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a b s t r a c t

This paper studies Artin–Tate motives over bases S ⊂ Spec OF , for a number field F . As a
subcategory of motives over S, the triangulated category of Artin–TatemotivesDATM(S) is
generated by motives φ∗1(n), where φ is any finite map. After establishing the stability of
these subcategories under pullback and pushforward along open and closed immersions,
a motivic t-structure is constructed. Exactness properties of these functors familiar from
perverse sheaves are shown to hold in this context. The cohomological dimension of
mixed Artin–Tate motives (MATM(S)) is two, and there is an equivalence DATM(S) ∼=

Db(MATM(S)).
© 2010 Elsevier B.V. All rights reserved.

Geometric motives, as developed by Hanamura [5], Levine [8] and Voevodsky [14], are established as a valuable tool
in understanding geometric and arithmetic aspects of algebraic varieties over fields. However, the stupefying ambiance
inherent tomotives, exemplified by Grothendieck’s motivic proof idea of theWeil conjectures, remains largely conjectural—
especially what concerns the existence of mixed motives MM(K) over some field K . That category should be the heart of
the so-called motivic t-structure on DMgm(K), the category of geometric motives. Much the same way as the cohomology
groups of a variety X over K , e.g. Hn

ét(X×KK ,Qℓ), ℓ-adic cohomology for ℓ ≠ char K are commonly realized as cohomology
groups of a complex, e.g. RΓℓ(X,Qℓ), there should bemixedmotives hn(X) that are obtained by applying truncation functors
belonging to the t-structure to M(X), the motive of X . However, progress on mixed motives has proved hard to come by. To
date, such a formalism has been developed for motives of zero- and one-dimensional varieties, only. This is due to Levine
[7], Voevodsky [14], Orgogozo [9] and Wildeshaus [16].

Building upon Voevodsky’swork, Ivorra [6] and recently Cisinski andDéglise [3] developed a theory of geometricmotives
DMgm(S) over more general bases. The purpose of this work is to join the ideas of Beilinson et al. on perverse sheaves [2]
with the ones on Artin–Tate motives over fields to obtain a workable category of mixed Tate and Artin–Tate motives over
bases S which are open subschemes of Spec OF , the ring of integers in a number field F . As over a field, this provides some
evidence for the existence and properties of the conjectural category of mixed motives over S.

The triangulated category DTM(S) (DATM(S)) of Tate (Artin–Tate) motives is defined 2.2 to be the triangulated
subcategory ofDMgm(S) (with rational coefficients) generated by direct summands of 1(n) and i∗1(n) (φ∗1(n), respectively).
Here, 1 is a shorthand for the motive of the base scheme, (n) denotes the Tate twist, i : Spec Fp → S is a closed point,
φ : V → S is any finite map and φ∗ : DMgm(V ) → DMgm(S) etc. denotes the pushforward functor on geometric motives. In
case S is a finite disjoint union of Spec Fp, the usual definition of (Artin–)Tate motives over S is recalled in Definition 2.1.

The following theorem and its ‘‘proof’’ is an overview of the paper.

Theorem 0.1. The categories DTM(S) and DATM(S) are stable under standard functoriality operations such as i!, j∗ etc. for open
and closed embeddings j and i, respectively.

Both categories enjoy a non-degenerate t-structure called motivic t-structure. Its heart is denoted MTM(S) or MATM(S),
respectively and called category of mixed (Artin–)Tate motives.

The functors i∗, j∗ etc. feature exactness properties familiar from the corresponding situation of perverse sheaves. For example,
i! is left-exact, and j∗ is exact with respect to the motivic t-structure.
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The cohomological dimension ofMTM(S) and MATM(S) is one and two, respectively. We have an equivalence of categories

Db(MATM(S)) ∼= DATM(S)

and likewise for Tate motives.
The ‘‘site’’ of mixed Artin–Tate motives over S has enough points in the sense that a mixed Artin–Tate motive over S is zero if

and only if its restrictions to all closed points of S vanish.

Proof. The first statement is Theorem2.4. It is proven using the localization, purity and base-change properties of geometric
motives.

We will write T (S) for either DTM(S) or DATM(S). The existence of the motivic t-structure on T (S) is proven in three
steps. The first ingredient is the well-known motivic t-structure on Artin–Tate motives over finite fields (Lemma 3.6). The
second step is the study of a subcategory T̃ (S) ⊂ T (S) generated by φ∗1(n), where φ is finite and étale (Artin–Tate motives),
or just by 1(n) (Tatemotives). This category is first equippedwith an auxiliary t-structure. Using the cohomology functor for
the auxiliary t-structure, amotivic t-structure on T̃ (S) is defined in Section 3. This statement uses (and its proof imitates) the
corresponding situation for Artin–Tate motives over number fields due to Levine and Wildeshaus. Thirdly, the t-structure
on T̃ (S) is glued with the one over finite fields, using the general gluing procedure of t-structures of [2], see Theorem 3.8.
Much the sameway as with perverse sheaves, there are shifts accounting for dim S = 1, that is to say, i∗1(n) and 1(n)[1] are
mixed Tate motives. Beyond the formalism of geometric motives, the only non-formal ingredient of the motivic t-structure
are vanishing properties of the algebraic K -theory of number rings, number fields and finite fields due to Quillen, Borel and
Soulé.

The exactness statements are shown in Theorem4.2. This theoremgives some content to the exactness axioms for general
mixedmotives over S [11, Section 4]. The key step stone is the following: for any immersion of a closed point i : Spec Fp → S,
the functor i∗ maps the heart T 0(S) of T (S) to T [−1,0](Spec Fp), that is, the category of (Artin–)Tate motives over Fp whose
only nonzero cohomology terms are in degrees −1 and 0. The proof is a careful reduction to basic calculations relying on
facts gathered in Section 3 about the heart of T̃ (S).

The cohomological dimensions are calculated in Proposition 4.4. The Artin–Tate case is a special (but non-conjectural)
case of a similar fact for general mixed motives over S. The difference in the Tate case is because the generators of DTM(S)
have a good reduction at all places.

By an argument of Wildeshaus, the identity on T 0(S) extends to a functor Db(T 0(S)) → T (S) (Theorem 4.5). While it is
an equivalence in the case of Tate motives for formal reasons, the Artin–Tate case requires some localization arguments.

The last statement is Proposition 4.6. It might be seen as a first step into motivic sheaves. �

Deligne and Goncharov define a category of mixed Tate motives over rings OS of S-integers of a number field F
[4, 1.4., 1.7.]. Unlike themixed Tatemotiveswe study, their category is a subcategory ofmixed Tatemotives over F , consisting
of motives subject to certain non-ramification constraints, akin to Scholl’s notion of mixed motives over OF [12].

This paper is an outgrowth of part of my thesis. I owe many thanks to Annette Huber for her advice during that time. I
am also grateful to Denis-Charles Cisinski and Frédéric Déglise for teaching me their work on motives over general bases.

1. Geometric motives

This section briefly recalls some properties of the triangulated categories of geometric motives DMgm(X), where X is
either a number field F or an open or closed subscheme of Spec OF . All of this is due to Cisinski and Déglise [3]. In this
section, all references in brackets refer to op. cit., e.g. [Section 14.1].

Let X be any of the afore-mentioned bases. There is the triangulated category DM(X) of Beilinson motives and its
subcategory DMgm(X) of compact objects.1 Objects of the latter category will be referred to as geometric motives. The
categories are related by adjoint functors

f ∗
: DM(X) � DM(Y ) : f∗, (1)

where f : Y → X is any map [13.2.11, 1.1.11]. If f is separated and of finite type this adjunction restricts to an adjunction
between the subcategories of compact objects [14.1.5, 14.1.26] and there is an adjunction [13.2.11, 2.4.2]

f! : DMgm(Y ) � DMgm(X) : f !. (2)

If f is smooth in addition, f ∗
: DMgm(X) → DMgm(Y ) also has a left adjoint f♯ [13.2.11, 1.1.2]. These five functors respect

composition of morphisms in the sense that there are natural isomorphisms

f∗ ◦ g∗ = (f ◦ g)∗, f ∗
◦ g∗

= (g ◦ f )∗ etc. (3)

for any two composable maps f and g [Section 1.1, 2.4.21]. The category DMgm(X) enjoys inner Hom’s, denoted Hom, and a
tensor structure such that pullback functors f ∗ are monoidal [13.2.11, 1.1.28]. The unit of the tensor structure is denoted 1.

1 DM(X) is denoted DMB(X) in [3, Sections 13.2, 14.1].
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In particular f ∗1X = 1Y for f : Y → X . The motive of any separated scheme f : Y → X of finite type is defined as f!f !1
and denoted M(Y ). (For f smooth, [Section 1.1.] puts M(Y ) := f♯f ∗1. The two agree, see Lemma 1.2.) The tensor structure in
DMgm(X) is such that

M(Y )⊗M(Y ′) = M(Y×XY ′) (4)
for any two smooth schemes Y and Y ′ over X [1.1.35]. There is a distinguished object 1(1) such that M(P1

X ) = 1 ⊕ 1(1)[2].
Tensoring with 1(1) is an equivalence on DMgm(X) [2.1.5], and 1(n) is defined in the usual way in terms of tensor powers of
1(1).We exclusivelyworkwith rational coefficients, i.e., all morphism groups areQ-vector spaces. If X is regular,morphisms
in DMgm(X) are given by

HomDMgm(X)(1, 1(q)[p]) ∼= K2q−p(X)
(q)
Q , (5)

the q-th Adams eigenspace in algebraic K -theory of X , tensored with Q [Section 13.2]. Having rational coefficients (or
coefficients in a bigger number field) is vital when it comes to vanishing properties of Hom-groups in DMgm(X). (With
integral coefficients, the existence of a t-structure is unclear even in the case of Artin motives over a field.)

For any closed immersion i : Z → X with open complement jwe have the following functorial distinguished localization
triangles in DMgm(X) [2.2.14, 2.3.3]:

j!j∗ → id → i∗i∗. (6)
Moreover i∗i∗ = id [2.3.1], so that

i∗j! = 0, (7)
and i∗ is fully faithful. There is an isomorphism of functors

f!
∼=

−→ f∗ (8)
for any proper map f [2.2.14, 2.2.16]. For smooth and quasi-projective maps f of constant relative dimension d there is a
relative purity isomorphism [Theorem 1, p. 5]

f ! ∼= f ∗(d)[2d]. (9)
Moreover, when i : Z → X is a closed immersion of constant relative codimension c and Z and X are regular, we have an
isomorphism

i!1 ∼= i∗1(−c)[−2c]. (10)
This is called absolute purity [Sections 2.4, 13.4]. Finally, for f : Y → X , g : X ′

→ X , f ′
: Y ′

:= X ′
×XY → X ′ and g ′

: Y ′
→ Y ,

there is a natural base-change isomorphism of functors [Section 2.2]
f ∗g!

∼= g ′

!
f ′∗. (11)

The Verdier dual functor DX : DMgm(X)op → DMgm(X) is defined by DX (M) := Hom(M, π !1(1)[2]) for any M ∈ DMgm(X),
where π : X → Spec Z denotes the structural map.
Lemma 1.1. For an open subscheme X of Spec OF we have

DX (−) = Hom(−, 1(1)[2]).

Secondly, we have DSpec Fq(−) = Hom(−, 1).
Proof. The structural map π : X → Spec Z factors as

X
j

→ Spec OF
i

→ An
Z

p
→ Spec Z,

where j is an open immersion, i is a closed immersion and p is the projection. Thus we have π !1 = π∗1 by absolute purity
(10), applied to i, and relative purity (9), applied to j and p. Using (10) we get the second statement. �

The Verdier dual functor exchanges ‘‘!’’ and ‘‘∗’’, that is, there are natural isomorphisms [Section 14.3]
D(f !M) ∼= f ∗D(M), f!D(M) ∼= D(f∗M). (12)

For example, the Verdier dual of (6) yields a distinguished triangle
i∗i! → id → j∗j∗. (13)

Lemma 1.2. For f : X → Y smooth, we have a natural isomorphism f!f !1 = f♯f ∗1.
Proof. This is well known.We can assume f is of constant relative dimension d. Then the claim follows from the adjunctions

f♯ � f ∗
(9)
= f !(−d)[−2d] and f!(d)[2d] � f !(−d)[−2d]. �

Let X = Spec OF . The colimit over the triangles (13) over increasingly small open subschemes j : U ⊂ X is still a
distinguished triangle. For any geometric motiveM over X we get the following distinguished triangle in DM(X):

⊕pip∗
i!pM → M → η∗η

∗M, (14)
where η : Spec F → Spec OF is the generic point, the sum runs over all closed points p ∈ X , ip is the closed immersion.
Indeed colimj∗j∗M = η∗η

∗M for any M ∈ DMgm(X) [Section 14.2].
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2. Triangulated Artin–Tate motives

Recall the following classical definition. We apply it to a number field or a finite field:

Definition 2.1. Let K be a field. The category of Tate motives DTM(K) over K is by definition the triangulated subcategory
of DMgm(K) generated by 1(n) where n ∈ Z. The smallest full triangulated subcategory DATM(K) stable under tensoring
with 1(n) and containing direct summands of motives f∗1, where f : K ′

→ K is any finite map, is called a category of
Artin–Tate motives over K . For a scheme S of the form S = ⊔Spec Ki, a finite disjoint union of spectra of fields, we put
DATM(S) := ⊕iDATM(Ki) and likewise for DTM.

This section gives a generalization of that definition to bases S which are open subschemes of Spec OF based on the idea
that Artin–Tate motives over S should be compatible with the ones over F and Fp under standard functoriality.

Definition 2.2. The categories DTM(S) ⊂ DMgm(S) of Tate motives and DATM(S) ⊂ DMgm(S) of Artin–Tate motives over S
are the triangulated subcategories generated by the direct summands of

1(n), i∗1(n) (Tate motives)

and

φ∗1(n), (Artin–Tate motives)

respectively, where n ∈ Z, φ : V → S is any finite map (including those that factor over a closed point) and i : Spec Fp → S
is the immersion of any closed point of S.

Remark 2.3. • We can assume by localization (see (6), (13)) that the domain of φ is a reduced scheme.
• The category of Tate motives DTM(S) agrees with the triangulated category generated by the above generators (without

taking direct summands). Indeed, by (5), the endomorphism rings End(1(n)), End(i∗1(n)) identify with K0(S)
(0)
Q and

K0(Fp)
(0)
Q , respectively, which are both one-dimensional over Q. Hence these objects do not have any proper direct

summands.

For brevity, we write T (S) or T for DATM(S) or DTM(S) in the sequel. In most proofs, we will only spell out the case of Artin–Tate
motives.

Theorem 2.4. Let j : S ′
→ S be any open immersion, i : Z → S be any closed immersion and f : V → S any finite map such that

V is regular. Let η : Spec F → S be the generic point. Then the functors f∗
(8)
= f!, f ∗ and f ! preserve Artin–Tate motives. Similar

statements hold for Artin–Tate and Tate motives for j and i. Moreover, η∗, the Verdier dual functor D and the tensor product on
DMgm(S) respect the subcategories of (Artin–)Tate motives.

The functor η∗ does not respect Artin–Tate motives: we will see in Proposition 4.6 that any Artin–Tate motive M of the
formM = η∗Mη , whereMη is a geometric motive over F , necessarily satisfiesM = 0.

Proof. The stability of (Artin–)Tate motives under j∗, η∗, i∗ and i∗, f ∗ and — for Artin–Tate motives, under f∗ — is immediate
from the definition, (8), and (11). For example, i∗φ∗1(n) = φ′′

∗
1(n). Here φ : S ′

→ S is any finite map and φ′′
: Z ′

→ Z

is its pullback along i. Let i′ : Z ′
→ S ′ be the pullback of i. For the stability under i! we use i!φ∗1

(11)
= φ′′

∗
i′!1. We can

assume S ′ is reduced and, since the zero-dimensional case is easy, one-dimensional. Let n : S ′′
→ S ′ be the normalization

map; let v : Y ′
⊂ S ′ be the ‘‘exceptional divisor’’, i.e., the smallest (zero-dimensional) closed reduced subscheme such that

n−1(S ′
\Y ′) → S ′

\Y ′ is an isomorphism. Moreover, put z : Y ′′
:= Y ′

×S′S ′′
→ S ′′

→ S ′. Consider the the distinguished
triangle

1S′ → v∗1Y ′ ⊕ n∗1S′′ → z∗1Y ′′ .

It is a special case of [3, Theorem 4, p. 5] or can alternatively be derived from localization. Note that i!n∗1S′′

(11)
= n′

∗
i′′!1S′′

(10)
=

n′
∗
1(−1)[−2] by the regularity of S ′′. Here, again, n′ and i′′ denote the pullback maps. Similar considerations for i!v∗1Y ′ and

i!z∗1Y ′′ show that i!1S′ is an Artin–Tate motive.
For the stability under j∗ it is sufficient to show j∗φ′

∗
1 is an Artin–Tate motive over S for any finite flat map φ′

: V ′
→ S ′.

Choose some finite flat (possibly non-regular) model φ : V → S of φ′, i.e., V×SS ′
= V ′, so that j∗φ∗1 = φ′

∗
1 is an Artin–Tate

motive over S ′. The localization triangle (13)

i∗i!φ∗1 → φ∗1 → j∗j∗φ∗1

and the above steps show that j∗φ′
∗
1 is an Artin–Tate motive over S.

To see the stability under the Verdier dual functor D, it is enough to see that

D(φ∗φ
∗1)

(12)
= φ!φ

!D(1) 1.1
= φ∗φ

!1(1)[2]
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is an Artin–Tate motive for any finite map φ : V → S with reduced domain (Remark 2.3). If V is zero-dimensional, this
follows from purity (10), (9) and the regularity of S. If not, there is an open (non-empty) immersion j : S ′

→ S such that
V ′

:= V×SS ′ is regular (for example, take S ′ such that V ′/S ′ is étale). Let i be the complement of j. We apply the localization
triangle (13) to φ∗φ

!1. By base-change (11) we obtain

i∗φ′′

∗
φ′′!i!1 → φ∗φ

!1 → j∗φ′

∗
φ′!j∗1.

Here φ′′ and φ′ is the pullback of φ along i and j, respectively. By the regularity of S and purity we have i!1 = 1(−1)[−2], so
the left hand term is an Artin–Tate motive. The right one also is by purity. This shows the claim for D.

The stability under f !, i!, and j! now follow for duality reasons.

As for the stability under tensor products we note that φ∗1⊗φ′
∗
1
(4)
= (φ×φ′)∗1 if φ and φ′ are (finite and) smooth, cf. (4).

Using the localization triangle (6), it is easy to reduce the general case of merely finite maps φ, φ′ to this case. �

Remark 2.5. Theorem 2.4 also holds for a similarly defined category of Artin–Tate motives over open subschemes S of a
smooth curve over a field.

Proposition 2.6. Let M ∈ DATM(S) be any Artin–Tate motive. Then there is a finite map f : V → S such that f ∗M ∈ DTM(S) ⊂

DATM(S). We describe this by saying that f splitsM.

Proof. As f ∗ is triangulated, this statement is stable under triangles (with respect to M), and also under direct sums and
summands. Therefore, we only have to check the generators, i.e., M = φ∗1(n) with φ : S ′

→ S a finite map with
reduced domain. The corresponding splitting statement for Artin–Tate motives over finite fields is well-known. Therefore,
by localization (6), (13), it is sufficient to find a splitting map f after replacing S by a suitable small open subscheme, so we
may assume φ étale. We first assume that φ is moreover Galois of degree d, i.e., S ′

×SS ′ ∼= S ′⊔d, a disjoint union of d copies of
S ′. In that case one has φ∗φ∗1 = 1⊕d by base-change (11), so the claim is clear. In general φ need not be Galois, so let S ′′ be
the normalization of S in some normal closure of the function field extension k(S ′)/k(S). Both µ : S ′′

→ S and ψ : S ′′
→ S ′

are generically Galois. By shrinking S we may assume both are Galois. From Hom(1S′ , ψ∗1S′′) = Hom(1S′′ , 1S′′) = Q and
Hom(ψ∗1S′′ , 1S′) = Hom(1S′′ , ψ !1S′) = Hom(1S′′ , 1S′′) = Qwe see that 1S′ is a direct summand ofψ∗1S′′ . Thereforeµ∗φ∗1S′

is a summand of µ∗φ∗ψ∗1S′′ = µ∗µ∗1S′′ = 1⊕ deg S′′/S , a Tate motive. �

3. The motivic t-structure

In this section, we establish the motivic t-structure on the category of Artin–Tate motives over S (Theorem 3.8). It is
obtained by the standard gluing procedure, applied to the t-structures on Artin–Tate motives over finite fields and on a
subcategory T̃ (S ′) ⊂ T (S ′) for open subschemes S ′

⊂ S. Under the analogy of mixed (Artin–Tate) motives with perverse
sheaves, the objects in the heart of the t-structure on T̃ (S ′) correspond to sheaves that are locally constant, i.e., have good
reduction. We refer to [2, Section 1.3.] for generalities on t-structures.

Definition 3.1 (Compare [7, Def. 1.1]). For −∞ ≤ a ≤ b ≤ ∞, let T̃[a,b] denote the smallest triangulated subcategory of
T (S) containing direct factors of φ∗1(n), a ≤ −2n ≤ b, where φ : S ′

→ S is a finite étalemap. For Tatemotives, φ is required
to be the identity map. (We will not specify this restriction expressis verbis in the sequel.) Furthermore, T̃[a,a] and T̃[−∞,∞]

are denoted T̃a and T̃ . If it is necessary to specify the base, we write T̃[a,b](S) etc.

We need the following vanishing properties of the K -theory of number fields, related Dedekind rings and finite fields up
to torsion. In order to weigh the material appropriately, it should be said that the content of the theorem below is the only
non-formal part of the proofs in this paper, and all complexity occurring with Artin–Tate motives ultimately lies in these
computations.

Theorem 3.2 (Borel, Quillen, Soulé). Let φ : S ′
→ S and ψ : V → S be two finite maps with zero-dimensional domains.

HomS(φ∗1, ψ∗1(n)[m]) =


finite-dimensional n = m = 0
0 else.

Now let φ : S ′
→ S and ψ : V → S be two finite étale maps over S. Then

HomS(φ∗1, ψ∗1(n)[m]) =

 finite-dimensional n = m = 0
finite-dimensional m = 1, n odd and positive
0 else.

Proof. By (5)

HomV (1, 1(q)[p]) ∼= K2q−p(V )
(q)
Q ,
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for a regular scheme V . For the first statement, we may assume that S ′ and V are finite fields. Then the statement follows
from adjunction, base-change, purity and

Kn(Fq) =


µqi−1 n = 2i − 1, i > 0
0 n = 2i, i > 0
Z n = 0

[10]. K -theory of Dedekind rings R whose quotient field is a number field is known (up to torsion) by Borel’s work. The
relation to the K -theory of number fields is given by an exact sequence (due to Soulé [13, Th. 3]; up to two-torsion) for
n > 1

0 → Kn(R)
η∗

−→ Kn(F) → ⊕pKn−1(Fp) → 0.

Here η : Spec F → Spec R is the generic point and the direct sum runs over all (finite) primes in R. Also, K0(R) = Z ⊕ Pic(R)
andK1(R) = R×. In particular, for all n andm,Kn(R)

(m)
Q vanisheswhenKn(F)

(m)
Q vanishes, sinceη∗ respects the Adams grading.

One has the following list (see e.g. [15])

K2q−p(F)
(q)
Q =



0 q < 0
0 q = 0, p ≠ 0
Q q = p = 0
0BS q > 0, p ≤ 0
0 q > 0, even, p = 1
F×

⊗ZQ q = p = 1
Qr1+r2 q > 1, q ≡ 1 (mod 4), p = 1
Qr2 q > 0, q ≡ 3 (mod 4), p = 1
0 q > 0, p > 1.

As usual, r1 and r2 are the numbers of real and pairs of complex embeddings of F , respectively. (The agreement of K2q−1(F)
and K2q−1(F)(q) for odd positive q is not mentioned in [15].) The spot marked 0BS is referred to as Beı̆linson–Soulé vanishing
(see e.g. [7]). As first realized by Levine [7], this translates into the non-existence of morphisms in the ‘‘wrong’’ direction
with respect to the motivic t-structure.

For the last claim, put V ′
= V×SS ′:

V ′
φ′

//

ψ ′

��

V

ψ

��
S ′

φ // S.

To save space, we omit the twist and the shift in writing the Hom-groups. By (2), (11), and (1) we have

HomS(φ∗1, ψ∗1) = HomS′(1, φ!ψ∗1) = HomS′(1, ψ ′

∗
φ′!1) = HomV ′(1, φ′!1).

Now, V ′ is (affine and) étale over V , so φ′!1
(9)
= φ′∗1 = 1 by (9) and we are done in that case by the above vanishings of the

K -theory up to torsion. �

The following lemma is a variant of [7, Lemma 1.2], [16, Lemma 1.9] and can be proven by faithfully imitating the
technique in loc. cit.

Lemma 3.3. For any −∞ ≤ a < b ≤ c ≤ ∞, (T̃[a,b−1], T̃[b,c]) is a t-structure on T̃[a,c].

Definition 3.4. The resulting truncation and cohomology functors are denoted F≤b and F>b and grFb , respectively.

The following definition is modeled on [7, Def. 1.4]. We also refer to [1, Section 2.1.3] for a general way (due to Morel)
of constructing a t-structure starting from a given set of generators. For any odd integer n set 1(n/2) := 0, for notational
convenience.

Definition 3.5. Let S be an open subscheme of Spec OF . Let T̃≥0
a (S) (T̃≤0

a (S)) be the full subcategory of T̃a(S) (Definition 3.1)
generated by direct summands of

φ∗1

−

a
2


[n + 1]

for any n ≤ 0 (n ≥ 0, respectively), and any finite étale map φ. ‘‘Generated’’ means the smallest subcategory containing
the given generators stable under isomorphism, finite direct sums, and cone(f )[−1] (cone(f ), resp.) for any morphism f in
T̃≥0
a (S) (T̃≤0

a (S), respectively).
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For any −∞ ≤ a ≤ b ≤ ∞, let T̃≥0
[a,b](S) be the triangulated subcategory generated by objects X , such that for all

a ≤ c ≤ b, grFc (X) ∈ T̃≥0
c (S) and similarly for T̃≤0

[a,b](S). For a = −∞ and b = ∞ we simply write T̃≤0(S), T̃≥0(S). We may
omit S in the notation, if no confusion arises.

In particular 1(−a/2)[1] ∈ T̃ 0
a (S). This shift is as in the situation of perverse sheaves [2], [11, Section 3]. Before stating

and proving the existence of the motivic t-structure, we need some preparatory steps. Levine has established the existence
of the motivic t-structure on Tate motives over number fields and finite fields [7, Theorem 1.4.]. This has been generalized
to Artin–Tate motives byWildeshaus [16, Theorem 3.1]. We briefly recall these precursor statements. Let K be either a finite
field or a number field. For any −∞ ≤ a ≤ b ≤ ∞, let T[a,b](K) be the triangulated subcategory of T (K) generated by
1(n) with a ≤ −2n ≤ b (Tate motives) and direct summands of φ∗1(n), φ : Spec K ′

→ Spec K a finite map (Artin–Tate
motives, respectively). For any a ≤ c < b, the datum


T[a,c], T[c+1,b]


forms a t-structure on T[a,b]. Let grF∗ be the cohomology

functor corresponding to that t-structure. Write Ta(K) for T[a,a](K) and let T≥0
a (K) and T≤0

a (K) be the subcategories of Ta(K)
generated by 1(−a/2)[n] with n ≤ 0 and n ≥ 0, respectively. Here, ‘‘generated’’ has the same meaning as in Definition 3.5.
Let T≥0

[a,b] and T≤0
[a,b] be the subcategories of T[a,b] of objects X such that all grFc X ∈ T≥0

c (grFc X ∈ T≤0
c , respectively) for all

a ≤ c ≤ b. Then,

T≤0
[a,b](K), T

≥0
[a,b](K)


is a non-degenerate t-structure on T[a,b].

The following well-known fact is a consequence of vanishing of all K -theory groups of finite fields except for K0(Fp)
(0)
Q ,

see Theorem 3.2.

Lemma 3.6. Let p be a closed point in S with residue field Fp. The inclusions Ta(Fp) ⊂ T (Fp) induce an equivalence of categories
a∈Z

Ta(Fp) = T (Fp).

There are canonical equivalences of categories

T (Z) :=


p∈Z,a∈Z

Ta(Fp) =


p,a

Db(Q[Perm,Gal(Fp)]) =


p,a

Q[Perm,Gal(Fp)]
Z−graded.

Here and in the sequel, Q[Perm,Gal(Fp)] denotes finite-dimensional rational permutation representations of the absolute
Galois group. By means of that equivalence, T (Z) is endowed with the obvious t-structure. The heart T 0

a (Fp) = T≤0
a (Fp) ∩

T≥0
a (Fp) is semisimple and consists of direct sums of summands of φ∗1(a), φ finite.
We now provide the motivic t-structure on T̃ (S), which stems from the one on T (F). The two together will then be glued

to give the t-structure on T (S). Recognizably, the following is again an adaptation of Levine’s proof of the t-structure on Tate
motives over number fields.

Proposition 3.7. For any −∞ ≤ a ≤ b ≤ ∞,

T̃≤0
[a,b], T̃

≥0
[a,b]


is a non-degenerate t-structure on T̃[a,b](S) (Definitions 3.1 and

3.5). The cohomology functors associated to it are denoted pH∗. The functor η∗
[−1] : T̃[a,b](S) → T[a,b](F) is t-exact.

Any motive in T̃ 0
a (S) is a finite direct sum of summands of motives φ∗1(−a/2)[1] with φ finite étale. The closure of the direct

sum of the T̃ 0
a (S), a ∈ Z, under extensions (in the abelian category T̃ 0(S)) is T̃ 0(S).

Proof. Wemay assume that a and b are finite, since

T̃ (S) =


−∞<a≤b<∞

T̃[a,b](S)

and the inclusion functors given by the identity between the various T[−,−] are exact.
The proof proceeds by induction on b − a. The case b = a is treated as follows: the category T̃a := T̃a(S) is generated

by φ∗1(−a/2)[n], n ∈ Z, φ étale and finite. The functor η∗
[−1](a/2) : T̃a(S) → T0(F) is fully faithful. To see this it

suffices to remark HomS(φ∗1(−a/2)[n + 1], ψ∗1(−a/2)[n′
+ 1]) = HomF (φη∗

1[n], ψη∗
1[n′

]), for any finite étale maps
φ and ψ with generic fiber φη and ψη . This equality follows from the K -theory computations, see the proof of Theorem 3.2.
Therefore, the image of η∗

[−1](a/2) is a triangulated subcategory of T0(F) which contains the generators of T0(F), so the
functor establishes an equivalence between T̃a(S) with the derived category of finite-dimensional rational permutation
representations of Gal(F) by [14, 3.4.1]. Hence T̃a(S) carries a non-degenerate t-structure.

The remainder of the proof is done as in Levine’s proof. One shows

Hom

T̃≤0
[a+1,b], T̃

≥0
c


= 0 (15)

for any c ≤ a. This reduces to the Beı̆linson–Soulé vanishing. Then the t-structure axioms follow for formal reasons.
The exactness of η∗

[−1] is obvious from the definitions. The statement about the heart T̃ 0
a is done as follows: the exact

functor η∗
[−1](a/2) identifies T̃ 0

a (S) = T̃≥0
a (S)∩ T̃≤0

a (S)with the semi-simple category T 0
0 (F) = Q[Perm,Gal(F)]. We claim

that for any object X ∈ T̃a(S), all pHn(X) are direct summands of sums ofmotivesφ∗1(−a/2)[1],φ finite and étale. This claim
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does hold for the generators of T̃a(S). We now show that the condition is stable under triangles, which accomplishes the
proof of the claim and thus the proof of the statement. Let A → X → B be a triangle in T̃a(S) such that A and B satisfy the
claim. The long exact cohomology sequence

· · · →
pHn−1B

δn−1
−→

pHnA →
pHnX →

pHnB
δn

−→
pHn+1A → · · ·

yields the short exact sequence in T̃ 0
a (S)

0 → coker δn−1
→

pHnX → ker δn → 0.

By the semi-simplicity of T̃ 0
a (S) (this is the key point!), the sequence splits and there is a non-canonical isomorphism

pHnX ∼= coker δn−1
⊕ ker δn and coker δn−1 and ker δn are direct summands of pHnA and pHnB, respectively.

For the statement concerning T̃ 0(S) one uses the finite exhaustive F-filtration of any X ∈ T̃ 0(S):

0 = FaX ⊂ F[a,a+1]X ⊂ · · · ⊂ F[a,b]X = X .

The successive quotients grF
∗
X of that chain are in T̃ 0

∗
(S), since truncations with respect to the t-structure related to F are

exact with respect to the motivic t-structure, by definition. Thus the claim about T̃ 0(S) follows. �

Theorem 3.8. The motivic t-structures on T (Z) and T̃ (S ′) glue to a non-degenerate t-structure on the category T (S) of
(Artin–)Tate motives over S (Definition 2.2). It is called motivic t-structure. Here S ′ runs through open subschemes of S and
Z := S\S ′.

Proof. We apply the gluing procedure of t-structures of [2, Theorem 1.4.10]: for any open subscheme j : S ′
⊂ S, we write

TS′(S) for the full triangulated subcategory of objects X ∈ T (S) such that j∗X ∈ T̃ (S ′) ⊂ T (S ′). Let i : Z ′
→ S be the closed

complement of j. Put

T≤0
S′ (S) := {X ∈ TS′(S), j∗X ∈ T̃≤0(S ′), i∗X ∈ T≤0(Z ′)},

T≥0
S′ (S) := {X ∈ TS′(S), j∗X ∈ T̃≥0(S ′), i!X ∈ T≥0(Z ′)}.

The assumptions of the gluing theorem, [2, 1.4.3], namely the existence of i∗, i∗, i!, j∗, j!, j∗ satisfying the usual adjointness
properties, j∗i∗ = 0, localization sequences and full faithfulness of i∗, j! and j∗ are met, since they are in the surrounding
categories of geometric motives, cf. Section 1, and the stability of the subcategories of Artin–Tate motives under these
functors (Theorem 2.4). Thus, the above defines a t-structure on TS′(S).

The field F is of characteristic zero, so any finite map φ : V → S with V reduced and one-dimensional is generically
étale. This implies T (S) = ∪S′⊂STS′(S). We set

T≥0(S) :=


S′⊂S

T≥0
S′ (S)

and dually for T≤0(S). The t-structure axioms on T (S) and the non-degeneracy are implied by the exactness of the identical
inclusion TS′(S) → TS′′(S) for any S ′′

⊂ S ′.
To see the exactness of the identity, let j′′ : S ′′

⊂ S and i′′ : Z ′′
⊂ S be its complement. Let X ∈ T≤0

S′ (S). It is clear
that j′′∗X ∈ T̃≤0(S ′′). Let us check i′′∗X ∈ T≤0(Z ′′). The pullback i′′∗X decomposes as a direct sum parametrized by the
points of Z ′′ and we only have to deal with the points that are not contained in Z ′. Let p : Spec Fp → S be such a point;

it factors over S ′: p = j ◦ q, where q : Spec Fp → S ′ is the same point as p. Thus p∗X
(3)
= q∗j∗X ∈ q∗T̃≤0(S ′). The

containment q∗T̃≤0(S ′) ⊂ T≤0(Spec Fp) follows from q∗T̃≤0
a (S ′) ⊂ T≤0

a (Spec Fp), since q∗ clearly commutes with the F-
truncation functors belonging to the auxiliary t-structure. To see the latter containment, it suffices to check the generators
(in the sense of Definition 3.5) of T̃≤0

a (S ′), that is, it is sufficient to remark

q∗φ∗1(−a/2)[n + 1]
(11)
= φ′

∗
1(−a/2)[n + 1] ∈ T≤−1

a (Spec Fp) ⊂ T≤0
a (Spec Fp),

where n ≥ 0 and φ is a finite étale map with pullback φ′. This shows that the identity is left-exact. The right-exactness is
done dually. �

4. Mixed Artin–Tate motives

Definition 4.1. The heart T 0(S) of themotivic t-structure is called the category ofmixed (Artin–)Tatemotives over S, denoted
MTM(S) and MATM(S), respectively. The cohomology functors belonging to the motivic t-structure are denoted pH∗.

We now study the categories of mixed Tate motives over S in some detail. The key is Theorem 4.2 below, establishing
exactness properties of pullback and pushforward functors along closed and open immersions. The exactness axioms for
mixedmotives over number rings (see [11, Section 4]) are modeled on this theorem. Of course, the theorem is an Artin–Tate
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motivic analog of a similar fact about perverse sheaves [2, Prop. 1.4.16, 4.2.4.], suggesting that the theory of perverse sheaves
is to some extent quite formal. Proposition 4.4 calculates the cohomological dimension of mixed (Artin–)Tate motives. We
obtain an equivalence DTM(S) ∼= Db(MTM(S)), using a result of Wildeshaus, and likewise for Artin–Tate motives. Finally,
we do a first step into (Artin–Tate) motivic sheaves, in Proposition 4.6.

All exactness statements below are with respect to the motivic t-structure of Theorem 3.8. Recall from Theorem 2.4
that the functors discussed below do preserve (Artin–)Tate motives. For brevity, we write T [a,b] for the full subcategory of
objects M satisfying pHnM = 0 for all n < a and n > b. We say that a triangulated functor F between categories of Artin–
Tate motives has cohomological amplitude [a, b] if F(T 0) is contained in T [a,b]. Note that F is right exact iff b ≤ 0 and left
exact iff a ≥ 0.

Theorem 4.2. Let j : S ′
→ S be an open immersion, i : Z → S a closed immersion with dim Z = 0. Finally, let f : V → S be a

finite map with regular one-dimensional domain.
(i) The Verdier duality functor D is exact in the sense that it maps T≥0 to T≤0 and vice versa. Therefore, it induces an endofunctor

on T 0(S).
(ii) The functors j∗, j!, j∗, as well as i∗ = i! are exact.
(iii) The functor i∗ has cohomological amplitude [−1, 0]. Dually, i! has cohomological amplitude [0, 1].
(iv) The functor f∗ = f! is exact. The cohomological amplitude of f ∗ and f ! is [−1, 0] and [0, 1], respectively. If f is also étale,

f ∗
= f ! is exact.

(v) The functor η∗
[−1] : T (S) → T (Spec F) is exact.

Proof. (i) This is clear from (12) and the definitions of the t-structures on T (S), T̃ (S ′) and T (Z), for open and closed
subschemes S ′ and Z of S, respectively. Notice that this requires putting 1[1] in degree 0.

(ii) The following exactness properties are immediate from the definition: j∗ and i∗ are exact, j∗ and i! are left-exact and
j! and i∗ are right-exact. For example, let us show the left-exactness of j∗. Given somemotiveM ∈ T≥0(S ′), we have to show
j∗M ∈ T≥0(S). Let j1 : S1 ⊂ S ′ be an open immersion such that j∗1M ∈ T̃≥0(S1). Let i1 be the immersion of Z1 := S ′

\S1 into
S ′, then i!1M ∈ T≥0(Z1). The situation is as follows:

Z1

i1����
��

��
�

!!CC
CC

CC
CC

S1

''OOOOOOOOOOOOOOO
j1 // S ′

j

��?
??

??
??

? S\S1

i
}}{{

{{
{{

{{

S

Now (j ◦ j1)∗j∗M = j∗1M ∈ T≥0(S1). Let i : S\S1 → S be the complement of j ◦ j1. By (7), i!j∗M is supported only in Z1, where
it agrees with i!1M . This shows j∗M ∈ T≥0(S).

To prove (iii) we first show

i∗j∗T̃ 0(S ′) ⊂ T [−1,0](Z) (16)

for any two complementary immersions i : Z → S (closed) and j : S ′
→ S (open). By Proposition 3.7, T̃ 0(S) is generated by

means of direct sums and extensions by summands of φ∗1(n)[1], where n ∈ Z is arbitrary and φ is finite and étale. For any
short exact sequence

0 → A → X → B → 0

in T̃ 0(S), such that i∗j∗A ∈ T [−1,0](Z) and i∗j∗B ∈ T [−1,0](Z), it follows i∗j∗X ∈ T [−1,0](Z). This uses the non-degeneracy of
the motivic t-structure on Z . A similar remark applies to direct summands and sums. Therefore we only have to check that
the generators X = φ∗1(n)[1] of T̃ 0(S ′) are mapped to T [−1,0](Z) under i∗j∗. By (13), there is a distinguished triangle in T (Z)

i∗φ∗1(n)[1] → i∗j∗j∗φ∗1(n)[1]
(11)
= i∗j∗φ′

∗
1(n)[1] → i!φ∗1(n)[2] → i∗φ∗1(n)[2].

Here φ′ is the pullback of φ along j. The first term is in degree−1. The third term is in degree 0 by absolute purity (10), using
the regularity of S. The claim (16) is shown.

We now show i∗T 0(S) ⊂ T [−1,0](Z). Any X ∈ T 0(S) is in some T 0
S′(S) for sufficiently small S ′. We shrink S ′ if necessary

to ensure that S ′
∩ Z = ∅. Let j : S ′

→ S be the open immersion and let p : W → S be its closed complement. There is a
triangle

p!X → p∗X → p∗j∗j∗X → p!X[1].

By the above, p! (p∗) is left-exact (right-exact), that is to say, the first (second) term is in degrees ≥0 (≤0, respectively). By
assumption j∗X ∈ T̃ 0(S ′), so p∗j∗j∗X ∈ T [−1,0](W ) by (16). As the t-structure on W is non-degenerate p∗X is in degrees
[−1, 0]. As W is the disjoint union of Z and some more (finitely many) closed points, this also shows i∗X ∈ T [−1,0](Z).
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Now let i : Z → S and j : S ′
→ S be complementary. We claim i∗j∗T 0(S ′) ⊂ T [−1,0](Z). Given an object X ∈ T 0(S ′),

there is some open immersion j′ : S ′′
→ S ′ such that j′∗X ∈ T̃ 0(S ′′). We have i∗j∗X = i∗j∗j′∗j

′∗X . The motive i∗i∗j∗j′∗j
′∗X is a

direct summand of p∗p∗(j ◦ j′)∗j′∗X , where p is the complement of j ◦ j′. By the above, p∗(j ◦ j′)∗j′∗X ∈ T [−1,0](Z), so the full
faithfulness and exactness of p∗ implies the claim. Part (iii) is shown.

The cohomological amplitude of i∗j∗ implies the exactness of j∗: given amixed (Artin–)TatemotiveM ∈ T 0(S ′), the terms
in the localization triangle

j!M → j∗M → i∗i∗j∗M

are in degrees ≤0, ≥0 and [−1, 0], respectively, by the above. From the non-degeneracy of the t-structure we see that j∗M
is then in degree 0. This implies the exactness of j∗ by the non-degeneracy of the t-structure. The exactness of j! follows by
the Verdier duality, as does the cohomological amplitude of i!. Thus, (ii) is shown.

(iv) It is easy to see that f ∗
: T̃ (S) → T̃ (V ) is exact. Using this and (6), one sees that f ∗ has cohomological amplitude

[−1, 0] and dually for f !. By a general criterion on t-exactness of adjoint functors [2, 1.3.17], the adjunctions f ∗ � f∗
(8)
=

f! � f ! imply that f∗ is exact. If f is étale then f !
(9)
= f ∗, so that their exactness is clear in that case, too.

(v) This follows from the exactness of j∗ : T (S) → T (S ′) and the exactness of η′∗
[−1] : T̃ (S ′) → T (Spec F)

(Proposition 3.7), where η′ is the generic point of S ′. �

Definition 4.3 (Compare [2, 1.4.22]). Let j : S ′
→ S be an open immersion. For any mixed (Artin–)Tate motive M over S ′,

put

j!∗M := im j!M → j∗M.

This is called the intermediate extension ofM along j.

The image is taken in the (abelian) category ofmixed (Artin–)Tatemotives over S, using the exactness of j! and j∗. Thereby,
j!∗ is a (non-exact) functor T 0(S ′) → T 0(S). Given anymixedmotiveM over S, such that i!M is concentrated in cohomological
degree −1 (as opposed to the general range [−1, 0]), and such that i∗M is in degree +1, there is a canonical isomorphism

j!∗j∗M = M. (17)

In particular, this applies to M ∈ T̃ 0(S), such as M = 1[1]. Moreover, taking the intermediate extension commutes with
compositions of open immersions. These features will be used below, see [11, Section 4] for a proof. The reader may want to
check that that proof only uses themotivic t-structure and exactness properties of i! etc., which are established by Theorems
3.8, 4.2.

Proposition 4.4. The cohomological dimension of DTM(S) and DATM(S) is one and two, respectively.

Proof. We have to show Hom(M,M ′
[n]) = 0 for any mixed motivesM ,M ′ over S and n > 1 (Tate) and n > 2 (Artin–Tate).

Let j : S ′
→ S be an open immersion such that j∗M , j∗M ′

∈ T̃ 0(S ′). Let i be the complementary closed immersion of j. In the
sequel we write (−,−)n for Hom(−,−[n]) for brevity.

The case n ≥ 3 is done as follows: the localization triangle (13) forM ′ and adjunction (1) gives a long exact sequence

( i∗M
[−1,0]

, i!M ′
[n]  

[−n,−n+1]

)0 → (M,M ′)n → (M, j∗j∗M ′)n → ( i∗M
[−1,0]

, i!M ′
[n + 1]  

[−n−1,−n]

)0.

We have written the cohomological degrees of the motives underneath, using the cohomological range of i∗ and i!. The
cohomological dimension zero of (Artin–)Tate motives over finite fields makes the outer terms vanish. Similar vanishings
will be used below without further discussion. Hence we only have to look at (j∗M, j∗M ′)n, i.e., we may assume M and
M ′

∈ T̃ 0(S). In that case one reduces (exactly as below) to M = φ∗1(a)[1] and M = φ′
∗
1(a′)[1], where φ and φ′ are finite

and étale. In that case the vanishing is given by Theorem 3.2.
The vanishing in the case n = 2 for Tate motives needs a more involved localization argument. A similar reasoning for

Artin–Tate motives fails—the difference is because the motives 1(n)[1], which generate T̃ 0(S) in the case of Tate motives,
have good reduction at all places by absolute purity.

The localization triangle (6) for M ′ gives an exact sequence

(M, j!j∗M ′)2 → (M,M ′)2 → (M, i∗i∗M ′)2
(1)
= ( i∗M

[−1,0]

, i∗M ′
[2]  

[−3,−2]

)0 = 0.

Therefore, in order to show that themiddle termvanishes,wemay replaceM ′ by j!j∗M ′. Similarly,wemay replaceM by j∗j∗M .
In particular M ∈ j∗T̃ 0(S ′), M ′

∈ j!T̃ 0(S ′). By Proposition 3.7 and Remark 2.3, T̃ 0(S ′) is generated by means of extensions
by 1(a)[1] where a ∈ Z. The claim is stable under extensions so that we may assume M = j∗A, A := 1(a)[1], M ′

= j!A′,
A′

:= 1(a′)[1]. Let Ã := 1(a)[1] ∈ T̃ 0(S) and define Ã′ similarly. We have j∗Ã = A and similarly with A′.
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The localization triangle j∗A′
→ i∗i∗j∗A′

→ j!A′
[1] maps to j∗A′

→ i∗pH0i∗j∗A′
→ (j!∗A′)[1] = Ã[1]. We apply

(Ã,−)1 to this map, which gives the last two exact rows in the diagram. The first exact row maps to the second via the
map Ã = j!∗A → j∗A.

(j∗A, j∗A′)1 // (j∗A, i∗i∗j∗A′)1 // (j∗A, j!A′)2

��

// 0

(Ã, j∗A′)1 // (Ã, i∗i∗j∗A′)1 // (Ã, j!A)2

��

// 0

(Ã, j∗A′)1 // (Ã, i∗pH0i∗j∗A′)1 // (Ã, Ã)2 // 0.

The = signs in the leftmost column are by adjunction (1) and j∗j∗A = j∗Ã = A. The = signs in the second column all use
the adjunction i∗ � i∗ as well as the cohmological dimension zero of Tate motives over finite fields and cohomological
amplitude of i∗, which imply

(i∗j∗A
[−1,0]

, i∗j∗A′
[1]  

[−2,−1]

)0 = (pH−1i∗j∗A, pH
0i∗j∗A′)0.

Applying i∗ to the triangle i∗pH−1i∗j∗A → j!A → j!∗A andusing i∗j!
(7)
= 0we see (pH−1i∗j∗A, pH0i∗j∗A′)0 = (i∗j!∗A, pH0i∗j∗A′)1.

This justifies the upper = in the second column. The lower = in that column follows by the same argument. However,
(Ã, Ã′)2 = 0, by vanishing of the K -theory in the relevant range (see Theorem 3.2). �

Theorem 4.5. For both Tate and Artin–Tate motives, the inclusion T 0(S) ⊂ T (S) extends to a triangulated functor

Db(T 0(S)) → T (S). (18)

This functor is an equivalence of categories.

Proof. The category DMgm(S) and thus the subcategories of (Artin–)Tate motives embed into some unbounded derived
category D(A), where A is an exact category. This implies the first statement by a general fact in homological algebra
[17, Theorem 1.1.]. Indeed, the interpretation of DMgm(S) in terms of h-sheaves shows that (using the notation of [3] and
abbreviating Shv for the category of Q-linear sheaves with respect to the h-topology on the big site of schemes of finite type
over S)

DMgm(S) ∼= DA1(Shv) ⊂ Deff
A1(Sp(Shv)) ⊂ D(Sp(Shv)).

More precisely, DMgm(S) identifies with the subcategory of WΩ-local objects in the middle category, which identifies with
the subcategory ofWA1-local objects in the right hand category [3, Sections 5.2, 5.3].

The t-structure on T (S) is bounded and non-degenerate, so it remains to show the full faithfulness of (18) or equivalently
that the map

fn : ExtnT0(M,M
′) → HomT (M,M ′

[n])

is an isomorphism for any M , M ′
∈ T 0(S). The general theory (see e.g. [4, 1.1.5]) shows that f0 and f1 are isomorphisms and

that f2 is injective for all M and M ′. For Tate motives, f2 is therefore an isomorphism, since the right hand side is zero by
Proposition 4.4. We now show that f2 is an isomorphism for Artin–Tate motives. The motives M and M ′ are fixed, so there
is some open embedding j : S ′

→ S such that j∗M and j∗M ′ are in T̃ 0(S ′). Let i be the complement of j. The following exact
sequences are a consequence of (6) and Theorem 4.2:

0 → i∗pH
−1i∗M

a
→ j!j∗M → K := coker a → 0 (19)

0 → K → M → i∗pH
0i∗M → 0. (20)

We write n(−,−) for Extn and n(−,−) for HomT (−,−[n]). (19) induces a commutative diagram with exact rows

1(i∗pH−1i∗M,M ′) // 2(K ,M ′) //
��

��

2(j!j∗M,M ′)��

��
1(i∗pH−1i∗M,M ′) //

2(K ,M ′) //
2(j!j∗M,M ′) = 2(j∗M, j∗M ′).
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The rightmost lower term is zero by the vanishing of the K -theory (cf. the argument in the proof of Proposition 4.4), so all
vertical maps are isomorphisms. This and (20) yields a similar diagram:

2(i∗pH0i∗M,M ′) //
��

��

2(M,M ′) //
��

r

��

2(K ,M ′) // 3(i∗pH0i∗M,M ′)

��
2(i∗pH0i∗M,M ′) //

2(M,M ′) //
2(K ,M ′) //

3(i∗pH0i∗M,M ′).

The outer terms in the lower row vanish because the cohomological dimension of Artin–Tate motives over Fp is zero and i!
has cohomological amplitude [0, 1]. We now show that the rightmost upper term is zero. Altogether, this implies that r is
also surjective. We write A :=

pH0i∗M; it is a mixed motive over Fp. Any element of the Yoneda-Ext-group in question is
represented by an exact sequence

0 → i∗A → X1
s

→ X2 → X3 → M ′
→ 0

in MATM(S). This extension is the image under the concatenation mapping
2(i∗A, coker s)×1(coker s,M ′) →

3(i∗A,M ′).

The left hand factor is a subgroup of 2(i∗A, coker s) = 2(A, i! coker s) = 0 (see above). Therefore, the extension above splits
and we have shown that the second Ext-groups and Hom-groups agree.

This shows that the Hom(M,M ′
[n]) form an effaceable δ-functor, so they are universal and agree with Extn(M,M ′) for

all n ≥ 0. Indeed, for n ≤ 2 the groups are effaceable since they agree with Ext’s by the above, for n > 2 the groups are zero
by Proposition 4.4. �

The functor η∗ : DM(F) → DM(S) does not preserve Artin–Tate motives:

HomDM(S)(1, η∗1(1)[1])
(1)
= HomDM(F)(1, 1(1)[1])

(5)
= K 1(F)(1)Q = F×

⊗Q,

which is a countably infinite-dimensional Q-vector space. However, the dimensions of all Hom-groups in T (S) are finite
(Theorem 3.2). This example is sharpened by the following proposition. It might be paraphrased by saying that the ‘‘site’’ of
mixed Artin–Tate motives over S has enough points.

Proposition 4.6. For any Artin–Tate motive M over S ⊂ Spec OF , the following are equivalent:

(i) M = 0.
(ii) M = η∗Mη , where Mη is some geometric motive over F .
(iii) i∗pM = 0 for all closed points p of S.
(iv) i!pM = 0 for all closed points p of S.

Proof. The equivalence of (ii), (iii), and (iv) is an easy consequence of Verdier duality (12) and the limiting localization
triangle (14). We now show (iii) ⇒ (i). Using localization (6), the claim for M is implied by the one for j∗M for any open
immersion j. Therefore we may assume M ∈ T̃ (S). Using the (−1)-exactness of i∗p : T̃ (S) → T (Fp) we can even assume
M ∈ T̃ 0(S). Given a short exact sequence in the abelian category T̃ 0(S)

0 → A → M → B → 0

with η∗η
∗M = M , it follows that η∗η

∗A = A and likewise for B. This is shown as follows: for all closed points p ∈ S,
ip∗

i!pM = 0 implies i!pB = i!pA[1], by the full faithfulness of ip∗
. The long exact pH−-sequence and the cohomological

amplitude of i!p (Theorem 4.2) shows pH0i!pB =
pH1i!pA and all other pH∗i!pB,

pH∗i!pA vanish. However, for any B ∈ T̃ 0(S),
i!pB is in cohomological degree 1 (as opposed to the general range [0, 1]): this may be checked on generators of T̃ 0

a (S) for all
a, where it follows directly from the definitions (see the proof of Theorem 4.2). Thus pH0i!pB = 0, whence i!pB = i!pA[1] = 0
for all p.

Thus the statement forM is implied by the one forA and B. By the characterization of T̃ 0(S) of Proposition 3.7,we therefore
only need to check the statement for generators of T̃ 0

−2n(S).
We first do this in the case of Tate motives. Then T̃ 0

−2n(S) consists of direct sums of motives G := 1(n)[1]. In that case the
claim is clear, since none of the (nonzero) generators G satisfy η∗η

∗G = G: we can twist it so that n = 1. Then H0(η∗η
∗G) is

infinite-dimensional, namely the group of units in some number field (tensored with Q), but H0(G) is the group of units in
some ring of S-integers, which are of finite rank.

In the case of Artin–Tate motives, the category T̃ 0
−2n(S) is generated by means of direct sums and summands by motives

G := φ∗1(n)[1], φ : V → S finite and étale. Actually, we may assume φ is Galois: by the same argument as in the proof of
Proposition 2.6, after shrinking S sufficiently, 1V is a direct summand of φ̃∗1 where φ̃ : Ṽ → V is the map corresponding
to some normal closure of the function field extension k(V )/k(S). Let M be a summand of G satisfying η∗η

∗M = M . There
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is a map f : S ′
→ S such that f ∗M is a Tate motive, Proposition 2.6. By base-change (11) and the preceding step, we get

f ∗M = 0. The map End(M) ⊂ End(G)
a

→ End(f ∗G) factors over End(f ∗M) = 0, so we have to show that a is injective. This
is done with the same argument as in the proof of Proposition 2.6: we may shrink S so that f is étale. Since φ is Galois, we
have

End(G)
(1),(9)
= Hom(1V , φ

∗φ∗1V )
(11)
= Hom(1V , 1

⊕ degφ
V )

and

End(f ∗G) = Hom(1V ′ , φ′∗φ′

∗
1V ′) = Hom(1V ′ , 1⊕ degφ′

V ′ ),

where φ′
: V ′

:= V×SS ′
→ S ′ is the pullback of φ along f . It is also Galois and degφ = degφ′. �
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