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Abstract The aim of this paper is to give a detailed proof of a comparison of Voevodsky’s
categories of geometric motives with and without transfers, respectively. The latter category
is defined by means of h-topology introduced by Voevodsky, a topology essentially given by
Zariski coverings, finite coverings and blowups.
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Introduction

The category of geometric motives [24] is roughly defined to be the localisation of the cat-
egory of smooth correspondences with respect to the affine line and the Zariski topology.
Before, Voevodsky had defined a category of motives using the h-topology [22]. The objective
of this paper is to give a detailed proof of a theorem of Voevodsky stating the equivalence of
these two concepts in the case of rational coefficients and a base field of characteristic zero.

We see two principal facets of this description: on the one hand it clarifies why the
technique of proper descent, which is often applied by replacing some scheme by a proper
hypercovering in order to resolve its singularities, fits into the motivic framework (e.g. in
[9]). On the other hand, the theorem is a hint that correspondences, which make the handling
of the several categories of motives technically intricate, should not be necessary in the case
of rational coefficients.

We define a category of effective quasigeometric motives with rational coefficients as
follows: Let Sch denote the category of schemes, by which we mean schemes of finite type
over a field k. Let QSch be the Q-linear hull of Sch (i.e., morphisms are given by Q-linear
combinations of morphisms of schemes) and let QSch be its closure under countable direct
sums. Finally let K−

(
QSch

)
denote the homotopy category of bounded above complexes in
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966 J. Scholbach

QSch. We define the category

DMeff
gm,h(Q) := K−

(
QSch

) /{
A1-complexes, h-coverings

}

of effective quasigeometric motives to be the localization of K−
(
QSch

)
with respect to the

following complexes:

– A1-complexes: X × A1 → X, X smooth
– Čech nerves · · · → U×X U → U → X of h-coverings U → X , for U smooth, X ∈ Sch.

The h-topology is essentially given by Zariski open coverings, finite surjective morphisms
and blowups (Definition 1.5, Proposition 1.6).The subcategory DMeff

gm,h(Q) of bounded com-
plexes in QSch is called category of effective geometric motives.

On the other hand, the category of effective geometric motives with transfers is defined via
the category QSmCor, consisting of smooth schemes over k and morphisms given by finite
correspondences, i.e. Q-linear combinations of cycles W ⊂ X × Y finite over X . Again, we
first define a quasigeometric category by

DMeff
gm(Q) := K−

(
QSmCor

) /{
A1-complexes, Mayer–Vietoris

}
,

where QSmCor is the closure of QSmCor under countable direct sums, A1-complexes are
as above, and Mayer–Vietoris complexes are given by U ∩ V → U � V → U ∪ V (U, V
smooth). Its subcategory DMeff

gm(Q) of complexes in Kb(QSmCor) is Voevodsky’s category
of effective geometric motives with transfers.

Theorem 4.1 Let k be of characteristic zero. Then there is an equivalence between the cat-
egories of effective geometric motives with and without transfers, respectively (with rational
coefficients):

DMeff
gm(Q)

∼=−→ DMeff
gm,h(Q).

This equivalence derives from an analogous equivalence of the quasigeometric variants.
These equivalences extend to the non-effective motivic categories (see Definition 4.4 for
their definition).

It should be pointed out that the above comparison is—using Neeman’s compacity notion
[16]—a formal corollary of the equivalence of the two categories of effective motivic com-
plexes, which is the non-torsion part of [24, Theorem 4.1.12]. Our aim is to give a detailed
proof. It closely follows the ideas developed by Voevodsky and coworkers [20,22,25], espe-
cially concerning sheaves with transfers and their cohomology comparison results. For exam-
ple, the precursor for the embedding theorem (3.14) and its proof is [24, Theorem 3.2.6].
Overview of the proof and of the paper: A principal notion are presheaves with transfers.
These are just contravariant functors SmCor→ Ab. A presheaf is called homotopy invariant,
if the canonical map F(X)→ F(X × A1) is an isomorphism.

The general idea is to refine the topology to avoid correspondences. The h-topology is
well suited for this task: firstly, every h-sheaf has a unique transfer structure (Proposition
2.2). Secondly, for an homotopy invariant presheaf with transfers with rational coefficients,
its sheafifications and cohomology groups with respect to the Zariski-, Nisnevich-, étale,
cdh-, qfh- or h-topology agree (Theorem 2.11).

These facts give an equivalence between the categories of motivic complexes with rational
coefficients, with and without transfers, respectively (Theorem 3.7):

DMeff,−
Nis,tr(Q) ∼= DMeff,−

h (Q),
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Geometric motives and the h-topology 967

where the former category is the full subcategory of the derived category of Nisnevich
sheaves with transfers D−(ShvNis,tr (Sm)) consisting of complexes with homotopy invariant
cohomology-Nisnevich-sheaves and the latter is defined similarly using h-sheaves instead.

Applying the cohomology comparison results, we obtain the embedding theorem (3.14):

DMeff
gm,h(Q) ⊂ DMeff

gm,h(Q) ⊂ DMeff,−
h (Q).

The same statement is known for the situation with transfers (Voevodsky, see Theorem 3.15).
More precisely, in either the situation with or without transfers, the geometric category is the
subcategory of compact objects and the quasigeometric category is the one of ℵ1-compact
objects (Definition A.3). This completes the proof.

We restrict to characteristic zero in order to use resolution of singularities (see Proposition
1.1). We work with Q-coefficients in order to ensure the finiteness of the cohomological
dimension and the equality of Nisnevich and étale cohomologies. Another technically impor-
tant point is Lemma 2.6, which is used to close the gap—essentially consisting of finite surjec-
tive morphisms—between Nisnevich and qfh-topology. Analogous cohomology comparison
results for sheaves with integral coefficients are not true (see Remark 2.12).

1 Notations and preliminary results

We fix the following notations. The base field is denoted by k. By a scheme, we always mean a
separated scheme of finite type over Spec k. The category of schemes is denoted Sch, its sub-
category of smooth schemes is denoted Sm;ZSch is the category whose objects are schemes,
but morphisms are given by HomZSch(X, Y ) := ⊕i Z[HomSch(Xi , Y )], where Xi are the con-
nected components of X . By formally adding a zero object, we obtain an additive category.

Recall the definition of Voevodsky’s category of finite correspondences SmCor (see, for
example [15, esp. Lecture 1]): its objects are smooth schemes and its morphisms are defined by

HomSmCor(X, Y ) := Z[W ⊂ X × Y, W irreducible, surjective and finite over X ],
if X is connected and HomSmCor(�Xi , Y ) := ⊕HomSmCor(Xi , Y ) otherwise. The compo-
sition of correspondences is defined in the usual way (see loc. cit.). We obtain an additive
category. Assigning to a morphism in Sm its graph gives a faithful functor Sm → SmCor
(see [4, §16] for associativity of the composition of correspondences and functoriality).

Categories of presheaves are denoted by PSh(−), where − is either Sm or Sch. If not
mentioned explicitly otherwise, presheaves will be presheaves of abelian groups. All pres-
heaves will be understood to be additive, i.e. F(X � Y ) ∼= F(X)⊕ F(Y ). If t is a topology,
t-sheaves are denoted by Shvt (−). The t-sheafification of a presheaf F is denoted by Ft .
In general we add a subscript −tr when there is some category or object “with transfers”:
the categories of t-sheaves with transfers (i.e. contravariant functors from SmCor to abelian
groups whose restriction to Sm is a t-sheaf) are denoted by Shvt,tr (Sm) and similarly for
presheaves with transfers: PShtr(Sm).

The representable presheaves on schemes are written Z(−) (and Ztr(−) for correspon-
dences, i.e. Ztr(X)(V ) = HomSmCor(V, X)).

The Q-rational variants of these constructions are denoted by QSch, QSmCor,
Qtr, PSh(Sch, Q), ShvNis,tr (Sm, Q) etc.

Let Com∗(−) , ∗ ∈ {−, b} denote the category of bounded above and bounded complexes,
respectively (with differentials having degree+1), K∗(−) the corresponding homotopy cat-
egory and D∗(−) the derived category. The total complex of a double complex is denoted
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968 J. Scholbach

by Tot(−) (see [26, 1.2.6] for choice of signs). If C, D are categories, C ⊂ D denotes a full
embedding.

We say “k admits weak resolution of singularities”, if every scheme X admits a proper
surjective morphism Y −→ X , where Y is smooth.

We say “k admits strong resolution of singularities”, if furthermore for any abstract blow-
up p : Y −→ X with nowhere dense closed center Z ⊂ X of any scheme X (i.e. any proper
surjective map, such that p−1(X − Z) ∼= X − Z ) there is a finite composition of blow-ups
of smooth centers q : X̃ = Xn → · · · → X0 = X factoring through p.

Proposition 1.1 Any field admits weak resolution of singularities. Any field of characteristic
0 admits strong resolution of singularities.

Proof For the weak resolution, see [10, Main Theorem I, S. 132] (chark = 0) and [3, Theorem
4.1; §1] (chark > 0).

For the strong resolution over a field of characteristic zero one applies the resolution of
indeterminacies to p−1, see [11] in the analytical setting and [1, §1.2.4], [17, Corollaire
5.7.12], [2, §1.2] for the algebraic setting.

Definition 1.2 For a simplicial scheme X we denote by Z(X ) the Moore complex of repre-
sentable presheaves

· · · −→ Z(X2)
δ2−→ Z(X1)

δ1−→ Z(X0),

where δn =∑n+1
i=0 (−1)i∂ i

n and ∂ i
n : Xn → Xn−1 is the i th boundary map of X .

For a morphism U → X set U n
X := U ×X · · · ×X U (n factors). We denote by UX the

simplicial scheme · · · → U 3
X → U 2

X → U with the obvious boundary and degeneracy maps.
If U → X is a covering with respect to a (pre-)topology t, UX is a t-hypercovering of X [19,
Exp. V, Def. 7.3.1.1.].

Lemma 1.3 Let X = (Xn)n∈N be a hypercovering in (Sch/X)t , t an arbitrary topology.
The augmented Moore complex of the corresponding representable t-sheaves Zt (X ) is exact:

· · · → Zt (X2)→ Zt (X1)→ Zt (X0)→ Zt (X)→ 0.

Proof A theorem of Verdier [19, Exposé V, Théoréme 7.3.2(3)] asserts that for any hyper-
covering X in (Sch/X)t the sheafification of the following complex is exact:

· · · → ZX (X2)→ ZX (X1)→ ZX (X0)→ ZX (X) = Z→ 0,

where ZX (U )(V ) := Z[HomSch/X (V, U )]. The proof of loc. cit. is valid in our situation, if
we replace ZX,t (−) by ZSpec k,t (−) = Zt (−).

Lemma 1.4 Let f : U → X be an arbitrary morphism. Then the complex

Z(UX )→ Z(X)→ coker Z( f )→ 0

is an exact complex (of presheaves).

Proof This is [22, Proposition 2.1.4]. We give a proof for the convenience of the reader. Let
A be an arbitrary connected scheme. For brevity, (A,−) and [A,−] denote HomSch(A,−)

and Z(−)(A) = HomZSch(A,−), respectively. We have to show that the following complex
is exact:

· · · → [A, U 3
X ] → [A, U 2

X ] → [A, U ] → [A, X ] → coker Z( f )(A)→ 0.
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Geometric motives and the h-topology 969

We may suppose (A, U ) �= ∅. Fix an arbitrary element ∗ ∈ (A, U ).
Consider the simplicial set

(A, UX ) : · · · → (A, U 3
X )→ (A, U 2

X )→ (A, U ).

The very definition of homotopy groups [6, I.7.] pn := πn ((A, UX ), ∗) and the universal
property of the fiber product yields pn = 0 for n ≥ 1. The homotopy set p0 is a quotient of
(A, U ): morphisms f, g : A → U are identified iff there is a morphism h : A→ U ×X U
such that f = pr1 ◦ h, g = pr2 ◦ h. For the simplicially constant complex Q = (p0)n≥0

we obviously have πn(Q) = 0 for n ≥ 1, π0(Q) = p0. Thus, the canonical morphism of
simplical sets (A, UX )→ Q is a weak equivalence in the sense of [6, I.7., page 32]. Weak
equivalences are preserved by Z(−), thus the associated morphism of Moore complexes
[A, UX ] → Z(Q) is a quasi-isomorphism [6, Proposition III.2.16., Corollary III.2.7.]. So,
the complex is exact at [A, U n

X ], n > 1.
Exactness at [A, U ] follows from the definition of the fiber product: Let s =∑

i∈I ni · si

be mapped to 0 under f . One inductively reduces to the case #I = 2. Then it is obvious that
there is g ∈ [A, U 2

X ], such that g �→ s.

1.1 H-topologies

Definition 1.5 [22] A morphism of schemes f : X → Y is called a topological epimor-
phism, if the topological space associated to Y is a quotient topological space of X , i.e. if f
is surjective and A ⊂ X is open iff f (A) ⊂ Y is open. f is called a universal topological
epimorphism, if this holds for any base change.

Coverings of the h-topology on Sch are by definition finite families { fi : Ui → X} of
morphisms of finite type, such that� fi : �Ui → X is a universal topological epimorphism. If
the fi are furthermore quasi-finite, this family is defined to be a covering of the qfh-topology.

The cdh-topology is the minimal Grothendieck topology containing Nisnevich coverings
and abstract blow-ups (see above).

Normal qfh-coverings { fi : Ui → X} are qfh-coverings having a factorization fi = f ◦ ji ,
where { ji : Ui → U } is a Zariski covering by open subsets and f : U → X is a finite sur-
jective morphism.

A family of morphisms { fi : Ui → X} is called normal h-covering, if it has a factorization
fi = b ◦ f ◦ ji , where { ji : Ui → U } is an open covering, f : U → X Z a finite surjective
map and b : X Z → X the blow-up of X in a closed, nowhere dense center Z .

Any scheme is h-locally smooth by Proposition 1.1. We have the following inclusions of
topologies on Sch: Zar ⊆ Nis ⊆ ét ⊆ qfh ⊆ h and Nis ⊆ cdh ⊆ h.

Proposition 1.6 ([22, Theorem 3.1.9], [20, Lemma 10.4]) Every h-covering of a scheme
admits a normal refinement. The same is true for qfh-coverings of normal schemes.

Lemma 1.7 Let A be an abelian category closed under countable direct sums. Let B ⊂
D := D−(A) be a full triangulated subcategory closed under existing countable direct sums
(i.e. ℵ1-localising in the sense of Definition A.3). If all components Fn of some complex
F ∈ D are in B, then F is in B.

Proof Compare [15, Lemma 9.4.].

We write D′ := D−(PSh(Sch)) and D := D−(Shvh (Sch)) in the following lemmas.
The localising subcategory generated by a class of objects T , i.e. the minimal triangulated
subcategory closed under existing direct sums containing T will be denoted by 〈T 〉 (see
Definition A.2).
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970 J. Scholbach

Lemma 1.8 We have 〈Zh(X), X ∈ Sm〉 = D and 〈Z(X), X ∈ Sch〉 = D′.

Proof For any h-sheaf F , the morphism
⊕

X∈Sm,a∈F(X) Zh(X)
⊕a−→ F is surjective in

Shvh (Sch) because of weak resolution of singularities. This easily yields the assertion
(Lemma 1.7, applied to B = 〈Zh(X), X ∈ Sm〉). The statement for presheaves is proven
similarly.

Lemma 1.9 Let Th ⊂ D′ denote the class of augmented Moore complexes

· · · → U ×X U → U → X

of h-coverings U → X, where U ∈ Sm, X ∈ Sch (Definition 1.2). The sheafification functor
D′ → D factorizes over D′/ 〈Th〉 and induces an equivalence of categories D′/ 〈Th〉 ∼= D.

Proof Let Ch denote the localising subcategory of D′ generated by presheaves F with Fh = 0.
With Lemma 1.7, it is quite obvious to see that we have D ∼= D′/Ch, so it suffices to show
Th = Ch. We have 〈Th〉 ⊆ Ch (Lemma 1.3).

For the converse, choose a complex F ∈ Ch. We may assume that it is concentrated in
degree 0 (Lemma 1.7). Therefore, there is an epimorphism of presheaves ⊕i coker Z( fi )→
F , where fi : Ui → Xi are h-coverings. Using weak resolution of singularities we may
assume that the Ui are smooth. As (coker Z( fi ))h = 0, we even get a resolution of F by
sheaves of this form. We may thus assume F = coker f for an h-covering f : U → X
(Lemma 1.7). The sequence

· · · → Z(U ×X U )→ Z(U ) −→ Z(X) −→ coker f −→ 0

is exact (Lemma 1.4). The augmented Moore complex lies in 〈Th〉 and so does F = coker f .

Remark 1.10 The proof shows that the proposition still holds if we enlarge Th by adding
complexes becoming exact when they are h-sheafified. In particular one may add arbitrary
h-hypercoverings (Lemma 1.3). On the other hand, it suffices to localise with respect to
h-coverings Z(UX )→ Z(X), where U → X is of normal form (Proposition 1.6).

2 Sheaves with transfers

We are going to study the relationship between sheaves with and without transfers. It turns out
that every h-sheaf has a unique transfer structure. Note that the sheafification of a presheaf with
transfers is in general (i.e. for an arbitrary topology) not necessarily a presheaf with transfers.

Lemma 2.1 The canonical (mono-)morphisms Z(X) → Ztr(X), X ∈ Sm induce isomor-
phisms

Zh(X) ∼= Ztr,h(X), Qh(X) ∼= Qtr,h(X).

They induce a transfer structure on any h-sheaf. We call it the canonical transfer structure.

Proof The second part of the lemma is stated by Voevodksy [23, §3.4.]. The lemma was also
proven independently by Ivorra [13, Corollaire 3.2.19].

Fix a smooth scheme V . By definition, c(X/k, 0)(V ) = c(X ×k V/V, 0) is the group of
universally integral cycles of X ×k V , whose support is proper of relative dimension 0 over
V [21, §2.3., 3.1.1–3.1.3, definition after Lemma 3.3.9]. This presheaf is obviously additive.
Since all presheaves we are dealing with are additive, we may suppose that V is connected.
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Geometric motives and the h-topology 971

To be proper of relative dimension 0 is the same as to be finite over V . As V is regular, any
relative cycle is universally integral [21, Proposition 3.3.15]. V is normal, thus geometrically
“unibranche” [8, 6.15.1, 0.23.2.1], therefore any subset Z ⊆ X which is equidimensional
over V defines a relative cycle [21, Theorem 3.4.2].

c(X/k, 0)(V ) ⊃ Z

[
Z ⊂ X × V, finite over
V , equidimensional over V

]

Any effective cycle is equidimensional [21, Proposition 3.1.7]. Thus we obtain for any smooth
connected V :

ceff (X/k, 0)(V ) = N[Z ⊆ X × V, Z finite over V, Z irred.] =: Ntr(X)(V ),

i.e. ceff (X/k, 0)(V ) = HomNSmCor(V, X) (the free abelian monoid generated by elementary
correspondences from V to X ). The functoriality of the two presheaves agrees [21, Corollary
3.3.11]. We obtain an equality of presheaves on Sm: ceff (X/k, 0)|Sm = Ntr(X), and a fortiori
ceff

h (X/k, 0) = Ntr,h(X). Moreover, the map N(X) → ceff (X/k, 0) mapping a morphism

of schemes to its graph induces an isomorphism Nh(X)
∼=−→ ceff

h (X/k, 0) [21, Theorem
4.2.12(2)].

Assembling these isomorphisms together we conclude that the canonical monomorphism
N(X)→ Ntr(X) becomes an isomorphism when we apply h-sheafification. This yields the
assertions for Ztr and Qtr as well.

The canonical transfer structure is given as follows: let F be an h-sheaf (without transfers),
X ∈ Sm. Then we have

F(X) = HomPSh(Sm)(Z(X), F) = HomShvh(Sm)(Zh(X), F)

∼= HomShvh(Sm)(Ztr,h(X), F) = HomPSh(Sm)(Ztr(X), F).

Let Z ∈ HomSmCor(Y, X) = HomPShtr(Sm)(Ztr(Y ), Ztr(X)). Now, F(Z) : F(X) → F(Y )

is defined using the above isomorphism by a �→ a ◦ Ztr(Z). This clearly defines a transfer
structure on F whose restriction to Sm coincides with the original h-sheaf on Sm.

Proposition 2.2 There is an equivalence of categories of h-sheaves with and without trans-
fers:

Shvh,tr (Sm) ∼= Shvh (Sch) .

Proof Note that h-sheaf on SmCor (i.e. on Sm) is meant in the sense of the induced topol-
ogy under the embedding Sm ⊂ Sch [18, Expos§II, 1.1., 3.1.]. As any scheme is h-locally
smooth, we have an equivalence of h-sheaves on Sch and h-sheaves on Sm [18, Exposé III,
Théoréme 4.1].

We make the following obvious remark: for any presheaf with transfers G the following
functors on Sm are naturally isomorphic:

G(−) ∼= HomPShtr(Sm)(Ztr(−), G) ∼= HomPSh(Sm)(Ztr(−), G).

The first bijection is the Yoneda lemma. The second one is shown similarly using the transfer
structure of G.

First, we show that for any presheaf with transfers F the canonical morphism F → Fh is
a morphism of presheaves with transfers. Fh has its canonical transfer structure (Lemma
2.1), in particular we have Fh(X) = HomPSh(Sm)(Ztr(X), Fh). For a correspondence
Z ∈ HomSmCor(Y, X) the morphisms F(X) → F(Y ) and Fh(X) → Fh(Y ) are induced
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972 J. Scholbach

by the map Ztr(Y ) → Ztr(X), by the Yoneda lemma and by construction of the canonical
transfer structure, respectively. Consider the following diagram:

F(X) = HomPSh(Sm) (Ztr(X), F) ��

��

HomPSh(Sm) (Ztr(X), Fh) = Fh(X)

��
F(Y ) = HomPSh(Sm) (Ztr(Y ), F) �� HomPSh(Sm) (Ztr(Y ), Fh) = Fh(Y )

The horizontal maps are induced by morphisms of presheaves (without transfers) F → Fh.
The commutativity of the diagram yields the first claim.

Secondly, one analogously proves that morphisms of h-sheaves are morphisms of h-
sheaves with transfers.

Thirdly, we show that any h-sheaf admits only one transfer structure. Considering any h-
sheaf F , the canonical morphism F → Fh is an isomorphism of presheaves without transfer.
According to the first claim, it is also a morphism of sheaves with transfers, where Fh carries
the canonical transfer structure. This implies that F carries the canonical transfer structure,
as well.

2.1 Cohomology comparison results

Recall that a presheaf F on Sch (or Sm) is called homotopy invariant, if the canonical pro-
jection p : X × A1 → X induces an isomorphism p∗ : F(X)→ F(X × A1) for any X in
Sch (or Sm, respectively). One easily sees that for any complex F∗ of homotopy invariant
presheaves the cohomology presheaves Hn(F∗) are homotopy invariant, as well.

First of all, we gather several results of Friedlander, Suslin and Voevodsky in the following
theorem. These facts constitute the nontrivial input to the comparison result:

Theorem 2.3 Let k be a field admitting strong resolutions of singularities. Let F be a ho-
motopy invariant presheaf of Q-vector spaces with transfers. Let t be either the Zariski,
Nisnevich, étale or cdh-topology. Then the cohomology presheaves on Sm

X �→ Hn
t (X, Ft ), n ≥ 0

are homotopy invariant presheaves with transfers and are (up to canonical isomorphisms)
independent of t .

Proof Presheaves with transfers are pretheories [24, Proposition 3.1.11]. Hence [23, Theorem
4.27, Proposition 5.28] (Zariski-topology), [23, Theorem 5.7.] (Nisnevich), [23, Propositions
5.24, 5.27] (étale topology, this requires rational coefficients) and finally the proof of [5,
Theorem 5.5] (cdh-topology, this requires strong resolution of singularities) apply.

We want to generalize this theorem to the qfh- and h-topology. We first observe that the h-
topology is the “union” of the cdh- and the qfh-topology, in the sense made precise by Lemma
2.4 below. Looking at the definitions of these topologies and Proposition 1.6, this statement
is not surprising. We then use the usual Galois descent method in order to overcome the
gap between Nisnevich and qfh-topology (Lemma 2.6). The cohomology comparison result
between étale and qfh-topology (for a qfh-sheaf, Theorem 2.7) and the adaptation of the
cohomology comparison result of Nisnevich versus cdh-topology to the case qfh- versus
h-topology then give the result.

Lemma 2.4 Let F be a presheaf on Sch. We assume that F is a qfh-sheaf and a cdh-sheaf.
Then F is an h-sheaf.
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Geometric motives and the h-topology 973

Proof Consider the exact sequence of presheaves

0 −→ ker −→ F −→ Fh −→ coker −→ 0.

Sheafifying it with respect to either the cdh- or the qfh-topology does not affect the middle
terms and shows that both ker and coker are cdh- and qfh-sheaves. Thus, we are reduced to
show F = 0 for any F which is both a qfh- and cdh-sheaf satisfying Fh = 0.

Let X ∈ Sch, without loss of generality X is reduced (as F is a qfh-sheaf), a ∈ F(X).
There is an h-covering {gi : Ui → X}, such that g∗i (a) = 0. We may assume that the covering
is of normal form (Proposition 1.6):

gi : Ui
fi−→ U

f−→ X X1

p−→ X.

Clearly {Ui
f ◦ fi−→ X X1} is a qfh-covering. Hence p∗(a) = 0, for F is a qfh-sheaf. Since F is

a cdh-sheaf and X X1 � X1 → X is a cdh-covering, it suffices to show F(X1) = 0.
We proceed by noetherian induction with respect to the strictly descending chain of closed

subsets X =: X0 � X1 � · · ·. The induction stops when the chain becomes stationary or
if the normal refinement of the covering of Xi does not contain any blow-up. The former is
impossible, thus at some point of the noetherian induction the h-covering of Xi must even
be a qfh-covering.

Theorem 2.5 (Comparison of Nisnevich and (qf)h-sheafification) We assume that k admits
strong resolution of singularities. Let F be a homotopy invariant presheaf of Q-vector spaces
with transfers (on Sm). Then the Nisnevich, qfh- and h-sheafifications FNis, Fqfh|Sm and
Fh|Sm are isomorphic.

Consider the presheaves Qtr′(X) [20, §5 and §6], where X ∈ Sch:

Qtr′(X)(Y ) := Q

[
W ⊂ X × Y, closed, integral,
finite and surjective over Y

]
,

where Y is an arbitrary normal connected scheme. Analogously we have a presheaf
Z[1/p]tr′(X) , where p is the exponential characteristic of k. Functoriality is given as follows:
Let f : Z → Y be a morphism of normal connected schemes, W ⊂ X ×Y an integral cycle,
finite and surjective over Y . Set f ∗([W ]) := ∑

ni [(Vi )red], where Vi are the irreducible
components of W ×Y Z and (Vi )red are the associated reduced (thus integral) schemes. The
multiplicities ni are defined as described in [20, definition after Lemma 5.6]. They are always
positive, see loc. cit.

Lemma 2.6 Let f : Y −→ X be the normalization of a smooth (thus excellent) connected
affine scheme X in a normal finite field extension L of k(X). Then there exists a correspon-
dence

f∗ ∈ Z

[
1

p

]

tr′
(Y )(X)

(finite integral correspondence from X to Y with coefficients in Z[1/p]), such that f ◦ f∗ =
d · IdX , d ∈ N>0.

Proof (compare [22, Theorem 3.3.8] for Zqfh).
The automorphism group G := Aut(Y/X) = Gal(k(Y )/k(X)) is a finite group. Consid-

ering g ∈ G as the graph of the corresponding automorphism, the sum a = ∑
g∈G g is a
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G-invariant element of Ztr′(Y )(Y )(a is an integral cycle as Y is integral). According to [20,
Corollary 6.2], a has a preimage f∗ ∈ Z[1/p]tr′(Y )(X):

Y

f

��

a

���
��

��
��

X
f∗ �� Y

f �� X

Let d denote the cardinality of G. Then f ◦ f∗ ◦ f = f ◦ a = d · f .
We show that for any surjective morphism f : Y → X of schemes, where Y is assumed

to be integral, and X to be smooth and every effective correspondence c ∈ Ntr′(X)(X) with
c ◦ f = d · f the equality c = d · IdX holds. This provides the assertion of the lemma, for
f is surjective in our situation and—by the proof of loc. cit. — f∗, being the preimage of an
effective correspondence, is effective as well.

Let c =∑
j n j · c j , n j ∈ N, c j ⊂ X × X integral and finite over X . By definition

c ◦ f =
∑

i, j

n j · mi j ·Wi j
!= d · � f ,

where Wi j ⊂ Tj are the associated reduced schemes of the irreducible components of
Tj := c j ×X Y , the morphism c j → X is the projection to the first component. The
multiplicities of the components mi j are positive (see above). As all coefficients are positive,
it follows Wi j = � f for all i, j and

∑
i, j n j mi j = d .

Using the surjectivity of f it is easy to see (using Hilbert’s Nullstellensatz) that the k̄-
valued points of �X and c j agree. Thus �X = c j on the level of topological spaces (Hilbert’s
Nullstellensatz). As X , and thus �X is reduced, they agree as schemes, too. Hence we have
#{ j} = 1 and #{i} = 1 as T = � f ∼= Y is irreducible. Moreover m = 1, for Y is integral by
assumption.

Proof of Theorem 2.5 In view of Theorem 2.3 we may assume that F is an homotopy
invariant cdh-sheaf with transfers, which implies that Fqfh is an h-sheaf (Lemma 2.4), i.e.
Fqfh = Fh. Consider the exact sequence of Nisnevich sheaves with transfers:

0 −→ F ′ −→ F −→ Fqfh −→ F ′′ −→ 0.

(Recall that ShvNis,tr (Sm) is an abelian category [24, Theorem 3.1.4] and that F → Fqfh =
Fh is a morphism of sheaves with transfers, see Proposition 2.2).

As in the proof of Lemma 2.4 it suffices to show the following: Let F be a (not necessarily
homotopy invariant) cdh-sheaf on Sch, whose restriction to Sm is a sheaf with transfers, such
that Fqfh = 0. Then we have F = 0.

Let X ∈ Sch, without loss of generality affine and smooth (as F is a cdh-sheaf), and
a ∈ F(X) an arbitrary section. We show a = 0. There is a qfh-covering of normal form
{ fi : Ui → U → X}, such that f ∗i (a) = 0 (Proposition 1.6). As F is a Zariski sheaf it
suffices to consider U → X . We replace the excellent scheme U by its normalization in
a normal finite extension of k(X). Choose a cdh-covering Ũ → U with Ũ ∈ Sm (strong
resolution of singularities).

As F is a sheaf with transfers,

F(V ) = HomPShtr(Sm)(Qtr(V ), F)

= HomPSh(Sm)(Qtr(V ), F)

= HomPSh(Sm)(Qtr′(V ), F)
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for any smooth V (see the proof of Proposition 2.2). As F is a cdh-sheaf, we may cdh-
sheafify the first presheaf in all of these Hom-sets without changing the Hom-sets. Hence,
the morphism F(X)→ F(Ũ ) is induced by

Qtr′,cdh(Ũ )
α−→ Qtr′,cdh(U )

β−→ Qtr′,cdh(X).

We know Qtr′(W )|Sm = Qqfh(W )|Sm [20, Theorem 6.3] for any scheme W . Thus, a
fortiori, Qtr′(W )cdh = Qqfh,cdh(W ) = Qh(W ). As Ũ → U is an h-covering, α is an epi-
morphism [22, Proposition 3.2.5.2]. According to Lemma 2.6, β has a section, so it is an
epimorphism. Hence F(X)→ F(Ũ ) is a monomorphism, i.e. a = 0.

Theorem 2.7 (Comparison of etale and qfh-cohomology) We assume that k admits strong
resolution of singularities. Let F be a homotopy invariant étale sheaf with transfers with val-
ues in Q-vector spaces and let X be a normal scheme. Then Hn

ét(X, F) ∼= Hn
qfh(X, Fqfh), n∈N.

Proof The case n = 0 is Theorem 2.5, so we may assume that F is a qfh-sheaf. Then [22,
Theorem 3.4.1] is what we assert.

Theorem 2.8 (Comparison of h- and qfh-cohomology) Let k be a field admitting strong
resolution of singularities and let F be a homotopy invariant presheaf with transfers of
Q-vector spaces. Then for all X ∈ Sm, n ≥ 0 the following holds:

Hn
h(X, Fh) = Hn

qfh(X, Fqfh).

Lemma 2.9 Let X ∈ Sm, Z ⊂ X a smooth closed subscheme. Let pZ : X Z → X denote
the blow-up of Z in X. Further, let F be a homotopy invariant presheaf with transfers of
Q-vector spaces. Then it holds for i ≥ 0

Exti
Shvqfh(Sm)(coker Zqfh(pZ )), Fqfh) = 0.

Proof An analogous statement for the Nisnevich topology is proven in [23, Proposition
5.21] exploiting the fact that Nisnevich cohomology groups of FNis are homotopy invariant.
The proof of loc. cit. remains valid for any finer topology t , which fulfills Hi

t (X, Ft ) ∼=
Hi

t (X × A1, Ft ). In particular it holds (for sheaves of Q-vector spaces) for the qfh-topology
(Theorem 2.3, Theorem 2.7).

Lemma 2.10 Let k be a field admitting strong resolution of singularities, F a qfh-sheaf,
such that Fh = 0, G a homotopy invariant presheaf with transfers of Q-vector spaces. Then
we have

Extn
Shvqfh(Sm)(F, Gqfh) = 0, n ≥ 0.

Proof The proof of [5, Lemma 5.4] goes through (using Lemma 2.9 instead of [5, Lemma
5.3]), if we replace Nisnevich and cdh-topology by qfh- and h-topology respectively.

Proof of Theorem 2.8 The proof of [5, Theorem 5.5] goes through verbatim using Lemma
2.10 instead of [5, Lemma 5.4].

The following theorem gathers the above results. It points out the quite special nature
of homotopy invariant Zariski sheaves with transfers of Q-vector spaces: they are already
sheaves with respect to the (much finer) h-topology.
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Theorem 2.11 Let t ∈ {Zar, Nis, ét, cdh, qfh, h}. Let F∗ be a bounded above complex of
presheaves of Q-vector spaces with transfers, whose cohomology-t-sheaves are homotopy
invariant. We assume that k admits strong resolution of singularities. Then the hypercoho-
mology presheaves X �→ Hn

t (X, F∗t ), X ∈ Sm are homotopy invariant presheaves with
transfers and are independent of the choice of the topology t.

The assumption on F∗ is satisfied, if the cohomology presheaves of F∗ are homotopy
invariant.

Proof If F∗ is concentrated in degree 0, we are done because of Theorem 2.3, Theorem 2.7,
Theorem 2.5, Theorem 2.8, as hypercohomology is just cohomology in this case. This also
shows the last claim.

In general, let denote (Hq(F∗))t the t-sheafification of the qth cohomology presheaf of
the complex F∗, which is an homotopy invariant presheaf with transfers. The presheaves
X �→ Hn

Nis(X, F∗Nis) have transfers [15, Exercise 13.5.]. So, the other hypercohomology
groups, which are canonically isomorphic to the Nisnevich hypercohomology, have transfers
as well. The hypercohomology spectral sequence

E p,q
2 = Hp

t (X, (Hq(F∗))t ) = Ext p(Qt (X), (Hq(F∗))t ) �⇒ H
p+q
t (X, F∗t )

converges because of finite cohomological dimension for sheaves of Q-vector spaces (see
[22, Theorem 3.4.6] for the h-topology). Comparing the limit terms for X and X ×A1 yields
the assertion.

Remark 2.12 We restrict to Q-linear categories as the comparison of Nisnevich and qfh-
sheaves is valid only for sheaves of Q-vector spaces. An analogous statement for sheaves
with torsion does not hold: Consider the Nisnevich sheaf with transfers O∗. If R is a ring,
then O∗(R[t]) = R∗ × {1+∑n

i=1 fi t i , ( fi )
N = 0, N � 0}. In particular, O∗ is homotopy

invariant on Sm, but not on Sch. See [23, Remark 5.8] for a counterexample for the Nisnevich-
flat topology.

The restriction to characteristic zero is only needed for the cohomology comparison result
of Nis- and cdh-topology (and the analogue qfh- vs. h-topology). It seems reasonable to
aim at a generalization to positive characteristic at least for Q-coefficients using Noether
normalization and de Jong’s resolution of singularities, but we did not succeed to prove it.

3 Motivic complexes and geometric motives

3.1 Motivic complexes

As we have outlined in the introduction, we will embed the several categories of geometric
motives—which we are mostly interested in—into the more flexible categories of motivic
complexes. Voevodsky defines a category of motivic complexes using Nisnevich-sheaves
with transfers. Parallely, we also use a different version using h-sheaves without transfers
[22]. In the case of Q-vector space sheaves both categories are equivalent (Theorem 3.7).
This theorem relies on the cohomology comparison results of 2.

Definition 3.1 [24, §3.1.] The category of effective motivic complexes with transfers is
defined to be the full subcategory DMeff,−

Nis,tr of D−(ShvNis,tr (Sm)) consisting of complexes
whose Nisnevich cohomology sheaves are homotopy invariant. (This category is denoted by
DMeff,−

Nis (k) in loc. cit.).
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Geometric motives and the h-topology 977

Similarly, DMeff,−
h ⊂ D−(Shvh (Sch)) denotes the full subcategory, whose objects have

homotopy invariant cohomology h-sheaves. This category is called category of effective
motivic complexes without transfers.

We write DMeff,−
h (Q) and DMeff,−

Nis,tr(Q) for the corresponding Q-linear categories.

Definition 3.2 [15, §2] Let �∗ denote the standard cosimplicial object in Sch, i.e. �n ={∑
xi = 1

} ⊂ An+1. For any presheaf F , let C∗(F) denote the Suslin complex F(�∗ ×−),
i.e. Cn(F)(X) = F(�n × X); its differentials are alternating sums of δ j . We get an exact
functor C∗ : PSh(Sch) → Com(PSh(Sch)). If F is a sheaf with respect to an arbitrary
(pre)topology, then C∗(F) is a complex of sheaves as well as well.

Recall from Definition A.2 that 〈−〉 denotes the minimal localising subcategory containing
a given class of objects. For the rest of this subsection, we will use the following notation:
Dh := D−(Shvh (Sch, Q)), Ah :=

〈{Qh(X × A1)→ Qh(X), X ∈ Sm}〉 ⊂ Dh.

Remark 3.3 Morphisms whose cone is in Ah are called weak A1-equivalences. Objects
L ∈ Dh are called A1-local, if for all weak A1-equivalences K → K ′ the induced map
Hom(K ′, L)→ Hom(K , L) is a bijection.

Theorem 2.11 implies that DMeff,−
h (Q) is a triangulated subcategory of Dh: For a dis-

tinguished triangle A → B → C → A[1] in Dh with A, B ∈ DMeff,−
h we have that

HomDh (Qh(−), A[n]) = Hn
h(−, A) is homotopy invariant, analogously for B. The long

exact HomDh -sequence coming from this triangle shows that C is A1-local as well, compare
[15, Lemma 9.17.]. Hence, C has homotopy invariant cohomology sheaves. The latter can be
seen as in [15, Proposition 14.5] (using Theorem 2.11). As in loc. cit. one sees that bounded
above complexes (of sheaves of Q-vector spaces) with homotopy invariant cohomology
sheaves are A1-local.

Proposition 3.4 With these notations there is an equivalence of categories Dh/Ah ∼=
DMeff,−

h (Q) induced by a triangulated functor RC : Dh −→ DMeff,−
h (Q), whose restriction

on Shvh (Sch) is given by C∗.

Proof (compare [24, Proposition 3.2.3]). For brevity, we omit the specification of Q-vector
space sheaves in the notations. We show that the restriction of the projection map 	 :
DMeff,−

h ⊂ Dh
Proj.−→ Dh/Ah is an equivalence of categories and that the restriction to h-

sheaves of the inverse equivalence 	−1 is just C∗:

Shvh (Sch)

C∗ ������������
�� Dh/Ah

	−1

��
DMeff,−

h

Then, we set RC := 	−1 ◦ Proj. According to Remark 3.3 and [16, Theorem 2.1.8], 	 is
triangulated and so is RC .

Firstly, we show that 	 is fully faithful. Secondly, we show the essential surjectivity.
Both parts will use the cohomology comparison results for homotopy invariant sheaves with
transfers.

	 is fully faithful: Let T ∈ DMeff,−
h be arbitrary. According to Proposition 2.2, T |Sm is

a complex of sheaves with transfers, which implies (Theorem 2.11) for all X ∈ Sm, n ∈ Z

HomDh (Qh(X), T [n]) ∼= HomDh (Qh(X × A1), T [n]).
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Hence (compare [15, Lemma 9.17]) T is an A1-local object in Dh. Then we have for all
S ∈ Dh: HomDh/Ah (S, T ) ∼= HomDh (S, T ) [16, Lemma 9.1.5].

	 is essentially surjective: we know K ∼= Tot(C∗K ) in Dh/Ah (see [15, Lemma 9.14], the
proof without transfers is strictly parallel, as the homotopy providing the quasi-isomorphism
is induced by the multiplication map μ : A2 → A1). According to Proposition 2.2, K and
Tot(C∗(K )) are complexes of h-sheaves with transfers (of Q-vector spaces). The cohomology
presheaves of Tot(C∗(K )) are homotopy invariant [15, Lemma 2.17], thus the associated h-
sheaves of the cohomology presheaves restricted to Sm are homotopy invariant, as well
(Theorem 2.11). Using the equivalence of h-sheaves on Sm and on Sch (see the proof of
Proposition 2.2), this easily implies that the same holds without restricting to Sm. Hence
Tot(C∗(K )) ∈ DMeff,−

h and we are done.

Remark 3.5 If one attempts to define explicitly 	−1 : K �→ Tot(C∗K ), one has to deal
with the question, whether C∗ is an exact functor. It suffices to show the right-exactness of
C∗. The presheaf cokernel F of an epimorphism of h-sheaves has transfers (Proposition 2.2)
and satisfies Fh = 0. The cohomology comparison result for the h-topology (Theorem 2.11)
instead of the Nisnevich analogue [15, Theorem 13.11.] yields that the h-sheafification of
C∗(F) is exact. The h-analogue of [15, Corollary 13.13.] shows that C∗ is well-defined on Dh.

Lemma 3.6 The categories D−(Shvh (Sch, Q)) and DMeff,−
h (Q) are tensor triangulated

categories.

Proof Starting with X ⊗ Y := X ×k Y, X, Y ∈ Sch, one obtains a tensor structure on
D−(Shvh (Sch)) in the same manner as in [15, Corollary 8.17].

The tensor structure on Dh/Ah is determined by the requirement that the canonical functor
Dh → Dh/Ah is a tensor functor, compare [15, Corollary 9.4.]. Proposition 3.4, i.e. Dh/Ah ∼=
DMeff,−

h (Q) yields the second assertion.

Theorem 3.7 Let k be a field admitting strong resolution of singularities. Using the notations
of Definition 3.1 there are natural equivalences of tensor triangulated categories

DMeff,−
Nis,tr(Q) ∼= DMeff,−

h (Q) ∼= DMh(Q),

where DMh(Q) denotes the homological category of h-sheaves (with rational coefficients)
[22, §4.1.].

As mentioned in the introduction, this is part of [24, Theorem 4.1.12]. We wish to give
a detailed proof of it. It is essentially a corollary of the cohomology comparison result of
Nisnevich and h-topology (Theorem 2.11) and the fact that h-sheafs have a unique transfer
structure (Proposition 2.2).

Proof We permit ourselves to omit “Q” in the notations.
Let us write ANis,tr ⊂ DNis,tr := D−(ShvNis,tr (Sm, Q)) for the localising subcat-

egory generated by Qtr(X × A1) → Qtr(X), X ∈ Sm. We have an equivalence of
categories DMeff,−

Nis,tr
∼= DNis,tr/ANis,tr [24, Proposition 3.2.3]. Consider the composition

(−)h : ShvNis,tr (Sm) → ShvNis (Sm) → Shvh (Sch) of the forgetful and sheafification
functor, where the latter uses the extension of h-sheaves on Sm to ones on Sch [18, Expos§II,
Théoréme 4.1]. It clearly extends to the corresponding derived categories, maps ANis,tr to
0 ∈ DMh. It suffices to show that the complexes generating ANis,tr are mapped to 0, which
is equivalent to K X := Ker(Qtr(X × A1) → Qtr(X)) �→ 0, i.e. that (K X )h is contractible
in the sense of [22, Definition 2.2.1]. (According to Lemma 2.1, Qtr(X), X ∈ Sm maps to
Qh(X)). The latter holds obviously, as K X = Qtr(X)⊗KSpec k and (KSpec k)h is contractible
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Geometric motives and the h-topology 979

[22, Lemma 2.2.3]. We obtain a surjective functor 	 : DNis,tr/ANis,tr → DMh (Proposition
2.2). (nota bene: We have not yet used rational coefficients).

DNis,tr
(−)h �� ��

����

Dh

����
DNis,tr/ANis,tr

	 �� �� DMh

For the full faithfullness of 	 it suffices to show

HomDNis,tr (Qtr(X), F[n]) = HomDMh (Qh(X), Fh[n])
for every F ∈ DMeff,−

Nis,tr .

For brevity, we write Spec k for Qh(Spec k), X for Qh(X) etc. The triangle I 1 → A1 →
Spec k → I 1[1] is distinguished in Dh. As the category is tensor triangulated (Lemma 3.6),
we obtain a long exact sequence

· · · ← Hom(X ⊗ I 1, Fh[n])← Hom(X ⊗ A1, Fh[n])← Hom(X, Fh[n])← · · ·.
The two terms to the right are the nth hypercohomologies of F in X and X×A1, respectively.
They are homotopy invariant (Theorem 2.11). Hence we have Hom(X ⊗ I 1, Fh[n]) = 0,
i.e. Fh is strictly homotopy invariant in the sense of [22, definition 2.2.8], which implies
HomDMh (X, Fh[n]) = HomDh (X, Fh[n]) = Hn

h(X, Fh) [22, Proposition 2.2.9].

The equivalence DMeff,−
h
∼= DMh is trivial (and does not need rational coefficients).

3.2 Geometric motives

We now define the categories of (quasi-)geometric motives with and without transfers. The
prefix “quasi” indicates that we also consider countable direct sums (i.e. disjoint unions) of
schemes. Moreover, the “quasi”-categories consist of bounded above complexes.

Recall from Definition A.3 that for a class T of objects of a triangulated category the
notations 〈T 〉ℵ0 (and 〈T 〉ℵ1 , respectively) mean the minimal thick subcategory containing T
(closed under countable existing direct sums, respectively).

Definition 3.8 The categories ZSch and SmCor are defined as the closure under countable
direct sums of Z : ZSch → PSh(Sch) (the Yoneda embedding), and similarly for SmCor.
For brevity, we may write ⊕Xi := ⊕Z(Xi ) for a family of schemes Xi .

Definition 3.9 [24, §2.1.] Consider the class T consisting of the following complexes

– X × A1 → X, X ∈ Sm.

– U ∩ V
ιU⊕ιV−→ U ⊕ V

ιU⊕(−ιV )−→ X for any open covering X = U ∪ V of a smooth
scheme X .

The category of effective quasigeometric motives with transfers DMeff
gm is defined as fol-

lows: DMeff
gm := K−

(
SmCor

)
/ 〈T 〉ℵ1 , i.e. the localisation of K−

(
SmCor

)
with respect to

the minimal triangulated subcategory closed under countable sums containing T . The sub-
category DMeff

gm consisting of Kb(SmCor) is called category of effective geometric motives

with transfers. (This coincides with Voevodsky’s definition Kb (SmCor) / 〈T 〉ℵ0 , see Theo-
rem 3.15).
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Definition 3.10 We define the category DMeff
gm,h of effective quasigeometric motives without

transfers over a field k: Let T denote the union of the following two classes of complexes in
K−

(
ZSch

)
:

– TA1 = {X × A1 pr1−→ X, X ∈ Sch}.
– Th = augmented Moore-complexes of h-coverings U → X, U ∈ Sm, X ∈ Sch (Defini-

tion 1.2).

We define DMeff
gm,h to be the localisation of K−

(
ZSch

)
with respect to the ℵ1-localising

subcategory generated by T :

DMeff
gm,h := K−

(
ZSch

)
/ 〈T 〉ℵ1 .

The subcategory DMeff
gm,h of bounded complexes of schemes is called category of effective

geometric motives without transfers. The canonical functor Mgm : Sch→ DMeff
gm,h maps a

scheme to its geometric motive.

If we consider rational coefficients instead of integral ones, we write DMeff
gm,h(Q) etc.

Remark 3.11 Note that the quasigeometric categories of motives are pseudo-abelian, as they
are closed under direct sums of the form⊕i∈N A, where A ∈ DMeff

gm [14, Lemma II.2.2.4.8.1].

Lemma 3.12 The category DMeff
gm,h is a triangulated tensor category, whose tensor structure

is induced by Mgm(X)⊗Mgm(Y ) = Mgm(X×Y ). The subcategory DMeff
gm,h is closed under

this tensor product.

Proof The tensor structure on K−
(
ZSch

)
is determined via the one on Sch(X⊗Y := X×Y )

and (⊕Xi )⊗(⊕Y j ) := ⊕i, j Xi⊗Y j and K ∗⊗L∗ := Tot ((K n ⊗ Lm)n,m). We show that for
all A ∈ T (Definition 3.10) and B ∈ K−

(
QSch

)
the tensor product A⊗B lies in 〈T 〉ℵ1 . Then

[14, II.2.3.4] yields the claim. The subcategory B ⊂ K−
(
QSch

)
containing the complexes

B with A ⊗ B ∈ 〈T 〉ℵ1 is ℵ1-localising. Using Lemma 1.7 we reduce to the case B ∈ Sch,
which is obvious. The second claim is clear from the definitions.

Remark 3.13 A similar statement holds for the variants with transfers DMeff
gm (proof as above)

and DMeff
gm [24, Proposition 2.1.3].

3.3 Embedding theorems

Theorem 3.14 Let k admit the strong resolution of singularities. Then we have a commutative
diagram of tensor-triangulated functors:

K−
(
QSch

) Qh ��

��

D−(Shvh (Sch, Q))

RC
��

DMeff
gm,h

i

⊂
�� DMeff,−

h (Q)

where i is a full embedding of quasigeometric effective motives (Definition 3.10) into the
category of effective motivic complexes (Definition 3.1). The image of i is precisely the
subcategory of ℵ1-compact objects of DMeff,−

h (Q). The idempotent completion of the image

of Kb(QSch) is the subcategory of compact objects in DMeff,−
h (Q).
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Proof (compare [24, Theorem 3.2.6]). In the proof, we write Ah :=
〈
TA1

〉
(see Definition

3.10) and Dh := D−(Shvh (Sch, Q)).
Existence of i : By its very definition it is clear that the functor RC commutes with

direct sums. We show that RC(Qh(TA1)) = 0 and RC(Qh(Th)) = 0, which yields the
existence of i . The first claim directly follows from the construction of RC (see Proposition

3.4, Ah = Qh(TA1)). RC : D −→ D/Ah
	−1−→ DMeff,−

h . For the second claim, we note
RC(Qh(Y )) = C∗(Qh(Y )) =: C∗(Y ). The inverse equivalence 	−1 of Proposition 3.4 maps
a complex K of sheaves to the total complex Tot(C∗(K )). We have to show that the total
complex of the double complex

C∗(UX → X → 0) : · · · −→ C∗(U ×X U ) −→ C∗(U ) −→ C∗(X) −→ 0

is exact for any h-covering U → X, X ∈ Sch. But C∗(UX → X → 0) is exact in view
of the exactness of C∗ (see the proof of Proposition 3.4) and Lemma 1.3. As Tot preserves
quasi-isomorphisms, we are done.

Full faithfulness of i : Let us denote D′ := D−(PSh(Sch, Q)). Consider the following
diagram

K−
(
QSch

) Q(−) ��

Qh(−)

�����������������

��

D′

��

D
1.9∼= D′/ 〈Q(Th)〉

RC

��
K−

(
QSch

)
/
〈
TA1 , Th

〉ℵ1 �� D/
〈
Q(TA1)

〉 ∼= DMeff,−
h

The functor Q : K−
(
QSch

) −→ D′ is a full embedding [26, Corollary 10.4.7] as the
presheaves ⊕i Q(Xi ) are direct sums of projective objects, thus projective. Proposition A.5
precisely grants the extension of the embedding K−

(
QSch

) ⊂ D′ to the categories in
question and the asserted compacity statements.

i is tensor-triangulated: The functors RC and Qh are tensor functors by definition. It is
clear that Qh is tensor-triangulated. In order to see that RC is tensor-triangulated, it suffices
to remark that the projection D → D/

〈
Qh(TA1)

〉
is tensor-triangulated. Hence, RC ◦ Qh is

tensor-triangulated, which yields the claim.

Theorem 3.15 There is a full embedding

itr : DMeff
gm ⊂ DMeff,−

Nis,tr.

Similarly to the theorem above, its essential image is exactly the subcategory of ℵ1-compact
objects and the idempotent completion of itr(Kb(SmCor)) are the compact objects of
DMeff,−

Nis,tr .

Proof The proof of [24, Theorem 3.2.6] generalizes to the quasi-geometric situation (using
the ℵ1-compacity arguments as in Theorem 3.14, Remark A.6).
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4 Reinterpretation of geometric motives

We are now ready to gather the results of the preceding sections in order to achieve the main
result of the present paper:

Theorem 4.1 Let k be a field admitting strong resolution of singularities. Then there is an
equivalence of tensor triangulated categories between the categories of effective geometric
motives (with rational coefficients) with and without transfers, respectively (Definitions 3.9,
3.10):

DMeff
gm,h(Q) ∼= DMeff

gm(Q).

The same is true for the quasigeometric categories:

DMeff
gm,h(Q) ∼= DMeff

gm(Q).

The theorem simplifies the handling of geometric motives insofar as one does not have
to work with correspondences. Moreover, singular schemes are contained in the category in
a natural manner. Last but not least, the localization with respect to the h-topology permits
greater flexibility in the manipulation of objects. The price for this flexibility is the loss of
torsion information.

Proof We embed the categories of effective (quasi)-geometric motives into the categories of
motivic complexes, see Theorems 3.14, 3.15. Either in the case with and without transfers,
these are exactly the (ℵ1)-compact objects (Definition A.3, Proposition A.5). The equivalence
DMeff,−

h (Q) ∼= DMeff,−
Nis,tr(Q) (Theorem 3.7) yields the assertion.

Remark 4.2 An attempt to prove an analogous statement for a category of geometric motives
defined by inverting only smooth h-hypercoverings fails, because the Moore complex of a
hypercovering is in general not exact at the level of presheaves.

At first glance, the equivalence of the geometric categories, i.e. bounded complexes might
be surprising, as a non-smooth scheme is ad hoc only replaced by an unbounded smooth h-
hypercovering. We describe a bounded complexes of smooth schemes isomorphic to a scheme
X : there is a proper surjective morphism p : X̃ → X , which is an isomorphism outside some
closed subset Z � X (strong resolution of singularities). We obtain a distinguished triangle
in DMeff

gm of the form

Mgm(p−1(Z))→ Mgm(Z)⊕Mgm(X̃)→ Mgm(X)→ Mgm(p−1(Z))[1]
[22, Proposition 4.1.5]. Inductively applying this resolution technique to Z and p−1(Z) one
constructs a so-called hypercube of schemes, one of whose vertices is X , the other vertices
are smooth. According to the above exact triangle, the motive of X is isomorphic to the total
complex of the rest of the hypercube. The induction stops after at most dimX steps. See [7,
especially Theorem 2.15] for the construction of cubical hyperresolutions.

In the sequel, we will draw some corollaries of the theorem. We will always assume that
k admits strong resolution of singularities and we will work with rational coefficients.

Corollary 4.3 If A, B are closed subschemes of a scheme X, such that A ∪ B = X, then
there is a distinguished triangle in DMeff

gm,h of the following form:

Mgm(A ×X B)→ Mgm(A)⊕Mgm(B)→ Mgm(X)→ Mgm(A ×X B)[1].
In particular, as a motive, a scheme is isomorphic to the associated reduced scheme:
Mgm(Xred) ∼= Mgm(X).

123



Geometric motives and the h-topology 983

Proof This follows from the fact that A � B → X is a qfh-covering and Lemma 1.4.

Definition 4.4 Inverting the Tate-Object Q(1) in the category of effective geometric motives
(with transfers), Voevodsky defines the category of geometric motives, which we denote by
DMgm [24, §2.1, page 192]. Strictly parallely, we define the category of geometric motives
(without transfers) DMgm,h and their quasi-geometric analogs DMgm,h and DMgm.

Theorem 4.5 The above equivalence of effective geometric motives induces an equivalence
of geometric motives with and without transfers (with rational coefficients):

DMgm,h(Q) ∼= DMgm(Q).

Moreover, the canonical functor DMeff
gm,h(Q) → DMgm,h(Q) is a full embedding. These

statements are also true for the quasigeometrical categories.

Proof Under the equivalence of tensor categories DMeff
gm,h(Q) ∼= DMeff

gm(Q), Q(n) ∈
DMeff

gm,h(Q) maps to Q(n) ∈ DMeff
gm(Q) (note that the equivalence restricted to complexes of

smooth schemes is the identity). So, the first statement in either the geometric or the quasi-
geometric case is clear from Theorem 4.1. The second statement is then a reformulation of
[24, Theorem 4.3.1] in the geometric case. The quasi-geometric case follows from the proof
of loc. cit. and the fact that ⊗ commutes with ⊕.

Another consequence is a conceptual understanding of realizations of motives, similar to
results of Huber [12, Theorem 2.1.6.]:

Corollary 4.6 Let A be any Q-linear abelian category. Let R : QSch→ D(A) be a functor
mapping Čech nerves of h-coverings and A1-complexes (see Definition 3.10) to complexes
quasi-isomorphic to zero. Then R extends to a functor DMeff

gm,h → D(A). If furthermore A
is a tensor category and tensoring in A with R(Q(1)) is an equivalence of categories, R
extends to a functor DMgm,h → D(A). For example, singular realization of varieties factors
over geometric motives.

Acknowledgments I would like to thank Annette Huber for her constant (in)valuable support while I was
writing this paper.

Appendix A: Compact objects in categories of bounded above complexes

In order to motivate the somewhat lengthy definition of ℵ1-compact objects, we first outline
the application of these notions. It turns out that the abstract characterization of complexes of
schemes in terms of compacity notions makes the proof of Theorem 4.1 very simple and for-
mal. Consider the following special case of a theorem of Neeman [16, Theorem 4.4.9], which
is (tacitly) used in the proof of the embedding theorem of Voevodsky [24, Theorem 3.2.6]:

Proposition A.1 The full embedding Kb (ZSch) ⊂ D(PSh(Sch)) identifies the former cat-
egory with the subcategory of compact objects of the latter category. Localizing with respect
to some compact objects, for example Mayer–Vietoris complexes U ∩V → U⊕V → U ∪V
the above embedding extends to an embedding

Kb (ZSch) /M.-V. ⊂ D(PSh(Sch))/M.-V.
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Note that the right hand side is just D(ShvZar (Sch)). Instead of the Zariski topology, we
want to invert the h-topology. In this setting, we cannot replace the unbounded Moore com-
plexes of h-coverings by some bounded complexes. Hence we are looking for a similar state-
ment for K− (ZSch) instead of Kb (ZSch). In order to apply the aforementioned theorem of
Neeman, we enlarge K− (ZSch) insofar as we add countable existing direct sums; we arrive at
K−

(
ZSch

)
, which is precisely the subcategory of so-called ℵ1-compact objects (see below).

Then a similar statement as above holds (see Proposition A.5 for the precise statement).
Neeman theorem handles the case that the larger category is closed under arbitrary direct

sums. So, we will have to make some minor modifications to Neeman’s definitions in order to
adapt them to bounded above categories like D−(PSh(Sch)). The idea is to add boundedness
conditions in all definitions and to check that the proof of [16, Theorem 4.4.9] remains valid.

In the following definitions, let β be an infinite cardinal, let A be an abelian category
having all direct sums, e.g. A = PSh(Sch), and D := D−(A).

Definition A.2 A triangulated subcategory S ⊂ D is called β-localising, if it is thick and
closed under direct sums of cardinality < β that exist in D. The smallest β-localising subcat-
egory containing a class of objects S will be denoted 〈S〉 (〈S〉β , respectively). Hence 〈S〉ℵ0

is the minimal thick subcategory containing S and 〈S〉ℵ1 is the minimal subcategory closed
under countable existing direct sums. We only need these two cases.

To any complex C∗ ∈ D, we associate an integer |C | := max{n, Cn �= 0}. (Recall that
our complexes have differentials of degree+1). Let {Xλ, λ ∈ �} be a set of objects in D. It is
called bounded if sup{|Xλ|, λ ∈ �} is finite, which implies that the direct sum⊕Xλ exists (in
D). We make the following definitions (note that working in the category D(A) and dropping
the boundedness conditions, we exactly arrive at Neeman’s definitions [16, §§3,4]).

Definition A.3 – A class S of objects of D is called β-perfect if it contains the zero object
and the following conditions hold:

1. Let {Xλ, λ ∈ �} be a bounded collection of cardinality < β of objects in D. Any

morphism k → ⊕Xλ with k ∈ S factors as k → ⊕kλ
⊕ fλ−→ ⊕Xλ, where kλ ∈ S.

Furthermore, if � is infinite, we also require sup |kλ| ≤ sup |Xλ| (which ensures that
⊕kλ exists).

2. If any such morphism k → ⊕kλ
⊕ fλ−→ ⊕Xλ vanishes, then there are objects lλ ∈ S such

that fλ is factorized by kλ → lλ → Xλ and k → ⊕kλ → ⊕lλ vanishes. Again, if � is
an infinite set, we require sup |lλ| ≤ sup |Xλ|.

– There is a maximal β-perfect class of objects, contained in S [16, Corollary 3.3.10]. It
will be denoted Sβ .

– An object k ∈ D is called β-small, if any morphism k → ⊕λ∈� Xλ, where the family
Xλ is supposed to be bounded, factors as k →⊕λ∈�′Xλ →⊕λ∈� Xλ, where �′ ⊂ � is
a subset of cardinality < β. The full subcategory of D consisting of β-small objects is
denoted D(β).

– The subcategory of β-compact objects in D is defined by Dβ := {D(β)}β . If β = ℵ0, we
will usually speak of compact objects.

Lemma A.4 The compact objects of D′ := D−(PSh(Sch)) are given by the subcategory
(under the Yoneda embedding)Kb (ZSch) of bounded complexes of schemes. Theℵ1-compact
objects of D′ are precisely given by bounded above complexes of countable direct products
of schemes, i.e. K−

(
ZSch

)
. The same is true for D := D−(Shvh (Sch)).

123



Geometric motives and the h-topology 985

Proof A scheme, considered as an object of D′ under the Yoneda embedding, is clearly ℵ0-
small (i.e. HomD′(Z(X),−)) commutes with direct sums). The same is true in the category
D. In fact, this holds for any topology t whose coverings are open morphisms: by convention
our schemes are quasi-compact, so every covering has a finite subcovering, which implies
that the direct sum of a set of t-sheaves Fλ is given by X �→ ⊕Fλ(X). Via induction on the
length of a complex one sees that a bounded complex of schemes is ℵ0-small. All ℵ0-small
objects are (ℵ0-)compact [16, Example 3.3.16]. As the subcategory of β-compact objects is
β-localising for a regular cardinal β (such as ℵ0 or ℵ1) [16, Lemma 4.2.5] countable direct
sums of schemes areℵ1-compact. Bounded above complexes of such objects are ℵ1-compact
as well (Lemma 1.7). We saw in Lemma 1.8 that

〈
Kb(ZSch)

〉 = D′, so [16, Lemma 4.4.5]
shows Kb(ZSch) = D′ℵ0 and K−

(
ZSch

) = D′ℵ1 and similarly for D.

Proposition A.5 We write Th := {Q(UX )→ Q(X), U → Xan h-covering} (see Definition
1.2) and TA1 = {Q(X × A1)→ Q(X), X ∈ Sm}.

The natural functor K−
(
QSch

)
/ 〈Th〉ℵ1 → D := D−(Shvh (Sch, Q)) is a full embedding

whose image consists of the ℵ1-compact objects of D.
The natural functor

K−
(
QSch

)
/
〈
Th, TA1

〉ℵ1 → D/
〈
TA1

〉

is a full embedding. Its image consists of the ℵ1-compact objects of D. Moreover, the idem-
potent completion of the image of bounded complexes of schemes are precisely the compact
objects of D.

Proof For the convenience of the reader, we indicate the necessary changes to the proof of
[16, Theorem 4.4.9]: The second part of the proof [16, Lemma 3.3.3] does not work, but this
lemma is only applied to triangulated subcategories, so the second part is not needed in view
of [16, Lemma 3.3.5]. [16, Lemma 3.3.7] only holds for α ≤ β or β > ℵ0 in the notations of
loc. cit. This lemma is only used in [16, Theorem 3.3.9], which is only needed with α = β.
[16, Theorem 4.3.3] has to be stated as follows: Let β be a regular cardinal, S a class of
objects in Dβ . Let f : x → z be a morphism with x ∈ Dβ and z ∈ 〈S〉. Then there is an
object y ∈ 〈S〉β , such that |y| ≤ |z| and f factors as x → y → z. Its proof is the same as in
loc. cit. This sharper statement is necessary to prove [16, Lemma 4.4.8] in our situation. The
proof of the fact that localisation preserves direct sums [16, Lemma 3.2.10] does a priori
not work in general, but when we localise with respect to h-coverings, the claim holds, as
schemes are quasi-compact (cf. the proof of Lemma A.4). When we localise with respect to
A1-complexes, the assertion is true because of Proposition 3.4.

The first claim of the proposition is now precisely the statement of [16, Theorem 4.4.9]:
K−

(
ZSch

)
are the ℵ1-compact objects in D−(PSh(Sch)), which is generated by these com-

plexes and D is the localisation of the D′ with respect to 〈Th〉 (Lemma 1.9). The second claim
follows from the first one (using [16, Theorem 4.4.9] again).

Remark A.6 The above proposition also holds for Nisnevich sheaves with transfers. Indeed,
by [24, Proposition 3.1.9] HomD−(ShvNis,tr(Sm))(X, K [i]) = Hi

Nis(X, K ), Nisnevich hyper-
cohomology commutes with direct sums and Proposition 3.4 is replaced by its predecessor
[24, Proposition 3.2.3].
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