8.5, which gives a weak equivalence between cofibrant objects

Q(Vt,w ⊗ e∗(T )) ∼ Q(Vt,w)⊗Q(e∗(T ))

since both Vt,w and e∗(T ) are cofibrant or monoidally cofibrant. The second equivalence holds by weak monoidal-

ity of F . The third equivalence follows from Brown’s lemma and the equivalences FQ(Vt,w) ∼ Ṽt,w and
FQ(e∗(T )) ∼ ẽ∗(T ). The last weak equivalence holds by Lemma 8.5, again using the (monoidal) cofibrancy

of Ṽt,w and ẽ∗(T ). The same is also true for Wt,w and/or e(T ) instead.

We now apply FQ to the diagram E in (8.15). On the other hand, we consider the diagram Ẽ obtained by

replacing Vt,w by Ṽt,w etc. There is a map of diagrams FQ(E)→ Ẽ. By the above, all individual maps in this
morphisms of diagrams are weak equivalences, except (a priori) for

FQ(P )→ P̃ .

However, since the left squares of FQ(E) and Ẽ are homotopy pushout squares, this remaining map is also a

weak equivalence. Therefore, FQ(E) ∼ Ẽ. In particular we get the requested weak equivalence in Ar(C)

FQ(ǫ(T )) ∼ ǫ̃(T ).

This finishes the induction step (with respect to the tree T ). We have shown that the individual summands in
the maps ∗ and ∗∗ are weak equivalences.

The coproducts appearing in the left face of the cube above are homotopy coproducts, since for all T ∈

(s)Tree
(k+1)
s,w (k ≥ 0), the terms Σt ·AutT x∗(T ) and similarly for x(T ) are Σt-projectively cofibrant by Claim

(A). This implies that the maps ∗ and ∗∗ themselves are weak equivalences and therefore finishes the induction
step with respect to the cellular induction by O.

For a cellular filtration of O∞ by operads Oi such that φOi
is a weak equivalence for all i < ∞, the same is

true for i = ∞ using that U preserves filtered colimits and assumption (a). In case (b), we also use that the
transition maps (co)dom(φOi

)→ (co)dom(φOi+1 ) lie in (2.2), by (5.4).
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(ii): For any cofibrant O-algebra A, we have the following chain of canonical isomorphisms and weak equiva-
lences, which as above shows the requested Quillen equivalence:

U(FAlg(A)) = Env(F (s)Oper(O), FAlg(A))0(8.16)

= F (s)Oper(Env(O,A))0

∼ F (Q(Env(O,A))0)

∼ F (Env(O,A)0)

= F (U(A))

∼ FQ(U(A)).

The last (and similarly the first) canonical isomorphism is Proposition 4.4(i). The second isomorphism comes
from a natural isomorphism of functors

Env(F (s)Oper(−), FAlg(∗)) = F (s)Oper(Env(−, ∗))

since both expressions are the left adjoint to (s)OperW (D) → Pairs(sCollW (C)), P 7→ (G(P ), G(P )0). The
first weak equivalence was shown in Part (i), which is applicable since Env(O,A) is a cofibrant operad by
Lemma 6.1(ii). The second weak equivalence is given by Lemma 6.1(i). The last weak equivalence follows from
Proposition 6.2.

(iii): Let O ∈ (s)OperW (C) be a cofibrant replacement of G(P ). Equivalently, by Part (i), P ∼ F (s)Oper(O).
By rectification of operads for D, (ii), and rectification of operads for C, we have the following chain of Quillen
equivalences

AlgD
P ∼ AlgD

F (s)Oper(O) ∼ AlgC
O ∼ AlgC

G(P ).

�

Remark 8.17. The condition in Theorem 8.10 that C and D have the property that they are either left proper or
their monoidal unit is cofibrant is only used to show that pushouts of certain cofibrations with cofibrant domain
are homotopy pushouts. Since being a homotopy pushout only depends on the class of weak equivalences, this
also holds, for example, if C has another model structure with more cofibrations, and the same weak equivalences.

If the left adjoint F is in addition symmetric monoidal, we can relax the condition on O in Theorem 8.10(ii).

Corollary 8.18. In the situation of Theorem 8.10, suppose in addition that the left adjoint F is strong symmetric
oplax monoidal (i.e., the symmetric oplax structural maps F (C⊗C′)→ F (C)⊗F (C′) are isomorphisms, so that
F is also symmetric lax monoidal). Let O be any (symmetric) operad in C such that U(ηO) is a cofibration in
(s)CollW (C).

Then there is a Quillen adjunction

F : AlgO(C) ⇄ AlgF (O)(D) : G

which is a Quillen equivalence if (F,G) is a Quillen equivalence.

Proof. Since F is symmetric monoidal, U ◦ FAlg = F ◦ U , see, e.g., [AM10, Proposition 3.91]. Therefore, only
the last weak equivalence in (8.16) requires proof. By Proposition 6.2 O is strongly admissible, i.e., U(A) is
cofibrant in C, so that F (U(A)) ∼ F (Q(U(A)) by Brown’s lemma. �

9. Applications

This last section contains a few applications to the homotopy theory of enriched categories, ordinary categories,
operads, and (monoidal) diagrams. The strategy is similar for all these applications: enriched categories, say,
are algebras over a certain nonsymmetric operad. Therefore, the admissibility and rectification results of §5–7
can be applied.

The list presented here is by no means exhaustive, other potential applications include monads in model cate-
gories, internal categories (and higher internal categories), (higher) spans, etc. Symmetric operads in symmetric
spectra and some applications are studied in [PS14].

In §9, let V be a symmetric monoidal model category and C be a V-enriched model category whose weak equiv-
alences are stable under filtered colimits. Moreover, assume that C is quasi-tractable and either combinatorial
or V-admissibly generated.

9.1. Rectification of A∞- and E∞-monoids. In this section we discuss rectification of homotopy coherent
versions of monoids and commutative monoids. We start by giving explicit constructions of two important
operads, A∞ and E∞.

The Barratt-Eccles operad E∞ can be constructed by taking the associative symmetric operad in sets, applying
the functor E to it (E sends a set to a groupoid with the same set of objects and a single morphism between any
pair of objects), obtaining a symmetric operad in groupoids, and then applying the nerve functor, which gives a
simplicial operad. See the paragraph after Corollary 3.5 in Elmendorf and Mandell [EM06].
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An identical construction (apply E and then take the nerve) produces a model for the operad A∞, but the
original operad in sets is now the free operad on a single binary operation and a single nullary operation, so that
On consists of planar rooted trees with n leaves, see, for example, [BM03, §5.8]. Alternatively, one can take the
free operad generated by a single operation in each arity (which corresponds to the so-called unbiased monoids).

In what follows, we actually don’t need to apply the nerve functor, because an operad in groupoids is sufficient
for our purposes. We also note that any category enriched in simplicial sets is automatically enriched in groupoids
by applying the nerve functor. The following propositions are mere specializations of the general theorems on
admissibility and rectifiability. We give explicit statements here due to the importance of these examples.

Proposition 9.1.1. If C is a symmetric h-monoidal and groupoid-enriched then the category of E∞-algebras
in C admits a transferred model structure. Furthermore, if C is symmetric flat with respect to the morphism
E∞ → Comm (or simply symmetric flat), then the Quillen adjunction between commutative monoids and E∞-
monoids is a Quillen equivalence.

A similar statement for A∞ and As holds if C is merely h-monoidal and flat.

9.2. Model structures on enriched categories. For a small set W , Berger and Moerdijk [BM07, 1.5.4] have
introduced a nonsymmetric W ×W -colored operad in V given by

CatAs
W (((v1, v

′
1), . . . , (vn, v

′
n)), (v

′
0, v

′
n+1)) =

{

1V , v′i = vi+1 for all 0 ≤ i ≤ n;
∅, otherwise.

This defines a nonsymmetric operad in V . Its algebras in CW×W are precisely C-enriched categories with W as
objects. More generally, given a nonsymmetric operad O in V , one can also consider the nonsymmetric operad
CatOW , which is given by replacing 1V = Asn in the previous formula by On. Algebras over this operad can be
called V-enriched O-twisted categories. Typically, O is taken to be A∞. In this case we speak of V-enriched A∞-
categories, i.e., composition is not strictly associative, but rather associative up to coherent higher homotopies.

The following lemma is an immediate application of the results on admissibility and rectification. Up to
a minor expository difference (see Remark 5.12), the admissibility statement is the same as Muro’s [Mur11,
Corollaries 10.4, 10.5]. The rectification result in loc. cit. uses in addition the left properness of C.

Corollary 9.2.1. If C is h-monoidal, then all (nonsymmetric) operads in V are admissible. In particular, the

operad CatOW is admissible, so O-twisted C-enriched categories with W as the set of objects and functors that
induce identity on objects carry a model structure whose weak equivalences and fibrations are those C-enriched
functors F : D → E that induce weak equivalences, respectively fibrations in C:

HomD(D,D′)→ HomE(C,C
′),

for all objects D = F (D) and D′ = F (D′) in Ob(D) = Ob(E) = W .
If C is in addition flat over the levels ϕn (n ≥ 0) of some weak equivalence ϕ : O → P of nonsymmetric operads

in V, there is a Quillen equivalence of O- and P -twisted C-enriched categories (both with W as objects):

ϕ∗ : CatOW (C) ⇆ CatPW (C) : ϕ∗.

For example, if 1V is cofibrant, then this condition is satisfied for any weak equivalence A∞ → As, where A∞ is
a cofibrant replacement of As. It is satisfied for any weak equivalence if C is flat (Definition 2.1).

Proof. Admissibility follows from Theorem 5.10 and Remark 5.12 and rectification follows from Theorem 7.5.
If 1V is cofibrant, then C is flat over the levels of A∞ → As: Asn = 1V is cofibrant. Moreover, A∞ is a
cofibrant operad, so that its levels are cofibrant by Lemma 6.1. Any monoidal model category is flat over a weak
equivalence between cofibrant objects by Brown’s lemma. �

These individual model structures on CatW (C) can be assembled into a single model structure on Cat(C).
The following result is due to Muro [Mur12, Theorem 1.1]. Muro’s work relaxes the assumptions of similar results
of Stanculescu [Sta09] as well as Berger and Moerdijk [BM13, Theorem 1.9], which in turn generalizes results of
Amrani (V = Top) [Ili15], Bergner (for V = sSet) [Ber07, Theorem 1.1], Lurie (every object of V is cofibrant)
[Lur09, Proposition A.3.2.4], and Tabuada (V = Ch(ModR) for some ring R and V being symmetric spectra)
[Tab05, Théorème 3.1], [Tab07], [Tab09, Theorem 5.10].

Given some property of objects or morphisms in C we say that a C-enriched category or a C-enriched functor
has this property locally if it is true for the enriched objects of morphisms between each pair of objects. Given a
C-enriched category, its derived π0 is an ordinary 1-category that is constructed by applying the derived internal
hom from the monoidal unit of C to each object of morphisms.

Proposition 9.2.2. (Muro) Suppose again that C is h-monoidal. Then Cat(C) is carries the Dwyer-Kan model
structure whose weak equivalences are the Dwyer-Kan equivalences (i.e., local weak equivalences and their de-
rived π0 is an essentially surjective functor or, equivalently, an equivalence of categories) and whose acyclic
fibrations are local acyclic fibrations that are surjective on objects.
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Proposition 9.2.3. Fix V and C as in Corollary 9.2.1 and a weak equivalence ϕ : O → P of nonsymmetric oper-
ads in V. Assume that the Dwyer-Kan model structure on CatO(C) and CatP (C) exists, as in Proposition 9.2.2.
If C is flat over a weak equivalence ϕ : O → P (more precisely, flat over the levels ϕn for all n ≥ 0), then we
have a Quillen equivalence

ϕ∗ : CatO(C) ⇆ CatP (C) : ϕ∗.

For example, this holds for all weak equivalences ϕ if C is flat. It also holds for the weak equivalence ϕ : A∞ → As
if the monoidal unit 1V is cofibrant.

Remark 9.2.4. Under the above assumptions, we expect that the Dwyer-Kan model structure on CatO(C) exists
for any operad O. The reader is encouraged to generalize Muro’s result 9.2.2 to arbitrary operads.

Proof. For some cofibrant object X ∈ CatO(C) and a fibrant object Y ∈ CatP (C), the (co)unit morphism

of the adjunction for X and Y can be computed in the corresponding slices CatOObj(X)(C) and CatPObj(Y )(C).
Moreover, the (co)fibrancy of X and Y is equivalent to the one in the corresponding slice category. Now the
Quillen equivalence immediately follows from the rectification of category structures with a fixed set of objects
(Corollary 9.2.1). �

An interesting question that arises in relation to these results is whether it is possible to define a monoidal
structure on the category of enriched categories in such a way that the resulting model category is monoidal. The
naive choice (take the product of sets of objects and the tensor product of enriched morphisms) already fails to
satisfy the pushout product axiom in the case when C is the model category of small categories, as shown by Lack.
TheGray tensor product does turn enriched categories in small categories (i.e., strict 2-categories) into a monoidal
model category, however, it is unclear how one should generalize it to enriched categories. If such a monoidal
product could be constructed, then one could iterate the construction of enriched categories and consider higher
enriched categories (i.e., enriched categories in enriched categories etc.). Such a construction could explain how
the traditional definitions of bicategories, tricategories, and tetracategories could be generalized in a systematic
way to higher dimensions. Furthermore, for certain choices of the operad O (e.g., the categorical A∞-operad)
one would expect to get a model category that is Quillen equivalent to any of the usual model categories of
(∞, n)-categories. (We cannot expect this for O = As because it is well-known that tricategories cannot in
general be strictified to strict 3-categories.)

9.3. Applications to category theory. In this section we apply the results of §9.2 to some concrete examples
of (low-dimensional) category theory.

Consider the category of sets equipped with the model structure whose weak equivalences are bijections and
fibrations and cofibrations are arbitrary maps. Equip this model category with the monoidal structure given by
the cartesian product. This model structure is tractable, proper, its weak equivalences are stable under filtered
colimits (it is pretty small in the sense of [PS15, Definition 2.0.2] for the maps ∅ → {0}, {0, 1} → {0} generate
the cofibrations, then use [PS15, Lemma 2.0.3]), symmetric h-monoidal and symmetroidal, and symmetric flat.
By Proposition 9.2.2, the category Cat of categories admits a model structure whose weak equivalences are
equivalences of categories and fibrations are the so-called isofibrations, i.e., functors F : C → D such that any
isomorphism in D, F (C) ∼= D (for C ∈ C, D ∈ D) has a lift to an isomorphism in C. This is precisely the canonical
(folk) model structure on categories, see, for example, Rezk [Rez]. The canonical model structure is tractable,
pretty small, cartesian (i.e., monoidal with respect to the categorical product), simplicial, and all objects are
fibrant and cofibrant, see Rezk [Rez] for details. Furthermore, it is symmetric h-monoidal and symmetroidal
because cofibrations are precisely those functors which are injective on objects, and the latter property survives
pushout products and coinvariants under Σn, the argument being similar to the one for simplicial sets, see [PS15,
§7.1]. Finally, the canonical model structure is flat, which follows immediately from the definition of equivalences
of categories, which are stable under products. However, symmetric flatness fails: the Σn-equivariant functor from
the groupoid EΣn (objects are Σn and morphisms are Σn ×Σn) to the terminal groupoid is a weak equivalence,
yet its Σn-coinvariants is the map BΣn → 1 (BΣn has one object whose endomorphisms are Σn), which is not
an equivalence.

The results of §§5–§7 yield model structures on various types of monoidal categories and a strong form of
Mac Lane’s coherence theorem.

Proposition 9.3.1. There is a model structure on strict monoidal categories, monoidal categories, strict sym-
metric monoidal categories, and symmetric monoidal categories whose weak equivalences and fibrations are the
ones of the underlying categories.

Every monoidal category is equivalent (via a strong monoidal functor) to a strict monoidal category. This strict
monoidal category is unique up to strict monoidal equivalence. Similarly, every monoidal functor is equivalent
(via a strong monoidal natural transformation) to a strict monoidal functor which is again unique up to a strict
monoidal natural transformation.
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Proof. The above-mentioned categories are algebras (in Cat) over the associative operad As, the operad A∞,
the commutative operad Comm, and the operad E∞, respectively. Hence the existence of the model structure
follows from Theorem 5.10, whose assumptions have been verified above.

Furthermore, the nonsymmetric rectification theorem (Theorem 7.5) tells us that the canonical morphism
from A∞ to the associative operad induces a Quillen equivalence between As-algebras and A∞-algebras. �

Example 9.3.2. The morphism from E∞ to the commutative operad is not symmetric flat, as explained above,
which tells us that symmetric monoidal categories cannot always be strictified to strict symmetric monoidal
categories. This is well-known because symmetric monoidal categories can have a nontrivial k-invariant whereas
strict symmetric monoidal categories always have a trivial k-invariant.

Similarly, Mac Lane’s coherence theorem for bicategories follows from the above, since strict 2-categories are
CatAs-algebras and bicategories are CatA∞ -algebras in Cat, respectively:

Proposition 9.3.3. There is a Quillen equivalence between the model categories of strict 2-categories and bicat-
egories.

We conjecture that other strictification results of category theory, such as strictification of tricategories to
Gray categories (Gordon, Power, and Street), partial strictification of symmetric monoidal bicategories, etc., can
also be shown using the methods of this paper. However, considerations of volume prevent us from developing
this topic further. Simpson’s conjecture might also be amenable to the techniques explained above.

9.4. The colored operad of colored operads. Given a set W , there is a (symmetric) colored operad OperW
whose category of algebras is equivalent to the category of (symmetric) W -colored operads in C. It is due to
Berger and Moerdijk [BM07, §1.5.6, §1.5.7]. See also [GV12, §3] for a detailed description of the multicolored
case.

This operad is first constructed for C = Sets as follows: the set of colors of (s)OperW is the set of objects
of (s)SeqW,W , which we call valencies. Recall from §3 that the objects of (s)SeqW,W are pairs c = (s, w) where
s : I → W is a map from a finite set I and w ∈ W . The operations

(s)OperW (a1, . . . , ak; b)

from a given sequence of valencies (a1, . . . , ak) to a valency b are given by isomorphism classes of triples (T, σ, τ)
consisting of a W -colored (symmetric) tree T equipped with a bijection σ from {1, . . . , k} to the set of internal
vertices of T such that the valency of σ(i) equals ai and a color-preserving bijection τ from {1, . . . ,m}, where m
is the arity of b, to the input edges of T . Isomorphisms of such triples are isomorphisms of colored trees which are
compatible with σ and τ . In the symmetric case the symmetric group Σk acts on such classes by precomposition
with σ. The operadic unit sends each valency c to the corresponding corolla, interpreted as an operation from c

to c. The operadic composition is given by grafting of trees, see [BM07, §1.5.6] in the uncolored case. One checks
that this gives a (symmetric) operad, denoted (s)OperW , in Sets.

The functor Sets→ C, X 7→
∐

x∈X 1C is symmetric monoidal and therefore extends to a functor

(s)Oper(s)Seq
W
(Sets)→ (s)Oper(s)Seq

W
(C).

The image of (s)OperW under this functor is again denoted by (s)OperW .
The following admissibility statement unifies a few earlier results: the semi-model structure for symmetric

operads established by Spitzweck [Spi01, Theorem 3.2], the model structure for nonsymmetric operads by Muro
[Mur11, Theorem 1.1] and, the model structure on uncolored operads in orthogonal spectra with the positive
stable model structure by Kro [Kro07, Theorem 1.1].

Corollary 9.4.1. Let C be (symmetric) h-monoidal. Then the operad (s)OperW of (symmetric) W -colored
operads is admissible, that is to say, the category (s)OperW (C) of (symmetric) W -colored operads in C has a
model structure that is transferred along the adjunction

Free : C(s)SeqW,W ⇄ AlgOperW
(C) = (s)OperW (C) : U.

If 1C is cofibrant, then (s)OperW is strongly admissible, i.e., the forgetful functor U preserves cofibrations with
cofibrant domain.

Proof. The admissibility follows from Theorem 5.10. The strong admissibility follows from Proposition 6.2 since
(s)Oper is levelwise projectively cofibrant. �

Operads can be generalized in the same way that enriched categories are generalized to enriched A∞-categories.
Fix a (symmetric) operad O. In practice, O is an A∞-operad, i.e., we have a weak equivalence of operads O → As,

where As denotes the associative operad. We define the colored (symmetric) operad OperOW of O-twisted W -
colored (symmetric) operads by the same construction as above, starting from a colored operads P in sets, except
that we pass to a C-valued operad in a modified fashion: instead of tensoring operations in degree k with 1C we
tensor them with Ok. The intuitive idea behind this is that the composition of operadic operations is no longer
strictly associative, but is rather governed by the operad O. An O-twisted W -colored operad is an O-algebra in
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the monoidal category of W -colored (symmetric) sequences equipped with the substitution product, the latter
being a left C-module in the obvious way. Then Corollary 9.4.1 has an immediate generalization for the operad

(s)Oper
O
. For the strong admissibility, the requirement on 1C is replaced by the condition that the levels Ok be

cofibrant as objects in C. Moreover, Theorem 7.5 admits the following corollary.

Corollary 9.4.2. If C is flat over a weak equivalence O → P of operads, then we have a Quillen equivalence
sOperOW (C) ⇆ sOperPW (C) of O-twisted and P -twisted (symmetric) W -colored operads in C. For example, if 1C
is cofibrant, then A∞-twisted colored symmetric operads can be rectified to ordinary colored symmetric operads.

Proof. This follows from Theorem 7.5 once we show the symmetric flatness of C with respect to sOperOW →
sOperPW . Every component of sOperOW is a coproduct of the corresponding components of O, and the relevant
symmetric group acts freely on the components. Thus the symmetric flatness follows from the flatness of C over
O→ P . �

Remark 9.4.3. In fact, if C is a V-enriched model category that is symmetric h-monoidal with respect to V only
(and not necessarily with respect to itself), then the colored operad of colored operads can be defined with values
in V and its algebras in C will still be W -colored operads in C, so the above corollary holds in this more general
setting. Gutiérrez and Vogt used such a setup (with a different set of conditions on V) to construct a model
structure on W -colored operads in symmetric spectra, see Corollary 4.1 in [GV12].

Starting from this point, further work is required to assemble the model structures on sOperW (C) into one
on the category (s)Oper(C) of (symmetric) operads with an arbitrary set of colors. This has been done for
C = sSet by Cisinski and Moerdijk [CM13, Theorem 1.14] and independently by Robertson [Rob11, Theorem 6]
and was extended by Caviglia [Cav14] to more general model categories using similar arguments. We expect
that the assumptions can be further relaxed to the ones stated in the above corollary.

9.5. Diagrams. In this section we construct a model structure on the category of enriched diagrams of some fixed
shape and prove a rectification result. In particular, we recover the classical result of Vogt and its generalization
by Cordier and Porter on homotopy coherent diagrams.

Proposition 9.5.1. Assume that C is, in addition to the standing assumptions in this section, h-monoidal.
For any V-enriched, small category D, the category of V-enriched functors D → C admits a transferred model
structure. Its weak equivalences and fibrations are those natural transformations of V-enriched functors F → G

such that for all objects X ∈ D,
F (X)→ G(X)

is a weak equivalence, respectively a fibration. Furthermore, if V has a model structure and C is flat over V,
then a componentwise weak equivalence of diagrams D → D′ whose object map is the identity induces a Quillen
equivalence of the two model categories of diagrams.

Remark 9.5.2. A more general version of the rectification result allows for a Dwyer-Kan equivalence D → D′.

Proof. Following Berger and Moerdijk [BM07, §1.5.5], we consider the nonsymmetric colored operad DiagD that
encodes diagrams in C indexed by a fixed V-enriched category D, i.e., V-enriched functors D → C. The operad
DiagD is colored by the set of objects of D. Its operations are defined as

DiagD(X1, . . . , Xn, Y ) =

{
∅, n 6= 1;
MapD(X,Y ), n = 1.

Here MapD denotes the enriched hom object. The operadic composition and unit are induced by the composition
and unit of D. (The construction just described embeds enriched categories into nonsymmetric colored operads.)

A DiagD-algebra in C consists of a collection of objects DX in C, for all X ∈ D together with morphisms
Mor(X,Y )⊗DX → DY that satisfy the obvious associativity and unitality conditions. This is precisely the data
of a V-enriched functor D → C.

Theorem 5.10 now implies that the category of D-diagrams admits a transferred model structure. At this
point we remark that Theorem 6.6 likewise implies that cofibrations with cofibrant source are preserved by the
forgetful functor if taking the pushout product with 1C → MapD(X,X) and ∅ → MapD(X,Y ) preserves (acyclic)
cofibrations, which is true, for example, if individual hom objects are cofibrant and the unit maps are cofibrations.

Theorem 7.5 implies the desired rectification statement if C is flat. �

9.6. Monoidal diagrams. Extending the results of the previous section, there is also a (symmetric) colored
operad that encodes lax (symmetric) monoidal diagrams, i.e., lax (symmetric) monoidal V-enriched functors
D → C, where C is now an algebra over the monoidal category V and D is a monoidal V-enriched category. We
therefore obtain a model structure on lax (symmetric) monoidal functors:

Proposition 9.6.1. Assume that C is (symmetric) h-monoidal. For any V-enriched symmetric monoidal small
category D, the category of lax (symmetric) monoidal V-enriched functors D → C admits a transferred model
structure. Furthermore, if C is (symmetric) flat over V, then a weak equivalence D → D′ induces a Quillen
equivalence of the induced model categories.
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Proof. We consider the (symmetric) operad whose operations from a multisource (s1, . . . , sk) to a target t are
given by the enriched morphism object from s1 ⊗ · · · ⊗ sk to t. The operadic composition and unit are induced
by the monoidal category structure of D.

An algebra in C over this operad consists of a collection of objects DX in C, for any X ∈ D, together with
morphisms Mor(X1 ⊗ · · · ⊗ Xk, Y ) ⊗ DX1 ⊗ · · · ⊗ DXk

→ DY that satisfy the corresponding associativity and
unitality conditions. This is precisely the data of a (symmetric) lax monoidal V-enriched functor D → C.

As before, Theorem 5.10 and Theorem 7.5 now imply the admissibility and rectification criteria as stated. �

One could also ask for a model structure on lax functors whose fibrant objects are “weakly strong” monoidal
functors, meaning that the canonical maps A(X)⊗A(Y )→ A(X ⊔Y ) and 1→ A(∅) are weak equivalences. This
would be useful for factorization algebras, for example (see the next section). Such a model structure could be
obtained by a left Bousfield localization with respect to the local objects defined above, however, it is not clear
why such a left Bousfield localization should exist in this case.

9.7. Prefactorization algebras. As an application of the previous section we construct a model structure
on prefactorization algebras. See §7.3 in Costello and Gwilliam’s book [CG] for the relevant background. A
prefactorization algebra on a V-enriched monoidal site (S,⊔, ∅) (it’s useful to think of the monoidal structure as
the disjoint union) is a symmetric lax monoidal V-enriched functor from S to C, where C is V-enriched. A typical
example of S is the category of smooth manifolds and their embeddings equipped with the Weiss topology, where
morphism objects are either discrete or have the natural space structure. The previous section now immediately
implies the following statement.

Proposition 9.7.1. If C is symmetric h-monoidal, V-enriched, and S is a V-enriched site, then the category of
prefactorization algebras over S with values in C admits a transferred model structure. Furthermore, if C is sym-
metric flat, then a functor of sites S → S′ that induces the identity morphism on objects and is a componentwise
weak equivalence on morphism gives a Quillen equivalence of the corresponding model categories.

This raises the question whether the above model structure can be upgraded to factorization algebras. Fibrant
objects in the resulting structure would be “weakly lax” functors defined in the previous section that satisfy the
codescent condition with respect to the Grothendieck topology on S. As usual, one could try to enforce the
codescent property using the obvious left Bousfield localization. However, the model category of prefactorization
algebras constructed above is not left proper, so a special argument is needed to ensure that cobase changes of
local acyclic cofibrations are local weak equivalences.
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Homotopy theory of symmetric powers
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Abstract. We introduce the symmetricity notions of symmetric h-monoidality, symmetroidality, and symmetric
flatness. As shown in our paper arXiv:1410.5675, these properties lie at the heart of the homotopy theory of
colored symmetric operads and their algebras. In particular, they allow one to equip categories of algebras
over operads with model structures and to show that weak equivalences of operads induce Quillen equivalences
of categories of algebras. We discuss these properties for elementary model categories such as simplicial sets,
simplicial presheaves, and chain complexes. Moreover, we provide powerful tools to promote these properties
from such basic model categories to more involved ones, such as the stable model structure on symmetric spectra.
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1. Introduction

Model categories provide an important framework for homotopy-theoretic computations. Algebraic structures
such as monoids, their modules, and more generally operads and their algebras provide means to concisely encode
multiplication maps and their properties such as unitality, associativity, and commutativity. Homotopy coherent
versions of such algebraic structures form the foundation of a variety of mathematical areas, such as algebraic
topology, homological algebra, derived algebraic geometry, higher category theory, and derived differential ge-
ometry. This motivates the following question: what conditions on a monoidal model category (C,⊗) are needed
for a meaningful homotopy theory of monoids, modules, etc.? The first answer to this type of question was given
by Schwede and Shipley’s monoid axiom, which guarantees that for a monoid R in C, the category ModR(C)
of R-modules carries a model structure transferred from C, see [SS00]. The monoid axiom asks that transfinite
compositions of pushouts of maps of the form

Y ⊗ s,

where s is an acyclic cofibration and Y is any object are again weak equivalences. Moreover, given two weakly
equivalent monoids R

∼
→ S, the categories ModR and ModS are Quillen equivalent if

Y ⊗X → Y ′ ⊗X

is a weak equivalence for any weak equivalence Y → Y ′ and any cofibrant object X .
This paper is devoted to a thorough study of the homotopy-theoretic behavior of more general algebraic

expressions in a model category, such as

X⊗n
Σn

, Y ⊗Σn
X⊗n, Z ⊗Σn1×···×Σne

(X⊗n1
1 ⊗ · · · ⊗X⊗ne

e ),(1.0.1)

where X,Y, Z ∈ C, Y has an action of Σn, Z has an action of
∏

Σni
, and the subscripts denote coinvariants

by the corresponding group actions. More specifically, we introduce symmetricity properties for a symmetric
monoidal model category C: symmetric h-monoidality, symmetroidality, and symmetric flatness.

Symmetric h-monoidality requires, in particular, that for any object Y as above and any acyclic cofibration s
in C, the map

Y ⊗Σn
s�n(1.0.2)

is a couniversal weak equivalence, i.e., a map whose cobase changes are weak equivalences. Here s�n is the
n-fold pushout product of s, which is a monoidal product on morphisms. Symmetric h-monoidality is a natural
enhancement of h-monoidality introduced by Batanin and Berger in [BB13].

Symmetric flatness requires that for any Σn-equivariant map y whose underlying map in C is a weak equivalence
and any cofibration s ∈ C, the map

y �Σn
s�n(1.0.3)

is a weak equivalence. This implies that y ⊗Σn
X⊗n is a weak equivalence for any cofibrant object X . Among

other things this means that the Σn-quotients in (1.0.1) are also homotopy quotients. See 4.2.7, 4.2.2 for the
precise definitions.

1
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Expressions as in (1.0.1) are of paramount importance for handling monoids and, more generally, algebras over
colored symmetric operads. Indeed, a free commutative monoid, more generally, a free algebra over a (colored)
symmetric operad, involves such terms. In [PS14a], we show that symmetric h-monoidality ensures the existence
of a transferred model structure on algebras over any symmetric colored operad, while symmetric flatness yields
a Quillen equivalence of algebras over weakly equivalent operads. We also introduce symmetroidality in this
paper, which can be used to govern the behavior of cofibrant algebras over operads.

Up to transfinite compositions present in the monoid axiom, which we treat separately, symmetric h-mon-
oidality and symmetric flatness can be regarded as natural enhancements of the above conditions of Schwede
and Shipley. However, it turns out to be hard to establish the symmetric h-monoidality, symmetroidality, and
symmetric flatness for a given model category C directly. Therefore, in this paper, we also provide a powerful
and convenient set of tools that enable us to quickly promote these properties through various constructions on
model categories.

Theorem 1.0.4. (See Theorem 4.3.8 for the precise statement.) To check that C is symmetric h-monoidal or
symmetric flat it is enough to consider (1.0.2) and (1.0.3) for generating cofibrations s.

Theorem 1.0.5. (See Theorem 5.2.6 for the precise statement.) Given an adjunction of symmetric monoidal
model categories,

F : C ⇄ D : G,

which is sufficiently compatible with the monoidal products, such as D = ModR(C), where R is a commutative
monoid in C, the symmetric h-monoidality and symmetric flatness of C imply the one of D.

Theorem 1.0.6. (See Theorem 6.2.2 for the precise statement.) Given a monoidal left Bousfield localization

C ⇄ D = L⊗
S (C),

the symmetric h-monoidality and symmetric flatness of C imply the one of D.

As an illustration of these principles, consider the problem of establishing the symmetric h-monoidality,
symmetroidality, and symmetric flatness for the monoidal model category of simplicial symmetric spectra. This
allows one to establish the homotopy theory of operads and their algebras in spectra, such as commutative ring
spectra or E∞-ring spectra. First, by direct inspection (Subsection 7.1) one establishes these properties for the
generating (acyclic) cofibrations of simplicial sets, i.e., ∂∆n → ∆n and Λn

k → ∆n. By Theorem 4.3.8, this shows
that sSet is symmetric h-monoidal, symmetroidal, and flat. Next, again by direct inspection, one can show
that positive cofibrations of symmetric sequences (i.e., cofibrations that are isomorphisms in degree 0) form a
symmetric h-monoidal, symmetric flat class. Via Theorem 5.2.6 these properties can be transferred to modules
over a (fixed) commutative monoid in symmetric sequences (specifically, the sphere spectrum), equipped with
the positive unstable (i.e., transferred) model structure. Finally, by applying Theorem 6.2.2, one establishes
them for the left Bousfield localization of the positive unstable model structure with respect to the stabilizing
maps, which gives the positive stable model structure on simplicial symmetric spectra. These steps are carried
out in detail for spectra in an abstract model category in [PS14b].

After recalling some basic notions pertaining to model categories in Section 2, we embark on a systematic
study of the arrow category Ar(C) of a monoidal model category C. Equipped with the pushout product of
morphisms, we show that Ar(C) is again a monoidal model category (Subsection 3.1). We then recall the
notion of h-monoidality due to Batanin and Berger [BB13], and the concept of flatness, which is well-known
and has been independently studied by Hovey, for example, see [Hov14]. In Section 4, we define the above-
mentioned symmetricity concepts. This extends the work of Lurie [Lur] and Gorchinskiy and Guletskĭı [GG09].
An important technical key is Theorem 4.3.8, which shows the stability of these properties under weak saturation.
This extends a similar statement of Gorchinskiy and Guletskĭı [GG09, Theorem 5] about stability under weak
saturation of a special case of symmetroidality (which we also prove in 4.3.8). Simplified expository accounts of
this result were later given by White [Whi14a, Appendix A] and Pereira [Per14, §4.2]. Our proof uses similar
ideas, but is shorter. The stability of the symmetricity and various other model-theoretic properties under
transfers and left Bousfield localizations is shown in §5 and §6. Given that these two methods are the most
commonly used tools to construct model structures, the main results of these sections (5.2.1, 5.2.6, 6.2.1, 6.2.2)
should be useful to establish the symmetricity for many other model categories not considered in this paper.
For example, the combination of h-monoidality and flatness allows to carry through the monoid axiom to a left
Bousfield localization. This is illustrated in Section 7, where we discuss the symmetricity properties of model
categories such as simplicial sets, simplicial modules, and simplicial (pre)sheaves, as well as topological spaces
and chain complexes.

We thank John Harper, Jacob Lurie, Birgit Richter, Brooke Shipley, and David White for helpful conversa-
tions. This work was partially supported by the SFB 878 grant.

2. Model categories

In this section we recall parts of the language of model categories [Hov99], [Hir03], [MP12, Part 4] that is
used throughout this paper. A model category is a complete and cocomplete category C equipped with a model
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structure: a class W of morphisms (called weak equivalences) satisfying the 2-out-of-3 property together with a
pair of weak factorization systems (C,AF) (cofibrations and acyclic fibrations) and (AC,F) (acyclic cofibrations
and fibrations) such that AC = C ∩W and AF = F ∩W.

An object X in a model category C is cofibrant if the canonical map ∅ → X from the initial object to X is
a cofibration. The class of cofibrant objects is denoted CO. Likewise, an object Y is fibrant if the canonical
map Y → 1 to the terminal object is a fibration. A model category is pointed if the unique map ∅ → 1 is an
isomorphism.

Different model structures on the same category are distinguished using superscripts. The weakly saturated
class generated by some class M of morphisms is denoted cof(M). The class of maps having the right lifting
property with respect to all maps in M is denoted inj(M).

Definition 2.0.1. A model category is cofibrantly generated [Hir03, Definition 11.1.2] if its cofibrations and
acyclic cofibrations are generated by sets (as opposed to proper classes) that permit the small object argument,
quasi-tractable if its (acyclic) cofibrations are contained in the weak saturation of (acyclic) cofibrations with
cofibrant source (and target), combinatorial [Lur09, Definition A.2.6.1] if it is locally presentable and cofibrantly
generated, tractable [Bar10, Definition 1.21] if it is combinatorial and quasi-tractable.

Combinatoriality or alternatively cellularity [Hir03, Definition 12.1.1] is the key assumption used to guarantee
the existence of Bousfield localizations.

Definition 2.0.2. A model category C is pretty small if there is a cofibrantly generated model category struc-
ture C′ on the same category as C such that WC = WC′ , CC ⊃ CC′ and the domains and codomains X of some
set of generating cofibrations of C′ are compact, i.e., Mor(X,−) preserves filtered colimits.

Pretty smallness is stable under transfer and localization (Propositions 5.1.2(v) and 6.1.3). Lemma 2.0.3
implies that weak equivalences are stable under colimits of chains in a pretty small model category. Pretty
smallness is a fairly mild condition that is satisfied for all basic model categories in Section 7.

Lemma 2.0.3. Let λ be an ordinal and f : λ→ Ar(C) a cocontinuous chain of morphisms in a model category,
i.e., a sequence of commutative squares

Xi

fi

��

// Xi+1

fi+1

��

Yi
// Yi+1

indexed by i ∈ λ such that fi = colimj<i fj for all limit ordinals i ∈ λ. Set f∞ = colim fi.

(i) [CS02, Proposition I.2.6.3] If every fi (equivalently, only f0) and every map Xi+1 ⊔Xi
Yi → Yi+1 is an

(acyclic) cofibration, then so is f∞.
(ii) If cofibrations in C are generated by cofibrations with compact domain and codomain and every fi is an

acyclic fibration, then so is f∞.
(iii) If C is pretty small and every fi is a weak equivalence, then so is f∞. In particular, colimits of chains are

homotopy colimits. The same is true for arbitrary filtered colimits.
(iv) If C is pretty small then weak equivalences are stable under transfinite compositions, i.e., for any cocontin-

uous chain X : λ→ C of weak equivalences the map X0 → colimX is also a weak equivalence.

Proof. (ii): Following the proof of [Hov99, Corollary 7.4.2], consider the lifting diagram

A → Xs

↓ ↓

B → Ys,

where A → B is a generating cofibration and s = ∞. The horizontal maps factor through some stage Xα,
and Yβ . We can take α = β, increasing them if necessary. By further increasing α we can make the above
diagram commutative for s = α. Since Xα → Yα is an acyclic fibration, we have a lifting B → Xα, which gives
a lifting of the original diagram after postcomposing with Xα → X∞.

(iii): We may assume that C is such that its generating cofibrations have compact (co)domains. Proposition 4.1
in Raptis and Rosický [RR14] now implies the desired result. As indicated there in the preceding remark, the
condition of local presentability is not used in the proof, so our assumptions are sufficient to invoke their
proposition. (iv) is a particular case of (iii). �

The notion of h-cofibrations due to Batanin and Berger recalled below is the basis of (symmetric) h-monoidality
(Definitions 3.2.1, 4.2.7), which a key condition in the admissibility results of a subsequent paper [PS14a,
Theorem 5.10]. There is a similar concept of i-cofibrations. By definition, an i-cofibration is a map along which
pushouts are homotopy pushouts. In a left proper model category, this is the same as being an h-cofibration. In a
non-left proper model category i-cofibrations behave better than h-cofibrations. For example the left properness
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assumptions in Theorem 6.2.2(ii) and Lemma 3.2.7 is unnecessary if one uses i-cofibrations instead. Moreover,
acyclic i-cofibrations, i.e., maps that are i-cofibrations and weak equivalences, coincide with couniversal weak
equivalences in any (not necessarily left proper) model category, as can be shown. However, our main supply
of h-cofibrations (or i-cofibrations) comes from h-monoidal (or i-monoidal) categories, which are automatically
left proper (Lemma 3.2.2), so the two concepts agree in this case. In particular, there is no difference between
h-monoidality and i-monoidality (or their symmetric versions). Hence we do not pursue a separate study of
i-cofibrations in this paper.

Definition 2.0.4. [BB13, Definition 1.1] A map f : X → X ′ in a model category C is an h-cofibration if for any
pushout diagram

X

f

��

// A

��

g
// B

��

X ′ // A′ g′

// B′

with a weak equivalence g, g′ is also a weak equivalence. An acyclic h-cofibration is a map that is both an
h-cofibration and a weak equivalence.

Example 2.0.5. In the category sSet, equipped with its standard model structure, a map is an (acyclic)
cofibration if and only if it is an (acyclic) h-cofibration. By 2.0.6(v), we only need to prove the if-part. Suppose
a noninjective map f : A → B is an h-cofibration. Then A has two nondegenerate simplices a, a′ ∈ An with
f(a) = f(a′). Since any cofibration is an h-cofibration and h-cofibrations are stable under composition by
2.0.6(ii), we may first replace A by the union of all faces of a and a′ and then by Sn ∨ Sn, using the pushout
along the map A→ Sn∨Sn collapsing all proper faces of a and a′ to the base point. The pushout of B⊔Sn∨SnSn

(using the obvious collapsing map) is isomorphic to B. IfB was also the homotopy pushout, there was a homotopy
fiber square of derived mapping spaces

RMap(Sn ∨ Sn,K(Z, n)) RMap(Sn,K(Z, n))oo

RMap(B,K(Z, n))

f∗

OO

RMap(B,K(Z, n)),

OO

id
oo

contradicting the fact that the path components of these spaces are Z⊕ Z, Z, and Hn(B,Z), respectively.

Usually, h-cofibrations form a strictly larger class than cofibrations, though. We don’t know an effective
criterion characterizing h-cofibrations.

Lemma 2.0.6. Suppose C is a model category.

(i) If C is left proper, a map is an h-cofibration if and only if pushouts along it are homotopy pushouts.
(ii) (Acyclic) h-cofibrations in C are stable under composition, pushouts and retracts.
(iii) If weak equivalences are stable under colimits of chains (e.g., if C is pretty small, see Lemma 2.0.3(iii)),

then so are (acyclic) h-cofibrations. In particular, they are closed under transfinite composition, so they
form a weakly saturated class.

(iv) Couniversal weak equivalences are acyclic h-cofibrations. The converse is true if C is left proper.
(v) Any acyclic cofibration is an acyclic h-cofibration. If C is left proper, any cofibration is an h-cofibration.

Proof. Parts (i), (ii), (iv) are due to Batanin and Berger [BB13, Proposition 1.5, Lemmas 1.3, 1.6].
(iii): We use the notation of Lemma 2.0.3. For an object S under X∞, there is a functorial isomorphism

S ⊔X∞
Y∞ = colimS ⊔Xi

Yi. Therefore, the pushout of a weak equivalence s : S → S′ under X∞ along f∞ is the
filtered colimit of the pushouts of s ⊔Xi

Yi. Each of those is a weak equivalence since fi is an h-cofibration. By
assumption, their colimit is also a weak equivalence, so f∞ is an h-cofibration. For acyclic h-cofibrations, use
Lemma 2.0.3(iii) one more time.

(v): The acyclic part is immediate from (iv). The nonacyclic part is [BB13, Lemma 1.2]. �

Lemma 2.0.7. If G : D → C is a functor between model categories that creates weak equivalences (for example,
if the model structure on D is transferred from C) and preserves pushouts along a map d ∈Mor(D) and G(d) is
an (acyclic) h-cofibration then d is an (acyclic) h-cofibration.

Proof. Given a pushout f ′ in D of a weak equivalence f under dom(d), we apply G and get a pushout in C.
As G(d) is an h-cofibration, G(f ′) is a weak equivalence, hence f ′ is a weak equivalence and therefore d is an
h-cofibration. The acyclic part is similar, using that G detects weak equivalences. �
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3. Monoidal model categories

In this section, we study certain properties of monoidal model categories. We first review the standard
definitions of a monoidal model category and, more generally, a model category with a (left module) action of a
monoidal category. In Subsection 3.2, we recall the concepts of h-monoidality (due to Batanin and Berger) and
flatness (due to Hovey). In the case of a symmetric monoidal model category, these notions will be refined in
Section 4.

Definition 3.0.1. [Hov99, Definitions 4.1.6, 4.2.6] A (symmetric) monoidal category (C,⊗, 1) is a (commuta-
tive) 2-monoid in the (large) bicategory of categories, functors, and natural transformations. For a monoidal
category C, a left C-module C′ over C is a left module over C regarded as a 2-monoid. The functor

⊗ : C × C′ → C′

will be referred to as the scalar product. To simplify the notation, Mac Lane’s coherence theorem for monoidal
categories will implicitly be used.

A (symmetric) monoidal model category is a closed (symmetric) monoidal category C such that

⊗ : C × C → C

is a left Quillen bifunctor, i.e.,

c� d : C1 ⊗D2 ⊔C1⊗D1 C2 ⊗D1 → C2 ⊗D2

is a cofibration in C for any two cofibrations c : C1 → C2 and d : D1 → D2 in C, which is moreover acyclic if
c or d is acyclic. This is also referred to as the pushout product axiom.

If a left C-module C′ (but not necessarily C itself) carries a model structure, we call C′ it a left C-module with
a model structure.

A left C-module C′ with a model structure satisfies the monoid axiom if the class cof(C ⊗ACC′) consists of
weak equivalences in C′ [SS00, Definition 3.3].

In the definition of a monoidal model category, we do not require the unit axiom (which asks that (Q(1) →
1) ⊗X is a weak equivalence, where X is any cofibrant object and the map is the cofibrant replacement of 1).
It is a special case of flatness (Definition 3.2.3).

Suppose V is a symmetric monoidal model category. A V-enriched model category [Bar10, Definition 1.27.4.1]
is a V-enriched category C that is tensored and cotensored over V and such that the tensor functor V×C → C is a
left Quillen bifunctor. We also assume the unit axiom for the V-module C, i.e., that for some (equivalently, any)
cofibrant replacement Q(1V)→ 1V of the monoidal unit, Q(1V)⊗X → X is a weak equivalence for all cofibrant
objects X . (This requirement is used in Proposition 4.3.5.) Two important examples of enriching categories for
us are the categories of simplicial sets sSet, which gives us simplicial model categories, and connective chain
complexes of abelian groups Ch+, which gives us differential graded model categories. Chain complexes of
various kinds are not enriched over simplical sets, which necessitates considering different enriching categories.
In both cases, 1 is cofibrant, so the unit axiom is trivial.

To ensure that V-enriched left Bousfield localizations exist, we require the enriching model category V to be
tractable or at least quasi-tractable (see Proposition 6.1.3). Both of the above examples are tractable.

3.1. The pushout product. In this section, we define an endofunctor Ar on the bicategory of cocomplete
monoidal categories, cocontinuous strong monoidal functors, and monoidal natural transformations. Roughly
speaking, Ar sends a category C to its category of morphisms equipped with a new monoidal structure, the
pushout product. The underlying category of Ar(C) is the category of functors Fun(2, C), where 2 := {0 → 1}
is the walking arrow category. Its objects are morphisms in C and its morphisms are commutative squares in C.
If C is (co)complete, then Ar(C) is also (co)complete, because (co)limits in categories of functors are computed
componentwise. In this section we study the monoidal structure of Ar(C) given by the pushout product and the
projective model structure on Ar(C).

Definition 3.1.1. Given a cocomplete monoidal category C, its (cocomplete) category Ar(C) of morphisms
can be endowed with a monoidal structure (the pushout product) as follows. Interpret an object in Ar(C) as
a functor 2 → C. A finite family f : I → Ar(C) of objects in Ar(C) (i.e., morphisms fi : Xi → Yi in C) gives
a functor 2I → CI → C, where CI → C is the monoidal product on C. We interpret this functor as a cocone
on the category 2I \ {1I} (observe that 1I is the terminal object of the category 2I) and the monoidal product
of f is defined to be the universal map � fi : ⊡ fi →

⊗
i Yi associated to this cocone, interpreted as an object

in Ar(C). This defines a monoidal structure on Ar(C).
For example, the pushout product of two morphisms f1 and f2 is

f1 � f2 : f1 ⊡ f2 = X1 ⊗ Y2 ⊔X1⊗X2 Y1 ⊗X2 → Y1 ⊗ Y2.

We obtain a bifunctor

� : Ar(C)×Ar(C)→ Ar(C).(3.1.2)
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Remark 3.1.3. If (C,⊗) is braided or symmetric, then so is (Ar(C),�). Moreover, if ⊗ preserves colimits of a
certain type (e.g., sifted colimits) in one or both variables, then so does �. For example, if C is a closed monoidal
category, then so is Ar(C), with the internal hom Hom(f1, f2) (which one can call the pullback hom from f1
to f2) being the morphism Hom(Y1, X2)→ Hom(Y1, Y2)×Hom(X1,Y2)Hom(X1, X2). For brevity of the exposition,
we only spell out the nonsymmetric, nonclosed case in the sequel.

Proposition 3.1.4. A cocontinuous strong monoidal functor F : C → D between cocomplete monoidal categories
induces a cocontinuous strong monoidal functor Ar(F ) : Ar(C)→ Ar(D).

Proof. The functor Ar(F ) is cocontinuous because colimits of diagrams are computed componentwise. To prove
strong monoidality, suppose f : I → Ar(C) is a finite family of objects in Ar(C). The diagram

2I
f

−−−−→ CI
⊗

−−−−→ C
yid

yF I

yF

2I
F (f)
−−−−→ DI ⊗

−−−−→ D.

is commutative, meaning the left square is strictly commutative and the right square is commutative up to the
canonical natural isomorphism coming from the monoidal structure on the functor F . The pushout product� f is

the universal map associated to the cocone 2I
f
−→CI

⊗
−→C with the apex 1I ∈ 2I , and similarly for �Ar(F )(f).

Since F is cocontinuous, it preserves universal maps associated to cocones. Thus the image of the universal
morphism associated to the cocone 2I → CI → C is also the universal morphism associated to the cocone
2I → CI → C → D. The latter cocone is canonically isomorphic to the cocone 2I → DI → D, which is the
cocone defining �Ar(F )(f). �

Definition 3.1.5. A morphism in the category Ar(C) for some monoidal category C is a pushout morphism if
the corresponding commutative square in C is cocartesian.

Proposition 3.1.6. For any cocomplete closed monoidal category C pushout morphisms in Ar(C) are closed
under the pushout product.

Proof. A pushout morphism can be presented as a functor 2 × 2 → C, where the first 2 is responsible for the
morphism direction in Ar(C) and the second 2 is responsible for the morphism direction in C. Schematically, we
denote this by the commutative diagram

00 → 10

↓ ↓

01 → 11.

A finite family of pushout morphisms f : I → Mor(Ar(C)) gives a functor (2×2)I → CI , which we compose with
the monoidal product CI → C to obtain a functor F : (2 × 2)I → C. Consider now the category DC of all full
subcategories A of (2× 2)I that are downward closed : if Y ∈ A and X → Y is a morphism in (2× 2)I , then also
X ∈ A. Morphisms in DC are inclusions of subcategories. Taking the colimit of the functor F restricted to the
given full subcategory A yields a cocontinuous functor Q : DC→ C. In particular, the set of all inclusions A→ B
in DC that are mapped to isomorphisms by Q forms a subcategory of DC closed under cobase changes of the
underlying sets.

Suppose that B ∈ DC is obtained from A ∈ DC by adding an element W × 11 and taking the downward
closure, where W ∈ (2 × 2)I\i for some i ∈ I is such that W × {00, 01, 10} ⊂ A. The resulting inclusion A→ B

gives an isomorphism after we apply Q because the commutative square 2× 2
×W
−−→(2× 2)I

F
−−→C is a cocartesian

square because each fi is a cocartesian square and the monoidal product with a fixed object preserves cocartesian
squares. This uses the closedness of the monoidal product.

Consider the following commutative square in DC, whose right entries are obtained by taking the left entries,
replacing 0 in the first components by 1, and downward closing:

{00, 01}I \ {01}I → {00, 01, 10, 11}I \ {01, 11}I

↓ ↓

{00, 01}I → {00, 01, 10, 11}I.

The pushout product �fi is obtained by applying Q to the following map:

{00, 01, 10, 11}I \ {01, 11}I ⊔{00,01}I\{01}I {00, 01}I → {00, 01, 10, 11}I.

We present this morphism in DC as a composition of pushouts of generating maps explained in the previous
paragraph, which implies that the map itself is sent to an isomorphism by Q. Such a presentation can be
obtained by using the rule explained above to add all elements of {01, 11}I \ {01}I to the source by induction on
the number of 11’s. If there are no 11’s, the element {01}I belongs to the bottom left corner, proving our claim.
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By induction, assuming that all tuples with less than k elements equal to 11 have already been added, take any
tuple with exactly k components equal to 11 and observe that by replacing this component with 00, 01, or 10
we obtain a tuple already present in our set. Thus we can also add the tuple under consideration to our set. �

The elementary proof of the following lemma is left to the reader. Together with Proposition 3.1.6, it can be
rephrased by saying that x�− preserves finite cellular maps.

Lemma 3.1.7. Given two composable maps y and z, and another map x, x� (y ◦ z) is the composition of the
pushout of x� z along x⊡ z → x⊡ (y ◦ z), followed by x� y.

We now extend the formation of arrow categories to monoidal model categories. A strong monoidal left Quillen
functor between monoidal model categories is a left Quillen functor F that is also equipped with the structure
of a strong monoidal functor, i.e., functorial isomorphisms F (X ⊗ Y ) ∼= F (X)⊗ F (Y ) compatible with the unit
and associativity of ⊗. Monoidal model categories, strong monoidal left Quillen functors, and monoidal natural
transformations form a bicategory. (As in Remark 3.1.3, there are obvious variants for (symmetric) monoidal
model categories, which we will not spell out explicitly.)

The following proposition was shown independently by Hovey under the additional assumption that C is
cofibrantly generated [Hov14, Proposition 3.1].

Proposition 3.1.8. The functor Ar described in Definition 3.1.1 and Proposition 3.1.4 descends to the bicate-
gory of closed monoidal model categories, as described in the proof below.

Proof. Given a closed monoidal model category C, the monoidal category Ar(C) is complete and cocomplete.
We equip Ar(C) with the projective model structure, which coincides with the Reedy model structure, where
the nonidentity arrow 0 → 1 in 2 is declared to be positive. In particular, the projective model structure
on Ar(C) exists. Fibrations and weak equivalences are defined componentwise. (Acyclic) cofibrations f : g → h
are commutative squares

W
p
−−→ Y

yg

yh

X
q
−−→ Z

such that p and the universal map Y ⊔W X → Z are both (acyclic) cofibrations, hence q is also an (acyclic)
cofibration. In particular, cofibrant objects in Ar(C) are morphisms g : W → X such that W is cofibrant and g
is a cofibration in C.

We now prove the pushout product axiom for Ar(C) from the one of C (Definition 3.0.1). Actually, we show
that the pushout product of a finite nonempty family f : I → Mor(Ar(C)) of cofibrations inAr(C) is a cofibration,
and if one of the cofibrations is acyclic, then the resulting cofibration is also acyclic. The infrastructure of the
following proof is the same as in the proof of Proposition 3.1.6. Just like there we get a functor F : (2× 2)I → C
and a cocontinuous functor Q : DC→ C. Let

A −−→ A′

ya

ya′

B −−→ B′

be a cocartesian square in DC, i.e., B′ = A′ ∪A B. If Q(a) is a cofibration, then so is Q(a′). Suppose that
for every i ∈ I we select one of the morphisms {00} → {00, 10} or {00, 01, 10} → {00, 01, 10, 11} in DC(2 × 2).
Then the pushout product of these morphisms belongs to the above subcategory because of the pushout product
axiom for C. The first morphism above expresses the fact that the top arrow of a cofibration in Ar(C) is itself
a cofibration and the second morphism corresponds to the canonical map from the pushout to the bottom right
corner, which is also a cofibration. The pushout product mentioned above always has the form A \ {x} → A,
where the individual components of x are 10 respectively 11, according to the choice made above.

The pushout product of f is the functor Q applied to the commutative square

{00, 01, 10, 11}I \ {10, 11}I \ {01, 11}I → {00, 01, 10, 11}I \ {01, 11}I

↓ ↓

{00, 01, 10, 11}I \ {10, 11}I → {00, 01, 10, 11}I.

It remains to prove that Q applied to the top map and the map from the pushout of the left and top arrows
(i.e., the union of all corners except for the bottom right corner) to the bottom right corner is a cofibration. We
present the morphism in DC under consideration as a composition of pushouts of generating maps explained in
the previous paragraph. This implies that the map itself is sent by Q to a cofibration.

For the top map, such a presentation can be obtained by using the rule explained above to add all elements
of {10, 11}I \ {11}I to the source by induction on the number of 11’s. Assume that all tuples with less than k
11’s have already been added and take any tuple with exactly k 11’s. By applying the rule explained in the
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previous paragraph to the family of maps that are either {00} → {00, 10} if the corresponding component is 10
or {00, 01, 10} → {00, 01, 10, 11} if the corresponding component is 11 we can conclude that the tuple under
consideration can be added to our set.

For the map from the pushout of the top and left arrows to the bottom right corner observe that we only
need to add the element {11}I , which is possible because the conditions for the corresponding rule are satisfied.

For acyclic cofibrations observe that the rule in the previous paragraph now guarantees that the resulting map
is an acyclic cofibration after we apply Q, precisely because the pushout product in C of a family of cofibrations,
at least one of which is acyclic, is again an acyclic cofibration. The rest of the proof is exactly the same, because
the category of acyclic cofibrations is also closed under pushouts.

Finally, Ar descends to strong monoidal left Quillen functors: if F : C → D is such a functor, then the induced
functor Ar(F ) : Ar(C) → Ar(D) is cocontinuous and strong monoidal (Proposition 3.1.4). It is a left Quillen
functor because F preserves (acyclic) cofibrations and pushouts. �

3.2. H-monoidality and flatness. In this section, we discuss the notion of h-monoidality and flatness of a left
module C′ with a model structure over a monoidal category C.

H-monoidality was introduced by Batanin and Berger [BB13, Definition 1.7]. Essentially, h-monoidality
ensures that category of modules over some monoid R ∈ C carries a model structure. This statement is referred
to as the admissibility of the monoid R. The admissibility of monoids is also guaranteed by the monoid axiom
[SS00, Theorem 4.1], which is a combination of two weak saturation properties, namely weak saturation by
transfinite compositions and by pushouts. In this paper, we focus on admissibility conditions using pretty
smallness and h-monoidality, which individually govern the homotopical behavior of transfinite compositions
and of (certain) pushouts, respectively. Basic model categories are usually h-monoidal by Lemmas 3.2.4 and
3.2.5. On the other hand, h-monoidality is very robust since is stable under transfer and localization (5.2.5(i),
6.2.1(iii)). We don’t know a similar statement for the monoid axiom (without the detour via pretty smallness
and h-monoidality).

Definition 3.2.1. A class S of (acyclic) cofibrations in a left C-module with a model structure (over a monoidal
category C) is (acyclic) h-monoidal if for any any object C ∈ C and any s : S1 → S2 in S, the map

C ⊗ s : C ⊗ S1 → C ⊗ S2

is an (acyclic) h-cofibration (Definition 2.0.4). The category C′ is h-monoidal if the classes of (acyclic) cofibrations
are (acyclic) h-monoidal.

Lemma 3.2.2. [BB13, Lemma 1.8] Any h-monoidal model category is left proper.

We now define flatness, which is the main condition in rectification of modules over monoids. Its symmetric
strengthening, symmetric flatness, plays the corresponding role for algebras over symmetric operads [PS14a,
Theorem 7.5].

Definition 3.2.3. A class S of cofibrations in a left module C′ over a model category C is flat if for all weak
equivalences y : Y1 → Y2 in C and all s : S1 → S2 in S, the following map is a weak equivalence:

y � s : Y2 ⊗ S1 ⊔Y1⊗S1 Y1 ⊗ S2 → Y2 ⊗ S2

The category C′ is flat if the class of all cofibrations is flat.

For example, if C′ is flat then for any cofibrant object X ∈ C′ and any weak equivalence y ∈ C, the map y⊗X is
a weak equivalence. In this slightly weaker form, flatness is independently due to Hovey [Hov14, Definition 2.4].
Actually, the notion appears already in [SS00, Theorem 4.3]. We use the above slightly stronger definition since
it is stable under weak saturation of S (Theorem 3.2.8(ii)). This is useful to show the stability of flatness under
transfer (Proposition 5.2.1(ii)) and localization (Proposition 6.2.1(i)).

In general, we avoid cofibrancy hypotheses where possible, in particular, we do not in general assume that the
monoidal unit 1 is cofibrant. The combination of the following two lemmas is useful to establish h-monoidality
and flatness in practice, though.

Lemma 3.2.4. Let C be a model category in which all objects are cofibrant. Then C is left proper and quasi-
tractable. Moreover, tractability follows from combinatoriality, while h-monoidality and flatness follow from
monoidality.

Proof. See [Hir03, Corollary 13.1.3] for left properness, [SS00, Remark 3.4] for flatness and [BB13, Lemma 1.8]
for h-monoidality. �

Lemma 3.2.5. Assume that there are two model structures C and C1 on the same underlying category such that
WC = WC1 and CC ⊂ CC1 . Then the left properness of C1 implies the one of C. If C is equipped with a monoidal
structure, the same is true for monoidality, h-monoidality, and flatness.

Proof. This follows from the definitions. For the h-monoidality, note that (acyclic) h-cofibrations only depend
on weak equivalences. �
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Lemma 3.2.6. (cf. [BB13, Proposition 2.5]) If C′ is an h-monoidal left C-module with a model structure (over
a monoidal category C) and its weak equivalences are stable under transfinite compositions (for example, C′ is
pretty small, see Lemma 2.0.3), then C′ satisfies the monoid axiom.

Proof. The monoid axiom says cof(C ⊗ACC′) ⊂ WC′ , i.e., the weak saturation of any object of C with acyclic
cofibrations, consists of weak equivalences. This is clear for retracts, and for colimits of chains by assumption.
Finally, for C ∈ C and f ∈ ACC′ , C ⊗ f is an acyclic h-cofibration in C′ by assumption. By Lemmas 2.0.6(iv)
and 3.2.2, this is equivalent to being a couniversal weak equivalence. �

We finish this section with two weak saturation properties. A slightly weaker statement than Theorem 3.2.8(ii)
is independently due to Hovey [Hov14, Theorem A.2]. The following lemma is the basis of the interaction of
h-monoidality and flatness, see for example the proof of 3.2.8(ii).

Lemma 3.2.7. Let C′ be a left proper model category that is a left module over a monoidal category C. Let

A //

a

��

B

b
��

A′ // B′

be a cocartesian square in C′. Let y : Y → Y ′ ∈ C be any morphism such that y � a is a weak equivalence in C′,
and both Y ⊗ a and Y ′ ⊗ a are h-cofibrations (Definition 2.0.4). Then y � b is a weak equivalence.

Proof. Consider the commutative diagram

Y ⊗A
y⊗a

//

Y ⊗a

��

Y ′ ⊗A

α

��

Y ′⊗a

((❘
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

Y ⊗A′ // y ⊡ a
y�a

// Y ′ ⊗A′.

As usual, ⊡ denotes the domain of the pushout product �. By assumption, Y ⊗ a is an h-cofibration, hence so
is α by Lemma 2.0.6. Likewise, Y ′ ⊗ a is an h-cofibration. Hence the top square and the outer rectangle in the
diagram below are homotopy pushouts (Lemma 2.0.6(i)). Hence so is the bottom square. By the claim in the
proof of 2.0.6(iv), the map y � b is therefore also a weak equivalence:

Y ′ ⊗A //

α h-cofib.

��

h-cofib.

��

Y ′ ⊗B

��

y ⊡ a //

y�a∼

��

y ⊡ b

y�b

��

Y ′ ⊗A′ // Y ′ ⊗B′.

�

Theorem 3.2.8. Let C be a monoidal model category and let C′ be a pretty small left C-module with a model
structure. We say some property of a class S of morphisms in C′ is stable under saturation if it also holds for
the weak saturation cof(S).

(i) If the scalar product ⊗ : C × C′ → C′ preserves all colimits in C′, then the property of S of being (acyclic)
h-monoidal is stable under saturation.

(ii) Suppose the scalar product ⊗ preserves filtered colimits in C′. If S is h-monoidal then flatness of S is stable
under saturation. In particular, if some class of generating cofibrations in C is flat and h-monoidal, then
C is flat.

Proof. (i): The stability of (acyclic) h-monoidality of S under weak saturation follows from Lemma 2.0.6(iii)
and the preservation by C′ of colimits in C′.

(ii): For a weak equivalence y : Y → Y ′ in C and any s ∈ S, y � s is a weak equivalence by assumption. By
h-monoidality of S, Y ⊗s and Y ′⊗s are h-cofibrations. Thus for any pushout s′ of s, y�s′ is a weak equivalence
by Lemma 3.2.7. For a transfinite composition s∞ of maps si, y � s∞ is the transfinite composition of y � si
by preservation of filtered colimits in the second variable. Therefore it is again a weak equivalence using pretty
smallness (Lemma 2.0.3). As usual, retracts are clear. �
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4. Symmetricity properties

In this section we study three properties of a symmetric monoidal model category C: symmetric h-monoidality,
symmetroidality and symmetric flatness. As the name indicates, these involve the formation of pushout powers,
i.e., expressions of the form

�
n

f := f�n := f � · · ·� f︸ ︷︷ ︸
n times

.

After settling preliminaries on objects with a finite group action, these properties are defined in Subsection 4.2.
The main result of Subsection 4.3 is Theorem 4.3.8 which shows the stability of these notions under weak
saturation. This is a key step in showing that the properties also interact well with transfer and localization of
model structures. Examples of model categories satisfying these properties are given in Section 7.

4.1. Objects with a finite group action. We first examine model-theoretic properties of objects with an
action of a finite group, for example the permutation action of Σn on f�n. Given a finite group G, considered
as a category with one object, and any category C, define

GC := Fun(G, C).(4.1.1)

This is the category of objects in C with a left G-action. It is symmetric monoidal if C is, by letting G act
diagonally on the monoidal product. Given some X ∈ GC and any subgroup H ⊂ G, we write XH = colimH X
for the coinvariants.

For any X ∈ C we define G/H · X :=
∐

G/H X ∈ GC on which G-acts by the left G-action on G/H . More

generally, given any X ∈ HC and any morphism of groups H → G, we define

G ·H X := (G ·X)H ,

where H acts on the right on G and on the left on X .

Lemma 4.1.2. Suppose C is a cocomplete category and H is a subgroup of a finite group G. Any choice of a
partition G =

∐
i H · gi of G into H-cosets induces a natural isomorphism

ϕ(G ·H −)→ (G/H) · ϕ(−)

of functors HC → C, where ϕ denotes the forgetful functor to C.

Proof. The canonical projection G · ϕX → G/H · ϕX factors over ϕ(G ·H X). Conversely, given g ∈ G, the
partition gives a unique h ∈ H and i such that g = hgi. Define G/H · ϕX → G ·H ϕX by xgH 7→ (h−1x)gi . �

Proposition 4.1.3. Suppose C is a cofibrantly generated model category. The category GC carries the projective
model structure, denoted GproC, whose weak equivalences and fibrations are precisely those maps in GC that are
mapped to weak equivalences respectively fibrations in C by the forgetful functor GC → C. The cofibrations
of GproC are generated by the maps of the form G · f , where f runs over generating cofibrations of C.

Given a morphism of groups H → G, there is a Quillen adjunction

G ·H − : HproC ⇆ GproC : R,(4.1.4)

where the right adjoint functor is the restriction.
Finally, suppose C is a symmetric monoidal model category. Given two groups G and H, the monoidal product

on C induces a left Quillen bifunctor

GproC ×HproC → (G×H)proC.(4.1.5)

Proof. The existence of this model structure is standard, see, for example, Hirschhorn [Hir03, Theorem 11.6.1].
The adjunction (4.1.4) is seen to be a Quillen adjunction by looking at the right adjoint. The functor (4.1.5) is
a left Quillen bifunctor because (G · IC)� (H · IC) = (G×H) · (IC � IC) ⊂ (G×H) ·CC , using the cocontinuity
and monoidality of the functor G · − and the pushout product axiom for C. �

Proposition 4.1.6. The functor −�n : ArC → ΣnArC preserves filtered colimits.

Proof. The functor −�n is the composition Ar(C)
∆
−→ΣnAr(C)n

�
−→ΣnAr(C). The monoidal product Ar(C)n →

Ar(C) is separately cocontinuous because the monoidal structure is closed, so −�n evaluated on colimD for some
filtered diagram D : I → Ar(C) can be computed as colimDn, where Dn : In → Ar(C) is obtained by composing
the nth cartesian power In → Ar(C)n ofD with the monoidal productAr(C)n → Ar(C). For a filtered category I
the diagonal I → In is a cofinal functor, thus the last colimit can be computed as colimI �

n
D. �

Proposition 4.1.7. [Har09, Proposition 6.13] Suppose h : f → g is a pushout morphism in Ar(C). Then
h�n : f�n → g�n is a also a pushout morphism.

Proof. This follows immediately from Proposition 3.1.6. �
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4.2. Definitions. We now define three properties of (morphisms in) a symmetric monoidal model category C:
symmetric flatness, symmetric h-monoidality and symmetroidality. They are appropriate strengthenings of flat-
ness (Definition 3.2.3), h-monoidality (Definition 3.2.1) and the pushout product axiom. Symmetric flatness is
the key condition required to obtain a rectification result for operadic algebras [PS14a, Theorem 7.1]. Approxi-
mately, it says that for any cofibrant object X ∈ C, the map

y ⊗Σn
X⊗n : Y ⊗Σn

X⊗n → Y ′ ⊗Σn
X⊗n

is a weak equivalence for any weak equivalence y : Y → Y ′ in ΣnC. Slightly more accurately, the definition is
phrased in terms of more general cofibrations s using instead

y �Σn
s�n.

For s : ∅ → X this gives back the previous expressions. In order to ensure that the three symmetricity properties
are stable under weak saturation (Theorem 4.3.8), we actually define them for a class of morphisms instead of
a single morphism. In such cases, we use the following notational conventions.

Definition 4.2.1. Let v := (v1, . . . , ve) be a finite family of morphisms. For any sequence of nonnegative

integers n := (ni)i≤e, we write Σn :=
∏

Σni
, v�n := v�n1

1 � · · ·� v�ne

e , and v⊗n := v⊗n1
1 ⊗ · · · ⊗ v⊗ne

e . We write
m ≤ n if mi ≤ ni for all i and m < n if m ≤ n and m 6= n. Given a class S of morphisms, we write v ⊂ S
if all vi are in S. Given another sequence of integers (mi)

e
i=1, we write mn :=

∑
mini and Σn

m :=
∏

Σni

mi
and

Σn ⋊ Σn
m :=

∏
Σni

⋊ Σni

mi
.

Definition 4.2.2. A class S of cofibrations in C is called symmetric flat with respect to some class Y = (Yn) of
morphisms Yn ⊂ MorΣnC if

y �Σn
s�n := (y � s�n)Σn

is a weak equivalence in C for any y ∈ Yn, any finite multi-index n ≥ 1 and any s ∈ S. We say S is symmetric
flat if it is symmetrically flat with respect to the classes Yn = (WΣpro

n C) of projective weak equivalences (i.e.,
those maps in ΣnC which are weak equivalences after forgetting the Σn-action). We say C is symmetric flat if
the class of cofibrations is symmetric flat.

Example 4.2.3. A class S is symmetric flat (i.e., with respect to WΣpro
n C) if and only if y �Σn

s�n is a weak
equivalence for a single map s ∈ S, i.e., no multi-indices are necessary in this case. The reader is encouraged to
mainly think of this case.

The following definition is necessary to ensure that the small object argument can be applied to construct a
model structure on operadic algebras [PS14a, Theorem 5.10]. Recall from [Hir03, Definition 10.4.1] or [Hov99,
Definition 2.1.3] that an object A ∈ C is small relative to some subcategory D ⊂ C if there is some cardinal λ
such that for any λ-sequence X0 → X1 → · · · → Xβ → · · · (β < λ) in D, the canonical map of Hom-sets

colim
β<λ

HomC(A,Xβ)→ HomC(A, colim
β<λ

Xβ)

is an isomorphism. We will often apply this to D = cell(I), the closure of a class I of maps under pushouts and
transfinite composition. Also recall that, by definition, any object in a combinatorial model category is small
with respect to all maps of C, so is automatically admissibly generated in the sense below. Topological spaces
are a non-combinatorial, but admissibly generated model category (Subsection 7.5).

Definition 4.2.4. A symmetric monoidal model category C is admissibly generated relative to a class S of
morphisms in C if all cofibrant objects in C are small with respect to the subcategory

cell(Y ⊗Σn
s�n)(4.2.5)

for any finite family s ⊂ S, any multi-index n > 0, and any object Y ∈ ΣnC. We call C admissibly generated if
it is cofibrantly generated and admissibly generated relative to the cofibrations CC .

Lemma 4.2.6. [Hir03, Proposition 10.4.9] For C to be admissibly generated relative to S it is enough that the
(co)domains of some set of generating cofibrations are small with respect to (4.2.5).

The notions of symmetric h-monoidal maps (respectively, symmetroidal maps) presented next are designed
to ultimately address the (strong) admissibility of operads ([PS14a, Theorem 5.10]).

Definition 4.2.7. A class S of morphisms in a symmetric monoidal category C is called (acyclic) symmetric
h-monoidal if for any finite family s ⊂ S and any multi-index n 6= 0, and any object Y ∈ ΣnC the morphism
Y ⊗Σn

s�n is an (acyclic) h-cofibration. We say C is symmetric h-monoidal if the class of (acyclic) cofibrations
is (acyclic) symmetric h-monoidal.

The notion of power cofibrations presented next is due to Lurie [Lur, Definition 4.5.4.2] and Gorchinskiy and
Guletskĭı [GG09, Section 3], who also introduced symmetrizable maps.
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Definition 4.2.8. Let Y = (Yn)n>0 be a collection of classes Yn of morphisms in ΣnC, where n > 0 is any finite
multi-index. We suppose that for y ∈ Yn, y�− preserves injective (acyclic) cofibrations in ΣnC, i.e., those maps
which are (acyclic) cofibrations in C.

A class S of morphisms in a symmetric monoidal category C is called (acyclic) Y-symmetroidal if for all
multi-indices n > 0 and all maps y ∈ Yn, the morphism

y �Σn
s�n(4.2.9)

is an (acyclic) cofibration in C for all s ∈ S. If Yn = CΣin
n
C , we say that S is (acyclic) symmetroidal. For

Yn = {∅ → 1C}, we say S is (acyclic) symmetrizable.
A map f ∈ C is called an (acyclic) power cofibration if the morphism f�n is an (acyclic) cofibration in Σpro

n C
for all integers n > 0 (i.e., a projective cofibration with respect to the Σn-action).

The category C is called symmetric h-monoidal/Y-symmetroidal/freely powered if the class of all (acyclic)
cofibrations is (acyclic) symmetric h-cofibrant/(acyclic) Y-symmetroidal/(acyclic) power cofibration.

Remark 4.2.10. In the definition of power cofibrations, no multi-indices are necessary: for power cofibrations si
and any any multi-index n = (ni), s

�n := �i s
�ni is a Σn :=

∏
Σni

projective cofibration by the pushout
product axiom.

Unlike the definition of power cofibrations in [Lur], we exclude the case n = 0, for this would require 1 to
be cofibrant, which is not always satisfied. In fact, it is never satisfied for the positive model structures on
symmetric spectra which is a main motivating example for us [PS14b].

We have the following implications (where symmetroidality is with respect to the classes Yn of injective
cofibrations in ΣnC):

power cofibration +3 symmetroidal map +3

��

cofibration

��

symmetric h-cofibration +3 h-cofibration.

(4.2.11)

The vertical implication holds if C is left proper. The dotted arrow is not an implication in the strict sense
unless all objects in C are cofibrant. A symmetroidal map x is such that for all cofibrant objects Y ∈ Σin

n C, the
map Y ⊗Σn

x�n is a cofibration and therefore (again if C is left proper) an h-cofibration. Being a symmetric
h-cofibration demands the latter for any object Y ∈ ΣnC. Every power cofibration is a symmetrizable cofibration
since the coinvariants Σpro

n C → C are a left Quillen functor. The implications in (4.2.11) are in general strict:
in a monoidal model category C with cofibrant monoidal unit or, more generally, one satisfying the strong unit
axiom, every object is h-cofibrant [BB13, Proposition 1.17], but of course not necessarily cofibrant. In the
category sSet of simplicial sets every cofibration is a symmetrizable cofibration, but not a power cofibration (see
Subsection 7.1).

The homotopy orbit hocolimΣn
X⊗n can be computed by applying the derived functor of the either of the

following two left Quillen bifunctors to (1V , X
⊗n) [Gam10, Theorem 3.2 and Theorem 3.3]:

Σop,in
n V × Σpro

n C
⊗
−→C,(4.2.12)

Σop,pro
n V × Σin

n C
⊗
−→C.(4.2.13)

Here V denotes the symmetric monoidal model category used for the enrichment and the monoidal unit 1V ∈ V
is equipped with the trivial Σn-action. If C is freely powered, then for any cofibrant object X ∈ C, X⊗n is
projectively cofibrant, i.e., cofibrant in Σpro

n C. Thus, the homotopy orbit is given by (X⊗n)Σn
, provided that

1V is cofibrant [Lur, Lemma 4.5.4.11]. However, most model categories appearing in practice are not freely
powered, so that X⊗n needs to be projectively cofibrantly replaced to compute the homotopy colimit. This is
usually a difficult task. On the other hand, when using (4.2.13), one needs to cofibrantly replace 1 in Σop,pro

n V ,
but no cofibrant replacement has to be applied to X⊗n, provided that X is cofibrant in C. This makes the second
approach to computing homotopy colimits much more easily applicable. This observation is used in Lemma 4.3.4
below, which in its turn is the key technical step in establishing the compatibility of symmetric h-monoidality
and Bousfield localizations (Theorem 6.2.2(ii)).

4.3. Basic properties and weak saturation. In this section, we provide a few elementary facts concerning
the symmetricity notions defined in Subsection 4.2. After this, we show the main theorem of this section (4.3.8),
which asserts that the symmetricity notions behave well with respect to weak saturation.

The following two results have a similar spirit: we show that symmetric flatness can be reduced to (projective)
acyclic fibrations, and that the class Y appearing in the definition of Y-symmetroidality can be weakly saturated.

Lemma 4.3.1. If S is symmetric flat with respect to Y, it is also symmetric flat with respect to the class Z,
where Zn consists of compositions z = y ◦ c, with y ∈ Yn and c ∈ ACΣpro

n C, i.e., an acyclic projective cofibration.
In particular, any class of cofibrations is symmetric flat with respect to ACΣpro

n C. Moreover, being symmetric flat
is equivalent to being symmetric flat with respect to the acyclic projective fibrations AFΣpro

n C.
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Proof. Any acyclic projective cofibration c lies in the weak saturation of Σn ·ACD. For h ∈ ACC and c = Σn ·h,
we get an isomorphism in C,

(Σn · h)�Σn
s�n ∼= h� s�n

which is an acyclic cofibration in C by the pushout product axiom, using that s ∈ S is a cofibration. The
assignment c 7→ c �Σn

s�n is cocontinuous, so that the latter expression is an acyclic cofibration in C for all
c ∈ ACΣpro

n C . The pushout product z �Σn
s�n is the composition of a pushout of c�Σn

s�n, which is an acyclic

cofibration, followed by y �Σn
s�n which is a weak equivalence by assumption. �

Lemma 4.3.2. Let S, Y, C be as in Definition 4.2.8. If S is Y-symmetroidal, it is also cof(Y)-symmetroidal.

Proof. For a fixed s ∈ S, the functor Fs : y 7→ y�Σn
s�n is cocontinuous. In particular Fs(cof(Y)) ⊂ cof(Fs(Y)) ⊂

cof(C)C = CC and likewise for acyclic Y-symmetroidal maps. �

Definition 4.3.3. The cofibrant replacement of 1 in Σop,pro
n V is denoted by EΣn. (For V = sSet, this coincides

with the usual definition of EΣn as a weakly contractible simplicial set with a free Σn-action.)

Proposition 4.3.5 is a key step in the proof of stability of symmetric h-monoidality and symmetroidality under
left Bousfield localizations. It relies on the following technical lemma.

Lemma 4.3.4. Suppose C is a symmetric monoidal, h-monoidal, flat model category, y ∈ ΣnC is any map, s is
a finite family of acyclic cofibrations with cofibrant domain that lies in some symmetric flat class S, and y� s�n

is a weak equivalence in C for some multiindex n > 0. Then y �Σn
s�n is also a weak equivalence.

Proof. Let

A′ a
∼

//

y′

��

A

y

��

B′

b

∼ // B

be the functorial cofibrant replacement of of y : A→ B ∈ Ar(C) (in the projective model structure, so that y′ is
a cofibration with a cofibrant domain). Functoriality and the fact that y ∈ Ar(ΣnC) imply that y′ ∈ Ar(ΣnC).
We claim that y′ � s�n is a cofibrant replacement of y � s�n in Ar(C). Let t := s�n : T → S. The map b ⊗ S
is a weak equivalence by the flatness assumption. To see that B′ ⊗ T ⊔A′⊗T A′ ⊗ S → B ⊗ T ⊔A⊗T A ⊗ S is
a weak equivalence we first note that these pushouts are homotopy pushouts by Lemma 2.0.6(i) since A ⊗ t is
an h-cofibration. Thus it suffices that the three individual terms in the pushouts are weakly equivalent, which
again follows from flatness. The claim is shown.

Thus we have
hocolim

Σn

(y � s�n) = (EΣn ⊗ y′ � s�n)Σn
∼ y �Σn

s�n.

The last weak equivalence holds by symmetric flatness of S since EΣn ⊗ y′ → y′ → y is a weak equivalence by
the unit axiom for the V-enrichment (note that the cofibrant replacement EΣn → 1 in Σpro

n V is in particular a
cofibrant replacement in V). Finally, y � s�n is a weak equivalence in C by assumption. Therefore, the above
homotopy colimit is a weak equivalence in C. �

Proposition 4.3.5. The class of acyclic power cofibrations coincides with the intersection of W with the class
of power cofibrations.

A Y-symmetroidal class S which consists of acyclic cofibrations with cofibrant source is acyclic Y-sym-
metroidal, provided that C is h-monoidal and flat and S is symmetric flat in C.

Proof. The first claim follows from the pushout product axiom.
For any s ∈ S and any map y ∈ Yn ⊂ Mor(ΣnC), y� s�n is a weak equivalence in ΣnC by assumption on the

class Y (see Definition 4.2.8). Now apply Lemma 4.3.4. �

We now establish the compatibility of the three symmetricity properties with weak saturation. Parts (iv) and
(v) of Theorem 4.3.8 are due to Gorchinskiy and Guletskĭı [GG09, Theorem 5]. Part (ii) extends arguments
in [GG11, Theorem 9], which shows a weak saturation property for symmetrically cofibrant objects in a stable
model category. Of course, it also extends the analogous statement for nonsymmetric flatness (Theorem 3.2.8(ii)).
Likewise, (iii) extends the weak saturation property of h-cofibrations (see Lemma 2.0.6). The proof of the closure
under transfinite compositions in (iv) is reminiscent of §4 of Gorchinskiy and Guletsĭı [GG09]. See also the
expository accounts by White [Whi14a, Appendix A] and Pereira [Per14, §4.2]. In the proof of the theorem, we
will need a combinatorial lemma that we establish first. Recall the conventions for multiindices in Definition 4.2.1.

Lemma 4.3.6. Let X
(i)
0

v
(i)
0−−→X

(i)
1

v
(i)
1−−→X

(i)
2 , 1 ≤ i ≤ e be a finite family of composable in a symmetric monoidal

category. For a pair of multiindices 0 ≤ k ≤ n of length e, we set

mk := Σn ·Σn−k×Σk
v�n−k
0 � v�k

1 .(4.3.7)
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(i) The map

(v1v0)
�n :

n

⊡(v1v0)→ X⊗n
2

is the composition of pushouts (with the attaching maps constructed in the proof) of the maps mk (0 ≤ k <
n), and the map mn = v�n

1 .
(ii) The map

κ :

n

⊡(v1v0) ⊔⊡n v0 X
⊗n
1 → X⊗n

2

is the composition of pushouts of mk for 1 ≤ k < n, and the map mn. (Here 1 denotes the multiindex
whose components are all equal to 1.)

Proof. We interpret the composable pair (v0, v1) as a functor v : 3 = {0→ 1 → 2} → CI , where I = {1, . . . , e}.
Let E be the category of posets C lying over 3n =

∏
i 3

ni and let ΣnE be those posets with a Σn-action which is
compatible with the Σn-action on 3n. For all posets considered below, the map to 3n will be obvious from the
context. Consider the following functor:

Q : ΣnE → ΣnC

C → 3n 7→ colim
(
C −−→ 3n

vn

−−→Cn
⊗
−−→C

)
.

Being the composition of the two cocontinuous functors

posets/3n−−−−→ posets/C
colim
−−−−→C,

Q is also cocontinuous. The map (v1v0)
�n is obtained by applying Q to the map

ι : {0, 1, 2}n\{1, 2}n→ {0, 1, 2}n

which adds all tuples containing only 1’s and 2’s. It is the composition of the maps

ιk : {0, 1, 2}
n \ {1, 2}n ∪ {Σn1

∗2<k} → {0, 1, 2}n \ {1, 2}n ∪ {Σn1
∗2≤k},

for 0 ≤ k ≤ n, with
∏

i(ni + 1) maps in total. The superscript ∗ means that one adds as many elements as
needed to get an n-multituple. For multiindices the above statements should be interpreted separately for each
component. The map ιk adds the Σn-orbit O consisting of tuples with k 2’s and n− k 1’s, i.e., Σn1

n−k2k. The
cardinality of O is

(
n
k

)
. For o ∈ O, consider the downward closure Do of o and Co := Do\{o}.

There is a pushout diagram in ΣnE

A :=
∐

o∈O Co
//

µk

��

{0, 1, 2}n \ {1, 2}n ∪ {Σn1
∗2<k}

ιk

��

B :=
∐

o∈O Do
// {0, 1, 2}n \ {1, 2}n ∪ {Σn1

∗2≤k}.

(For k = n the top horizontal row is an identity, so ιn = µn in this case.) Any o ∈ O determines a partition
of

∐
i ni into

∐
i{1 ≤ j ≤ ni | oi,j = 1} and

∐
i{1 ≤ j ≤ ni | oi,j = 2}. Using this partition, we have

Do = Σn−k0
∗1∗ × Σk0

∗1∗2∗ and Co = Σn−k0
∗1<n−k × Σk0

∗1∗2∗ ∪ Σn−k0
∗1∗ × Σk0

∗1∗2<k. Thus the map

Q(Co → Do) is just v
�n−k
0 � v�k

1 . Using the cocontinuity of Q, this shows Q(µk) = mk.
The second part now follows immediately from the above once we observe that the codomain of ι0 is precisely

the domain of the map under consideration. �

Theorem 4.3.8. Let S be a class of morphisms in a symmetric monoidal model category C. We say some
property of S is stable under saturation if it also holds for the weak saturation cof(S).

(i) The property of being admissibly generated relative to S (Definition 4.2.4) is stable under saturation. There-
fore, if C is cofibrantly generated and admissibly generated relative to some set of generating cofibrations,
it is admissibly generated.

(ii) If S is symmetric h-monoidal then symmetric flatness of S relative to a class Y = (Yn) of weak equivalences
in ΣnC is stable under saturation. In particular, if some class of generating cofibrations in C is symmetric
flat and symmetric h-monoidal, then C is symmetric flat.

(iii) The property of being (acyclic) symmetric h-monoidal is stable under saturation. In particular, if some
class of generating (acyclic) cofibrations consists of (acyclic) symmetric h-cofibrations, then C is symmetric
h-monoidal.

(iv) Being Y-symmetroidal (Definition 4.2.8) is stable under saturation. In particular, if some class of gener-
ating (acyclic) cofibrations is (acyclic) Y-symmetroidal, then C is Y-symmetroidal.

(v) The same statement holds for power cofibrations.
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Proof. For a finite family of maps v = (v(1), . . . , v(e)) we use the multi-index notation of Definition 4.2.1. We
prove the statements by cellular induction, indicating the necessary arguments for each statement individually
in each step. The acyclic parts of (iii) and (iv) are the same as the nonacyclic parts, so they will be omitted. Fix
an object Y ∈ ΣnC, respectively a map y ∈ Yn ⊂MorΣnC. For (ii) and (iv), respectively (i) and (iii), we write

g(v, n) := y �Σn
v�n, respectively, g(v, n) := Y ⊗Σn

v�n.

By Proposition 4.1.7, g(−, n) preserves pushout morphisms ϕ : v → v′ (in the sense that, say, ϕ(1) is a pushout
morphism and all other ϕ(j)’s are identities) and retracts. Thus, if g(v, n) is an (acyclic) h-cofibration or
(acyclic) cofibration, so is g(v′, n). This shows the stability of the properties of being symmetric h-monoidal and
symmetroidal under cobase changes. For (ii), we additionally observe that Y ⊗Σn

v�n is an h-cofibration and
similarly with Y ′ since S is symmetric h-monoidal by assumption. By Lemma 3.2.7 (more precisely, replace ⊗
there by ⊗Σn

), applied to a = v�n and b = v′�n, we see that g(v′, n) is a weak equivalence since g(v, n) is one.
For (i), we also use here and below that an object X is small relative to some class cell(T ) if and only if it is
small relative to its weak saturation [Hir03, Proposition 10.5.13].

We now show the stability of the three symmetricity properties and being admissibly generated relative to a
class under transfinite composition: suppose v(1) is the transfinite composition

v(1) : X
(1)
0

v
(1)
0−−→· · · → X

(1)
i

v
(1)
i−−→X

(1)
i+1 → · · · → X(1)

∞ = colimX
(1)
i ,

whose maps are obtained as pushouts

A

��

s∈S
//

(∗)

A′

��

X := X
(1)
i

x:=v
(1)
i // X ′ := X

(1)
i+1.

(4.3.9)

For the statements (ii), (iii), respectively (iv) we need to show that g(v, n) = g((v(1), . . . , v(e), n) is a weak
equivalence, h-cofibration, or cofibration, respectively, provided that

{v
(1)
i , i ≤ ∞, v(2), . . . , v(e))}

is a symmetric flat, symmetric h-monoidal, respectively symmetroidal class. Applying this argument e times gives

the desired stability under transfinite compositions. We write r
(1)
i : X

(1)
0 → X

(1)
i for the (finite) compositions of

the v
(1)
i . Consider

id
(X

(1)
0 )⊗n

= (r
(1)
0 )�n → (r

(1)
1 )�n → · · · → (v(1))�n.(4.3.10)

As an object of ΣnAr(C),

g(v, n) = colim
i

g((r
(1)
i , v(2), . . . , v(e))︸ ︷︷ ︸

=:vi

, n) = colim
i

g(vi, n),(4.3.11)

since −�n preserves filtered colimits (Proposition 4.1.6). We now show that vi is a symmetric flat (respectively
symmetric h-monoidal or symmetroidal) family, so that g(vi) is a weak equivalence (h-cofibration, cofibration,

respectively). We consider the composition of two morphisms r
(1)
0 and r

(1)
1 only and leave the similar case of

a finite composition of more than two maps to the reader. By Lemmas 3.1.7 and 4.3.6, v�n
1 is the (finite)

composition of pushouts of Σn ·Σm
w�m, where w = (r

(1)
0 , r

(1)
1 , v(2), . . . , v(e)), and m runs through multi-indices

of length e+ 1 such that 0 ≤ m(1) ≤ n(1), m(1) +m(2) = n(1), and m(k) = n(k−1) for 2 ≤ k ≤ e+ 1.
For (iii), each g(w,m) = y �Σm

w�m is an h-cofibration. Hence so is g(v1, n) since h-cofibrations are stable
under pushouts and (finite) compositions by Lemma 2.0.6. By Lemma 2.0.6(iii), g(v, n) is also an h-cofibration
then.

Similarly, for (iv), each g(w,m) is a cofibration, so that g(v1, n) is a cofibration. By Lemma 4.3.6, (v
(1)
1 ◦v

(1)
0 )�n

is the composition of a pushout of (v
(1)
0 )�n and the map

n(1)

⊡(v
(1)
1 ◦ v

(1)
0 ) ⊔

⊡
n
(1)

(v
(1)
0 )

(X
(1)
1 )⊗n → (X

(1)
2 )⊗n.

Here, as usual, ⊡
n(1)

− denotes the domain of the −�n(1)

. The latter map is the composition of pushouts of the

maps g(w,m), where w and m are as above, except that now 0 ≤ m(1) < n(1). Again, these are cofibrations, so
the above map is a cofibration. By Lemma 2.0.3(i), g(v, n) is therefore a cofibration.

For (ii), each g(w,m) is a weak equivalence. The map g(v1, n) is the composition of pushouts of g(w,m) along
Y ⊗Σn

Σn ·Σm
w�m = Y ⊗Σm

w�m. The latter map (and similarly for Y ′) instead of Y is an h-cofibration by
the symmetric h-monoidality assumption. Thus the pushouts of g(w,m), the compositions of which are g(v1, n),
are weak equivalences by Lemma 3.2.7 (again, replace ⊗ by ⊗Σn

there). We have shown that g(v1, n) is a weak
equivalence. By Lemma 2.0.3(iii), g(v, n) is then also weak equivalence.
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For (i), we again use that g(v1, n) is in the weak saturation of maps g(w,m) and the above-mentioned stability
of smallness under weak saturation.

(v) can be shown using the same argument but considering g(v) := v�n ∈ ΣnC instead. By Remark 4.2.10 it
is unnecessary to use multi-indices in this proof. �

5. Transfer of model structures

In this section, we fix an adjunction
F : C ⇆ D : G(5.0.1)

such that C is a model category and D is complete and cocomplete. One can ask whether it is possible to
construct a model structure on D from this data. The following definitions turn out to be convenient in practice.

Definition 5.0.2. A model structure on D is transferred along G if the weak equivalences and fibrations in D
are those morphisms which are mapped by G to weak equivalences and fibrations in C, respectively.

If a transferred model structure on D exists, it is unique, so we also speak of the transferred model structure.

5.1. Existence and basic properties. The existence of the transferred model structure is addressed by the
following proposition. Note that the condition that G maps F (J)-cellular maps (i.e., transfinite compositions of
pushouts of maps in F (J)) to weak equivalences is necessary because F is a left Quillen functor, in particular it
maps J to acyclic cofibrations in D, which are closed under cobase changes and transfinite compositions.

Proposition 5.1.1. [Hir03, Theorem 11.3.2] Suppose that C is a cofibrantly generated model category and D is a
complete and cocomplete category. Fix some sets I and J of generating cofibrations and acyclic cofibrations in C.
Suppose that the functor G maps F (J)-cellular maps to weak equivalences in C. The transferred model structure
on D exists if F (I) and F (J) permit the small object argument [Hir03, Definition 10.5.15]. For example, the
latter condition is satisfied if D is locally presentable, in which case D is a combinatorial model category.

The next proposition describes basic properties of transferred model structures. Part (vi) can be applied to
adjunctions of the form C ⇄ ModR, where R is a commutative monoid which is cofibrant as an object of the
underlying symmetric monoidal model category C. It is a special case of much more general left properness
results by Batanin and Berger [BB13].

Proposition 5.1.2. The following properties hold for a transferred model structure on D. We write I (respec-
tively J) for a class of generating (acyclic) cofibrations of C.

(i) Suppose that V is a symmetric monoidal model category and (F,G) is a V-enriched adjunction of V-enriched
categories that are tensored and powered over V. If C is a V-enriched model category, then so is D.

(ii) The class F (I) (respectively, F (J)) generates (acyclic) cofibrations of D.
(iii) If C is quasi-tractable, then so is D.
(iv) If C is combinatorial or tractable, then so is D, provided that D is locally presentable.
(v) Suppose that G preserves filtered colimits. If C is pretty small, then so is D, provided that D is locally

presentable, or, more generally, F (I ′) and F (J ′) permit the small object argument, where I ′ and J ′ come
from pretty smallness.

(vi) Suppose that G preserves pushouts along maps in F (I). Also suppose that G preserves filtered colimits.
Finally suppose that (a) G(F (I)) consists of cofibrations or (b) C is pretty small and G(F (I)) consists of
h-cofibrations. Then, if C is left proper, so is D.

(vii) If G preserves filtered colimits and sends cobase changes of F (I) (respectively cobase changes of F (I) along
maps with cofibrant targets) to cofibrations, then G preserves cofibrations (respectively, cofibrations with
cofibrant source).

Proof. (i): By [Hov99, Lemma 4.2.2] it suffices to check that for any cofibration j : K → L in V and any fibration
π : E → B in D the natural map

ζ : EK → EL ×BL BK

is a fibration in D that is acyclic if either j or π is. The map G(ζ) is an (acyclic) fibration because G preserves
fiber products and V-powers being a V-enriched right adjoint.

(ii): By adjunction, a morphism f in D has a right lifting property with respect to F (I) if and only if G(f)
has a right lifting property with respect to I, which is true if and only if G(f) is an acyclic fibration in C,
equivalently f is an acyclic fibration in D. Likewise for acyclic cofibrations.

(iii) The domains of F (I) are cofibrant because F is a left Quillen functor and the domains of I are cofibrant.
(iv): The combinatoriality of D is immediate from (ii).
(v): By Definition 2.0.2, there is another model structure C′ on the underlying category of C with the same

weak equivalences and a smaller class of cofibrations that is generated by a set of morphisms with compact
domains and codomains. By assumption F (CC′) permits the small object argument and similarly for acyclic
cofibrations. This verifies the condition for the existence of the transfer of the model structure C′. Thus the
model structure C′ transfers to a model structure D′ on the category underlying D and its cofibrations are a
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subset of cofibrations of D. The (co)domains of the generating set of cofibrations F (I ′) are compact because G
preserves filtered colimits and therefore F preserves compact objects.

(vi): We have to show that the pushout of any weak equivalence f0 : D0 → E0 along a D-cofibration D0 → D
is a weak equivalence. Every cofibration D0 → D is obtained as a retract of a transfinite composition d : D0 →
D1 → · · · → D∞ = D, where every map di : Di → Di+1 is a cobase change of a map F (ci) for some generating
cofibration ci ∈ IC . Thus for each i we have the following diagram of cocartesian squares, where the objects Ei

and the morphisms Ei → Ei+1 and Di → Ei are constructed inductively using pushouts and colimits:

Ci −−−−−−→ Di −−−−−−→ EiyF (ci)

ydi

y

Ci+1 −−−−−−→ Di+1 −−−−−−→ Ei+1

All vertical maps are cofibrations in D. Apply G to this diagram. The left square and the big rectangle in
the resulting diagram are again cocartesian by assumption, hence the right square is also cocartesian.

If the morphism G(F (ci)) is an (h-)cofibration in C, then so is its cobase change G(di) and therefore so is their
transfinite composition G(D0) → G(D∞): for h-cofibrations this is Lemma 2.0.6, using the assumption that C
is pretty small. For cofibrations this is true because cofibrations in any model category are weakly saturated.
Cofibrations in a left proper model category are h-cofibrations. Thus in both cases under consideration the
morphism G(D0)→ G(D∞) is an h-cofibration. The latter morphism is isomorphic to G(d), because G preserves
filtered colimits. Pushouts along h-cofibrations are homotopy pushouts and therefore preserve weak equivalences.
Thus D∞ → E∞ is a weak equivalence, being the cobase change of the weak equivalence D0 → E0 along the
h-cofibration D0 → D∞.

(vii): Cofibrations in D are retracts of transfinite compositions of cobase changes of elements in F (I). All
three operations are preserved by the functor G by assumption. Thus it is sufficient to observe that G(F (I))
consists of cofibrations in C, which are weakly saturated, hence G preserves cofibrations. The preservation of
cofibrations with cofibrant source is shown the same way. �

5.2. Transfer of monoidal and symmetricity properties. We now transfer monoidal properties along an
adjunction of monoidal categories. We restrict to monoidal categories, as opposed to left modules, merely for
notational convenience.

Proposition 5.2.1. Let
F : C ⇆ D : G

be an adjunction between (symmetric) monoidal model categories. Suppose that the model structure on D is
transferred from C, respectively, and that the left adjoint F is a strong (symmetric) monoidal functor between
(symmetric) monoidal categories. If C is a (symmetric) monoidal model category, then so is D.

Proof. By Proposition 5.1.2(ii), to prove the pushout product axiom it is enough to verify that F (CC)�F (CC) ⊂
CC and similarly with acyclic cofibrations. This uses the preservation by ⊗D of colimits in both variables. Since
F is strong monoidal and cocontinuous, we have F (CC) � F (CC) = F (CC � CC) = F (CC) ⊂ CD. Likewise for
acyclic cofibrations. �

Definition 5.2.2. A Hopf adjunction is an adjunction between monoidal categories such that there is a functorial
isomorphism for C ∈ C, D ∈ D,

G(F (C) ⊗D) ∼= C ⊗G(D).(5.2.3)

Remark 5.2.4. If the monoidal products ⊗C and ⊗D are closed, this is equivalent to G being strong closed, i.e.,
internal homs are preserved up to a coherent isomorphism.

Proposition 5.2.5. Suppose the model structure on monoidal model category D is transferred along a Hopf
adjunction between monoidal model categories. Also suppose that G preserves pushouts along maps of the form
D ⊗ F (s), where D ∈ D is any object and s is any morphism in S. Let S be a class of cofibrations in C′. We
say that a property of the class S transfers, if the same property holds for F (S).

(i) Suppose C and D are left proper. Then the (acyclic) h-monoidality of S transfers. The h-monoidality of C
transfers to D if D is pretty small.

(ii) The flatness of S transfers. The flatness of C transfers to D if D is pretty small and h-monoidal.
(iii) If G also preserves filtered colimits then the monoid axiom transfers from C to D.

Proof. (i) and (ii) are shown exactly the same way as their symmetric counterparts, see Parts (ii) and (i) of
Theorem 5.2.6, using Theorem 3.2.8 instead.

(iii): The preservation of colimits under ⊗D and Proposition 5.1.2(ii), the assumption that G preserves the
weak saturation, the Hopf adjunction property, and the monoid axiom for C give inclusions

G(cof(D ⊗ACD)) ⊂ G(cof(D ⊗ F (ACC))) ⊂ cof(G(D ⊗ F (ACC))

= cof(G(D) ⊗ACC) ⊂ cof(C ⊗ACC) ⊂WC .
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�

The following theorem shows that the three symmetricity properties interact well with transfers. It is the
symmetric counterpart of Proposition 5.2.5.

Theorem 5.2.6. Let

F : C ⇆ D : G

be a Quillen adjunction of symmetric monoidal model categories such that the model structure on D is transferred
from C. We assume F is strong monoidal and, for parts (i), (ii), and (v) we also assume that (a) the adjunction
is a Hopf adjunction; (b) G preserves pushouts along maps of the form D ⊗ F (c), where D ∈ D is any object
and c is any morphism in C; and (c) that G commutes with the coinvariants functor (−)Σn

for all n.
Let S be a class of cofibrations in C. We say that a property of the class S transfers, if the same property

holds for F (S).

(i) Symmetric flatness of S transfers. Moreover, the symmetric flatness of C transfers to D if, in addition, D
is pretty small and symmetric h-monoidal.

(ii) Suppose C and D are left proper. Then the (acyclic) symmetric h-monoidality of S transfers. The symmetric
h-monoidality of C transfers if, in addition, D is pretty small.

(iii) For some class Y of morphisms as in Definition 4.2.8, the Y-symmetroidality of S transfers in the sense that
cof(F (S)) is F (Y)-symmetroidal. In particular, if C is Y-symmetroidal, then D is cof(F (Y))-symmetroidal.

(iv) Then the property of being freely powered transfers. In particular, if C is freely powered, then so is D.
(v) Suppose G preserves filtered colimits. If C is admissibly generated, then so is D.

Proof. For all properties, the transfer for the given class S is proven using a specific argument. The transfer of
the property from C to D follows from the fact that F (CC) generates the cofibrations of D (Proposition 5.1.2(ii)),
and likewise for acyclic cofibrations. Then, a weak saturation property (indicated below) is used. Let s ∈ S be
any map.

(i): For any weak equivalence y in ΣnD we have to show that y �Σn
F (s)�n is a weak equivalence. Indeed,

G(y�Σn
F (s)�n) is isomorphic to G(y)�Σn

F (s�n) by the Hopf adjunction property, the cocontinuity of G, and
the strong monoidality of F which ensures that F commutes with pushout products (Proposition 3.1.4). This is
a weak equivalence since C is symmetric flat. The symmetric flatness of C transfers by Theorem 4.3.8(ii), using
S = IC .

(ii): We need to show that Y ⊗Σn
F (s)�n = Y ⊗Σn

F (s�n) is an h-cofibration for all Y ∈ ΣnD. By
Lemma 2.0.7, this is true since G(Y ⊗Σn

F (s�n)) = G(Y )⊗Σn
s�n is an (acyclic) h-cofibration by the (acyclic)

symmetric h-monoidality of S. The symmetric h-monoidality of C transfers to D by Theorem 4.3.8(iii).
(iii): As F is strongly monoidal and cocontinuous, F (y)�Σn

F (s�n) = F (y �Σn
s�n). This shows the F (Y)-

symmetroidality since F preserves cofibrations and acyclic cofibrations. Then apply Lemma 4.3.2. The claim
about the symmetroidality of D follows from Theorem 4.3.8(iv).

(iv): Replace y �Σn
s�n by s�n in (iii) and use Theorem 4.3.8(v).

(v): The cofibrant generation transfers to D by Proposition 5.1.2(ii). By Lemma 4.2.6 and Theorem 4.3.8(i),
we only have to show that (co)dom(F (I)) are small with respect to cell(Y ⊗Σn

s�n), where s = F (t) are finite
families of generating cofibrations, i.e., t are cofibrations in C. By adjunction, this is equivalent to (co)dom(I)
being small with respect to

G(cell(Y ⊗Σn
F (t)�n)) ⊂ cell(G(Y ⊗Σn

F (t)�n)) = cell(G(Y )⊗Σn
t�n)

which holds by assumption. �

Remark 5.2.7. If C is symmetroidal (i.e., symmetroidal with respect to the injective cofibrations in ΣnC), D
need not be symmetroidal: for example, for C = sSet and D = ModR(sSet) with R = Z/4, i.e., simplicial
sets with an action of Z/4. In this case, R has a Z/2-action, so R is injectively cofibrant in Σ2ModR, but
R⊗R,Σ2 R

⊗R2 = R/2 is not cofibrant as an R-module.

5.3. Modules over a commutative monoid. In this section we apply the criteria developed above to the
case of the category of modules over a commutative monoid R in a symmetric monoidal model category C. An
example of this situation occurs in the construction of unstable model structures on symmetric spectra, which
are by definition modules over a commutative monoid in symmetric sequences [HSS00, Theorem 5.1.2].

As R is commutative, the category ModR of R-modules has a symmetric monoidal structure:

X ⊗R Y := coeq(X ⊗R⊗ Y ⇒ X ⊗ Y ).

The free-forgetful adjunction

F = R⊗− : C ⇆ ModR : U

has the following properties: R⊗− is strong monoidal since (R⊗X)⊗R (R⊗Y ) ∼= R⊗(X⊗Y ). Moreover, it is a
Hopf adjunction: (R⊗C)⊗RD ∼= C⊗D. Finally, U also has a right adjoint, the internal hom functor Hom(R,−)
(also known as the cofree R-module functor). In particular, U is cocontinuous.
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The following theorem summarizes the properties of the transferred model structure on ModR. The existence
of the model structure is due to Schwede and Shipley [SS00, Theorem 4.1(2)]. As in Theorem 5.2.6, we say that
some model-theoretic property transfers if it holds for ModR, provided that it does for C. The transfer of left
properness to ModR (and much more general algebraic structures) was established by Batanin and Berger under
the assumption that C is strongly h-monoidal [BB13, Theorems 2.11, 3.1b]. The transfer of symmetric flatness,
symmetric h-monoidality and symmetroidality is new.

Theorem 5.3.1. Suppose C is a cofibrantly generated symmetric monoidal model category that satisfies the
monoid axiom and R is a commutative monoid in C. The transferred model structure on ModR exists and is a
cofibrantly generated symmetric monoidal model category.

Combinatoriality, (quasi)tractability, admissible generation, pretty smallness, V-enrichedness, and the prop-
erty of being freely powered transfer from C to ModR. Moreover, if C is symmetroidal with respect to some
class Y (Definition 4.2.8), then ModR is symmetroidal with respect to cof(R⊗ Y), the weak saturation of maps
of free R-module maps generated by all y ∈ Y.

If either R is a cofibrant object in C or if C is pretty small and h-monoidal, then left properness transfers.
If C is pretty small and h-monoidal, then flatness, symmetric flatness, h-monoidality, symmetric h-mon-

oidality, and the monoid axiom transfer from C to ModR.

Proof. The existence of the transferred model structure follows from Proposition 5.1.1 after we observe that
F (J) = R ⊗ J and the class of F (J)-cellular maps consists of weak equivalences by the monoid axiom. It is
symmetric monoidal by Proposition 5.2.1. The transfer of combinatoriality, (quasi)tractability, pretty smallness,
enrichedness, and left properness were established in Proposition 5.1.2. The transfer of flatness, h-monoidality,
and the monoid axiom is shown in Proposition 5.2.5, while their symmetric counterparts are treated in Theo-
rem 5.2.6. �

6. Left Bousfield localization

Left Bousfield localizations of various types (e.g., ordinary, enriched, monoidal) of model categories present
reflective localizations of the corresponding locally presentable ∞-categories, i.e., they invert the reflective satu-
ration of a given class of maps in a (homotopy) universal fashion. If the Bousfield localization of a given model
category exists, it can be constructed as a model structure on the same underlying category, with a larger class of
weak equivalences and the same class of cofibrations. Examples for left Bousfield localizations abound, e.g., local
model structures on simplicial presheaves (see Section 7) and the stable model structure on symmetric spectra
are left Bousfield localizations. (Right Bousfield localizations, which preserve fibrations and present coreflective
localizations, are somewhat more rare.)

6.1. Existence and basic properties. Consider the following bicategories (specified by their objects, 1-
morphisms, and 2-morphisms):

• model categories, left Quillen functors, and natural transformations;
• V-enriched model categories, V-enriched left Quillen functors, and V-enriched natural transformations
(V is a symmetric monoidal model category);
• (symmetric) monoidal model categories, strong (symmetric) monoidal left Quillen functors, and (sym-
metric) monoidal natural transformations;
• same as above, but V-enriched.

There are obvious forgetful functors that discard enrichments or monoidal structures.

Definition 6.1.1. Fix one of the bicategories W defined above. Suppose C ∈W and S is a class of morphisms
in C. A left Bousfield localization of C with respect to S is a 1-morphism j : C → LSC such that precomposition
with j induces an equality between the category of morphisms LSC → E (note these are in particular left
Quillen functors) and the category of morphisms C → E whose left derived functors send elements of S to weak
equivalences in E .

In the case when objects of W are monoidal, we use the notation L⊗ instead of L to remind the reader
of this fact. The above definition can be located in the ordinary case in [Bar10, Definition 4.2] or [Hir03,
Theorem 3.3.19], in the enriched case in [Bar10, Definition 4.42] (which also implicitly contains the unenriched
monoidal case because any symmetric monoidal model category is enriched over itself), and in the enriched
monoidal case implicitly in [Bar10, Proposition 4.47]. Gorchinskiy and Guletskĭı [GG09, Lemma 26] give an
explicit formula for the underlying model category of a monoidal Bousfield localization. The term “monoidal
Bousfield localization” is due to White [Whi14b], who also gives an exposition of the existence of monoidal
Bousfield localizations.

Remark 6.1.2. The above definition talks about equality of categories to ensure that the underlying category of
a left Bousfield localization does not change. One can replace equality with isomorphism or equivalence, which
would yield an isomorphic or equivalent underlying category.
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Proposition 6.1.3. Fix one of the bicategories W defined above. Suppose C ∈ W and S is a set (as opposed
to a proper class) of morphisms in C. Suppose furthermore that C is left proper and combinatorial (or cellular).
If objects of W are V-enriched or monoidal, assume that V and C are quasi-tractable. Then the left Bousfield
localization LSC exists and is left proper and combinatorial (or cellular).

(i) If C is tractable or pretty small, then so is LSC.
(ii) If U : W →W ′ is the forgetful functor that discards V-enrichments, then U(LSC) = LSV

U(C), where SV is
the V-enriched saturation of S, which consists of the derived tensor products of the elements of S and the
objects of V (or some class of homotopy generators of V, e.g., the set of domains and codomains of some
set of generating cofibrations of V).

(iii) If U : W → W ′ is the forgetful functor that discards monoidal structures, then U(LSC) = LS⊗U(C), where
S⊗ is the monoidal saturation of S, which consists of the derived monoidal products of the elements of S
and the objects of C (or some class of homotopy generators of C, e.g., the set of domains and codomains
of some set of generating cofibrations of C).

Proof. The ordinary localization exists by [Bar10, Theorem 4.7] (combinatorial case) and [Hir03, Theorem 4.1.1]
(cellular case). The original proof is due to Smith and tractability is due to Hovey [Hov04, Proposition 4.3].
In the enriched case, existence and the statement about the underlying model category is proved in [Bar10,
Theorem 4.46]. This also covers the unenriched monoidal case, because every symmetric monoidal model category
is enriched over itself. For the enriched monoidal case, see [Bar10, Proposition 4.47]. Barwick’s proofs also work
for the cellular case, under the assumption of quasi-tractability.

By the formulas for enriched and monoidal localizations, it is enough to show the pretty smallness statement for
the ordinary localization D = LSC. Consider the localization D′ := LSC′, where C′ is the second model structure
on C (Definition 2.0.2). We have WD′ = WD because both S-local objects and S-local weak equivalences only
depend on S and weak equivalences. Thus D is pretty small. �

Remark 6.1.4. Any left Bousfield localization of an sSet-enriched model category is automatically sSet-enriched
[Hir03, Theorem 4.1.1(4)].

Remark 6.1.5. If C is V-enriched and monoidal and both C and V are quasi-tractable, then monoidal localizations
and V-enriched monoidal localizations agree: to show this we may replace the maps in S by weakly equivalent
maps that are cofibrations with cofibrant source. Then the maps in S⊗ = S⊗ (co)dom(IC) are weakly equivalent
to S ⊗ (co)dom(IC) ⊗ Q(1V) by the unit axiom of the V-enrichment. The latter class is contained in S⊗

V . Vice

versa, S⊗
V = S⊗ (co)dom(IV )⊗ (co)dom(IC) is contained in S⊗ (co)dom(IC) since ⊗ : V ×C → V is a left Quillen

bifunctor.

The standard description of fibrant objects and adjunctions of Bousfield localizations admit the following
variants for monoidal localizations.

Lemma 6.1.6. If D is the monoidal left Bousfield localization LS⊗C of a monoidal model category C, then fibrant
objects in D are those fibrant objects W in C such that the derived internal Hom,

RHomC(ξ,W )

is a weak equivalence in C for any ξ ∈ S.

Proof. By [Hir03, Proposition 3.4.1], fibrant objects in D are those fibrant objects of C such that the derived
mapping space RMapC(COC⊗

L ξ,W ) or, equivalently, RMapC(COC ,RHom(ξ,W )) is a weak equivalence for any
ξ ∈ S. The objects COC are homotopy generators of C, so this is equivalent to RHom(ξ,W ) being a weak
equivalence [Hov01, Proposition 3.2]. �

Lemma 6.1.7. If F : C ⇆ C′ : G is a Quillen adjunction of monoidal model categories such that F is strong
monoidal, then there is a Quillen adjunction

F : D := LS⊗C ⇆ D′ := LLF (S)⊗C
′ : G,

(assuming the left Bousfield localizations exist), which is a Quillen equivalence if C ⇆ C′ is one.

Proof. The class F (COC) is a class of homotopy generators of C′. HenceD′ can be computed as the (nonmonoidal)
localization with respect to the class F (COC) ⊗L LF (S) = F (COC ⊗L S). Thus, by [Hir03, Proposition 3.3.18,
Theorem 3.3.20], the left Quillen functor C → C′ → D′ factors over a left Quillen functor D → D′ since
LF (COC ⊗L S) consists of weak equivalences in D′. Moreover, D ⇆ D′ is a Quillen equivalence if C ⇆ C′ is
one. �

6.2. Localization of monoidal and symmetricity properties. Here is a tool to transport h-monoidality
and flatness along a Bousfield localization. An example application in the context of symmetric spectra is given
in [PS14b, Subsection 3.3]. The idea of combining h-monoidality and flatness was is independently used by
White [Whi14b].
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Proposition 6.2.1. Suppose V is a symmetric monoidal model category, C is a V-enriched monoidal model
category such that the monoidal left Bousfield localization D := L⊗

T C with respect to some class T exists. We say
that a property of a class S of cofibrations in C localizes if it holds for S regarded as a class of cofibrations in D.
Likewise, we say that some property of C localizes, if it also holds for D.

(i) Flatness of S localizes. In particular, the flatness of C localizes.
(ii) If C and D are left proper, any (acyclic) h-cofibration f in C is also an (acyclic) h-cofibration in D.
(iii) If C is left proper and D is left proper, quasi-tractable, pretty small, and flat, then the h-monoidality of S

or of C localizes.
(iv) If D is pretty small and h-monoidal (which holds, for example, if C is left proper, pretty small, h-monoidal,

and flat), then D also satisfies the monoid axiom.

Proof. (i): We have to show that y � s is a weak equivalence in D for all weak equivalences y in D and s ∈ S.
By the pushout product axiom (of D), we may assume y is a trivial fibration in D or, equivalently, one in C.
Now invoke the flatness of S in C and use WC ⊂WD.

(ii): The acyclic part follows from the nonacyclic one and the inclusion WC ⊂ WD. Given a diagram

A← B
f
−→C, where f is an h-cofibration in C, we have to show by Lemma 2.0.6(i) that C ⊔B A is a homotopy

pushout in D. The identity functor Fun(• ← • → •, C) → Fun(• ← • → •,D) is a left Quillen functor if we
equip both functor categories with the projective model structure. Since it also preserves all weak equivalences,

it preserves homotopy colimits, i.e., sends the homotopy pushout C ⊔B A ∼ C ⊔h,CB A to a homotopy pushout
in D.

(iii): As the cofibrations in C and D are the same, the nonacyclic part of the h-monoidality of D follows
from (ii). Acyclic h-cofibrations are weakly saturated by Lemma 2.0.6(iii). Therefore, it is enough to show
f ⊗X ∈WD for any f : Y → Z ∈ JD and any object X . The quasi-tractability of D (Proposition 6.1.3) allows
us to assume that Y (hence Z) is cofibrant. Writing Q(−) for the cofibrant replacement (equivalently in C or D)
we see that X ⊗ f is a weak equivalence since Q(X)⊗ f is one (by the pushout product axiom for D) and q⊗ Y
and q ⊗ Z are weak equivalences in D (by flatness).

(iv): Apply Lemma 3.2.6 to D. �

The following proposition provides a method to transport the symmetricity notions to a Bousfield localization.
It is the symmetric counterpart of Proposition 6.1.3.

Theorem 6.2.2. Suppose V is a symmetric monoidal model category, C is a V-enriched symmetric monoidal
model category such that the V-enriched symmetric monoidal left Bousfield localization D := L⊗

T C with respect to
some class T of morphisms exists.

We say that a property of a class S of cofibrations in C localizes if it holds for S regarded as a class of
cofibrations in D. Likewise, we say that some property of C localizes, if it also holds for D.

(i) Let Y = (Yn) be some classes of morphisms in ΣnC. The property of S of being symmetric flat with respect
to Y localizes. In particular, the symmetric flatness of S and of C localizes.

(ii) If C is left proper and D is left proper, quasi-tractable, pretty small and symmetric flat, then the symmetric
h-monoidality of S or of C localizes.

(iii) The property of S of being (acyclic) Y-symmetroidal localizes provided that D is flat and h-monoidal and
provided that S consists of cofibrations with cofibrant source and is symmetric flat in D. In particular if D
is h-monoidal and symmetric flat and C is Y-symmetroidal then D is also Y-symmetroidal.

(iv) The property of being freely powered localizes.
(v) Suppose D is quasi-tractable. Then the property of being admissibly generated localizes.

Proof. (i): The Y-symmetric flatness of S states that y �Σn
s�n is a weak equivalence in C for all y ∈ Yn and

s ∈ S. Since weak equivalences of C are contained in the ones of D this property obviously localizes. The
additional claims concern the symmetric flatness of S (or the class of all cofibrations on C) with respect to
WΣpro

n D. By Lemma 4.3.1, this is equivalent to symmetric flatness with respect to AFΣpro
n D = AFΣpro

n C which
holds since S is symmetric flat with respect to WΣpro

n C by assumption.
(ii): As (acyclic) h-cofibrations of C are contained in the ones of D (Proposition 6.2.1(ii)), a class S which is

(acyclic) symmetric h-monoidal in C is also (acyclic) symmetric h-monoidal in D.
Now suppose that C is symmetric h-monoidal. We want to show that (acyclic) D-cofibrations form an (acyclic)

symmetric h-monoidal class (in D). Again using the above fact, it is enough to show the acyclic part. Once
again, we may restrict to generating acyclic cofibrations (4.3.8(iii)). Thus, let s be a finite family of generating
acyclic cofibrations in D. By quasi-tractability, we may assume they have cofibrant domains. Setting y : ∅ → Y ,
the pushout product y � s�n is just Y ⊗ s�n, which is a weak equivalence by the h-monoidality of D ensured
by Proposition 6.2.1(iii). Using the flatness and h-monoidality of D (Proposition 6.2.1(i), (iii)), Lemma 4.3.4
applies to s and y and shows that Y ⊗Σn

s�n is a weak equivalence.
(iii): The stability of the nonacyclic part of Y-symmetroidality is obvious. The acyclic part follows from

Proposition 4.3.5, using the cofibrancy assumption and the symmetric flatness of S in D. Similarly, by 4.3.8(iv),
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the symmetroidality of D follows by using a set S of generating acyclic cofibrations (of D) with cofibrant domain,
which is possible thanks to the tractability of D.

(iv): This follows from Proposition 4.3.5.
(v): This is clear since CC = CD. �

7. Examples of model categories

We discuss the model-theoretic properties of Section 2, Subsection 3.2, and Section 4 for simplicial sets,
simplicial presheaves, simplicial modules, topological spaces, chain complexes, and symmetric spectra.

7.1. Simplicial sets. The most basic example of a monoidal model category is the category sSet of simplicial
sets equipped with the cartesian monoidal structure A⊗B = A×B and the Quillen model structure, see, e.g.,
[GJ99, Theorem I.11.3]. All objects are cofibrant, so sSet is left proper, flat, and h-monoidal by Lemma 3.2.4.

Simplicial sets are symmetroidal: given any monomorphism y ∈ ΣnsSet and a finite family of monomorphisms
v ∈ sSet, y�Σn

v�n is a monomorphism. Indeed, y�v�n is a Σn-equivariant monomorphism and passing to Σn-
orbits preserves monomorphisms. By Theorem 4.3.8(iv), the acyclic part of symmetroidality follows if y�Σn

v�n

is a weak equivalence for any y as above and any finite family of horn inclusions v : Λm
k → ∆m (where m and k

are multiindices). To this end we first construct a homotopy h : Λ×∆m → ∆m from the identity map ∆m → ∆m

to the composition ∆m−→∆0 k
−→∆m such that Λm

k ⊂ ∆m is preserved by the homotopy. Here Λ is the 2-horn,
which can be depicted as 0 → 1 ← 2. We parametrize h by Λ and not by the usual ∆1 since ∆m is not
fibrant. The map h is uniquely specified by its value on vertices, i.e., {0, 1, 2} × {0, . . . ,m} → {0, . . . ,m}. We
have (0, i) 7→ i, (1, i) 7→ max(k, i), (2, i) 7→ k. Thus we have constructed a simplicial deformation retraction
Λ × (Λm

k → ∆m) → (Λm
k → ∆m) that contracts the inclusion Λm

k → ∆m to the identity map ∆0 → ∆0.
(Morphisms of maps are commutative squares, as usual.) The map h gives rise to a simplicial deformation
retraction

Λ× (y �Σn
v�n)

∆
→ (Λ×n × (y � v�n))Σn

∼= y �Σn
(Λ× v)�n h

→ y �Σn
v�n

using the fact that the diagonal ∆: Λ → Λ×n is Σn-equivariant. It contracts the map y �Σn
v�n to the map

y �Σn
(id∆0)

�n. For n > 0 the latter map is the identity map on the codomain of y, in particular, a weak
equivalence, hence so is y �Σn

v�n.
Symmetroidality and cofibrancy of all objects implies that sSet is symmetric h-monoidal.
The category sSet is far from freely powered: the map (∂∆1 → ∆1)�2 is not a Σ2-projective cofibration,

since Σ2 does not act freely on the complement of the image.
Simplicial sets are not symmetric flat: EΣn → ∗ is Σn-equivariant and a weak equivalence of the underlying

simplicial sets, but BΣn := (EΣn)Σn
→ ∗ is not a weak equivalence: recall that BΣ2 is weakly equivalent

to RP∞, the infinite real projective space.
Similar statements hold for pointed simplicial sets equipped with the smash product.
The category sSet also carries the Joyal model structure [Lur09, Theorem 2.2.5.1]. It is an interesting question

whether it is symmetric h-monoidal.

7.2. Simplicial presheaves. A more general example than simplicial sets is the category

sPSh(S) = Fun(Sop, sSet)

of simplicial presheaves on some site S. The projective model structure on this category is transferred from the
Quillen model structure on sSet along ∏

X∈S

sSet ⇆ sPSh(S).(7.2.1)

It is pretty small by 5.1.2(v) and left proper by 5.1.2(vi). The monoid axiom, h-monoidality, flatness, and sym-
metric h-monoidality follow from the corresponding properties of the injective model structure by Lemma 3.2.5.
Alternatively, even though (7.2.1) is not a Hopf adjunction, the arguments of Proposition 5.2.5 can be generalized
to (7.2.1). The projective model structure is not in general symmetroidal (for X ∈ S, (Xn)Σn

is in general not
projectively cofibrant).

In the injective model structure on sPSh(S), weak equivalences and cofibrations are checked pointwise. It
is combinatorial [Lur09, Proposition A.2.8.2] and therefore tractable. It is pretty small (as the second model
structure in Definition 2.0.2, take the projective structure), left proper, h-monoidal and flat (Lemma 3.2.4). The
symmetric monoidality, symmetric h-monoidality and symmetroidality (with respect to injective cofibrations
Yn = CΣin

n
sPSh(S)) follows from the one of sSet.

There are various intermediate model structures on sPSh(S), such as Isaksen’s flasque model structure [Isa05].
They also have pointwise weak equivalences but other choices of cofibrations which lie between projective
and injective cofibrations. For such intermediate model structures, monoidality, h-monoidality, symmetric h-
monoidality, symmetroidality, the monoid axiom, and flatness follow from the injective case and pretty smallness
follows from the projective case.
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The properties mentioned above are stable under Bousfield localization. For example, given some Grothen-
dieck topology τ on the site S, the τ -local projective model structure is the left Bousfield localization of the
projective model structure with respect to τ -hypercovers [DHI04, Theorem 6.2]. Since hypercovers are stable
under product with any X ∈ S by [DHI04, Proposition 3.1], this is a monoidal localization. It is also sSet-
enriched by Remark 6.1.4. By Proposition 6.2.1, the localized model structure is again left proper, tractable,
monoidal and h-monoidal, pretty small, flat, and satisfies the monoid axiom. It is symmetric h-monoidal at least
if τ has enough points, for in this case local weak equivalences are maps which are stalkwise weak equivalences
[Jar87, page 39].

7.3. Simplicial modules. Let R be a commutative simplicial ring and consider the transferred model structure
on simplicial R-modules via the free-forgetful adjunction

R[−] : sSet ⇄ sModR : U.(7.3.1)

The model category sModR is pretty small by Proposition 5.1.2. As for chain complexes, sModR is flat, but
not symmetric flat (unless R is a rational algebra).

Simplicial R-modules are symmetric h-monoidal. The nonacyclic part follows from the fact that monomor-
phisms, i.e., injective cofibrations, of simplicial R-modules are h-cofibrations.

We reduce the acyclic part of symmetric h-monoidality of sModR to the one of sSet using the cocontinu-
ous strong monoidal functor R[−] : (sSet,×) → (sModR,⊗), which preserves weak equivalences. Given any
object Y ∈ ΣnsModR and any finite family w of generating cofibrations of sModR, i.e., w = R[v], we have a
deformation retraction

R[Λ]⊗ (Y ⊗Σn
R[v]�n)

R[∆]
→ (R[Λ]⊗n ⊗ Y ⊗Σn

R[v]�n)Σn

∼= Y ⊗Σn
(R[Λ× v])�n R[h]

→ Y ⊗Σn
R[v]�n

of Y ⊗Σn
w�n to a weak equivalence, which shows that the former is also a weak equivalence.

Simplicial R-modules are symmetroidal with respect to the class Y = (Yn) = (R[CΣin
n
sSet]), which follows

immediately from the symmetroidality of simplicial sets and cocontinuity and strong monoidality of R[−]. Note
that sModR is not symmetroidal, as can be shown as in Remark 5.2.7.

7.4. Chain complexes. The category Ch(ModR) of unbounded chain complexes of R-modules, for some
commutative ring R, carries the projective model structure whose weak equivalences are the quasiisomorphisms
and fibrations are the degreewise epimorphisms. It is enriched over Ch(ModZ) (equipped with the projective
model structure). The generating (acyclic) cofibrations are given by all shifts of the canonical inclusion [0 →

R]→ [R
id
−−→R] ([0→ 0]→ [R

id
−−→R], respectively) [Hov99, Definition 2.3.3, Theorem 2.3.11]. In particular, the

model structure is tractable and pretty small. It is flat, as can be seen using Theorem 3.2.8(ii). The category is
h-monoidal by [BB13, Corollary 1.14].

It is not symmetric flat, for the same reason as sSet above. Moreover, it is neither symmetric h-monoidal

nor symmetroidal: for the chain complex A = [Z
id
−−→Z] in degrees 1 and 0, we have

A⊗2 = [Z
(1,−1)
−−−−−→Z⊕ Z

+
−−−−−→Z],

where from left to right we have the sign representation, the regular and the trivial representation of Σ2. However,

(A⊗2)Σ2 = [Z/2−−→Z
id
−−→Z] is not exact nor cofibrant.

By the Dold-Kan correspondence N : (sModR,×) ⇄ (Ch+
R,⊗) between simplicial R-modules and connective

chain complexes of R-modules, the projective model structures correspond to each other. However, N fails to be
a strong symmetric monoidal functor. Instead, × corresponds to the shuffle tensor product ⊗̃ of chain complexes,
which is much bigger than the usual tensor product. According to Subsection 7.3, (Ch+

R, ⊗̃) is symmetric h-
monoidal. The reason why a similar argument fails for ⊗ is that the (smaller) ordinary tensor product fails to
allow for a Σn-equivariant diagonal map for an interval object.

If R contains Q, the picture changes drastically: every R-module M with a Σn-action is projective as an
R-module if and only if it is projective as an R[Σn]-module (Maschke’s theorem). Thus, the projective and
injective model structure (with respect to the Σn-action) on ΣnCh(ModR) agree. Therefore, Ch(ModR) is
symmetric flat and freely powered (and therefore symmetroidal and symmetric h-monoidal).

With appropriate additional assumptions, the statements above can be generalized to chain complexes in a
Grothendieck abelian category A. For example, flatness and h-monoidality of Ch(A) require that projective
objects P ∈ A are flat, i.e., P ⊗− is an exact functor.

7.5. Topological spaces. The category Top of compactly generated weakly Hausdorff topological spaces car-
ries the Quillen model structure which is transferred from sSet via the singular simplicial set functor. Thus
left properness, pretty smallness, symmetroidality, and symmetric h-monoidality of sSet transfers to Top by
Theorem 5.2.6(iii). Moreover, Top is monoidal [Hov99, Corollary 4.2.12], h-monoidal by [BB13, Example 1.15],
and flat [EKMM97, Theorem III.3.8]. It is cellular [Hir03, Propositions 4.1.4], though not locally presentable
and therefore not combinatorial. However, it is admissibly generated. This follows from Theorem 4.3.8(i) and
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the following facts about topological spaces: the maps in (4.2.5) are inclusions of topological spaces, since prod-
ucts with arbitrary spaces and coinvariants by finite group actions preserve those. Inclusions are stable under
pushouts and transfinite compositions. Finally, any topological space is small relative to inclusions by [Hov99,
Lemma 2.4.1]. Alternatively, one can use Smith’s ∆-generated topological spaces, which are combinatorial and
pretty small.

7.6. Symmetric spectra. The positive stable model structure on symmetric spectra with values in an abstract
model category C is both symmetric flat and symmetric h-monoidal. With a careful choice of the model structure
on symmetric sequences, it is also symmetroidal. As a special case, this shows that any model category is Quillen
equivalent to one which is symmetric flat and symmetroidal. For this, only mild conditions on C are necessary
(such as flatness and h-monoidality, but not their symmetric counterparts). See [PS14b, Theorem 3.3.4] for the
precise statement.
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Abstract. We show that all colored symmetric operads in symmetric spectra valued in a symmetric
monoidal model category are admissible, i.e., algebras over such operads carry a model structure. For
example, this applies to commutative ring spectra and E∞-ring spectra in simplicial sets or motivic spaces.

Moreover, any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories
of algebras. For example, any E∞-ring spectrum of simplicial sets or motivic spaces can be strictified to a
commutative ring spectrum. We apply this to construct a strictly commutative ring spectrum represent-
ing Deligne cohomology. We also discuss applications to Toën-Vezzosi homotopical algebraic contexts and
Goerss-Hopkins obstruction theory.

Contents

1. Introduction 1
2. Model-categorical preliminaries 3
3. Model structures on symmetric spectra 4
3.1. Symmetric sequences 4
3.2. Unstable model structures on spectra 9
3.3. Stable model structures on spectra 10
3.4. Algebras over colored symmetric operads in symmetric spectra 14
4. Applications 18
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1. Introduction

Ever since Brown’s representability theorem, spectra occupy a central place in a variety of areas. They
are the objects representing cohomology theories, i.e., for some cohomology theory H∗(−), one can find a
spectrum E such that the cohomology of all spaces X is given by morphisms of spectra (up to homotopy)
from the infinite suspension of X to a suspension of the spectrum:

Hn(X) = [Σ∞X,ΣnE].

Most cohomology theories in algebraic topology, algebraic geometry, and beyond carry a commutative and
associative product

Hm(X)⊗Hn(X)→ Hm+n(X).

This makes it desirable to refine the multiplicative structure on the cohomology to one on the representing
spectrum. Ideally, one would like a strictly commutative and associative product

E ∧ E → E
1
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2 SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA

that gives back the above product. In this case E is called a commutative ring spectrum. The following
theorem is the basis of the homotopy theory of commutative ring spectra and spectra with a much more
general multiplicative structure, namely algebras over symmetric colored operads:

Theorem 1.0.1. (See Theorem 3.4.1.) Suppose C is a symmetric monoidal model category satisfying some
mild additional assumptions (see Assumption 3.2.1 for the precise list), R is a commutative monoid in
symmetric sequences in C, O is a (symmetric colored) operad in symmetric R-spectra (i.e., R-modules in
symmetric sequences in C). Then the stable positive model structure on R-spectra exists and gives rise to a
model structure on O-algebras in R-spectra.

For example, this applies to C = sSet•, Rn = (S1)∧n, and O being the commutative operad (i.e., On =
S0), in which case R-modules are simplicial symmetric spectra and O-algebras are simplicial commutative
symmetric ring spectra. If O is the Barratt-Eccles operad (i.e., On = EΣn), then O-algebras are simplicial
symmetric E∞-ring spectra.

Another example is the category C of pointed simplicial presheaves sPSh•(Sm/S) on the site of smooth
varieties over a scheme S, equipped with the projective, flasque, or injective model structure, or any local-
ization thereof (such as the Nisnevich A1-localization), and Rn = (P1)∧n. In this case R-modules are known
as motivic symmetric P1-spectra and commutative monoids are (strictly) commutative motivic symmetric
ring spectra.

We also give a supplementary condition that guarantees, for example, that the underlying spectrum of a
cofibrant commutative ring spectrum is nonpositively cofibrant (see Theorem 3.4.3 for the precise statement).

In practice, it is often hard to construct strictly commutative ring spectra. Often it is the case that we
instead can construct an algebra over an operad weakly equivalent to the commutative operad Comm, for
example, the Barratt-Eccles operad E∞. Essentially, this means that instead of defining a single product,
there is a whole space of binary products and more generally n-ary products. A bigger space of n-ary
products gives us more freedom to construct examples. The following theorem says in particular that a
multiplication whose space of n-ary operations is contractible, can be strictified to a strictly commutative
and associative product.

Theorem 1.0.2. (See Theorem 3.4.4.) With C and R as above, any morphism f : O → P of operads in
R-spectra induces a Quillen adjunction between O-algebras and P -algebras, which is a Quillen equivalence if
f is a weak equivalence.

We also study operadic algebras in spectra with values in Quillen equivalent categories (Theorem 3.4.9).
As a special case we obtain the following Quillen invariance:

Theorem 1.0.3. (See Corollary 3.4.10.) For a weak equivalence ϕ : R
∼
→ S of commutative monoids in ΣC,

and any levelwise fibrant operad P in S-spectra and any levelwise cofibrant operad O in R-spectra, there are
Quillen equivalences

ϕ∗ : Alg
s,+
O (ModR) ⇆ Alg

s,+
S⊗RO(ModS) : ϕ

∗

ϕ∗ : Alg
s,+
ϕ∗P (ModR) ⇆ Alg

s,+
P (ModS) : ϕ

∗.

After a few recollections on model categories in Section 2, we define the notion of a (strongly) admissible
model structure on symmetric sequences (ΣC) in Section 3.1. The admissibility of the model structure on ΣC
will ultimately give rise to the admissibility of all symmetric operads. If the model structure is strongly
admissible, it has the extra property that positive cofibrations c, i.e., those that are trivial in level 0, are
symmetric cofibrations (Theorem 3.1.6(5)), i.e., (c�n)Σn

is a cofibration. Using a general transfer technique
developed in [PS, Section 5], we transfer these model-theoretic properties to the unstable model category of
symmetric spectra (Section 3.2).

More conceptually speaking, we look at the category of R-modules, where R is any commutative monoid
in ΣC. We refer to this category as R-spectra. We then perform the usual stabilization (Section 3.3) using the
technique of Bousfield localization. In Theorem 3.4.1, we show the existence of a model structure on algebras
over operads in R-spectra, which means that every operad in R-spectra is admissible. The key argument
is that for a positive acyclic cofibration f , i.e., one whose level 0 is an isomorphism, the n-fold pushout
product f�n has very good properties. For example, for any spectrum X with a Σn-action, X ⊗Σn

f�n is
a couniversal weak equivalence. This is weaker than being an acyclic cofibration, but enough to obtain the
admissibility of all operads.
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The model categories discussed above are connected by the following chain of Quillen adjunctions. The
middle adjunction is a Bousfield localization, while the other two adjunctions serve to transfer the model
structure on the left to the right. The superscripts indicate the precise choice of model structure: “+” and
“s,+” refer to the positive and stable positive structures. Underneath we indicate the place where the model
structure in question is defined.

Σ+C ⇆ Mod+
R ⇆ Mod

s,+
R ⇆ AlgO(Mod

s,+
R )

3.1.6 3.2.5 3.3.4 3.4.1
(1.0.4)

Along the way we prove the monoid axiom for the stable model structures on R-modules, which was previ-
ously unknown.

We go on to proving the operadic rectification result cited above (see Theorem 3.4.4) using the notion of
symmetric flatness which again holds for the stable positive model structure on R-modules.

We finish our paper with the following applications (Section 4): we show that Mod
+,s
R is an homotopical

algebra context in the sense of Toën and Vezzosi [TV08]. This allows to do derived algebraic geometry over
ring spectra. We also show that the Goerss-Hopkins axioms [GH04] and [GH] for a convenient category of
spectra are satisfied by this model category, which allows one to run the Goerss-Hopkins obstruction machine
in settings other than ordinary spaces. In Section 4.3 we show how to use the rectification result to construct
commutative ring spectra. In Section 4.4, we finish with an application to Deligne cohomology:

Theorem 1.0.5. (See Theorem 4.4.8.) There is a strictly commutative motivic P1-spectrum representing
Deligne cohomology with integral coefficients, including the product structure and all higher product operations
such as Massey products.

It is a pleasure to acknowledge the wealth of ideas that have helped to shape this paper. For us, a starting
point was an observation by Lurie that guarantees both the existence of a model structure on commutative
monoids in a model category C and a rectification result [Lur, Section 4.4.4]. It requires that f�n is a
Σn-projective acyclic cofibration for all acyclic cofibrations f ∈ C. Roughly, this means that Σn acts freely
on the complement of the image of this iterated pushout product. This is a harder condition than just asking
that f�n/Σn is an acyclic cofibration. In fact, Lurie’s condition is rarely satisfied in practice. It holds for
chain complexes over a field of characteristic zero, but fails for the categories of simplicial sets or symmetric
spectra in simplicial sets (even when endowed with the positive model structure).

The positive model structure on spectra is due to Smith. It was studied in the context of topological spaces
by Mandell, May, Schwede, and Shipley, who showed the existence of model structures on commutative
ring spectra and noted the rectification of E∞-ring spectra in topological spaces [MMSS01, Theorem 15.1,
Remark 0.14]. The positive model structure on symmetric spectra with values in an arbitrary model category
has been studied by Gorchinskiy and Guletskĭı [GG11]. They showed the homotopy orbits property (under
a strong assumption related to Lurie’s condition mentioned above). This property is a key step in the
operadic rectification. Harper also proved a rectification result as in Theorem 1.0.2 [Har09, Theorem 1.4]
for C = sSet•, which was generalized to C being the category of simplicial presheaves with the injective
model structure by Hornbostel [Hor13, Theorem 3.6]. These two model categories possess special features
that substantially simplify the proof, one of them being the fact that all objects are cofibrant.

In another direction, Harper showed the existence of a model structure on algebras over operads [Har10,
Theorem 1.4] under the assumption that every symmetric sequence is projectively cofibrant. Again, this is a
strong assumption, which applies to such special categories as chain complexes over a field of characteristic
zero. In this case, rectification goes back to Hinich [Hin97]. A recent application was the construction of
motives (with rational coefficients) over general bases by Cisinski and Déglise [CD09, Theorem 4.1.8]. In
fact, our paper grew out from the desire to construct a convenient (i.e., fibrant) ring spectrum representing
(higher) algebraic cobordism groups. We plan to present such applications in a separate paper.

We thank Denis-Charles Cisinski, John Harper, Birgit Richter, and Brooke Shipley for helpful conversa-
tions. This work was partially supported by the SFB 878 grant.

2. Model-categorical preliminaries

This paper uses the language of model categories. Very briefly, we recall the less standard notions
developed in [PS, Sections 2, 4]. A pretty small model category C has, by definition, another model structure
on the same underlying category which has the same weak equivalences, but fewer cofibrations which are

231



4 SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA

required to be generated by a set of maps whose (co)domain is compact. A class S of morphisms in
a symmetric monoidal model category C is (acyclic) symmetric i-monoidal, if for any finite multi-index
n = (n1, . . . , ne), ni ≥ 1, and any object Y ∈ ΣnC :=

∏
i Σni

C, and any finite family of maps s = (si) in S,
the map

Y ⊗Σn
s�n := (Y ⊗ s�n1

1 � · · ·� s�ne

e )Σn

is an (acyclic) i-cofibration, which means that pushouts along this map are homotopy pushouts (and that it
is moreover a weak equivalence in the acyclic case). The category C is symmetric i-monoidal if this condition
holds for the class of (acyclic) cofibrations. A related condition is called (acyclic) Y-symmetroidality of S:
it requires that for any map y in a fixed class of morphisms Yn ⊂ MorΣnC (for example all injective
cofibrations), and any finite family s of maps in S, the map

y �Σn
s�n

is an (acyclic) cofibration. Finally, a class S of morphisms in C is called symmetric flat, if for any weak
equivalence y ∈ ΣnC (i.e., a Σn-equivariant map which is a weak equivalence in C) and any finite family of
maps (si) in S, the map

y �Σn
s�n

is a weak equivalence. While symmetric i-monoidality is satisfied relatively often, symmetroidality and in
particular symmetric flatness are more rare. For example, simplicial sets are symmetric i-monoidal and
symmetroidal, but not symmetric flat. Simplicial presheaves with the projective model structure are sym-
metric i-monoidal. For a commutative ring R the category of chain complexes of R-modules is symmetric
i-monoidal, symmetroidal, and symmetric flat precisely if R contains Q, but none of these properties hold
otherwise. These and further basic examples are discussed in [PS, Section 7]. A more sophisticated exam-
ple is the positive stable model structure on R-modules in symmetric sequences, i.e., symmetric R-spectra
with values in an abstract model category C (subject to some mild conditions). This category is symmetric
i-monoidal, symmetroidal, and symmetric flat. See Theorem 3.3.4 for the precise statement.

A monoidal left Bousfield localization L⊗
S C of a symmetric monoidal model category C with respect to

a class S is the left Bousfield localization in the bicategory of symmetric monoidal model categories. Its
underlying model category can be computed as LS⊗C, where S⊗ denotes the monoidal saturation of S in C.
If C is tractable, S⊗ can be taken to be S ⊗ (co)dom(I), where I is some set of generating cofibrations with
cofibrant source. See [PS, Section 6.1] for further details.

For a finite group G and a subgroup H and some object X with a left H-action, we write G ·H X :=
colimH(

∐
GX). It carries a natural left G-action.

3. Model structures on symmetric spectra

3.1. Symmetric sequences. In this section, let C be a tractable, pretty small, left proper, symmetric
monoidal model category. We study model structures on the category of symmetric sequences, which is the
functor category

ΣC := Fun(Σ, C)

from the category Σ of finite sets and bijections or, equivalently, its skeleton. There is an obvious adjunction

Gn : ΣnC ⇆ ΣC : evn, (3.1.1)

where evn is the evaluation on n and Gn(X)(m) is X for m = n and the initial object of C else. For some
fixed k ≥ 0, these assemble to an adjunction

G≥k :
∏

n≥k

ΣnC ⇆ ΣC : ev, (3.1.2)

For k = 0 this is an equivalence of categories, but we will mostly be interested in k = 1 in the sequel.
The category ΣC is equipped with the monoidal structure (denoted ⊗) coming from the disjoint union of

finite sets [HSS00, Definition 2.1.3]. It satisfies

Gn(X)⊗Gn′(X ′) = Gn+n′(Σn+n′ ·Σn×Σn′ X ⊗X
′). (3.1.3)

Depending on the model category C, there are typically many different model structures on ΣC, so we
isolate a short list of axioms that we rely upon in the sequel. (Strongly) admissible model structures on ΣC
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will ultimately guarantee that all operads in the stable positive model structure on symmetric R-spectra are
(almost strongly) admissible (see Theorems 3.4.1, 3.4.3). Recall the notation G ·H − from Section 2.

Definition 3.1.4. A model structure on ΣC is called level-k admissible (or just admissible) for some fixed
k ≥ 0 if it is transferred along the adjunction (3.1.2) such that the model structures on the categories ΣmC
(denoted Σad

m C) satisfy the following properties:

(1) Each Σad
m C is a tractable model category.

(2) The weak equivalences are given by WΣad
m C = ϕ−1(WC), where ϕ denotes the functor that forgets any

action of a finite group on some object in C.
(3) The following identity functors are left Quillen functors between the projective, the admissible, and the

injective model structures:

Σpro
m C → Σad

m C → Σin
mC.

(4) For any decomposition m = m′ +m′′, m′,m′′ ≥ 0, the following is a left Quillen bifunctor:

Σad
m′C × Σad

m′′C
⊗
−→ (Σm′ × Σm′′)C

Σm·Σ
m′×Σ

m′′−

−→ Σad
m C. (3.1.5)

For any multi-index n, let Yn,u be a class of morphisms in ΣnΣuC. We suppose that for any y ∈ Yn,u,
Gu(y) � − preserves (acyclic) cofibrations in Σin

n ΣadC, i.e., those Σn-equivariant maps which are (acyclic)
cofibrations in ΣadC. For example, this condition is satisfied if Yn,u is empty for n 6= u and consists just of
the single map ∅ → 1ΣC for n = u. Another example is the class Yn,u of injective cofibrations in Σin

n ΣadC,
i.e., maps which are cofibrations in ΣadC. The model structure is called strongly Y-admissible if, in addition,
the following condition holds:
(5) For any multi-index n ≥ 1, any multi-index (of the same size) t ≥ 1, any y ∈ Yn,u, any finite family of

generating (acyclic) cofibrations h ∈ ΣtC (i.e., hi ∈ ΣtiC), the expression

Σtn+u ·Σn⋊(Σu×Σn
t )
y � h�n

is an (acyclic) cofibration in Σtn+uC.

For k = 0, we will drop the prefix “k-”. For k = 1, we replace this prefix by “positive”, e.g., the positive
admissible model structure. We denote these model structures by Σ≥kC, ΣC, Σ+C. In order to emphasize
the admissibility of the model structure, or for particular choices of admissible model structures, we write
Σ+,ad or Σ+,pro etc.

We now study the model-theoretic properties of symmetric sequences. The abstract techniques of trans-
fer and localizations of model structures established in [PS, Sections 5, 6] will then readily imply similar
properties for the stable model structure on symmetric spectra. For example, the symmetric i-monoidality
statement in Part (5) will give rise to the admissibility of symmetric operads, while the symmetric flatness
is responsible for the rectification of algebras over operads. Recall our conventions on C (p. 4).

Theorem 3.1.6. Any level-k admissible model structure has the following properties:

(1) It is tractable. Its generating (acyclic) cofibrations are the maps Gn(φ), where n ≥ k and φ is a generating
(acyclic) cofibration in ΣnC. The cofibrations are those maps which are cofibrations in degrees n ≥ k (in
ΣnC) and isomorphisms in degrees n < k.

(2) The weak equivalences (fibrations) are those maps which are weak equivalences (fibrations) in ΣnC for
each n ≥ k (and arbitrary in degrees n < k).

(3) It is pretty small and left proper.
(4) For any k ≥ 0, Σ≥kC is a symmetric monoidal model category. If the monoid axiom holds for C, the

same is true for Σ≥kC. If C is i-monoidal, then so is Σ≥kC. If C is i-monoidal and flat [PS, Definitions
3.2.1, 3.2.2], then Σ≥0C is flat.

(5) Let k > 0. If C is i-monoidal, the (acyclic) cofibrations of the model structure Σ≥kC form an (acyclic)
symmetric i-monoidal class in Σ≥0C. If C is i-monoidal and flat, then they form a symmetric flat
class in Σ≥0C. Finally, if the model structure on ΣC is strongly Y-admissible for some Y = (Yn,u)
as in Definition 3.1.4, then the (acyclic) cofibrations in Σ≥kC (k > 0) form a class that is (acyclic)
Y-symmetroidal in the model structure in Σ≥0C, i.e., (acyclic) symmetroidal with respect to the class of
maps y ∈ ΣnC whose components evuy lie in Yn,u. In particular, Σ≥kC is Y-symmetroidal in this case.
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Proof. The description of fibrations and weak equivalences is the definition of a transferred model structure.
The description of generating (acyclic) cofibrations, as well as transfer of left properness, pretty smallness
and tractability are basic properties of transfer [PS, Proposition 5.1.2]. For left properness note that C is
left proper, hence so is Σin

mC, and therefore Σad
m C, by the admissibility condition (3). Similarly, C is pretty

small, hence so is Σpro
m C, and therefore Σad

m C.
(4): For the pushout product axiom, it is enough to check I � I ⊂ C(ΣC) and I � J ∪ J � I ⊂ AC(ΣC).

Here I (J) are the generating (acyclic) cofibrations of ΣC. They are of the form Gn(f), where n ≥ k and
f ∈ ΣnC is a generating (acyclic) cofibration (with respect to the chosen admissible structure). Using (3.1.3),
we obtain our claim by Definition 3.1.4(4).

The monoid axiom requires the weak saturation cof(J ⊗ ΣC) to be contained in WΣC . Equivalently, we
need to check that

ϕevn(cof(J ⊗ ΣC)) ⊂WC ,

where ΣC
evn−→ ΣnC

ϕ
−→ C, for each n ≥ k. Pick some generating acyclic cofibration f = Gr(g), g ∈ JΣrC

(r ≥ k) and any symmetric sequence X . By [PS, Lemma 4.1.2], there is a noncanonical isomorphism

ϕevn(f ⊗ Y ) = ϕ(Σn ·Σr×Σn−r
fr ⊗ Yn−r) (3.1.7)

∼= Σn/(Σr × Σn−r) · ϕ(fr)⊗ ϕ(Yn−r)

= (Σn/(Σr × Σn−r) · ϕ(g))⊗ ϕ(Yn−r)

We now use that ϕ(g) ∈ ACC by 3.1.4(3) and likewise with a (finite) coproduct of copies of this. Therefore,
the previous expression is contained in ACC ⊗ C. Invoking the cocontinuity of ϕevn and the monoid axiom
in C, we obtain our claim

ϕevn(cof(J ⊗ ΣC))) ⊂ cof(ϕevn(J ⊗ ΣC)) ⊂ cof(ACC ⊗ C) ⊂WC . (3.1.8)

Using the i-monoidality of Σ≥0C it is enough to check flatness for generating cofibrations. Thus we need
to show y �Gn(c) is a weak equivalence for any weak equivalence y ∈ Σ≥0C and any cofibration c in ΣnC,
n ≥ 0. We have y �Gn(c) =

∐
r≥0Gn+r(Σn+r ·Σr×Σn

yr � c). It is enough to see that Σn+r ·Σr×Σn
yr � c

is a weak equivalence. Again by [PS, Lemma 4.1.2], it is isomorphic, in C, to a finite coproduct of copies of
yr � c which is a weak equivalence in C by the flatness of C. Moreover, by the i-monoidality, (co)dom(yr)⊗ c
is an i-cofibration, so that yr � c is a couniversal weak equivalence by [PS, Lemma 3.2.6]. These are stable
under finite coproducts in any model category.

(5): By [PS, Theorem 4.3.9], symmetric i-monoidality, symmetroidality and symmetric flatness only have
to be checked on generating (acyclic) cofibrations. The acyclic parts of the three statements are proven by
replacing the words “cofibration” and “i-cofibration” by their acyclic analogues, so that proof is omitted.
Let v = (v1, . . . , ve) be a finite family of generating cofibrations of Σ≥kC. They are given by vi = Gti(hi) for
some generating cofibrations hi ∈ ΣtiC and ti ≥ k > 0. Let n = (ni) be a multi-index with ni ≥ 1.

For an object Y = Gu(Z) in ΣnΣC, we have

Y ⊗Σn
v�n =

(
Gtn+u(Σtn+u ·Σu×Σn

t
Z ⊗ h�n)

)
Σn

= Gtn+u(Σtn+u ·Σn⋊(Σu×Σn
t )
Z ⊗ h�n) (3.1.9)

The group Σn acts trivially on Σu and Σu acts trivially on h�n. In C (as opposed to Σtn+uC), there is an
isomorphism

ϕ(Σtn+u ·Σn⋊(Σu×Σn
t )
Z ⊗ h�n) =

Σtn+u

Σn ⋊ (Σu × Σn
t )
· ϕ

(
Z ⊗ h�n

)
, (3.1.10)

by [PS, Lemma 4.1.2]. This uses the positivity of the ti which implies that Σn ⋊ (Σu × Σn
t ) is a subgroup

of Σtn+u.
For symmetric i-monoidality, we have to show that Y ⊗Σn

v�n is an i-cofibration in Σ≥0C for all Y ∈ ΣnΣC.
We may assume Y = Gu(Z), where u ≥ 0 and Z ∈ ΣmΣuC is arbitrary. Here we use that (acyclic) i-
cofibrations in an i-monoidal model category are stable under finite coproducts [BB13, Lemma 1.3] and
therefore, using the pretty smallness and [PS, Lemma 2.0.2], under countable coproducts. We show the
stronger statement that the above map is an i-cofibration in C in all degrees. Finally, the hi are cofibrations,
so that h�n is also a cofibration (in C, by the pushout product axiom). Hence, Z ⊗ h�n and therefore the
right hand side of (3.1.10) are i-cofibrations in C, using the i-monoidality of C.
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The symmetric flatness of the ≥ k-cofibrations (for k > 0) in Σ≥0C is proven similarly: replace Y ⊗Σn
−

by y �Σn
− for any weak equivalence y ∈ ΣnΣ

≥0C. Again, the reduction from a general weak equivalence y
to y = Gu(z), u ≥ 0, z a weak equivalence in ΣnΣuC, is possible by pretty smallness. Now, note that z�h�n

is a weak equivalence in C since C is flat.
Finally, for Y-symmetroidality, we again reduce the claim that y �Σn

v�n is a cofibration in Σ≥0C to the
case y = Gu(z) for z ∈ Yn,u. This is true provided that

Σtn+u ·Σn⋊(Σu×Σn
t )
z � h�n

is a cofibration in Σtn+uC which is exactly the strong admissibility condition 3.1.4(5). The Y-symmetroidality
of Σ≥kC also follows from this, noting that tn + u ≥ u ≥ k in this case, so the previous expression is a
cofibration in Σ≥kC.

The i-monoidality of Σ≥kC for k ≥ 0 also follows from these arguments: in (3.1.10), put n = 1, consider
only single maps (as opposed to finite families) and use that Σt×Σu is a subgroup of Σt+u, even for t = 0. �

Remark 3.1.11. The Y-symmetroidality of Σ≥kC would hold for k = 0 provided that C itself is Y-sym-
metroidal. This excludes the projective model structure on chain complexes of abelian groups, for example.
(See [PS, Section 7] for a discussion of concrete model categories (not) satisfying symmetric i-monoidality,
symmetroidality and symmetric flatness.) The positive structure does not require such an assumption.
Likewise, the (nonsymmetric) flatness promotes to symmetric flatness of Σ≥kC for k > 0.

The strong admissibility (as opposed to mere admissibility) is necessary to ensure the symmetroidality
of the positive model structure. For example, the argument above fails for the projective structure on ΣC,
for example for C = sSet: for t = 1, v = G1(h) where h is some cofibration (=monomorphism) in sSet.
However, Σn does not usually act freely on the complement of the image h�n, so this map is not a cofibration
in ΣprosSet.

The model category Σ≥kC is not flat for k > 0: for any map y ∈ C, G0(y) is a weak equivalence in Σ≥kC,
but y �Gk(c) is not.

We now give examples of strong admissible model structures. Lemma 3.1.12 shows that the injective model
structure ΣinC is strongly admissible, except, possibly, for the tractability. Because of that, it suffices to check
the nonacyclic parts of the requirements in 3.1.4(4) and (5). In other words, these requirements only depend
on the cofibrations of ΣadC. The tractability requirement 3.1.4(1) (as opposed to, say, combinatoriality) is
primarily of technical importance. It will be used to carry through monoidal properties to the stabilization
of R-modules, which is helpful to prove the monoid axiom for the stable structure on R-modules (3.3.4(2)).
Ignoring this necessity, the injective model structure ΣinC can be used in the sequel. However, fibrancy is
very difficult to check in this model structure. A strongly admissible structure with controlled cofibrations
(and therefore, acyclic fibrations) is provided by Theorem 3.1.18.

Lemma 3.1.12. Let C be a combinatorial, symmetric monoidal model category. Then the injective model
structure ΣinC is strongly admissible with tractability weakened to combinatoriality.

Proof. The injective structure is combinatorial [Lur09, Proposition A.2.8.2.]. The first bifunctor in (3.1.5)
is left Quillen since the pushout product commutes with ϕ and C is monoidal. The functor Σm ·Σm′×Σm′′ −
in (3.1.5) is a left Quillen functor by [PS, Lemma 4.1.2]. Using the notation of 3.1.4(5), h is an (acyclic)
cofibration in C, hence so is h�n by the pushout product axiom and therefore z � h�n is again a cofibration
in C by the assumption on Y. Again [PS, Lemma 4.1.2], applied to the subgroup Σn ⋊ (Σu × Σn

t ) ⊂ Σtn+u,
shows the strong admissibility. �

Remark 3.1.13. The tractability of ΣinC holds if every object of C is cofibrant. This applies, for example,
for simplicial sets or for simplicial presheaves with the injective model structure.

Lemma 3.1.14. Let C be a tractable model category. Then the projective model structure ΣproC is admissible.
Set Yn,u to be the projective cofibrations in ΣnΣuC. If every cofibration c in C is a power cofibration (i.e.,

c�n is a projective cofibration, see [Lur, Section 4.4.4] or [PS, Definition 4.2.5]), then the projective model
structure ΣproC is strongly Y-admissible.

Proof. The admissibility is standard, see for example [PS, Proposition 4.1.3]. As for strong admissibility, the
generating cofibrations of Σpro

t C are given by Σt · IC . The following chain of inclusion shows our claim for
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generating projective cofibrations in ΣnΣuC. The general case follows from this using [PS, Lemma 4.3.2].

Σu · z � (Σt · IC)
�n = Σu · Σ

n
t · z � (IC)

�n

⊂ Σu · Σ
n
t · z � CΣpro

n C (3.1.15)

= Σu · Σ
n
t · z � cof(Σn · IC)

⊂ cof(Σu · (Σn ⋊ Σn
t ) · z � IC) (3.1.16)

⊂ CΣu×Σn⋊(Σn
t )

proC .

The inclusion (3.1.15) holds by assumption. For (3.1.16), observe that Σn acts on Σn
t by permutation. �

Remark 3.1.17. Under a mild condition on C, namely that C has cellular fixed points [Gui], one can construct
the so-called mixed model structure GmixC. Its generating cofibrations (called equivariant cofibrations) are
of the form G/H · I, where H ⊂ G is any subgroup. The weak equivalences of GmixC are the underlying
weak equivalences. The mixed model structure is admissible, as can be easily shown.

The mixed model structure was introduced by Shipley for C = sSet [Shi04, Proposition 1.3]. It turns
out that for C = sSet the mixed model structure GmixC agrees with the injective model structure GinC and
therefore gives a strongly admissible model structure ΣmixC. However, for a general model category such as
C = Σmix

2 sSet (i.e., the mixed model structure), the GmixC and GinC are distinct. For G := Σ2, one checks
that the projection

Y := EΣ2 ⊔ EΣ2 → X := ∗ ⊔ ∗

is an acyclic mixed (or equivariant) fibration, where G (Σ2) acts on Y → X by permutation (by permutation
and the natural Σ2-action on EΣ2, respectively). The map does not have a section, so X is not cofibrant
in GmixC (but in GinC). See also [Har07] for more about this.

Theorem 3.1.18. Suppose that Y is a set (as opposed to a class) of morphisms. Then C admits a strongly
Y-admissible model structure. We call it the canonical strongly Y-admissible model structure.

Proof. We use [Lur09, Proposition A.2.6.13] to construct a combinatorial model structure on each ΣmC. The
weak equivalences will always be W := ϕ−1(WC), as required by 3.1.4(2). This is a perfect class (in the
sense of loc. cit.) since C is pretty small [PS, Lemma 2.0.2]. In addition we need to define a set Im of maps
in ΣmC. These will be the generating cofibrations of a model structure on ΣmC provided that two conditions
are met. (1) Any f ∈ Im is an i-cofibration in ΣmC. This will be satisfied as soon as Im consists of injective
cofibrations. (2) The class inj(Im) is contained in W . This will be satisfied provided that Im contains IΣpro

m C

since all maps in inj(IΣpro
m C) = AFΣpro

m C are in particular weak equivalences in C.
We inductively construct Im as follows. For m = 0, 1, we put Im = IC . For m > 1, we define

I0m := Σm · IC ∪
⋃

m=m′+m′′

(Σm ·Σm′×Σm′′ Im′ � Im′′) ∪
⋃

m=tn+u,y

Σm ·Σu×(Σn⋊Σn
t )
y � I�n

t . (3.1.19)

The first union runs over partitions of m into positive parts. The second union runs over all multi-indices
(of the same size) t ≥ 1, n ≥ 1 where at least one entry ni > 1, all u ≥ 0, and all y ∈ Yn,u (which is a set by

assumption). As usual, we have abbreviated I�n
t := I�n1

t1 � · · ·� I�ne

te . Note that m′, m′′, and the ti are all
strictly less than m. Therefore, Im′ etc. is defined. Finally, we inductively define

Im := ∪j≥0I
j
m, Ij+1 := Ij � IC . (3.1.20)

By Lemma 3.1.12, Im consists of injective cofibrations. Moreover, Im ⊃ I0m ⊃ Σm · IC = IΣpro
m C , as requested

above. Hence,W and I define a combinatorial model structure on ΣmC. By design, the functor in 3.1.4(3.1.5)
is a left Quillen bifunctor. In fact, for partitions m = m′+m′′ into positive parts, this is already true for I0m.
For the partition m = m + 0, this holds by the construction in (3.1.20). Again by design, the strong
admissibility requirement (5) is met for those multi-indices n where at least one ni is at least 2. If all ni = 1,
then the expression in (5) reduces to Σt+u ·Σu×Σt

y�h (where t+u :=
∑
ti+u), which is the (t+u)-th level

of Gu(y)�Gt(h). The latter map is a cofibration in ΣC by the assumption on Y made in Definition 3.1.4.
This also shows that the tractability of Σm′C etc. carries over to the one of the newly minted model

structure on ΣmC. �

Remark 3.1.21. It follows from the construction above that the canonical admissible model structure is
minimal among strongly admissible ones in the sense that the identity is a left Quillen functor ΣcanC →
Σstrongly adC.
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In our main application of strongly admissible model structures, Theorem 3.1.6(5), we actually only need
3.1.4(4) to hold for m′, m′′ ≥ 1. For this purpose, one can use the model structures defined by W as above
and I0m (as opposed to Im).

3.2. Unstable model structures on spectra. In Sections 3.2, 3.3 and 3.4, we will use the following
convention:

Assumption 3.2.1. C is a tractable, pretty small, left proper, i-monoidal, flat, symmetric monoidal model
category. We fix an admissible model structure on ΣC, for example the projective model structure (Defini-
tion 3.1.4).

In practice, these assumptions are both mild and robust. They are satisfied for simplicial sets, simplicial
presheaves, and chain complexes of abelian groups, for example. Moreover, if C has these properties, then so
does any monoidal left Bousfield localization L⊗

S C, as well as any model structure that is transferred from C
to D, provided that the adjunction has good monoidal properties. The reader is referred to [PS, Sections 5,
6, 7] for further examples and precise statements of the above claims.

Suppose R is a commutative monoid in ΣC. We denote the category of R-modules in ΣC by ModR and
refer to it as the category of R-spectra. See [HSS00, Section 2.2] for more details. R-spectra form a symmetric
monoidal category with the tensor product of R-modules M and N being

M ⊗R N = coeq(M ⊗R⊗N ⇒M ⊗N),

where the tensor products on the right are computed in ΣC. In this section we transfer any admissible model
structure on symmetric sequences to R-spectra by means of the adjunction

R⊗− : ΣC ⇆ ModR : U. (3.2.2)

Example 3.2.3. In many applications, R is the free commutative monoid on G1(A) for some object A ∈ C,
i.e., Rn = A⊗n with Σn acting by permutations. In Proposition 3.3.9 we discuss the case A = 1C , the
monoidal unit. More specifically, for C = sSet• (pointed simplicial sets) and the pointed circle A = S1,
ModR is the category of simplicial symmetric S1-spectra.

The model category used in motivic homotopy theory is C = sPSh•(Sm/S) (pointed simplicial presheaves
on the site of smooth schemes over some base scheme S), for which we take the pointed projective line
A = (P1

S ,∞) or, alternatively, A = A1/(A1 \ {0}) [Jar00]. The category ModR is known as the category of
motivic P1-spectra. In the projective model structure on pointed simplicial presheaves (or any localization
thereof), (P1

S ,∞) is not cofibrant. This is why we avoid imposing any cofibrancy hypotheses on R, unlike
Hovey [Hov01, Section 8]. The flatness of C ensures that the category of R-spectra is replaced by a Quillen
equivalent category if R is replaced by a weakly equivalent commutative monoid, see [SS00, Theorem 4.3].
This is used in Section 4.4 to construct a strictly commutative P1-spectrum representing Deligne cohomology.

Definition 3.2.4. Suppose that ΣC is equipped with a level-k admissible model structure denoted Σ≥kC.
The level-k admissible model structure Mod

≥k
R on ModR is the model structure transferred from Σ≥kC

along (3.2.2). As in Theorem 3.1.6, Mod
≥0
R and Mod

≥1
R are called the admissible and positive admissible

model structure and are denoted by ModR and Mod+
R respectively.

We now study this transferred model structure on ModR. The existence of this model structure is a
consequence of the monoid axiom of Schwede and Shipley [SS00, Theorem 4.1(2)], but can also be derived
from i-monoidality. Note that under mild auxiliary assumptions, i-monoidality implies the monoid axiom
[PS, Lemma 3.2.5]. For symmetric spectra in simplicial sets, the transferred injective (equivalently, mixed)
model structure is called the level S-model structure [Shi04, Proposition 2.2]. For symmetric spectra in an
abstract model category, the transferred projective model structure was studied by Hovey [Hov01, Theo-
rem 8.2]. The positive model structure studied in [GG11, Proposition 1] is also based on the projective model
structure. The projective and mixed model structures are admissible, but (in a general model category C)
not strongly admissible. The strong admissibility of the model structure on ΣC will (almost) guarantee the
strong admissibility of operads (Theorem 3.4.3). The stability of left properness under passing to a category
of R-modules (and much more general algebraic structures) was established by Batanin and Berger [BB13,
Theorem 2.11].

The symmetric i-monoidality, symmetric flatness and symmetroidality are, to the best of our knowledge,
new. They are the key input in establishing the existence of a model structure on commutative ring spectra
and algebras over more general operads.
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Theorem 3.2.5. Let C be a model category satisfying Assumption 3.2.1. Suppose that ΣC is a equipped with
a level-k admissible model structure. Let R be a commutative monoid in ΣC.

The level-k admissible model structure Mod
≥k
R exists and is tractable. Its generating (acyclic) cofibrations

are R ⊗ f , where f runs through the generating (acyclic) cofibrations of ΣC. The weak equivalences and

(acyclic) fibrations in Mod
≥k
R are transferred from Σ≥kC.

For any k ≥ 0, Mod
≥k
R has the following properties: it is symmetric monoidal, i-monoidal, left proper. If

C satisfies the monoid axiom, then so does Mod
≥k
R . For k = 0 (!), Mod

≥0
R is also flat.

For any k > 0, the following holds: the (acyclic) cofibrations of Mod
≥k
R form an (acyclic) symmetric i-

monoidal and symmetric flat class in Mod
≥0
R . Moreover, if the admissible model structure on ΣC is strongly

Y-admissible in the sense of Definition 3.1.4(4), then the (acyclic) cofibrations of Mod
≥k
R are (acyclic)

cof(R ⊗ Y)-symmetroidal in Mod
≥0
R , i.e., (acyclic) symmetroidal with respect to the weak saturation of the

class of maps R ⊗ y, y ∈ Y. 1

For a map ϕ : R→ S of commutative monoids in ΣC, there is a Quillen adjunction

ϕ∗ = S ⊗R − : Mod
≥k
R ⇆ Mod

≥k
S : ϕ∗,

which is a Quillen equivalence if ϕ is a weak equivalence (in ΣC).

Proof. By [PS, Theorem 8.2.5], the tractability, i-monoidality, left properness, monoid axiom transfers

from Σ≥kC to Mod
≥k
R . Similarly, the properties of the cofibrations of Σ≥kC (k > 0) of being symmet-

ric i-monoidal, symmetric flat or symmetroidal transfer from symmetric sequences to R-modules by [PS,
Proposition 5.2.5, Proposition 5.2.6], using that (3.2.2) is a Hopf adjunction with a strong monoidal left
adjoint.

The Quillen adjunction between R- and S-spectra follows since both model structures are transferred

from Σ≥kC. If ϕ is a weak equivalence, ϕ∗ is a Quillen equivalence by the flatness of Mod
≥k
R and [SS00,

Theorem 4.3]. �

3.3. Stable model structures on spectra. In this section we localize the unstable model structure on
R-modules to obtain the stable model structure. Consider the Quillen adjunction

Fn : C ⇆ ModR : Evn (3.3.1)

obtained by composing the adjunctions Σn · − : C ⇆ ΣnC, (3.1.1) and (3.2.2). The right adjoint evaluates
at the nth level (after forgetting the R-module structure and the Σn-action). The left adjoint is given by
Fn(X) = Gn(Σn ·X)⊗R.

Definition 3.3.2. Suppose k ≥ 0. Consider the symmetric monoidal left Bousfield localization, i.e., the
localization in the bicategory of V-enriched symmetric monoidal model categories, of the level-k admissible

model structure Mod
≥k
R on R-modules with respect to the set

ξR := {ξRn := ξn : Fn(QRn)→ R, n ≥ 0}.

Here Q is the cofibrant replacement functor in C. This model structure is called the stable level-k admissible

model structure. It is denoted Mod
s,≥k,ad
R or Mod

s,≥k
R . As usual, we drop the prefix k- for k = 0 (denoted

Mods
R) and speak of the stable positive model structure in the case k = 1 (denoted Mod

s,+
R ).

Remark 3.3.3. For n ≥ k, the map ξn above is the homotopy adjoint of the identity map Rn := Evn(R)→
Evn(R) ∈ C with respect to the adjunction (3.3.1). See [PS, Section 2], for example, for a general discussion
of homotopy adjoints.

If C is V-enriched, then Mod
s,≥k
R is the V-enriched monoidal localization by [PS, Remark 6.1.5]. The

name “stable model structure” for this model structure is standard, even though this model structure is not
stable for all R, for example for Rn = 1C (see the discussion following Proposition 3.3.9). See, however,
Theorem 3.3.4(5).

1In the case of symmetric spectra in C = sSet• and Rn = Sn, the n-sphere, claims have been made that every cofibration in
Σ+,inC (positive injective structure) is in fact a power cofibration. This is a stronger statement than symmetroidality. However,
there is a counterexample as follows: the object (R⊗G1(∗+))⊗R2 = R⊗G2(Σ2 · ∗+) is not cofibrant in Σpro

2 ModR because its

evaluation in degree 2 is (∗⊔∗)+ on which both copies of Σ2 act by permutation. This object is not cofibrant in Σpro
2

Σin
2 sSet•,

see Remark 3.1.17.
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Suppose R is the free commutative monoid on G1(R1), i.e., Rn = R⊗n
1 . Suppose further that R1 is either

cofibrant in C or monoidally cofibrant, i.e., there is a cofibration 1→ R1. Then the above localization agrees
with the one with respect to ξ1 only, since F1(QR1)

⊗n = Fn((QR1)
⊗n) and (QR1)

⊗n ∼ Q(R⊗n
1 ) by [PS,

Lemma 9.4.5].
In the case k = 0, the projective structure on ΣC and R = Sym(G1(R1)) with a cofibrant object R1 ∈ C,

the stable model structure has been defined by Hovey in [Hov01, Definition 8.7] as the localization (in the
bicategory of mere model categories, i.e., disregarding the monoidality and V-enrichment of ModR) with
respect to the set of maps

ζn(C) : Fn+1(C ⊗R1)→ Fn(C)

adjoint to the map C ⊗ R1 → Evn+1Fn(C) = Σn+1 · C ⊗ R1 given by the identity element of Σn+1. Here
n ≥ 0 and C runs through the (co)domains of generating cofibrations of C. Hovey’s definition agrees with
the one above. Indeed, by [PS, Proposition 6.1.3], the monoidal localization with respect to ξ1 = ζ0(1)
is the (ordinary) localization with respect to the set Fn(C) ⊗R Qζ0(1), which is equivalent to the one by
Fn(C) ⊗R ζ0(1) by the flatness of ModR. One checks that this map is just ζn(C). The objects Fn(C) are

precisely the (co)domains of generating cofibrations of the (projective, nonpositive) structure Mod
≥0,pro
R .

For the same type of commutative monoid Gorchinskiy and Guletskĭı define the stable positive structure
to be the localization with respect to Hovey’s class, but for n ≥ 1. Both their definition and Definition 3.3.2
have the property that positive stable weak equivalences agree with nonpositive stable equivalences [GG11,
Theorem 9], Theorem 3.3.4(3), so that the model structure in loc. cit. is Quillen equivalent to the one defined
above.

We now study the stable model structures, especially the stable positive one. Its most striking proper-
ties are symmetric i-monoidality, symmetroidality and symmetric flatness. In the generality stated below,
these properties are new. However, various aspects of this description are well-known. For example, parts
(1) and (2) are proved in [MMSS01, Theorem 14.2] in the case of symmetric spectra in simplicial sets. With
a slightly different definition, see Remark 3.3.3, Part (3) is due to Gorchinskiy and Guletskĭı [GG11, The-
orem 9]. In a general model category, the question whether the monoid axiom holds in the stable model
structure was unknown (see remarks at the end of Section 7 in [Hov01]). Part (2) settles this question for
a broad class of model categories. If C consists of the Nisnevich A1-localization of simplicial presheaves
with the injective model structure, the existence of the stable positive model structure has been shown by
Hornbostel [Hor13, Theorem 3.4] in the case where the chosen model structure is the mixed model structure.
A special case of symmetric flatness (namely the case where the weak equivalence y ∈ ΣnModR is given by
the projective cofibrant replacement of 1ModR

= R, EΣn → R) is due to Gorchinskiy and Guletskĭı [GG11,

Theorem 11]. They prove this statement under the assumption that every cofibration in Mod
+,pro
R (i.e., the

transfer of the positive projective structure on ΣC to R-modules) is a power cofibration. As was explained in
Lemma 3.1.14, this condition ensures that the projective structure is strongly admissible (which only holds
in very special cases). The more general symmetric flatness will be used to show the operadic rectification
(Theorem 3.4.4).

Theorem 3.3.4. Again, let C be a model category satisfying Assumption 3.2.1, equip ΣC with an admissible
model structure, and let R be a commutative monoid in ΣC.

(1) The model category Mod
s,≥k
R exists. It is a left proper, tractable model category. Its fibrant objects are

those objects W which are fibrant in Mod
s,≥k
R and such that the derived internal Hom in Mod

≥k
R ,

RHom(ξn,W )

is a weak equivalence for all n ≥ 0.

(2) For any k ≥ 0, Mod
s,≥k
R is a symmetric monoidal, i-monoidal and flat model category. It also satisfies

the monoid axiom if C does.
(3) The class of stable level-k weak equivalences Ws,≥k := W

Mod
s,≥k

R

, is independent of k. In particular, the

categories Mod
s,≥k
R are Quillen equivalent for all k ≥ 0.

(4) The model structure Mod
s,≥k
R is independent of the choice of the admissible model structure in the

sense that for any two choices of admissible model structures on ΣC, the resulting stable level-k model
structures are Quillen equivalent.
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(5) Suppose that C is pointed. Let us write S1 ∈ C for some cofibrant representative of the suspension of the
monoidal unit 1C, i.e., the homotopy pushout ∗⊔h1C ∗. Suppose that R is such that R1 is weakly equivalent

to S1 ⊗ B for some cofibrant object B ∈ C. Then the model structure Mod
s,≥k
R is stable in the sense

that it is pointed and the suspension and loop functors are inverse Quillen equivalences on Mod
s,≥k
R for

k ≥ 0 [SS03b, Definition 2.1.1].

(6) For any k > 0, Mod
s,≥k
R is symmetric flat and symmetric i-monoidal. If, moreover, the admissible model

structure on ΣC is strongly Y-admissible, then the (acyclic) cofibrations of Mod
s,≥k
R form an (acyclic)

cof(R⊗ Y)-symmetroidal class in Mod
s,≥0
R . In particular Mod

s,≥k
R is cof(R⊗ Y)-symmetroidal in this

case.
(7) For a weak equivalence ϕ : R → S of commutative monoids in ΣC. Suppose that there is a weak

equivalence Lϕ∗(R) ∼ S in ModS, where Lϕ∗ denotes the left derived functor of ϕ∗ : ModR →ModS .
For example, this condition is satisfied if 1C is cofibrant or if the map ϕ is a cofibration in ModR. Then
there is a Quillen equivalence for any k ≥ 0,

ϕ∗ = S ⊗R − : Mod
s,≥k
R ⇆ Mod

s,≥k
S : ϕ∗. (3.3.5)

Proof. The existence and the properties claimed in Part (1) follow from [PS, Proposition 6.1.3], since the

corresponding unstable model structure on Mod
≥k
R has these properties by Theorem 3.2.5. The description

of fibrant objects is an application of [PS, Lemma 6.1.6].
(2): This follows from the corresponding properties of the unstable model structure established in Theo-

rem 3.2.5 and the stability of these properties under monoidal left Bousfield localizations established in [PS,
Theorem 6.2.2].

We now show (3), essentially reproducing the proof of [GG11, Theorem 9]. In the proof of this part, we
will not explicitly mention that a model structure on ModR is level-0 or unstable, but will always indicate
level-k (for k > 0) and/or stability where necessary. Moreover, a superscript indicates a certain model-
categorical operation related to the model category structure in question. For example Q is the cofibrant

replacement functor in ModR, Q
≥k the one of Mod

≥k
R . Similarly, RMaps,≥k is the derived mapping space

of Mod
s,≥k
R . By definition, there is a Quillen adjunction, where Hom denotes the internal Hom:

FkQ(Rk)⊗R − : ModR ⇆ Mod
≥k
R : Θk := Hom(FkQRk,−). (3.3.6)

It localizes to a Quillen adjunction

FkQ(Rk)⊗R − : Mods
R ⇆ Mod

s,≥k
R : Θk. (3.3.7)

In fact, FkQ(Rk) ⊗L
R ξR is weakly equivalent to FkQ(Rk) ⊗R ξR by the flatness of ModR. The latter set

is contained in the monoidal saturation of ξR with respect to the model structure Mod
≥k
R since FkQ(Rk)

is cofibrant in Mod
≥k
R . Therefore the derived functor of the left adjoint sends ξR to weak equivalences in

Mod
s,≥k
R which shows that (3.3.7) is a Quillen adjunction.

We first prove two preliminary claims. The first claim is that any f ∈W≥k is a stable (nonpositive) weak
equivalence. Both Ws and W≥k are preserved by (unstable nonpositive) fibrant replacement, so that we may
assume that f is a map between nonpositively, a fortiori level-k fibrant objects. By Brown’s lemma (applied

to (3.3.6)), Θk(f) ∈ W ⊂ Ws. Let f
∼
→ f ′ be the fibrant replacement of f in the stable structure. In the

following commutative diagram, ∼ indicates a stable equivalence.

f = Hom(F01, f) //

∼

��

Hom(F0Q1, f) //

��

Θk(f)

��

f ′ = Hom(F01, f
′)

∗

∼
// Hom(F0Q1, f ′)

∗∗

∼
// Θk(f

′).

The map ∗ is a stable weak equivalence since F0(Q1)⊗R Y → F0(1) ⊗R Y is a weak equivalence in ModR

(and therefore Mods
R) for any cofibrant object Y ∈ModR by the flatness of ModR (Theorem 3.2.5). The

map ∗∗ is a stable weak equivalence by the very definition of this model structure. Consequently, in the
homotopy category Ho(Mods

R), f is a retract of the isomorphism Θk(f), so that f is also a stable weak
equivalence. This finishes the first claim.
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The second claim is that for any fibrant object Z ∈Mod
s,≥k
R , Hom(ξk, Z) : Z → Θk(Z) is an (unstable)

weak equivalence in Mod
≥k
R . Indeed, for any n ≥ k and any cofibrant object T ∈ ΣnC,

RMap≥k(Fn(T ), Z)
ξk−→ RMap≥k(Fn(T )⊗R Fk(QRk), Z)

∼ RMap≥k(Fn(T ),Θk(Z))

are weak equivalences, the first by the definition of the monoidal Bousfield localization, the second by

(homotopy) adjunction. Since the objects Fn(T ) are homotopy generators of Mod
≥k
R , we are done with the

second claim.
The first claim implies that there is a Quillen adjunction

id : Mod
s,≥k
R ⇆ Mods

R : id. (3.3.8)

Indeed, Q≥k(ξRn ) is level-k and therefore (by the first claim) stably weakly equivalent to ξRn . Therefore,

any fibrant object T ∈ Mods
R, is also fibrant in Mod

s,≥k
R . For any X ∈ ModR, the natural map of

derived mapping spaces (in Mods
R and Mod

s,≥k
R , respectively) induced by the transformation of cofibrant

replacement functors Q≥kX → QX ,

RMaps(X,T )→ RMaps,≥k(X,T )

is a weak equivalence. Indeed, Q≥kX → QX , is a positive weak equivalence and therefore a stable (nonpos-
itive) equivalence by the first claim.

We finally prove the proper statement. For a morphism f and an object Z ∈ ModR, we consider the
commutative diagram whose horizontal maps stem from the Quillen adjunction (3.3.8):

RMaps(f, Z) //

��

RMaps,≥k(f, Z)

��

RMaps(f,ΘkZ) // RMaps,≥k(f,ΘkZ).

Suppose f is in Ws,≥k, so that RMaps,≥k(f,−) is a weak equivalence. For any fibrant object Z ∈ Mods
R,

the top horizontal map is a weak equivalence (of arrows, i.e., a weak equivalence of source and target) by
the above consequence of the first claim. Thus RMaps(f, Z) is a weak equivalence, i.e., f is in Ws.

Conversely, suppose f ∈ Ws so that RMaps(f,−) is a weak equivalence. For any fibrant object Z ∈

Mod
s,≥k
R , Θk(Z) is fibrant in Mod

s
R by (3.3.7). Hence, by the consequence of the first claim, the bottom

horizontal map is a weak equivalence. By the second claim Z → Θk(Z) is in W≥k ⊂Ws,≥k, hence the right

hand vertical map is a weak equivalence. We conclude that RMaps,≥k(f, Z) is a weak equivalence so that f

is a weak equivalence in Mod
s,≥k
R .

(4): By Definition 3.1.4, weak equivalences in ΣproC and ΣadC are the same, so the same is true for

Mod
≥k,pro
R and Mod

≥k,ad
R which are therefore Quillen equivalent. This localizes to a Quillen equivalence

Mod
s,≥k,pro
R ∼Mod

s,≥k,ad
R since they are monoidal localization with respect to the same set ξR of morphisms.

(5): By (3), we may assume k = 0. For a cofibrant object X ∈ Mod
s,≥0
R , the suspension ΣX is weakly

equivalent to X ⊗ S1 = X ⊗ F0(S
1), where Fn is defined in (3.3.1). As F1 is a left Quillen functor,

F0(S
1)⊗F1(B) = F1(S

1⊗B) is weakly equivalent to F1(Q(R1)) = R⊗G1(Q(R1)), where Q is the cofibrant
replacement functor. By definition of the stable model structure, this is stably weakly equivalent to F0(1C) =

R which is the monoidal unit in ModR. Thus the suspension functor is a Quillen equivalence on Mod
s,≥0
R .

(6): Let k > 0. By Theorem 3.2.5, the cofibrations of Mod
≥k
R are symmetric flat and symmetric i-

monoidal in Mod
≥0
R . By [PS, Theorem 6.2.2], they are also symmetric flat and symmetric i-monoidal in

Mod
s,≥0
R . Since (acyclic) i-cofibrations only depend on the weak equivalences, the symmetric i-monoidality

and symmetric flatness of a class of morphisms also only depends on the weak equivalences. By Part (3), we
therefore conclude that the stable level-k model structure is symmetric flat and symmetric i-monoidal for
k > 0.
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The nonacyclic part of cof(R⊗ Y)-symmetroidality of Mod
s,≥k
R follows immediately from the one of

Mod
≥k
R . The acyclic part follows from a variant of [PS, Theorem 6.2.2(iii)], as follows: by [PS, Theo-

rem 4.3.9(iii)], it is enough to show that the generating acyclic cofibrations ofMod
s,≥k
R are acyclic cof(R ⊗ Y)-

symmetroidal in Mod
s,≥0
R . By tractability, we may assume they have cofibrant source. Thus they are acyclic

Y-symmetroidal in Mod
s,≥0
R by [PS, Proposition 4.3.5].

(7): If 1C is cofibrant, then so is R ∈ ModR, so that Lϕ∗(R) ∼ ϕ∗(R) = S. If there is a cofibration
R → S in ModR then S ⊗R − : ModR → ModR preserves weak equivalences by [PS, Lemma 9.4.8], so
that again Lϕ∗(R) = S ⊗R QR ∼ S ⊗R R = S.

To prove the proper statement, we may assume k = 0 by (3) and the 2-out-of-3-property of Quillen equiv-
alences. By [PS, Lemma 6.1.7], Mods

R is Quillen equivalent to the monoidal localization L⊗
Lϕ∗(QξR)

ModS .

The map Lϕ∗(ξ
R
n ) is weakly equivalent to Gn(Σn · QRn) ⊗ S → Lϕ∗(R). The target is, by assumption,

weakly equivalent to S. The map Gn(Σn ·QRn)⊗ S → S is the composition of Gn(Σn ·Qϕn)⊗ S, which is
an unstable weak equivalence by Brown’s lemma, followed by ξSn which is a stable equivalence of S-modules.
Hence L⊗

Lϕ∗(QξR)
ModS is Quillen equivalent to L⊗

ξS
ModS = Mods

S . �

We finish this section by examining the special case R = E, where E is the free commutative monoid
in ΣC on the monoidal unit. Its levels are given by En = 1C, the monoidal unit (with the trivial Σn-action).
In this case, E-modules coincide with I-spaces, as defined by Sagave and Schlichtkrull [SS12]. By definition,
these are functors from the category I of finite sets and injections to C. Indeed, an E-module X is the same
as a sequence of objects Xn ∈ ΣnC with a Σn-equivariant bonding map Xn

∼= Xn ⊗ 1→ Xn+1. This datum
is equivalent to specifying an I-space whose value on objects and isomorphisms σ ∈ Σn is given by the Xn

and whose value on injections is given by compositions of bonding maps. What is more, the stable model
structure on I-spaces defined in loc. cit. agrees with the stable model structure on ModE :

Proposition 3.3.9. Let C be a model category satisfying Assumption 3.2.1. We equip ΣC with the projective
model structure and consider the resulting unstable and stable level-k projective model structures on E-
modules. The unstable and stable level-k projective structures on ModE and the category IC of I-spaces
coincide, i.e., all 5 classes of maps are preserved under the above equivalence.

Proof. The unstable level-k projective model structures on E-modules and I-spaces coincide since they are
both transferred from

∏
n≥k C.

For the stable structure it is enough to prove that stable weak equivalence of I-spaces correspond to stable
weak equivalences of E-modules. Both model structures are left Bousfield localizations, so it is sufficient
to establish that the stably fibrant E-modules are exactly the stably fibrant I-spaces. By 3.3.4(1), stably
level-k fibrant E-modules are precisely those E-modules X that are unstably level-k fibrant and such that

RHom(Fn(Q1) → E,X) is a weak equivalence in Mod
≥k
E for all n ≥ 0, or, equivalently, the r-th level

(r ≥ k) of this is a weak equivalence. As Mod
≥k
E is flat and X is fibrant, the derived internal Hom is weakly

equivalent to the underived one. One easily checks there is an isomorphism in C,

HomModE
(Fn(Q1), X)r = HomC(Q1, Xr+n) ∼ HomC(1, Xr+n) = Xr+n,

where we have used the flatness of C (actually, only the unit axiom [Hov99, Lemma 4.2.7(b)]). In other
words stably level-k fibrant E-modules are those unstably fibrant E-modules such that Xr → Xr+n is a
weak equivalence for all n ≥ 0 and all r ≥ k. These are exactly the stably level-k fibrant I-spaces [SS12,
Section 3.1]. �

By [Hov01, Theorem 9.1], Mod
s,≥0
E and therefore Mod

s,+
E is Quillen equivalent to C. Thus, even if C is,

say, not symmetric flat (such as C = sSet), it is Quillen equivalent to E-modules (or I-spaces), which is, by
the theorems in Section 3.4, much better behaved. This point of view goes back to Jeff Smith.

3.4. Algebras over colored symmetric operads in symmetric spectra. We now exploit the excellent
model-theoretic properties of the stable positive model structure Mod

s,+
R on symmetric R-spectra to study

algebras over operads in this category. A symmetric single-colored operad O in ModR consists of an R-
module On with a Σn-action for each n ≥ 0. It can be thought of as the space of n-ary operations. For
different n, they are connected by Σr1 × · · · × Σrn-equivariant maps

On ⊗R Or1 ⊗R . . .⊗R Orn → Or1+···+rn .
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Specifying an O-algebra structure on some M ∈ModR amounts to specifying maps

On ⊗R,Σn
M⊗n →M

which are again compatible in a suitable sense. For example, the commutative operad Comm is such that
Commn = 1ModR

= R, so a Comm-algebra is exactly a strictly commutative ring spectrum.
Since there are no essential additional difficulties, we actually work with W -colored symmetric operads

or just operads for short. The set W (called set of colors) is fixed. Instead of the indexing by n ∈ N in
single-colored operads,W -colored operads are indexed by tuples (s, w) consisting of a map of sets s : I →W
(the multisource), where I is a finite set and w ∈ W (the target). Such tuples form a category sSeqW . This
category is a groupoid and the automorphism group of (s, w) is given by Σs :=

∏
r∈W Σs−1(r). The category

sCollW (ModR) := Fun(sSeqW ,ModR) of symmetric collections is equipped with the substitution product,
denoted ◦, which turns this into a monoidal category. Its monoidal unit R[1] is such that R[1]s,w = ∅ except
for s : I = {∗} → W , s(∗) = w, in which case it is R, the monoidal unit of ModR.

A symmetric W -colored operad is, by definition, a monoid in (sCollW (ModR), ◦). They form a category
denoted sOperW (ModR). The multiplication O ◦O→ O amounts to giving maps

Os,w ⊗
⊗

i∈I

Oti,s(i) → O∪i∈I ti,w.

An O-algebra consists of Mw ∈ModR, for every w ∈W , together with maps

Os,w ⊗
⊗

i∈I

Ms(i) →Mw.

Of course, these are subject to appropriate associativity and unitality constraints. For a slightly less short
summary of operads and their algebras, the reader may consult [PS, Section 9].

We now turn to the model-theoretic properties of algebras over operads in R-spectra. We show the
admissibility of all operads (3.4.1), give a criterion for (almost) strong admissibility of levelwise cofibrant
operads (3.4.3), rectification of algebras over weakly equivalent operads (3.4.4), and Quillen equivalences of
algebras over operads in different categories of spectra (3.4.9) and finally the special case of R-spectra and
S-spectra, where R ∼ S are weakly equivalent (3.4.10).

The admissibility of operads in symmetric spectra is due to Elmendorf and Mandell for C = Top [EM06,
Theorem 1.3], and Harper for C = sSet• [Har09, Theorem 1.1]. It was generalized by Hornbostel to the
category C of simplicial presheaves with the injective model structure and the injective model structure
on ΣC [Hor13, Theorem 1.3]. In the latter two cases, all objects are cofibrant. This considerably simplifies
the situation because all i-monoidality questions are trivial. The assumption that every object in C is
cofibrant excludes the projective model structures on presheaves, which is a main motivating example for us.
In fact, this paper grew out from an attempt to construct an algebraic cobordism spectrum, as a fibrant
commutative ring spectrum. The fibrancy is necessary to actually compute the homotopy groups of this
spectrum (i.e., the higher algebraic cobordism groups). For the injective model structure on presheaves the
fibrancy condition is practically impossible to check.

Theorem 3.4.1. Any (symmetric W -colored) operad O in ModR is admissible, i.e., the category of O-
algebras carries a model structure that is transferred along the adjunction

O ◦ − : Mod
s,+
R ⇆ AlgO(ModR) : U.

We refer to it as the stable positive model structure and denote it by Alg
s,+
O (ModR).

For example, for O = Comm, this gives a model structure on strictly commutative ring spectra. For
the operad sOperW of W -colored operads, this gives a model structure on W -colored symmetric operads in
spectra.

Proof. This follows from [PS, Theorem 9.2.11] whose assumptions are satisfied by Theorem 3.3.4. �

Example 3.4.2. For C = sSet• and R given by Rn = (S1)∧n, AlgComm(ModR) is known as the category
of commutative ring spectra (in simplicial sets). Another example is the case C = sPSh•(Sm/S) of pointed
simplicial presheaves on the site of smooth schemes over some base scheme S and the monoid given by
Rn = (P1

S ,∞)∧n. Any of the standard model structures, for example the projective model structure or
any monoidal localization, such as the Nisnevich localization or the Nisnevich-A1 localization satisfies the
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16 SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA

Assumption 3.2.1. In this case AlgComm(ModR) is the category of (strictly) commutative motivic ring
P1-spectra.

The next result addresses the strong admissibility of operads, i.e., the behavior of cofibrant algebras
under the forgetful functor Alg

s,+
O (ModR) →ModR [PS, Definition 9.2.1]. The main abstract result [PS,

Theorem 9.2.19] works for operads whose levels Os,w are of the form R⊗ some positively cofibrant object,
which excludes the commutative operad, for example. The following variant does include this example.
For C = sSet• and the injective model structure on ΣsSet• and the commutative operad, the statement
is due to Shipley [Shi04, Proposition 4.1]. By Lemma 3.1.12, the injective structure on ΣsSet• is strongly
admissible, so our result generalizes Shipley’s. Recall the notion of a strongly Y-admissible model structure
from Definition 3.1.4 and also the construction of such model structures from Theorem 3.1.18.

Theorem 3.4.3. Suppose the admissible model structure on ΣC is strongly Y-admissible with respect to
some class Y = (Yn ⊂MorΣnΣC). Suppose moreover that for all (s : I →W,w ∈W ) ∈ sSeqW ,

(ηO)s,w ∈ cof(R⊗ Yn)(⊂ MorΣnModR
),

where ηO : R[1]→ O is the unit map of O and n is the finite multi-index given by nr = ♯s−1(r) for r ∈ W .
(Note that only finitely many r appear since I is finite.) For example, if Yn consists of {∅ → 1}, this
condition is satisfied for the commutative operad Comm.

Then the forgetful functor

Mods
R ← AlgO(Mod

s,+
R ) : U

preserves cofibrant objects and cofibrations between them. (Note that the “+” is missing at the left hand
model structure.)

Proof. By [PS, Lemma 9.2.16], it is enough to notice that for any finite multi-index n = (nr), nr ≥ 1, any
multi-source s as in the statement, any w ∈ W , and any finite family x = (xr) of generating cofibrations of

Mod
s,+
R

(ηO)s,w �Σn
x�n := (ηO)s,w �∏

r
Σnr �

r

x�nr

r

is a cofibration in Mod
s,≥0
R by Theorem 3.3.4(6). �

The following is a rectification result for algebras over weakly equivalent operads in spectra. For C being
the category of compactly generated topological spaces, it is due to Goerss and Hopkins [GH, Theorem 1.2.4].
For R-spectra in spaces, where R is the free commutative monoid on the monoidal unit 1 in degree 1, this
is due to Sagave and Schlichtkrull [SS12, Proposition 9.12], see also Proposition 3.3.9.

Theorem 3.4.4. Let ψ : P → Q be a map of operads in ModR. Then there is a Quillen adjunction

Q ◦P − : Alg
s,+
P (ModR) ⇄ Alg

s,+
Q (ModR) : U

If ψ is a weak equivalence, i.e., if Ps,w → Qs,w is a weak equivalence in Mod
+,s
R for all (s, w) ∈ sSeqW , this

is is a Quillen equivalence.

Example 3.4.5. For example, there is a Quillen equivalence of algebras over the Barratt-Eccles operad (i.e.,
E∞-ring spectra) and commutative monoids in ModR (i.e., commutative ring spectra).

Another obvious application is that A∞-ring spectra can be rectified to strictly associative ring spectra.
See, e.g., [PS, Section 10.3] for a definition of A∞.

Proof. Again, this follows from [PS, Theorem 9.2.11] and [PS, Theorem 9.3.1] whose assumptions are satisfied
by Theorem 3.3.4. �

We finally give two transport results that describe the category of operadic algebras in different categories
of spectra. The first result is about a general weak monoidal Quillen adjunction. In the special case of
algebras in R-spectra and S-spectra, where R ∼ S are weakly equivalent commutative monoids in ΣC, we
get a stronger result.

Let D be another symmetric monoidal model category satisfying Assumption 3.2.1. Let

F : C ⇆ D : G (3.4.6)

244



SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA 17

be a Quillen adjunction. We suppose that G is symmetric lax monoidal. We pick commutative monoids
S ∈ ΣD and R ∈ ΣC and a map of commutative monoids ϕ : R→ G(S). Note that G preserves commutative
monoids since it is symmetric lax monoidal. There are adjunctions

FMod : ModC
R ⇆ ModD

S : G, (3.4.7)

(FMod)sOper : sOperW (ModC
R) ⇆ sOper(ModD

S ) : G.

where G is in both cases the obvious functor and FMod and (FMod)sOper are left adjoints whose existence
is guaranteed since C and D and hence all categories in sight are locally presentable. See, e.g., [SS03a,
Section 3] for the first and [PS, Section 9.4] for the second.

We equip ΣC and ΣD with some admissible model structures and we consider the condition that this
datum induces a weak monoidal Quillen adjunction [SS03a, Definition 3.6]

FMod : Mod
s,+,C
R ⇆ Mod

s,+,D
S : G, (3.4.8)

that is

FMod(QR) → S,

FMod(C ⊗R C
′) → FMod(C) ⊗S F

Mod(C′).

are weak equivalences for all cofibrant objects C,C′ ∈Mod
s,+,C
R . Using the Quillen equivalences Mod

s,+,C
R ∼

Mod
s,≥0,C
R (Theorem 3.3.4(3)), this condition is equivalent for the nonpositive or the positive stable model

structures. Since FMod(R ⊗ −) = S ⊗ F (−), the first condition holds if 1 ∈ C is cofibrant. Using pretty
smallness (via [PS, Lemma 2.0.2]), the second condition can be reduced to free R-modules C and C′, so that
it holds provided that the original adjunction (3.4.6) is weakly monoidal and that ΣC and ΣD both carry
the projective model structure.

Theorem 3.4.9. Suppose that (3.4.8) is a weak monoidal Quillen adjunction. Then, for any operad O in
ModR and P ∈ModS, there are Quillen adjunctions

FAlg : Alg
s,+
O (Mod

C
R) ⇄ Alg

s,+
F sOper(O)(Mod

D
S ) : G,

FAlg : Alg
s,+
G(P )(ModC

R) ⇄ Alg
s,+
P (ModD

S ) : G

They are Quillen equivalences if (FMod, G) is a weak monoidal Quillen equivalence and O is cofibrant and
P is fibrant.

Proof. This is an immediate application of [PS, Theorem 9.4.10] whose assumptions are satisfied by Theo-
rem 3.3.4. �

In the special case C = D and a weak equivalence ϕ : R → S in ΣC, the transport of algebras applied to
more general operads:

Corollary 3.4.10. Suppose that there are Quillen equivalences

ϕ∗ : Mod
s,+
R ⇆ Mod

s,+
S : ϕ∗. (3.4.11)

(See Theorem 3.3.4(7) for sufficient criteria.) Then there are Quillen equivalences

ϕ∗ : Alg
s,+
O (ModR) ⇆ Alg

s,+
S⊗RO(ModS) : ϕ

∗, (3.4.12)

ϕ∗ : Alg
s,+
ϕ∗P (ModR) ⇆ Alg

s,+
P (ModS) : ϕ

∗ (3.4.13)

for any operad O in ModR whose levels Os,w are cofibrant in Mod
s,≥0
R and any operad P in ModS whose

levels Ps,w are fibrant in Mod
s,+
S .

Example 3.4.14. If 1C is cofibrant, R = 1ModR
is cofibrant in Mod

s,≥0
R . The levels of the commutative

operad O = Comm are given by On = 1ModR
= R. We get S ⊗R O = Comm and therefore a Quillen

equivalence of commutative ring spectra.

Proof. The left adjoint in (3.4.11) is strong symmetric monoidal, the right adjoint is lax monoidal. It
therefore gives an adjunction whose left adjoint is again strong monoidal.

ϕ∗ : (sColl(ModR), ◦) ⇆ (sColl(ModS), ◦) : ϕ
∗

245



18 SYMMETRIC OPERADS IN ABSTRACT SYMMETRIC SPECTRA

Therefore, by [AM10, Proposition I.3.91], both right and left adjoints preserve commutative monoids, i.e.,
operads, and the induced functors on operadic algebras form an adjoint pair. In other words, on the
underlying spectra, (ϕ∗)

sOper is just ϕ∗. In the same vein, (ϕ∗)
Alg and (ϕ∗)Alg are also just given by ϕ∗ on

the underlying level.
Applying Theorem 3.4.9 to QsOper(O) (the cofibrant replacement of O, using the model structure on

operads in Mod
s,+
R established in Theorem 3.4.1) and RP (the fibrant replacement) and rectification (The-

orem 3.4.4) we have to show weak equivalences of operads

ϕ∗(Q
sOper(O)) ∼ ϕ∗(O)

ϕ∗(P ) ∼ ϕ∗(RP ).

The latter holds since RP → P is a weak equivalence of operads whose levels (RP )s,w → Ps,w are a weak

equivalence between fibrant objects in Mod
s,+
S (the latter by assumption). Being a right Quillen functor,

ϕ∗ preserves this weak equivalence by Brown’s lemma.
The former weak equivalence is shown as follows: the weak equivalence QsOper(O) → O gives a weak

equivalence of the levels QsOper(O)s,w ∼ Os,w . For any (s, w) 6= (w,w), QsOper(O)s,w is cofibrant in Mod
s,+
R

and a fortiori in Mod
s,≥0
R . For (s, w) = (w,w), the unit map R = 1ModR

→ QsOper(O)w,w is a cofibration

[PS, Lemma 9.2.14(i)]. By [PS, Lemma 9.4.8], using the flatness of Mod
s,≥0
R , QsOper(O)s,w ⊗R − preserves

stable weak equivalences in both cases. Similarly for Os,w, using the cofibrancy assumption on Os,w. Hence

we get a chain of weak equivalences in Mod
s,≥0
R or equivalently in Mod

s,+
R :

QsOper(O)s,w ⊗R S ∼ QsOper(O)s,w ∼ Os,w ∼ Os,w ⊗R S.

�

4. Applications

We finish our paper by the following applications: we show that R-spectra form a suitable framework
for derived algebraic geometry in the sense that they satisfy the axioms of Toën and Vezzosi. Moreover, we
show that the axioms of Goerss and Hopkins used in their work on moduli problems of ring spectra are also
satisfied for R-spectra. In Theorem 4.3.16, we use the rectification result (Theorem 3.4.4) to construct a
strictly commutative ring spectrum (in simplicial presheaves) from a commutative differential graded algebra.
As an example, we apply this to Deligne cohomology (Theorem 4.4.8).

4.1. Toën-Vezzosi axioms. In this section we prove that symmetric spectra in a symmetric monoidal
model category form a homotopical algebraic context in the sense of Toën and Vezzosi [TV08], so that one
can do derived algebraic geometry over ring spectra.

Definition 4.1.1. A homotopical algebraic context is a model category D such that:

(i) D is a proper, pointed, combinatorial symmetric monoidal model category. The canonical morphism
from the homotopy coproduct to the homotopy product of any finite family of objects is a weak
equivalence. The homotopy category of D is additive.

(ii) For any commutative monoid P in D the transferred model structure on ModP (D) exists and is a
proper, flat, combinatorial symmetric monoidal model category.

(iii) The transferred structure on commutative P -algebras and commutative nonunital P -algebras exists
and is a proper combinatorial model category.

(iv) Given a weak equivalence f : E → F in ModP (D) and a cofibrant commutative P -algebra Q, Q⊗P f
is a weak equivalence in ModQ(D).

Theorem 4.1.2. Suppose C is a pointed symmetric monoidal model category satisfying Assumption 3.2.1.
We fix an admissible model structure on ΣC and consider a commutative monoid R ∈ ΣC which is such that
R1 is weakly equivalent to S1 ⊗ B, where S1 is a cofibrant representative of ∗ ⊔h1C ∗, the suspension of the

monoidal unit, and B ∈ C is any cofibrant object. Then the stable positive model structure D := Mod
s,+
R

on the category of symmetric R-spectra defined in Theorem 3.3.4 is a homotopical algebraic context, except
possibly for the properness of the model categories mentioned above.
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Proof. (i): This is a restatement of Theorem 3.3.4. The last statement follows from the stability of D, which
holds by the assumption on R1.

(ii): Let P ∈ Comm(D), i.e., P is a commutative ring spectrum. The model structure on D transfers
to a combinatorial, left proper, symmetric monoidal model structure on ModP by [PS, Theorem 8.2.5],
using that D satisfies the monoid axiom by 3.3.4(2). Likewise, the flatness of D transfers to ModP by [PS,
Proposition 5.2.5(ii)].

(iii): The categories of (nonunital) commutative P -algebras are algebras over the operad Comm and
Comm+ (which is given by Comm+

n = ∅ for n = 0 and the monoidal unit 1 for n > 0), with values in
ModP . Again by [PS, Theorem 8.2.5], ModP is symmetric i-monoidal, so that any operad in ModP , in
particular Comm and Comm+ are admissible, so the transferred model structure on (nonunital) commutative
P -algebras exists [PS, Theorem 9.2.11].

(iv): As usual, we prove this by cellular induction. The first case is when Q = Sym(P ⊗X), where X is
the (co)domain of a generating cofibration of D and Sym denotes the symmetric algebra on the P -module
P ⊗X . As above, we have a canonical isomorphism in C:

Q⊗P f =
∐

t≥0

((P ⊗X)⊗Pn)Σt
⊗P f =

∐

t≥0

f ⊗Σt
X⊗t,

where Σt acts trivially on f . This is a weak equivalence in D since D is symmetric flat. As D is i-monoidal,
weak equivalences are closed under finite coproducts [BB13, Proposition 1.15] and therefore, using the pretty
smallness of D, closed under countable coproducts.

Next, consider a cocartesian square in AlgP , where i : X → X ′ is a generating cofibration in C,

Sym(P ⊗X) //

��

Sym(P ⊗X ′)

��

Q // Q′,

(4.1.3)

we want to show that our claim is true for Q′, provided that it holds for Q. We again use the filtration that
already appeared in the proof of [PS, Theorem 9.2.11]. In the case considered here, O = Comm, so that
Env(O,Q)t = Q (with the trivial Σt-action). This description of the enveloping operad can be read off its
explicit description in [Har09, Proposition 7.6] (in loc. cit., Env(O,Q)t is denoted OQ[t], and the formula for
OQ[t] simplifies to OQ[t] = colim(O ◦A⇔ O ◦ (O ◦A)) for O = Comm). As in [PS, Theorem 9.2.11], we get
a cocartesian square in ModP ,

Q⊗ (⊡t i)Σt
= Q⊗P (⊡t

P (P ⊗ i))Σt
//

��

Q ⊗ (X ′⊗t)Σt
= Q ⊗P ((P ⊗X ′)⊗P t)Σt

��

Qt
// Qt+1.

We apply f ⊗P − to this square and get a cube whose front and back face are cocartesian (in ModQ, or
in C):

(F ⊗P Q)⊗Σt ⊡
t i //

��

(F ⊗P Q)⊗Σt
X ′t

��

(E ⊗P Q)⊗Σt ⊡
t i //

∼

55
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

��

(E ⊗P Q)⊗Σt
X ′t

∼

55
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

��

F ⊗P Qt
// F ⊗P Qt+1

E ⊗P Qt
//

∼

55
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥

E ⊗P Qt+1

55
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

The top horizontal arrows of this cube are i-cofibrations (in C, say), since i is a symmetric i-cofibration.
Consequently the front and back face are homotopy pushout squares. The three arrows labeled with ∼ are
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weak equivalences by induction and the case of free commutative P -algebras considered above. Therefore,
the map f ⊗P Qt+1 is also a weak equivalence.

Now, any cofibrant P -algebra is a retract of transfinite compositions (in AlgP ) of maps as in (4.1.3).
The forgetful functor AlgP →ModP commutes with sifted colimits, therefore with transfinite compositions
(and retracts). Weak equivalences in C are stable under filtered colimits by [PS, Lemma 2.0.2]. This finishes
the proof of (iv). �

4.2. Goerss-Hopkins axioms. In [GH04] and [GH], Goerss and Hopkins formulated a number of axioms
that a category of spectra should satisfy in order to admit a good obstruction theory for lifting commutative
monoid objects in the homotopy category of spectra to E∞-spectra. They pointed out that the stable positive
model structure on topological spectra satisfies these properties and raised the question whether the same
property is true for spectra in a general model category. This was shown for spectra with values in simplicial
presheaves by Hornbostel [Hor13, Section 3.3]. In this section, we answer this question in the positive for
spectra in a very broad class of model categories, namely the ones satisfying Assumption 3.2.1.

We summarize the axioms of loc. cit. in the following definition:

Definition 4.2.1. A Goerss-Hopkins context is a symmetric monoidal tractable stable V -enriched model
category C (V is a tractable symmetric monoidal model category) such that every operad O in C is admissible
with the resulting model structure on O-algebras being tractable and V -enriched and every weak equivalence
of operads induces a Quillen equivalence between their categories of algebras.

Theorem 4.2.2. Suppose C is a pointed, symmetric monoidal, V-enriched model category satisfying As-
sumption 3.2.1, ΣC is endowed with an admissible model structure, and R is a commutative monoid in ΣC
such that R1 is weakly equivalent to S1 ⊗ B, where S1 is a cofibrant representative of the suspension of the
monoidal unit and B is any cofibrant object. The category of R-spectra, equipped with the stable positive
model structure established in Theorem 3.3.4, is a Goerss-Hopkins context.

Proof. The model structure Mod
s,+
R is stable, symmetric monoidal and tractable by Theorem 3.3.4. Ev-

ery operad O in ModR is admissible by Theorem 3.4.1, and weak equivalences of operads induce Quillen
equivalent categories of algebras by Theorem 3.4.4. �

Definition 4.2.1 is slightly different from the list of properties mentioned in [GH04, Sections 1.1, 1.4] and
[GH, Theorems 1.2.1, 1.2.3]: we omit the requirement that the homotopy category of C is equivalent to the
homotopy category of Bousfield-Friedlander spectra, i.e., nonsymmetric spectra. The Quillen equivalence
of symmetric and nonsymmetric spectra with values in an abstract model category is addressed by [Hov01,
Corollary 10.4]. We have replaced the requirement of cellularity of the model structures for AlgOModR by
combinatoriality. The relation of these two properties is discussed in [PS, Section 7].

[GH, Axiom 1.2.3.5] can be rephrased by requiring that the forgetful functor AlgO(ModR) → ModR

preserves cofibrations. In op. cit. this is only used in Theorem 1.3.4.2, which in its turn is only used in
Theorem 1.4.9 to establish cellularity, which can be replaced by combinatoriality. Moreover, this property
may fail for internal operads if, say, O(1) ∈ ModR is not cofibrant, so it is omitted in Definition 4.2.1. A
positive result in this direction, for a general model category C, is given by Theorem 3.4.3.

[GH, Axiom 1.2.3.6] states that for any n ≥ 0, and any cofibrant object X ∈ ModR, the functor
Σin

n V →ModR, K 7→ K ⊗Σn
X⊗n preserves weak equivalences and cofibrations. This condition is again not

present in Definition 4.2.1. It is used only in [GH, Theorem 1.2.4] (rectification for operads in R-spectra).
Our proof of this statement is based on the symmetric flatness of the stable positive model structure on
ModR, which is a generalization of the preservation of weak equivalences by the above functor.

4.3. Construction of commutative ring spectra. In this section, we apply the results of Section 3 to
the construction of strictly symmetric ring spectra.

We recall two technical tools: first, we study nonsymmetric lax monoidal right adjoints, such as the Dold-
Kan functor Γ : Ch+ → sAb, and the endomorphism operad associated to such a functor. This is due to
Richter [Ric03, Definition 3.1] (also see [AM10, Section 4.3.2]). Second, in order to capture the maximal
information from the ring spectra constructed in Theorem 4.3.16, we will not only consider mapping spaces,
but convolution algebras, which encode the multiplication on mapping spaces (see for example [AM10,
Section 3.4.5]).
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Definition 4.3.1. Let G : D → C be a lax monoidal (but not necessarily symmetric lax monoidal) functor
between two symmetric monoidal categories, where C is enriched over a symmetric monoidal category V .
The endomorphism operad of G is the operad in V defined by

OG(n) = HomFun(Dn,C)(G(−)⊗ · · · ⊗G(−), G(− ⊗ · · · ⊗ −)).

We say that G is O-lax monoidal for some operad O in V if there is a natural map O → OG.

For example, a symmetric lax monoidal functor G is just the same as a Comm-lax monoidal functor
[AM10, Table 4.2].

Lemma 4.3.2. Let

F : C ⇄ D : G (4.3.3)

be an adjunction of symmetric monoidal categories, where G is O-monoidal for some operad O. Also suppose
that C and D are accessible.

(1) There is an adjunction

FAlg : AlgOC ⇄ AlgCommD : G, (4.3.4)

where G sends a commutative algebra D ∈ D to G(D) with the O-algebra structure defined by

O(n) ⊗G(D)⊗n → OG(n)⊗G(D)⊗n → G(D⊗n)→ G(D).

(2) [AM10, Proposition 3.91] If G is symmetric monoidal (so that O = Comm) and F is strong symmetric
monoidal, then FAlg sends a commutative algebra C ∈ C to F (C) with the commutative algebra
structure

F (C)⊗ F (C)
∼=
→ F (C ⊗ C)→ F (C),

where the first map is the isomorphism that is part of the strong symmetric monoidal functor.

Proof. The functor G preserves limits and filtered colimits of algebras, since these are created by the functor
forgetting the algebra structure [PS, Section 8]. Since G is a functor between locally presentable categories,
it therefore has a left adjoint FAlg. �

Definition 4.3.5. Suppose that C is a closed symmetric monoidal category. The internal Hom functor
Cop × C → C is symmetric monoidal. The induced functor

HomAlg : AlgComm(C
op)×AlgComm(C) = AlgComm(C

op × C)→ AlgComm(C)

is called the convolution algebra. More generally, given an operad O in C, the convolution O-algebra is the
functor

Conv : AlgComm(C
op)×AlgO(C)→ AlgO(C). (4.3.6)

which sends (X,Y ) to the internal Hom(X,Y ) ∈ C equipped with the O-algebra structure induced by the
comultiplication on X and the O-algebra structure on Y . Explicitly, it is defined by

O(n) ⊗Hom(X,Y )⊗n → O(n)⊗Hom(X⊗n, Y ⊗n)

→ Hom(X⊗n, O(n) ⊗ Y ⊗n)

→ Hom(X,Y ).

Lemma 4.3.7. (cf. [AM10, 3.83]) In the situation of Lemma 4.3.2, let C′ ⊂ C be a full subcategory such
that F ′ := F |C′ is symmetric oplax monoidal (so that F ′ preserves commutative coalgebras). The natural
transformation

ConvC(−, G(−))→ G(ConvD(F
′(−), D)) (4.3.8)

is a morphism of functors AlgComm(C
′op) ×AlgComm(D) → AlgOG

(C). It is an isomorphism if the oplax
structural map

F (T ⊗X)→ F (T )⊗ F (X), (4.3.9)

is an isomorphism for any T ∈ C and any X ∈ C′.
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Proof. The underlying internal Hom’s are given by the compositions

Φ = Hom(−, G−) : C′op ×D
id×G
−→ C′op × C

HomC−→ C,

Ψ = GHom(F ′−,−) : C′op ×D
F ′×id
−→ Dop ×D

HomD−→ D
G
−→ C.

The functors G and id×G are OG-monoidal, and all other functors are symmetric lax monoidal, i.e., Comm-
monoidal. Thus, their composition is OG ⊠ Comm = OG-monoidal. Here − ⊠ − denotes the Hadamard
product of operads [AM10, Theorem 4.28]. The natural transformation Φ → Ψ induces the transformation
in (4.3.8) which is therefore a map of OG-algebras. For the second claim, Φ→ Ψ is an isomorphism in this
case, hence so is the transformation in (4.3.8). �

We now consider the interaction of Conv and model structures. Suppose C is a symmetric monoidal model
category. Then the convolution algebra (4.3.6) is a functor between categories with weak equivalences. To
get homotopically meaningful information, we therefore have to derive it. A natural strategy to compute
this (right) derived functor would be to endow the category of commutative coalgebras in C (=commutative
algebras in Cop) with a model structure. The standard choice of such a model structure is the transferred
structure along the forgetful functor

Cop ← AlgComm(C
op).

However, this is a notoriously difficult task (see, e.g., [BHK+14]), which we will not undertake in this paper.
Instead we use the following fact:

Lemma 4.3.10. Let C be a symmetric monoidal model category. Let X ∈ C be a cofibrant object which is
also endowed with a commutative coalgebra structure. The functor

Conv(X,−) : AlgO(C)→ AlgO(C).

is a right Quillen functor. Its derived functor will be denoted by RConv(X,−).

Proof. We have to check Conv(X,−) preserves (acyclic) fibrations. These are created by the forgetful functor
to C. Forgetting the O-algebra structure, Conv(X,−) is just the internal Hom(X,−), which is a right Quillen
functor since X is cofibrant and C is a monoidal model category. �

We now upgrade Lemma 4.3.7 to model categories. We use the notation of Lemma 4.3.2 and Lemma 4.3.7.

Proposition 4.3.11. Suppose that (4.3.3) is a Quillen adjunction between combinatorial model categories
and the transferred model structures on the categories of algebras in (4.3.4) exist. Also suppose X is an object
of C′, which is cofibrant in C and such that the lax monoidal structural map (4.3.9) is a weak equivalence for
all cofibrant objects T ∈ C.

(1) The adjunction (4.3.4), which exists by Lemma 4.3.2, is a Quillen adjunction. The map

RConvC(X,RGD)
∼
−→ RG(RConvD(F (X), D)) (4.3.12)

is a weak equivalence in AlgOC.
(2) In the situation of Lemma 4.3.2(2), suppose that (4.3.3) and (4.3.4) are Quillen equivalences. Then, for

any object C ∈ AlgCommC there is a weak equivalence in AlgCommC

LFAlg RConvC(X,C)
∼
−→ RConvD(F

AlgX,LFAlgC).

Proof. (1): (4.3.4) is a Quillen adjunction since (acyclic) fibrations are created by the functors forgetting
the respective operadic algebra structures.

By Lemma 4.3.7, (4.3.12) is a map of O-algebras. It is therefore enough to show that (4.3.12) is a weak
equivalence in C, i.e., after forgetting the O-algebra structure. This is an easy consequence of the assumption
that (4.3.9) is a weak equivalence.

(2): In (4.3.12), put D = LFAlg(C). As (4.3.4) is a Quillen equivalence, there is a weak equivalence

C → RG(LFAlg(C)). Hence we get a weak equivalence RConvC(X,C)
∼
−→ RGRConvD(FX,LF

AlgC)
which implies our claim again using the Quillen equivalence (4.3.4). �

We now prepare for Theorem 4.3.16 by fixing some notation related to the Dold-Kan equivalence. Let A
be a symmetric monoidal Grothendieck abelian category. We fix a model structure on the category sA of
simplicial objects. We assume that this model structure transfers, via the Dold-Kan equivalence,

N : sA⇄ Ch+A : Γ (4.3.13)
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to a model structure on connective chain complexes. Finally, we pick a model structure on chain complexes,
such that the adjunction of the good truncation functor and the inclusion of chain complexes in nonnegative
degrees,

ι : Ch+A⇄ ChA : τ (4.3.14)

(with τA∗ := [. . . → A1 → ker d0]) is a Quillen adjunction. We assume that these three model categories
satisfy Assumption 3.2.1, i.e., they are pretty small, left proper, tractable, flat, i-monoidal, symmetric
monoidal model categories. We also assume that the monoidal unit is cofibrant in Ch+A. (This is needed
to apply Corollary 3.4.10.)

We fix the projective model structure on symmetric sequences with values in sA etc. This is the model
structure transferred from sA. Let R̃1 ∈ Ch+A and R1 ∈ A be any objects. We regard R1 as simplicially
constant object in sA. We write R for the commutative monoid in ΣA ⊂ ΣsA whose n-th level is given by
R⊗n and likewise for R̃ ∈ ΣCh+A. We suppose there is a weak equivalence

ϕ : R̃→ N(R)

in ΣsA. The categories of R- and R̃-modules are equipped with their stable positive model structure (Theo-

rem 3.3.4). To simplify the notation, we will writeMods
R := Mod

s,+
R (ΣsA), Mod

Ch+

R̃
:= Mod

s,+

R̃
(ΣCh+A),

and similarly with ModCh

R̃
.

The normalization functor N in the Dold-Kan equivalence (4.3.13), applied to ΣA instead of A, is sym-
metric lax monoidal and (nonsymmetric) oplax monoidal by means of the Alexander-Whitney and Eilenberg-
Zilber maps (see for example [AM10, Section 5.4]). Therefore the right adjoint Γ is symmetric oplax monoidal
and (nonsymmetric) lax monoidal. However, the lax monoidal structural map

Γ(A)⊗n ⊗ Γ(B)→ Γ(A⊗n ⊗B)

is a Σn-equivariant isomorphism for any B ∈ Ch+ΣA provided that A is a chain complex concentrated in
degree 0. This can be checked using the explicit description of this map. Dually, there is a lax monoidal
map for N ,

N(A⊗B)→ N(A) ⊗N(B),

which is an isomorphism if A is a constant simplicial object. Applying this to A = R, we obtain an adjunction

N : sModR ⇄ Mod
Ch+

N(R) : Γ. (4.3.15)

With these preparations, we can now state the construction of commutative ring spectra. Similar methods
have been employed by Shipley to construct (noncommutative) ring spectra [Shi07, Theorem 1.1].

Theorem 4.3.16. With the notation and assumptions fixed above, there is a functor

H : AlgComm(ModCh

R̃
)→ AlgComm(Mods

R)

defined by

H(A) := Comm ◦LO (RΓ(R ⊗L

R̃
RτA)).

The spectrum H(A) represents the same cohomology as A in the sense that the following derived mapping
spaces are weakly equivalent, where X is any object in A:

RMapMods
R
(R ⊗X,H(A)) ∼ RΓRτ RMapModCh

R̃

(ι(R̃ ⊗N(X)), A).

Moreover, the multiplicative structure is preserved in the strongest possible sense: if X ∈ A(⊂ sA) is cofibrant
and in addition a commutative coalgebra, there is weak equivalence of convolution algebras

RConvMods
R
(R ⊗X,H(A)) ∼ Comm ◦

L
O RΓR⊗

L

R̃
Rτ RConvModCh

R̃

(ι(R̃ ⊗N(X)), A).

Proof. We prove this using Proposition 4.3.11, a theorem of Richter [Ric03], and the rectification theo-
rem 3.4.4.

The functor ι is strong monoidal and τ is symmetric lax monoidal (because of the Leibniz rule). Therefore,
(4.3.14) induces a similar adjunction

ι : Mod
Ch+

R̃
⇄ ModCh

R̃
: τ.

The unstable positive model structures on R̃-modules (Theorem 3.2.5) are transferred from (4.3.14) which is
a Quillen adjunction by assumption. Therefore, by the universal property of the Bousfield localization, the
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stable positive model structures are also related by a Quillen adjunction. Thus Proposition 4.3.11(1) yields
a weak equivalence

RConvModCh

R̃

(R̃⊗N(X),RτA) ∼ Rτ RConvModCh

R̃

(ι(R̃ ⊗N(X)), A). (4.3.17)

The map ϕ : R̃→ N(R) induces a Quillen adjunction

−⊗R̃ N(R) : Mod
Ch+

R̃
⇄ Mod

Ch+

N(R) : restriction.

The left adjoint is strong monoidal, the right adjoint is symmetric lax monoidal. Since ϕ is a weak equivalence
by assumption, both this adjunction, as well as the induced adjunction of commutative algebra objects are
Quillen equivalences (Corollary 3.4.10, using the cofibrancy of the unit in Ch+(A)). Proposition 4.3.11(2)
gives a weak equivalence

RConvModR(Ch+ΣA)(N(R)⊗X,R⊗L

R̃
RτA) ∼ R⊗L

R̃
RConvModCh

R̃

(R̃ ⊗N(X),RτA). (4.3.18)

The next step is the Dold-Kan equivalence. (4.3.13) is a Quillen adjunction by assumption. Therefore so
is (4.3.15) (where both sides carry the stable positive model structures of Theorem 3.3.4). Let O = OΓ be
the endomorphism operad of Γ. Using Proposition 4.3.11, we get a weak equivalence

RConvMods
R
(R ⊗X,RΓ(R ⊗

L

R̃
RτA)) ∼ RΓRConv

Mod
Ch+
N(R)

(N(R)⊗X,N(R)⊗
L

R̃
RτA). (4.3.19)

Given a commutative monoid object Z ∈ Mod
s
R, it is easy to check that there is an isomorphism of

O-algebras,

ConvMods
R
(R⊗X,UZ)

∼=
−→ U ConvMods

R
(R ⊗X,Z).

Here U denotes the forgetful functors from commutative to O-algebras, by means of the unique map of
operads O → Comm. This passes to a weak equivalence

RConvMods
R
(R⊗X,RUZ)

∼
−→ RU RConvMods

R
(R⊗X,Z). (4.3.20)

Using that R is simplicially constant and therefore N(R) is concentrated in degree 0, we can rewrite the
adjunction (4.3.15) as the Dold-Kan equivalence applied to the abelian category ModR(ΣA):

N : sModR(ΣA) ⇄ Ch+ModN(R)(ΣA) : Γ. (4.3.21)

According to Richter’s theorem [Ric03, Theorem 4.1], O → Comm is a levelwise weak equivalence for the
Dold-Kan equivalence on the abelian category Ab. The proof of loc. cit. readily generalizes to a general
abelian category such as ModR(ΣA). Thus, Theorem 3.4.4 establishes a Quillen equivalence

Comm ◦O − : AlgO(Mods
R) ⇆ AlgComm(Mods

R) : U.

This Quillen equivalence and (4.3.20), applied to Z = Comm ◦
L
O Y gives the following chain of weak equiva-

lences of convolution algebras, i.e., commutative algebras in ModR:

Comm ◦
L
O RConv(X,Y )

∼
→ Comm ◦

L
O RConv(X,RUO→CommComm ◦

L
O Y )

∼
→ Comm ◦

L
O RUO→Comm RConv(X,Comm ◦

L
O Y )

∼
→ RConv(X,Comm ◦

L
O Y ). (4.3.22)

Combining (4.3.17), (4.3.18), (4.3.19) and (4.3.22), we obtain the desired weak equivalence

RConvMods
R
(R ⊗X,H(A)) = RConvMods

R
(R⊗X,Comm ◦

L
O (RΓ(R⊗

L

R̃
RτA)))

∼ Comm ◦
L
O RΓR⊗

L

R̃
Rτ RConvModCh

R̃

(ι(R̃ ⊗N(X)), A).

�
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4.4. A commutative ring spectrum for Deligne cohomology. In this section we construct a strictly
commutative ring spectrum representing Deligne cohomology with integral coefficients. For a smooth pro-
jective variety X/C, Deligne cohomology is defined as the hypercohomology group

Hn
D(X,Z(p)) := Hn(Xan, [Z(p)→ Ω0

X → Ω1
X → · · · → Ωp−1

X ]︸ ︷︷ ︸
=:Z(p)D

), (4.4.1)

where Xan is the smooth complex manifold associated to X , Z(p) := (2πi)pZ sits in degree 0 and Ω∗
X

is the complex of holomorphic forms on Xan. Applications of Deligne cohomology range from arithmetic
geometry, notably Beilinson’s conjecture on special values of L-functions [Bĕı84] to higher Chern-Simons
theory [Sch13, Section 5.5.8]. The product structure on Deligne cohomology is surprisingly subtle. It was
defined by Beilinson by certain maps

− ∪α − : Z(p)D ⊗ Z(q)D → Z(p+ q)D

that depend on a parameter α ∈ C [EV88, Definition 3.2]. This parameter is used to show that the product
on the complexes of sheaves is commutative and associative up to homotopy. In particular,

⊕
n,p H

n
D(X,Z(p))

is a commutative ring. This was used by Holmstrom and the second author to construct a commutative
ring spectrum representing Deligne cohomology [HS10]. This is the weakest possible requirement on the
product operation on a spectrum: the multiplication is only commutative and associative up to homotopy.
In a somewhat similar vein, Hopkins and Quick studied ring spectra that result from replacing the Betti
cohomology part in Deligne cohomology by a different ring spectrum, such as complex cobordism [HQ12]. In
this section, we provide a strictly commutative model for Deligne cohomology which is the strongest possible
multiplicative structure on such a spectrum.

We emphasize that we are working with integral coefficients. For rational coefficients (i.e., with Q(p)
instead of Z(p)), it is possible to use Lurie’s rectification result [Lur, Theorem 4.4.4.7] to obtain a strictly
commutative ring spectrum. However, integral coefficients are interesting from many points of view. To
refine the treatment of special L-values, which is up to rational factors in [Sch10], it will be necessary to
have the integral structure available. One motivation for Hopkins’ and Quick’s work is to find new torsion
algebraic cycles, which also requires integral coefficients. In yet another direction, one may speculate about
the relation of modules over the Deligne cohomology spectrum and mixed Hodge modules by Saito [Sai91].
Again, for such considerations, it would be unnatural to throw away torsion.

Before discussing Deligne cohomology proper, we show how to turn a certain product structure on a fiber
product of commutative differential graded algebras (cdga’s) into a strictly commutative and associative one.
As in Section 4.3, our complexes are regarded as chain complexes, i.e., deg d = −1. Consider a diagram of
cdga’s, where we suppose that B takes values in Q-vector spaces:

A
a
→ B

c
← C.

Because of rational coefficients, a path object for B is given by B ⊗ Q [Beh02, Lemma 1.19], where Q is
the chain complex of polynomial differential forms on ∆1 familiar from rational homotopy theory. It is the
complex in the left column, where the terms are in degrees 0 and −1, respectively. The complex R at the
right is quasiisomorphic to Q:

Q[t]
ev(0),ev(1)

//

d

��

Q⊕Q

(a,b) 7→a−b

��

Q[t]dt

∫ 1
0
−

// Q.

We endow R with the multiplication R ⊗ R → R given by the following matrix in terms of the standard
basis e1, e2 ∈ R0, f ∈ R−1: e1 · e1 = e1, e2 · e2 = e2, f · e2 = f , e1 · f = f , and all other products of basis
vectors are 0. This product is associative and left unital, but not commutative. Because of the latter defect,
we consider the following diagram of associative left unital differential graded algebras

Q = Q⊗Q[0]
id⊗1
−→ S := Q⊗ R

(1,1)⊗id
←− Q[0]⊗R = R.

The horizontal maps are induced by the unit elements of Q and R, respectively. These maps are quasiiso-
morphisms. In addition, the augmentation maps Q0 = Q[t]→ Q2 and similarly for S and R commute with
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these quasiisomorphisms. Therefore, there is a zigzag of quasiisomorphisms of associative (noncommutative,
except for D) left unital differential graded algebras

D := A×B (B ⊗Q)×B C
∼
→ A×B (B ⊗ S)×B C

∼
← A×B (B ⊗R)×B C. (4.4.2)

The right hand object is just E := cone(A ⊕ C
a−c
→ B)[1] or, equivalently, the homotopy pullback A ×h

C B
in the model category of chain complexes, while D is the homotopy pullback in the (much more natural)
model category of cdga’s. The quasiisomorphisms in (4.4.2) are compatible with the respective product
structures. In particular, the induced product on H∗(D) agrees with the one on H∗(E). Moreover, higher
order multiplications, such as Massey products also agree.

In the sequel, we just write PSh• := PSh(Sm/C,Set•) for the presheaves of pointed sets on the site
of smooth schemes over C. We write sPShAb for simplicial presheaves of abelian groups and ChPSh for
chain complexes of presheaves of abelian groups and likewise Ch+PSh for presheaves of chain complexes in
degrees ≥ 0. We equip the categories sPSh•, sPShAb, Ch+PSh, ChPSh with the local projective model
structure. They are the left Bousfield localizations of the projective model structures with respect to the
covers

[(U ×X V )+ ⇒ U+ ⊔ V+]→ X+

(for sPSh•, and likewise for the three other categories). Here U ⊔ V → X is a covering in the Zariski
topology.

The corresponding categories of presheaves on the site SmAn of smooth complex manifolds are endowed
with the local projective model structures with respect to the usual topology on SmAn.

Remark 4.4.3. The results of this section hold unchanged if we replace the Zariski by the Nisnevich or etale
topology on Sm/C. We could also furthermore localize with respect to A1 on the algebraic side and with
respect to the disk D1 on the analytic side.

Lemma 4.4.4. There is a chain of Quillen adjunctions of the model categories mentioned above

sPSh•

Z[−]

⇄ sPShAb
N

⇄
Γ

Ch+PSh
ι

⇄
τ

ChPSh.

The analogous categories for the site SmAn are related to these categories by Quillen adjunctions, for
example

ChPSh
an∗

⇄
an∗

ChPSh(SmAn,Ab).

All these model categories satisfy Assumption 3.2.1. Moreover, their monoidal units are cofibrant.

Proof. The Quillen adjunctions of these categories, equipped with the projective model structure, transfer
from the standard Quillen adjunctions for simplicial sets etc. It passes to adjunctions of the local structures
by the universal property of the Bousfield localization. The Quillen adjunctions to presheaves on SmAn hold
since an : Sm→ SmAn sends Zariski covers to analytic covers. The properties required in Assumption 3.2.1
are discussed in [PS, Section 7.2]. Like any representable presheaf, the monoidal units, which are the
representable presheaves associated to SpecC (or an(SpecC)) are cofibrant. �

We now turn towards the construction of our Deligne cohomology spectrum. The cdga corresponding to
Betti cohomology is defined by A =

⊕
p∈Z Ran∗Z(p)[−2p]. Similarly, let B :=

⊕
p Ran∗Ω

∗[−2p], where Ω∗

denotes the cdga of holomorphic differential forms. Finally, let

C : X 7→
⊕

p

(
colim

X
F pΩ∗

X
(log(X\X))

)
[−2p],

be the Hodge filtration, i.e., the stupid truncation σ≥p of the complex of meromorphic forms on X
an
, which

are holomorphic on Xan and have at most logarithmic poles at X\X . The colimit runs over all smooth
compactifications j : X → X such that X\X is a strict normal crossings divisor.

We have obvious maps A
a
→ B

c
← C of cdga’s of presheaves on Sm/C and consider the cdga D and the

weakly equivalent dga E = cone(A⊕C
a−c
−→ B)[1] defined above. On the other hand, we have the associative

(but noncommutative) product on E which is the particular case α = 0 of the classical product on the
Deligne complexes [EV88, Definition 3.2]. The following result, which was already pointed out by Beilinson
[Bĕı84, Remark 1.2.6], relates the two products:
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Proposition 4.4.5. The cdga D of presheaves on Sm/C defined above represents Deligne cohomology with
integral coefficients in the sense that there is a functorial isomorphism, for any X ∈ Sm/C:

⊕

p∈Z

H2p−n
D (X,Z(p)) = Hn RMapChPSh(X,D).

Under this isomorphism, the product on the right hand term induced by the multiplication on D and the
comultiplication given by the diagonal map X → X ×X agrees with the classical product on Deligne coho-
mology. Moreover, all classical higher order products induced by the multiplication on E, such as Massey
products [Den95], agree with the corresponding higher order products on the cdga D, in the sense that the
derived convolution algebras are weakly equivalent differential graded algebras of presheaves:

RConvChPSh(X,D) ∼ RConvChPSh(X,E).

Proof. The identification of Deligne cohomology with the right hand side is well-known, see for example
[HS10, Lemma 3.2] for a very similar statement. Note that X ∈ ChPSh (i.e., the free abelian representable
presheaf Z[X ]) is cofibrant in the projective model structure. Hence the derived convolution algebras are
defined (Lemma 4.3.10). The extra information concerning the products follows immediately from the above
discussion. �

In order to connect the cdga D of Proposition 4.4.5 to, say, algebraicK-theory, it is necessary to work with
presheaves of simplicial sets. As is well-known to the experts (we learned it from Denis-Charles Cisinski), it
is not possible to construct a strictly commutative simplicial abelian group representing Deligne cohomology
or even Betti cohomology with integral coefficients. In fact, Steenrod operations preclude the existence of a
strictly commutative simplicial abelian (pre)sheaf representing Betti cohomology with integral coefficients.
This problem gives rise to an application of the operadic rectification for which we need to work in some
category of symmetric spectra. Because of its interest from the viewpoint of motivic homotopy theory, we
work in the category of symmetric P1-spectra.

The category of motivic symmetric P1-spectra is the categories of modules over the monoid R ∈ ΣsPSh•

whose n-th level is Rn = (P1, 1)⊗n, i.e., the n-th smash power ofP1, pointed by 1. Here and below we identify
any scheme over C with its representable presheaf. Note that Rn is a constant simplicial presheaf. We will
abbreviate Mods

P1 := ModR(ΣsPSh•). We have a similar category ModsAb
P1 := ModZ[R](ΣsPShAb) of

modules over the monoid Z[R] whose n-th level is (coker(Z
1
→ Z[P1]))⊗n.

Given the cdga D =
⊕

pDp of Proposition 4.4.5, we consider the symmetric sequence, again denoted

by D, whose l-th level is given by D(l) :=
⊕

pDp+l, with a trivial Σl-action. Then D is a commutative

monoid object in ΣChPSh. Turning D into a commutative monoid object in Mods
P1 , i.e., a commutative

symmetric P1-spectrum is equivalent to specifying a monoid map R→ D in ΣsPSh•, which is equivalent to
specifying a pointed map (P1, 1)→ D(1) =

⊕
pDp+1 in sPSh or, equivalently, a section on P1 of D whose

restriction to the point 1 ∈ P1 vanishes. Yet in other words, we need to specify of a line bundle with a flat
connection on P1. As is well-known, a nontrivial line bundle (more precisely, a generator of H2

D(P
1,Z(1)))

is not representable by a global section, but has to be constructed by patching local data. In the parlance
of homotopy theory, the nonfibrancy of D precludes the existence of the required map. We therefore replace
P1 by a weakly equivalent model. This amounts to the standard idea of representing cohomology classes by

Čech covers. Consider the object P̃1 ∈ sPSh defined as

P̃1 := [G⇒ P1\0 ⊔P1\∞],

where the simplicial presheaf G is defined by the homotopy pullback diagram

G //

∼

��

Ran∗U

∼

��

Gm
// Ran∗an

∗Gm

where U = [U± ⇒ U+ ⊔ U−] is the simplicial scheme whose only nondegenerate simplices are in degrees
1 and 0, which is the Čech cover of Gan

m arising from the cover Gan
m = U+ ∪ U−, where U+ = {z ∈ C,+z /∈

R≥0} and similarly with U−. The map U → an∗Gm = Gan
m is a weak equivalence in the local model structure

(with respect to the usual topology on SmAn). Hence the map G → Gm is a weak equivalence. Likewise,
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[Gm ⇒ P1\0 ⊔ P1\∞] → P1 is a weak equivalence in the (Zariski) local model structure. Therefore, the

composition of these maps yields a weak equivalence P̃1 ∼
−→ P1. It induces a Zariski-local weak equivalence

(P̃1)⊗n ∼
→ (P1)⊗n

in sPSh: for this we may use the local injective model structure on sPSh•. In this model structure, all
objects are cofibrant, so weak equivalences are stable under tensor products.

Let Z̃{1} := coker(Z
1
→ NZ[P̃1]) ∈ Ch+PSh. As in Example 3.2.3, we consider the free commutative

monoid R̃ on Z̃{1}, i.e., R̃n = (Z̃{1})⊗n. By the above, the natural map

R̃→ NZ[R]

is a Zariski-local weak equivalence in Ch+PSh.

We now specify the R̃-module structure on the symmetric sequence D defined above. As for Betti

cohomology, the map NZ[P̃1] → an∗Z(1)[−2] ⊂ A1 is given by the map an∗U
± = an∗(H ⊔H′)→ an∗Z(1)

which is given by the section 2πi on H := {ℑz > 0} and 0 on H′ := {ℑz < 0}. The map NZ[P̃1] → C1 is
determined by the map Gm → F 1Ω1

P1(log({0,∞})) given by the section d log z = dz/z ∈ Ω1
P1(log({0,∞})).

Finally, the map P̃1 → Ω∗ ⊗Q[−2] ⊂ B1 is given by the following map of complexes (the leftmost term
lies in degree 2):

an∗U
± //

(2πi|H
0|

H′
)⊗(1−t)

��

Gm ⊔ an∗(U
+ ⊔ U−) //

dz/z⊗t+(
log+ z|

U+

log− z|
U−

)⊗dt

��

an∗an
∗Gm ⊔P1\0 ⊔P1\∞

0

��

Ω0 ⊗Q[t] // Ω1 ⊗Q[t]⊕ Ω0 ⊗Q[t]dt // (Ω∗ ⊗Q)2 // . . .

Here, log+ z and log− z are two branches of the complex logarithm (defined on U+ and U−, respectively)
which agree on H′ and satisfy log+ z − log− z = 2πi on H. One easily checks that this defines a map of
complexes which yields a map

Z̃{1} → D1 = A1 ×B1 (B1 ⊗Q)×B1 C1. (4.4.6)

This defines an R̃-module structure on the symmetric sequence D = (D(l))l≥0 defined above. Therefore,

we obtain a strictly commutative motivic P̃1 ring spectrum, which we denote by H̃D. As above, we write

Mod
Ch+

P̃1
:= ModR̃(ΣCh+PSh) and likewise for ModCh

P̃1
. The cohomology represented by H̃D is Deligne

cohomology, including all higher product operations:

Proposition 4.4.7. The strictly commutative P̃1 ring spectrum

H̃D ∈ AlgComm(ModCh

P̃1
),

defined above is such that, for any smooth scheme X/C, there is a natural isomorphism of derived convolution
algebras

RConvModCh

P̃1

(R̃⊗X, H̃D) ∼ RU RConvChPSh(X,D),

where U : ModCh

P̃1
→ ΣChPSh

ev0→ ChPSh is the forgetful functor and U : AlgComm(ModCh

P̃1
) →

AlgComm(ChPSh) is the induced functor (Lemma 4.3.2). In particular, by Proposition 4.4.5, all products

and higher order operations such as Massey products are computed by H̃D.

Proof. Again, X ∈ Ch(PSh) is cofibrant, hence so is R̃ ⊗ X as an R̃-module. Therefore the derived

convolution algebras are well-defined. By Proposition 4.3.11(1), we have to check that RU H̃D → U H̃D = D

is a weak equivalence. This is implied by the fibrancy of H̃D which by Theorem 3.3.4(1) follows from the
fact that the maps

D(l)→ RHom(Z̃{1}, D(l + 1))

are weak equivalences. This can be checked by applying the derived mapping space Hn RMap(X,−) for any
X ∈ Sm/C and any n ∈ Z. By Proposition 4.4.5, we get

⊕pH
2p−n
D (X,Z(p)) −→ ker

⊕

p

(
H2p+2−n

D (P1 ×X,Z(p+ 1))→ H2p+2−n
D (X,Z(p+ 1))

)
.
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The map between them is the cup product with the element in ζ ∈ H2
D(P

1,Z(1)) represented by the
map (4.4.6). The element ζ generates this cohomology group, since the forgetful map to Betti cohomology
H2

D(P
1,Z(1))→ H2(P1,Z(1)) ∼= Z is an isomorphism which sends ζ to 1. By the projective bundle formula

for Deligne cohomology [EV88, Proposition 8.5] the map above is an isomorphism. �

Finally, we construct the strictly commutative Deligne cohomology spectrum:

Theorem 4.4.8. There is a strictly commutative P1-spectrum with values in simplicial presheaves on Sm/C,

HD ∈ AlgComm(Mods
P1)

defined by

HD := Comm ◦LO RΓR⊗L

R̃
RτH̃D,

which represents Deligne cohomology with integral coefficients, i.e., for any smooth algebraic variety X/C,
there is an isomorphism

πn RMapMods

P1
(R⊗X,HD) =

⊕

p∈Z

H2p−n
D (X,Z(p)).

The multiplication on the left induced by the ring spectrum structure on HD agrees with the classical product on
Deligne cohomology. Moreover, the convolution algebras are related by the following natural weak equivalence:

Comm ◦
L
O RΓR⊗

L

R̃
Rτ RConvModCh

P̃1

(R̃⊗X,HD) ∼ RConvMods

P1
(R⊗X,HD).

In particular, all higher order products on Deligne cohomology, such as Massey products, are represented by
the commutative ring spectrum HD.

Proof. This follows from Proposition 4.4.5, Proposition 4.4.7 and Theorem 4.3.16, applied to the Grothen-
dieck abelian category A = PSh(Sm/C,Ab) and the model structures mentioned in Lemma 4.4.4. �

Remark 4.4.9. In the context of complex-analytic smooth manifolds, a variant of the Deligne complexes
above is given by replacing the Hodge filtration as defined above by F pΩ∗

X . The resulting groups (called
analytic Deligne cohomology) are the ones defined in (4.4.1) for all (including noncompact) manifolds. The
above technique of rectifying this spectrum works essentially the same way. An even more basic case covered
by the techniques above is a strictly commutative ring spectrum representing Betti cohomology with integral
coefficients.
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