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Abstract

We show that the constructions done in part I generalize their classi-
cal counterparts: firstly, the classical Beilinson regulator is induced by
the abstract Chern class map from BGL to the Deligne cohomology
spectrum. Secondly, Arakelov motivic cohomology is a generalization
of arithmetic K-theory and arithmetic Chow groups. For example, this
implies a decomposition of higher arithmetic K-groups in its Adams
eigenspaces. Finally, we give a conceptual explanation of the height
pairing: it is the natural pairing of motivic homology and Arakelov
motivic cohomology.

The purpose of this work is to compare the abstract constructions of the

regulator map and the newly minted Arakelov motivic cohomology groups

done in part I (in this issue) with their classical, more concrete counterparts.

In a nutshell, Arakelov motivic generalizes and simplifies a number of classical

constructions pertaining to arithmetic K- and Chow groups.

We show that the Chern class chD : BGL →
⊕

p HD{p} between the spectra

representing K-theory and Deligne cohomology constructed in Definition 3.71

induces the Beilinson regulator

Kn(X) →
⊕
p

H2p−n
D (X, p)

for any smooth scheme X over an arithmetic field (Theorem 5.7).

Next, we turn to the relation of Arakelov motivic cohomology and arith-

meticK- and Chow groups. ArithmeticK-groups were defined by Gillet-Soulé

and generalized to higher K-theory by Takeda [GS90b,GS90c,Tak05]. We de-

note these groups by K̂T
n (X). They fit into an exact sequence

Kn+1(X) → Dn+1(X)/ imdD → K̂T
n (X) → Kn(X) → 0,
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where D∗(X) is a certain complex of differential forms. The presence of

the group Dn+1(X)/ im dD, as opposed to the Deligne cohomology group

ker dD/ im dD =
⊕

p H
2p−n−1
D (X, p) implies that the groups K̂T

n (X) are not

homotopy invariant. Therefore they cannot be addressed using A1-homotopy

theory. Instead, we focus on the subgroup (see Section 6)

K̂n(X) := ker
(
ch : K̂T

n (X) → Dn(X)
)
.

and show a canonical isomorphism

(*) Ĥ−n(X) ∼= K̂n(X)

for smooth schemes X and n ≥ 0. All our comparison results concern the

groups K̂∗(X) and, in a similar vein, the subgroup ĈH∗(X) of Gillet-Soulé’s

group [GS90a] consisting of arithmetic cycles (Z, g) satisfying δZ = ∂∂g/(2πi);

cf. (6.16). The homotopy-theoretic approach taken in this paper conceptu-

ally explains, improves, and generalizes classical constructions such as the

arithmetic Riemann-Roch theorem, as far as these smaller groups are con-

cerned. The simplification stems from the fact that it is no longer necessary

to construct explicit homotopies between the complexes representing arith-

metic K-groups, say. For example, the Adams operations on K̂n(X) defined

by Feliu [Fel10] were not known to induce a decomposition

K̂∗(X)Q ∼=
⊕
p

K̂∗(X)
(p)
Q .

Using that the isomorphism (*) is compatible with Adams operations, this

statement follows from the entirely formal analogue for Ĥ∗, namely the

Arakelov-Chern class isomorphism (4.7). We conclude a canonical isomor-

phism

Ĥ2p,p(X, p) = ĈHp(X)Q.

Moreover, the pushforward on Arakelov motivic cohomology established in

Definition and Lemma 4.10 is shown to agree with the one on arithmetic

Chow groups in two cases, namely for the map SpecFp → SpecZ and for

a smooth proper map X → S, S ⊂ SpecOF for a number ring OF . The

non-formal input in the second statement is the finiteness of the Chow group

CHdimX(X) proven by Kato and Saito [KS86]. In a similar vein, we identify

the pushforward on K̂0 with the one on Ĥ0 (Theorem 6.4). In Section 7, it is

shown that the height pairing

CHm(X)×ĈHdimX−m(X) → ĈH1(S)

coincides, after tensoring with Q, with the Arakelov intersection pairing of

the motive M := M(X)(m − dimX + 1)[2(m − dimX + 1)] of any smooth
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proper scheme X/S:

HomSH(S)(S
0,M)×Hom(M, ĤB,S(1)[2]) → Ĥ2(S, 1),

(α, β) �→ β ◦ α.

Conjecturally, the L-values of schemes (or motives) over Z are given by the

determinant of this pairing [Sch13].

In the light of these results, stable homotopy theory offers a conceptual

clarification of hitherto difficult or cumbersome explicit constructions of chain

maps and homotopies representing the expected maps on arithmeticK-theory,

such as the Adams operations. The bridge between these concrete construc-

tions and the abstract path taken here is provided by a strong unicity theorem.

Recall that there is a distinguished triangle

⊕
p∈Z

HD{p}[−1] → B̂GL → BGL
chD−→

⊕
p∈Z

HD{p}

in the stable homotopy category. Among other things we prove that B̂GL

is unique, up to unique isomorphism fitting into the obvious map of distin-

guished triangles (see Theorem 6.1 for the precise statement). The proof of

this theorem takes advantage of the motivic machinery, especially the com-

putations of Riou pertaining to endomorphisms of BGL. Its only non-formal

input is a mild condition involving the K-theory and Deligne cohomology of

the base scheme. The unicity trickles down to the unstable homotopy cate-

gory. It can therefore be paraphrased as: any construction for the groups K̂∗
that is functorially representable by zig-zags of chain maps and compatible

with its non-Arakelov counterpart is necessarily unique. The above-mentioned

identification of the Adams operations and the K-theory module structure

on K̂ are consequences of this principle. In order to show that the arith-

metic Riemann-Roch theorem by Gillet, Roessler and Soulé [GRS08], when

restricted to K̂0(X) ⊂ K̂T
0 (X) (!), is a formal consequence of the motivic

framework it remains to show that their arithmetic Chern class [GS90c, cf.

Thm. 7.2.1],

K̂0(X)Q ∼=
⊕
p

K̂0(X)
(p)
Q ,

agrees with the Arakelov Chern class established in (4.7). This will be a

consequence of the above unicity result, once the arithmetic Chern class has

been extended to higher arithmetic K-theory by means of a canonical (i.e.,

functorial) zig-zag of appropriate chain complexes.
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5. Comparison of the regulator

After recalling some details of the construction of BGL in Section 5.1,

we construct a Chern class map ch : BGL →
⊕

p HD{p} that induces the

Beilinson regulator. This is done in Section 5.2. The strategy is to take

Burgos’ and Wang’s representation of the Beilinson regulator as a map of

simplicial presheaves and lift it to a map in SH(S). We finish this section by

proving that this Chern class ch and the one obtained in Definition 3.7,

chD : BGL
id∧1D−→ BGLQ ∧ HD

ch∧id−→
⊕
p∈Z

HB{p} ∧ HD
1B∧idD,∼=←−

⊕
p

HD{p},

agree. In particular, chD also induces the Beilinson regulator. This result is

certainly not surprising—after all, Beilinson’s regulator is the Chern character

map for Deligne cohomology.

Throughout, we will use the notation of part I. In particular, Ho•(S) and

SH(S) are the unstable and the stable homotopy category of smooth schemes

over some Noetherian base scheme S (Sections 2.1, 2.2).

5.1. Reminders on the object BGL representingK-theory. In order

to prove our comparison results, we need some more details concerning the

object BGL representing algebraic K-theory. This is due to Riou [Rio].

Let Grd,r be the Grassmannian whose T -points, for any T ∈ Sm/S, are

given by locally free subsheaves of Od+r
T of rank d. As usual, we regard this

(smooth projective) scheme as a presheaf on Sm/S. For d ≤ d′, r ≤ r′, the

transition map

(5.1) Grd,r → Grd′,r′

is given on the level of T -points by mappingM ⊂ Od+r
T to Od′−d

T ⊕M⊕0r
′−r ⊂

Od′+r′ . Put Gr := lim−→N2
Gr∗,∗, where the colimit is taken in PSh(Sm/S). It

is pointed by the image of Gr0,0. Write Z×Gr for the product of the constant

sheaf Z (pointed by zero) and this presheaf, and also for its image in Ho•(S).

For a regular base scheme S, there is a functorial (with respect to pullback)

isomorphism

(5.2) HomHo•(S)(S
n ∧X+,Z×Gr) ∼= Kn(X),

for any X ∈ Sm/S [MV99, Props. 3.7, 3.9, page 138].

Definition 5.1 ([Rio, I.124, IV.3]). The category SHnaive(S) is the cat-

egory of Ω-spectra (with respect to − ∧ P1) in Ho•(S): its objects are se-

quences En ∈ Ho•(S), n ∈ N, with bonding maps P1 ∧ En → En+1 inducing

isomorphisms En → Hom•(P
1, En+1).

2 Its morphisms are sequences of maps

2We will not write L or R for derived functors. For example, f∗ stands for what is often
denoted Lf∗ and similarly with right derived functors such as RHom, RΩ, etc.
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fn : En → Fn (in Ho•(S)) making the diagrams involving the bonding maps

commute.

Remark 5.2. Recall the projective Nisnevich-A1-model structure on P1-

spectra: a map f : X → Y is a weak equivalence (fibration), if all its lev-

els fn : Xn → Yn form a weak equivalence (fibration, respectively) in the

Nisnevich-A1-model structure on Δop(PSh•(Sm/S)) (whose homotopy cate-

gory is Ho•(S). The homotopy category of spectra with respect to the pro-

jective model structure is denoted SHp(S). The composition of the inclusion

of the full subcategory of Ω-spectra and the natural localization functor,

{X ∈ SHp, X is an Ω-spectrum} ⊂ SHp(S) → SH(S),

is an equivalence. This yields a natural “forgetful” functor SH(S) →
SHnaive(S).

Definition and Theorem 5.3 (Riou, [Rio, IV.46, IV.72]). The spectrum

BGLnaive ∈ SHnaive(S) consists of BGLnaive
n := Z×Gr (for each n ≥ 0) with

bonding maps

(5.3) P1 ∧ (Z×Gr)
u∗
1∧id−→ (Z×Gr) ∧ (Z×Gr)

μ−→ Z×Gr,

where u∗
1 is the map corresponding to u1 = [O(1)] − [O(0)] ∈ K0(P

1)
(5.2)
=

HomHo(P1,Z×Gr) and μ is the multiplication map, that is to say, the unique

map [Rio, III.31], inducing the natural (i.e., tensor) product on K0(−).

For S=SpecZ, there is a lift BGLZ ∈ SH(SpecZ) of BGLnaive∈ SHnaive(Z)

that is unique up to unique isomorphism. For any scheme f : S → SpecZ,

put BGLS := f∗BGLZ. The unstable representability theorem (5.2) extends

to an isomorphism

(5.4) HomSH(S)(S
n ∧ Σ∞

P1X+,BGLS) = Kn(X)

for any regular scheme S and any smooth scheme X/S. In SH(S)Q, i.e., with

rational coefficients, BGLS⊗Q decomposes as

(5.5) BGLS⊗Q =
⊕
p∈Z

HB,S(p)[2p]

such that the pieces HB,S(p)[2p] represent the graded pieces of the γ-filtration

on K-theory:

HomSH(S)(S
n ∧ Σ∞

P1X+,HB,S(p)[2p]) ∼= grpγ Kn(X)Q.

Lemma 5.4. For any d, r, the motive M(Grd,r) (cf. Section 2.2) is given

by

(5.6) M(Grd,r) =
⊕
σ

M(S)
(∑

(σi − i)
) [

2
∑

(σi − i)
]
.
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The sum runs over all Schubert symbols, i.e., sequences of integers satisfying

1 ≤ σ1 < · · · < σd ≤ d + r. For d ≤ d′, r ≤ r′, the transition maps (5.1)

M(Grd,r) → M(Grd′,r′) exhibit the former motive as a direct summand of the

latter.

Proof. Formula (5.6) is well-known [Sem, 2.4]. The second statement fol-

lows from the same technique, namely the localization triangles for motives

with compact support applied to the cell decomposition of the Grassmannian:

for any field k, a d-space V (d) in kd+r is uniquely described by a (d, d + r)-

matrix A in echelon form such that Aσi,j = δi,j and Ai,j = 0 for i > σj

for some Schubert symbol σ. The constructible subscheme of Grd,r whose

k-points are given by matrices with fixed σ is an affine space A
(σ)
S . The tran-

sition map V (d) �→ kd
′−d ⊕ V (d) ⊕ 0r

′−r corresponds to

A �→

⎡
⎣ Idd′−d 0 0

0 A 0

0 0 0r
′−r

⎤
⎦ ,

that is,

σ �→ (1, 2, . . . , d′ − d, σ1 + (d′ − d), . . . , σd + (d′ − d)) =: σ′.

In other words, the restriction of the transition maps (5.1) to the cells is the

identity map A
(σ)
S → A

(σ′)
S , which shows the second statement. �

5.2. Second construction of the regulator. In this subsection and the

next one, S is an arithmetic field and X is a smooth scheme over S.

Let K : Com≥0(Ab) → ΔopAb be the Dold-Kan equivalence on chain

complexes concentrated in degrees ≥ 0 (with deg d = −1 and shift given

by C[−1]a = Ca−1). Recall from Definitions 2.7 and 3.1 the abelian presheaf

complex D and Ds := K(τ≥0D). We have Hn(D(X)) = πn(Ds(X)) =⊕
p H

2p−n
D (X, p). We set Ds[−1] := K((τ≥0D)[−1]). Recall that for any

chain complex of abelian groups C, there is a natural map S1 ∧ K(C) =

cone(K(C) → point) → K(cone(C → 0)) = K(C[−1]), hence a map K(C) →
ΩsK(C[−1]). (Here and elsewhere, Ωs is the simplicial loop space; its P1-

analogue is denoted ΩP1 .) This map is a weak equivalence of simplicial abelian

groups.

For any pointed simplicial presheaf F ∈ Ho•(S), let ϕ(F ) be the pointed

presheaf

(5.7) ϕ(F ) : Sm/S � X �→ HomHo•(S)(X+, F ).
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According to (5.2) and Lemma 3.2, respectively,

ϕ(Z×Gr) = K0 : X �→ K0(X),(5.8)

ϕ(Ωn
sDs) = H−n

D : X �→
⊕
p

H2p−n
D (X, p), n ≥ 0.

Let P̂ (X) be the (essentially small) Waldhausen category consisting of

hermitian bundles E = (E, h) on X, i.e., a vector bundle E/X with a metric

h on E(C)/X(C) that is invariant under Fr∗∞ and smooth at infinity [BW98,

Definition 2.5]. Morphisms are given by usual morphisms of bundles, ignoring

the metric, so that P̂ (X) is equivalent to the usual category of vector bundles.

Let

(5.9) S∗ : Sm/S � X �→ Sing|S∗P̂ (X)|

be the presheaf (pointed by the zero bundle) whose sections are given by the

simplicial set of singular chains in the topological realization of the Wald-

hausen S-construction of P̂ (X). Its homotopy presheaves are

(5.10)

HomHosect,•(S)(S
n∧X+, S∗) = πnS∗(X) = πn−1ΩsS∗(X) ∼= Kn−1(X), n ≥ 1.

Here, Hosect,• denotes the homotopy category of ΔopPSh•(Sm/S) (simpli-

cial pointed presheaves), endowed with the section-wise model structure. K-

theory (of regular schemes) is homotopy invariant and satisfies Nisnevich de-

scent [TT90, Thm. 10.8]. Therefore, as is well-known, the left hand term

agrees with HomHo•(S)(S
n ∧ X+, S∗). That is, there is an isomorphism of

pointed presheaves

(5.11) ϕ(ΩsS∗) ∼= K0.

According to [Rio, III.61], there is a unique isomorphism in Ho•(S),

(5.12) τ : Z×Gr → ΩsS∗,

making the obvious triangle involving (5.11) and (5.8) commute.

The proof of our comparison of the regulator uses the following result due

to Burgos and Wang [BW98, Prop. 3.11, Theorem 5.2., Prop. 6.13]:

Proposition 5.5. There is a map in Δop(PSh•(Sm/S)),

chS : S∗ → Ds[−1],

such that the induced map

πn chS : Kn−1(X) →
⊕
p∈Z

H
2p−(n−1)
D (X, p)

agrees with the Beilinson regulator for all n ≥ 1.
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By (5.12), we get a map in Ho•(S):

(5.13) ch : Z×Gr
τ,∼=−→ ΩsS∗

Ωs chS−→ Ωs(Ds[−1])
∼=−→ Ds.

The induced map

(5.14)

Kn(X)
(5.4)∼= HomHo•(S

n ∧X+,Z×Gr) → HomHo•(S
n ∧X+,Ds)

(3.3)∼=
⊕
p

H2p−n
D (X, p)

agrees with the Beilinson regulator. In order to lift the map ch to a map in

SH(S), we first check the compatibility with the P1-spectrum structures to

get a map in SHnaive(S). This means that the diagram involving the bonding

maps only has to commute up to (A1-)homotopy. Then, we apply an argument

of Riou to show that this map actually lifts uniquely to one in SH(S).

Recall the Deligne cohomology (P1-)spectrum HD from Lemma 3.3. Its

p-th level is given by Ds(p), for any p ≥ 0.

Theorem 5.6.

(i) In SHnaive(S), there is a unique map

chnaive : BGLnaive
S →

⊕
p∈Z

HD(p)[2p] =:
⊕
p

HD{p}

that is given by ch : Z×Gr
(5.13)−→ Ds in each level.

(ii) In SH(S), there is a unique map

ch : BGLS →
⊕
p∈Z

HD(p)[2p]

that maps to chnaive under the forgetful functor SH(S) → SHnaive(S)

(Remark 5.2).

(iii) There is a unique map

ρ : HB,S → HD

in SH(S)Q such that ch⊗Q =
⊕

p∈Z ρ(p)[2p] : BGLQ → ⊕HD(p)[2p],

under the identification (5.5).

Proof. By Lemma 5.4, the transition maps (5.1) defining the infinite Grass-

mannian induce split monomorphisms M(Grd,r) → M(Grd′,r′) of motives and

therefore (e.g. using Theorem 3.6) split surjections (for any n ≥ 0, d ≤ d′,

r ≤ r′)

(5.15)

HomHo(S)(Grd′,r′ ,Ω
n
sDs) → HomHo(S)(Grd,r,Ω

n
sDs)

‖ ‖
H−n

D (Grd′,r′) H−n
D (Grd,r).
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A similar surjectivity statement holds for the map of Deligne cohomology

groups induced by transition maps defining the product Gr×Gr, i.e.,

Grd1,r1 ×Grd2,r2 → Grd′
1,r

′
1
×Grd′

2,r
′
2
.

(i) the unicity of chnaive is obvious. Its existence amounts to the commu-

tativity of the following diagram in Ho•(S):

(5.16) P1 ∧ Z×Gr

id∧ch

��

u∗
1∧id

�� (Z×Gr) ∧ (Z×Gr)
μ

��

ch∧ ch

��

Z×Gr

ch

��

P1 ∧Ds
c∗∧id �� Ds ∧Ds

μ
�� Ds.

The top and bottom lines are the bonding maps of BGLnaive (cf. (5.3)) and⊕
p HD{p} (cf. Definition and Lemma 3.3), respectively. The map c∗ corre-

sponds to the first Chern class c1(OP1(1)) ∈ H2
D(P

1
S , 1). To see the commuta-

tivity of the right half, we use that the functor ϕ (5.7) induces an isomorphism

HomHo•(S)((Z×Gr)∧2,Ds) = HomPSh•(Sm/S)(K0(−) ∧K0,H
0
D).

This identification is shown exactly as [Rio, III.31], which treats Z×Gr in-

stead of Ds. The point is a surjectivity argument in comparing cohomology

groups of products of different Grassmannianns, which is applicable to Deligne

cohomology by the remark above. By construction of the multiplication map

on Z×Gr, applying ϕ to the right half of (5.16) yields the diagram

K0 ∧K0

μK0 ��

ch∧ ch
��

K0

ch
��

H0
D ∧H0

D

μD
�� H0

D.

Here μK0
is the usual (tensor) product onK0 and μD is the classical product on

Deligne cohomology [EV88]. The Beilinson regulator is multiplicative [Sch88,

Cor., p. 28], so this diagram commutes.

For the commutativity of the left half, let im,n : Pm → Pn be the inclusion

[x0 : . . . : xm] �→ [x0 : . . . : xm : 0 : . . . : 0], for m ≤ n, and im,∞ :=

colimnim,n : Pm → P∞ := colimnPn. The map u∗
1 factors as

P1 i1,∞−→ P∞ u∗
∞−→ Z×Gr

where u∗
∞ ∈ HomHo•(S)(P

∞,Z×Gr) is induced by the compatible system

un = [OPn(1)] − [OPn ] ∈ K0(Pn) simply because i∗1,nOPn(1) = OP1(1). Simi-

larly, c∗ = c1(O(1)) is given by

c∗ : P1 i1,∞−→ P∞ u∗
∞−→ Z×Gr

ch−→ Ds,
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because ch(O(1))− ch(O) = exp(c1(O(1)))−1 which on P1 equals c1(O(1)) ∈
H2

D(P
∞, 1). Then the commutativity of the diagram in question is obvious.

(ii) For each n ≥ 0 and m = 0,−1, put V m
n := HomPSh(Sm/S,Ab)(K0,H

m
D ).

These groups form a projective system with transition maps

V m
n+1 � (fn : K0 → Hm

D ) �→ (ΩP1fn : ΩP1K0 → ΩP1Hm
D ) ∈ V m

n ,

where ΩP1(F ) is the presheaf Sm/S � U �→ ker(F (P1
U )

∞∗
→ F (U)). Indeed,

the projective bundle formula (for P1) implies an isomorphism of presheaves

ΩP1K0
∼= K0 and likewise with Hm

D .

The composition of functors

SH → SHnaive n−→ Ho•
ϕ−→ PSh(Sm/S)

actually takes values in PSh(Sm/S,Ab). Here, n indicates taking the n-th

level of a spectrum. By construction, BGL gets mapped to K0, and HD gets

mapped to the presheaf H0
D =

⊕
p H

2p
D (−, p) for each n ≥ 0. This gives rise

to the following map (cf. [Rio, IV.11]):

HomSH(BGL,
⊕
p

HD{p}) → HomSHnaive(S)(BGLnaive,
⊕
p

HD{p}) ∼= lim←−
n

V 0
n .

This map is part of the following Milnor-type short exact sequence [Rio, IV.48,

III.26; see also IV.8] (it is applicable because of the surjectivity of (5.15) for

n = 1 and n = 2):

(5.17) 0 → R1 lim←−V −1
n → HomSH(BGL,

⊕
p

HD{p}) → lim←−
n

V 0
n → 0.

The map chnaive thus corresponds to a unique element in the right-most term
of (5.17). The natural map

V −1
n = HomPSh(Ab)(K0,H

−1
D ) → lim←−

e

⊕
p

H2p−1
D (Pe

S , p)

∼=
⊕
p∈Z

p⊕
j=0

H2p−2j−1
D (S, p− j)

f �→ (f(OPe(1)))e

is an isomorphism. Indeed, the proof of the analogous statement for motivic

cohomology instead of Deligne cohomology [Rio, V.18] (essentially a splitting

argument) only uses the calculation of motivic cohomology of Pe. Thus it

goes through by the projective bundle formula for Deligne cohomology.

Via this identification, the transition maps ΩP1 : V −1
n+1 → V −1

n are the

direct sum over p ∈ Z of the maps

p⊕
j=0

H2p−2j−1
D (S, p− j) →

p−1⊕
j=0

H
2(p−1)−2j−1
D (S, (p− 1)− j),
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which are the multiplication by j on the j-th summand at the left. Again,

this is analogous to [Rio, V.24]. In particular ΩP1 is onto, since Deligne

cohomology groups are divisible. Therefore R1 lim←−V −1
n = 0, so (ii) is shown.

(iii) As in [Rio, V.36], one sees that ch⊗Q factors over the projections

BGLQ → HB and
⊕

p∈Z HD(p)[2p] → HD. �
5.3. Comparison.

Theorem 5.7. The regulator maps ch, ρ constructed in Theorem 5.6 and

the regulator maps chD, ρD obtained in Definition 3.7 agree:

chD = ch ∈ HomSH(S)(BGL,
⊕
p

HD{p}),

ρD = ρ ∈ HomSH(S)Q(HB,HD).

In particular, chD also induces the Beilinson regulator Kn(X) →⊕
p H

2p−n
D (X, p) for any X ∈ Sm/S, n ≥ 0.

Proof. The map ch is a map of ring spectra (i.e., monoid objects in SH(S)):

the multiplicativity, i.e., ch ◦μBGL = μD ◦ (ch∧ ch) follows from the right half

of the diagram (5.16). The unitality boils down to ch(O) = 1 ∈ H0
D(S, 0). We

define a BGL-module structure on D :=
⊕

p∈Z HD{p} in the usual manner:

BGL ∧ D ch∧id−→ D ∧D μ−→ D.

It is indeed a BGL-module, as one sees using that ch is a ring morphism. By

the unicity of the BGL-algebra structure on D (Theorem 3.6), this algebra

structure agrees with the one established in Theorem 3.6. This implies ch =

chD. The proof for ρ = ρD is similar, replacing BGL with HB throughout. �

6. Comparison with arithmetic K-theory

and arithmetic Chow groups

In this section, we show that the groups represented by B̂GL coincide with a

certain subgroup of arithmeticK-theory as defined by Gillet-Soulé and Takeda

for smooth schemes over appropriate bases (Theorem 6.1). This isomorphism

is compatible with the Adams operations on both sides and with the module

structure over K-theory (Corollary 6.2, Theorem 6.3). We also establish the

compatibility of the comparison isomorphism with the pushforward in two

cases (Theorem 6.4).

We consider the following situation: X → S → B, where B is a fixed

arithmetic ring (Definition 2.6), S is a regular scheme (of finite type) over

B (including the important case S = B), and X ∈ Sm/S. Let η : Bη :=

B×ZQ → B be the “generic fiber”. For any datum ? related to Deligne
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cohomology, we write ? := η∗? for simplicity of notation. That is, Ds(X) :=

η∗Ds(X) = Ds(X×BBη), HD := η∗HD ∈ SH(S), etc.

For a proper arithmetic variety X (i.e., X is regular and flat over an arith-

metic ring B), Gillet and Soulé have defined the arithmetic K-group as the

free abelian group generated by pairs (E,α), where E/X is a hermitian vector

bundle and α ∈ D0(X)/ im dD, modulo the relation

(E
′
, α′) + (E

′′
, α′′) = (E,α′ + α′′ + c̃h(E))

for any extension

E : 0 → E
′ → E → E

′′ → 0

of hermitian bundles. Here c̃h(E) is a secondary Chern class of the extension

(see [GS90c, Section 6] for details). We denote this group by K̂T
0 (X). The

superscript T stands for Takeda, who generalized this to higher n [Tak05,

p. 621].3 These higher arithmetic K-groups K̂T
n (X) fit into a commuta-

tive diagram with exact rows and columns, where K̂n(X) := ker chT and
BD

n (X) := im dD : Dn+1(X) → Dn(X):
(6.1)

Kn+1
��
⊕

p H
2p−n−1
D (p)
��

��

�� K̂n��

��

�� Kn
ch ��

⊕
p H

2p−n
D (p)

Kn+1
�� Dn+1(X)/ im(dD)

dD
����

�� K̂T
n

chT

����

�� Kn
�� 0

BD
n BD

n (X).

The full arithmetic K-groups K̂T
∗ are not accessible to homotopy theory since

they fail to be A1-invariant. Moreover, due to the presence of Dn+1/ im dD the

groups are usually very large. Therefore, we focus on the subgroups K̂∗ ⊂ K̂T
∗

and refer to them as arithmetic K-theory.

By Theorem 5.7, the top exact sequence looks exactly like the one in The-

orem 4.5. In order to show that K̂n(X) and Ĥ−n(X) are isomorphic, we use

that there is a natural isomorphism (functorial with respect to pullback),

(6.2) K̂n(X) ∼= πn+1(hofibΔopSets• S∗(X)
chS−→ Ds[−1](X)), n ≥ 0,

of the arithmetic K-group with the homotopy fiber in pointed simplicial sets

(endowed with its standard model structure) [Tak05, Cor. 4.9]. We write

Ŝ := hofibΔopPSh•(Sm/S)(S∗ → Ds[−1]),

3 Gillet and Soulé use a slightly different normalization of the Chern class which differs

from the one used by Burgos-Wang, Takeda (and this paper) by a factor of 2(2πi)n for
appropriate n. See [GS90c] for details.
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for the homotopy fiber with respect to the section-wise model structure, so

that πn+1

(
Ŝ(X)

)
= K̂n(X).

Recall from Section 4.1 the object B̂GL. Its key property is the existence

of a distinguished triangle (in SH(S)):

(6.3)
⊕
p

HD{p}[−1] → B̂GL → BGL
ch→

⊕
p

HD{p}.

The cohomology groups represented by this object are denoted by Ĥ∗(−); cf.

Definition 4.4.

The content of the following theorems and corollary (6.1, 6.2, 6.3, 6.4) can

be paraphrased as follows: given a commutative diagram in some triangulated

category,

B[−1]

b[−1]

��

�� E

e

��

�� A

a

��

�� B

b

��

B′[−1] �� E′ �� A′ �� B′,

the map e (whose existence is granted by the axioms of a triangulated cate-

gory) is in general not unique. The unicity of e is guaranteed if the map

(6.4) Hom(E,A′[−1]) → Hom(E,B′[−1])

is onto. In our situation, we are aiming at a canonical comparison between,

say, the groups Ĥ∗ and K̂∗. Both theories arise from distinguished triangles

where two of the three vertices are the same, namely the one responsible for

K-theory and the one for Deligne cohomology. Moreover, the map between

them considered up to homotopy, i.e., in the triangulated category SH, is the

Chern class that is independent of choices—as opposed to the Chern form,

which does depend on the choice of a hermitian metric on the vector bundle

in question. As we shall see, the non-formal surjectivity of (6.4) is assured

by conditions (a) and (b) of Theorem 6.1 (or condition (c) if one neglects

torsion). Luckily, it only consists of an injectivity condition for the regulator

on the base scheme S, not on all schemes X ∈ Sm/S. This is one of the

places where working with the objects representing the cohomology theories

we are interested in is much more powerful than working with the individual

cohomology groups.

Theorem 6.1. Let S be a regular scheme over an arithmetic ring. We

suppose that

(a) ch : K0(S) → H0
D(S) =

⊕
p H

2p
D (S, p) is injective, and

(b) K1(S) is the direct sum of a finite and a divisible group.
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For example, these conditions are satisfied for S = B = Z, R, or C. Then the

following hold:

(i) Given any maps s, d in Ho•(S) such that the right square commutes,

there is a unique ŝ ∈ EndHo(S)(Ŝ) making the diagram commute:

Ds = ΩsDs[−1]

Ωsd

��

�� Ŝ

ŝ
��

�� S∗
chS ��

s

��

Ds[−1]

d

��

Ds = ΩsDs[−1] �� Ŝ �� S∗
chS �� Ds[−1].

(ii) Likewise, given any b and d making the right half commute in SH(S),

there is a unique b̂ ∈ EndSH(S)(B̂GL) making everything commute:

⊕
p HD{p}[−1]

d[−1]

��

�� B̂GL

̂b
��

�� BGL
ch ��

b

��

⊕
p HD{p}

d

��⊕
p HD{p}[−1] �� B̂GL �� BGL

ch ��
⊕

p HD{p}.

(iii) The aforementioned unicity results give rise to a canonical isomorphism,

functorial with respect to pullback,

(6.5) K̂n(X) ∼= Ĥ−n(X/S),

for any X ∈ Sm/S, n ≥ 0. (The definition of K̂n(X) in [Tak05] is only

done for X/B proper, but can be generalized to non-proper varieties using

differential forms with logarithmic poles at infinity, as in Definition 2.7.)

Instead of (a) and (b), let us suppose that

(c) ch : K0(S)Q → H0
D(S) =

⊕
p H

2p
D (S, p) is injective. For example, this

applies to arithmetic fields and open subschemes of SpecOF for a number

ring OF .

Then there is a canonical isomorphism

(6.6) K̂n(X)Q ∼= Ĥ−n(X/S)Q.
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Proof of (ii). Let us write (−,−) := HomSH(S)(−,−) and R :=⊕
p∈Z HD{p}. Then we have exact sequences

(6.7)

(R,R[−1])
α ��

��

(BGL, R[−1])

β
��

(R, B̂GL) �� (BGL, B̂GL) ��

��

(B̂GL, B̂GL)
δ �� (R[−1], B̂GL)

(BGL,BGL)

γ

��

(BGL, R).

We prove the injectivity of δ by showing that both α and β are surjec-

tive. For any Ω-spectrum E ∈ SH(S) whose levels En are H-groups such

that the transition maps (5.1) induce surjections HomHo(Grd,r,Ω
m
s En) →

HomHo(Grd′,r′ ,Ω
m
s En) for m = 1, 2, n ≥ 0, there is an exact sequence

0 → R1 lim←−E1
Ω → HomSH(BGL, E) → lim←−E0

Ω → 0.

Here, for any group A, AΩ is the projective system

AΩ : . . . A[[t]] → A[[t]] → A[[t]] → . . . → A[[t]],

with transition maps f �→ (1 + t)df/dt and Er := HomSH(Sr, E) for r = 0, 1
[Rio, IV.48, 49]. This applies to E = BGL and E = R; cf. (5.15):

0 �� R1 lim←−(K1(S)Ω)

��

�� End(BGL)

γ

��

�� lim←−(K0(S)Ω)

��

�� 0

0 ��
⊕

p R1 lim←−(H−1
D (S)Ω) �� Hom(BGL, R) ��

⊕
p lim←−(H0

D(S)Ω) �� 0.

The left hand upper term is 0 by assumption (b) and the vanishing of

R1 lim←−AΩ for a finite or a divisible group A [Rio, IV.40, IV.58]. The right

hand vertical map lim←− ch is injective by assumption (a) and the left-exactness

of lim←−. Hence γ is injective, so β is onto.

The surjectivity of α does not make use of the assumptions (a), (b). Indeed,

Hom(BGL, R[−1]) =
∏
q∈Z

Hom(HB{q}, R[−1])
3.6(ii)
=

∏
q

H−1
D (S).

Given some x ∈ H−1
D (S), pick any representative ξ ∈ ker(D1(S) → D0(S))

and define y : HD{q} → R to be the cup product with ξ. Then α(y) = x.
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(i) We need to establish the injectivity of the map in the first row:

(6.8)

EndHo•(S)(Ŝ) �� HomHo•(S)(ΩsDs[−1], Ŝ)

EndHo•(S)(Ω
∞
P1B̂GL) �� HomHo•(S)(Ω

∞
P1HD[−1],Ω∞

P1B̂GL)

HomSH(S)(Σ
∞
P1Ω∞

P1B̂GL, B̂GL)

Σ∞
P1

�Ω∞
P1

��

�� HomSH(S)(Σ
∞
P1Ω∞

P1HD[−1], B̂GL)

��

HomSH(S)(B̂GL, B̂GL) ��
δ �� HomSH(S)(HD[−1], B̂GL).

The counit map Σ∞
P1Ω∞

P1 → id is an isomorphism when applied to BGL and

HD (and thus HD[−1]), since these two spectra are Ω-spectra. Therefore, the

same is true for B̂GL. We are done by (ii).

(iii) We obtain the sought isomorphism as the following composition:

Ĥ−n(X/S) := HomSH(S)(Σ
∞
P1Sn ∧X+, hofib(BGL

id∧1HD−→ BGL ∧HD))

= HomSH(S)(Σ
∞
P1Sn ∧X+, hofib(BGL

ch−→
⊕
p

HD{p}))(6.9)

= HomHo(S)(S
n ∧X+, hofib(Z×Gr

ch0−→ Ds))(6.10)

= HomHo(S)(S
n ∧X+, hofib(ΩsS∗

chS−→ Ds))(6.11)

= HomHo(S)(S
n ∧X+, hofib(ΩsS∗

chS−→ Ds))

= HomHosect,•(S)(S
n+1 ∧X+, hofib(S∗ → Ds[−1]))(6.12)

= πn+1

(
hofibΔopSets•(S∗(X)

chS→ Ds[−1](X))
)

(6.2)∼= K̂n(X).

The canonical isomorphism (6.9) follows from (ii): we can pick representa-

tives of BGL and of ch : BGL → ⊕HD{p} (Theorem 5.6(ii)) in the underlying

model category Spt. We will denote them by the same symbols. We get a

diagram of maps in Spt := SptP
1

(ΔopPSh•(Sm/S)):
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hofib(id ∧ 1HD
) ��

α

��

BGL
id∧1HD �� BGL ∧ HD

ch

��

hofib(ch) �� BGL
ch ��

⊕
p HD{p}.

The Chern character for motivic cohomology and Theorem 3.6(iii) induce an

isomorphism ch : BGL ∧ HD
∼=

⊕
p HD{p} in SH(S). As SH(S) is triangu-

lated, we get some (a priori non-unique) isomorphism α in SH(S). By (ii),

however, it is unique.

Similarly, the isomorphism (6.11) follows from (i): still using the above lift

of ch to Spt, ch0 := Ω∞
P1 ch is a map of simplicial presheaves. The isomorphism

τ : Z×Gr ∼= ΩsS∗ (5.12) can be lifted to a map τ̃ of presheaves

hofib ch0 ��

��

Z×Gr
ch0 ��

τ̃

��

Ds

hofib chS �� ΩsS∗
chS �� Ds.

The right hand square may not commute in ΔopPSh(Sm/S), but it does in

Ho•(S). By (i), the resulting isomorphism (in Ho•(S)) between

hofibΔopPSh(ch0) and hofibΔopPSh(chS) is independent of the choice of τ̃ and

ch0.

In order to explain the canonical isomorphisms (6.10), (6.12), recall the

following generalities on model categories: let

F : C � D : G

be a Quillen adjunction and let a diagram δ : d1
f−→ d2 ← ∗ in D be given.

The homotopy fiber of f is a fibrant replacement of the homotopy pullback of

δ. If C and D are right proper and d1 and d2 are fibrant, then the homotopy

pullback agrees with the homotopy limit and holimG(δ) is weakly equivalent

to G holim(δ). Finally, replacing any object in δ by a fibrant replacement

yields a weakly equivalent homotopy fiber [Hir03, 19.5.3, 19.4.5, 13.3.4]. Thus

(6.13) HomHo(D)(F (c), hofib f) = HomHo(C)(c, hofibG(f)).

We apply this to the Quillen adjunctions

Δop(PSh•(Sm/X))

id

�
id

Δop(PSh•(Sm/X))

Ω∞
P1

�
Σ∞

P1

SptP
1

(PSh•(Sm/X)).

The leftmost category is endowed with the section-wise model structure, then

the Nisnevich-A1-local one, and the stable model structure at the right. These
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model structures are proper [GJ99, II.9.6], [MV99, 3.2, p. 86], [Jar00, 4.15].

The simplicial presheaf Ds is fibrant with respect to the section-wise model

structure, since it is a presheaf of simplicial abelian groups. Moreover, it is

A1-invariant and has Nisnevich descent by Theorem 2.8(vi). Therefore, it is

fibrant with respect to the Nisnevich-A1-local model structure. Moreover, HD

is an Ω-spectrum by Lemma 3.5, so it is a fibrant spectrum (any level-fibrant

Ω-spectrum is stably fibrant [Jar00, 2.7]). For (6.10), we may pick a fibrant

representative of BGL (still denoted BGL) such that Ω∞
P1BGL =: V is weakly

equivalent to Z×Gr. Again using (i), the homotopy fibers of Ω∞
P1(ch) : V →

Ds and of ch0 : Z×Gr → Ds are canonically weakly equivalent. Finally, the

S-construction presheaf S∗ (cf. (5.9)) is A1-invariant (since K∗(X) ∼= K ′
∗(X)

for all X ∈ Sm/S by the regularity of S) and Nisnevich local for all regular

schemes [TT90, Thm. 10.8] and consists of Kan simplicial sets by definition.

Hence S∗ is a fibrant simplicial presheaf in the A1-model structure. Therefore,

(6.10), (6.12) are fibrant, so these isomorphisms follow from (6.13).

The statement with rational coefficients is similar: one replaces S∗, which is

given by simplicial chains in the topological realization of the S-construction,

by its version with rational coefficients. Likewise, one replaces BGL by its

Q-localization (using the additive structure of SH(S)) BGLQ. Then condi-

tion (a) gets replaced by (c) and (b) becomes unnecessary, since the groups

R1 lim←−AΩ encountered above vanish for a divisible group A. �
6.1. Adams operations. Theorem 6.1 can colloquially be summarized

by saying that any construction on K̂∗, etc., that is both compatible with the

classical constructions on K-theory and Deligne cohomology and canonical

enough to be lifted to the category SH(S) (or Ho(S)) is unique. We now

use this to study Adams operations on arithmetic K-theory. In Section 6.2

below, this principle is used to identify the BGL-module structure on B̂GL.

The arithmetic K-groups are endowed with Adams operations

(6.14) Ψk
̂K
: K̂n(X)Q → K̂n(X)Q.

This is due to Gillet and Soulé [GS90c, Section 7] for n = 0 and to Feliu in

general [Fel10, Theorem 4.3]. Writing

K̂n(X)
(p)
Q := {x ∈ K̂n(X)Q,Ψ

k
̂K
(x) = kp · x for all k ≥ 1}

for the Adams eigenspaces, the obvious question

(6.15)
⊕
p≥0

K̂n(X)
(p)
Q

?
= K̂n(X)Q

was answered positively for n = 0 in [GS90c], but could not be solved for

n > 0 by Feliu since the management of explicit homotopies between the

chain maps representing the Adams operations becomes increasingly difficult
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for higherK-theory. In this section, we show that the above Adams operations

agree with the natural ones on Ĥ∗(X)Q and thereby settle the question (6.15)

affirmatively.

Feliu establishes a commutative diagram of presheaves of abelian groups:

C1 := NĈ∗
ch1 ��

Ψk

��

D∗

Ψk
D

��

C2 := Z̃Ĉ
˜P
∗

ch2 �� D∗.

The Adams operation Ψk
D is the canonical one on a graded vector space:

Ψk
D : D∗ :=

⊕
p

D∗(p) →
⊕
p

D∗(p),Ψ
k =

⊕
p

(kp · id).

The complexes Ci at the left hand side are certain complexes of abelian

presheaves defined in [Fel10]. They come with maps ΩsS∗ → K(Ci) that

induce isomorphisms K∗⊗Q = π∗(ΩsS∗)⊗Q → H∗(Ci)⊗Q, i = 1, 2. By

means of these isomorphisms, Ψk corresponds to the usual Adams operation

onK-theory (tensored with Q). Moreover, both maps chi induce the Beilinson

regulator from K-theory to Deligne cohomology.

Recall also the definition of the arithmetic Chow group from [GS90a, Sec-

tion 3.3] in the proper case and [Bur97, Section 7] in general. In a nutshell,

the group ĈH
p

GS(X) is generated by arithmetic cycles (Z, g), where Z ⊂ X is

a cycle of codimension p and g is a Green current for Z, i.e., a real current

satisfying Fr∗∞ g = (−1)p−1g such that ω(Z, g) := − 1
2πi∂∂g+δZ is the current

associated to a C∞ differential form (and therefore an element of D0(p)(X)).

Here δZ is the Dirac current of Z(C) ⊂ X(C). In analogy to the relation of

K̂T
0 (X) vs. K̂0(X), we put

(6.16) ĈHp(X) := ker(ω : ĈH
p

GS(X) → D0(p)(X)).4

Corollary 6.2. Under the assumption of Theorem 6.1(c), the isomorphism

K̂n(X)Q ∼= Ĥ−n(X)Q is compatible with the Adams operations Ψk
̂K
on the left

and, using the Arakelov-Chern class established in Theorem 4.2, the canon-

ical ones on the graded vector space on Ĥ−n(X)Q ∼=
⊕

p∈Z Ĥ
2p−n(X, p). In

particular, there are canonical isomorphisms

K̂n(X)
(p)
Q = Ĥ2p−n(X, p),(6.17)

ĈHp(X)Q = K̂0(X)
(p)
Q = Ĥ2p(X, p),(6.18) ⊕

p∈Z

K̂n(X)
(p)
Q = K̂n(X)Q.(6.19)

4The group ĈHp(X) is denoted ĈHp(X)0 in [GS90a].
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Proof. We write Ωs,QA := lim−→C∗(Ω|A|) for any pointed connected simpli-

cial set A. Here, | − | : ΔopSets � Top : C∗ is the usual Quillen adjunction,

Ω is the (topological) loop space, the direct limit is indexed by Z>0 ordered

by divisibility, and the transition maps Ω|A| → Ω|A| are the maps that corre-

spond to the multiplication in π1(A). Then πnΩs,Q(A) = (πnΩs(A))⊗ZQ

for all n ≥ 0. The construction is functorial, so it applies to the sim-

plicial presheaf S∗ and gives us a Q-rational variant denoted S∗,Q. The

map Ψk : C1 → C2 yields an endomorphism Ψk
S ∈ EndHo(S)(S∗,Q). More-

over, the maps chi, i = 1, 2, mentioned above factor over chi,Q : S∗,Q →
Ds[−1], and the obvious diagram ch1, ch2, Ψk

D and Ψk
S commutes up to

simplicial homotopy, i.e., in Hosect,•(S), a fortiori in Ho(S). By Theo-

rem 6.1(i), therefore, we obtain a unique map Ψk
̂S
∈ EndHo(S)(Ŝ∗,Q), where

Ŝ∗,Q := hofib ch1 : S∗,Q → Ds[−1]. By construction, both Ψk
̂S
and the canon-

ical Adams structure maps Ψk
D ∈ EndHo(S)(ΩsDs[−1]) map to the same ele-

ment in HomHo(S)(ΩsDs[−1], (Ŝ∗)Q). On the other hand, looking at

B̂GLQ
��

Ψk

B̂GL
��

BGLQ
��

Ψk
BGL

��

BGLQ ∧ HD

Ψk
BGL∧id

��

ch

∼=
�� R :=

⊕
p HD{p}

Ψk
D

��

B̂GLQ
�� BGLQ

�� BGLQ ∧ HD
ch

∼=
�� R

there is a unique Ψk

B̂GL
∈ EndSH(S)Q(B̂GLQ)

δ� Hom(R[−1], B̂GLQ) that

maps to the image of the canonical Adams operation on the graded object

R[−1]. Using EndSH(R[−1]) = EndHo(ΩDs[−1]) (compare the reasoning af-

ter (6.8)) we see that the Adams operations on B̂GLQ and on Ŝ∗,Q agree,

which yields the compatibility statement using the definition of the compar-

ison isomorphism (6.6). The isomorphism (6.17) is then clear, as is (6.19),

using (4.7). (6.18) is a restatement of [GS90c, Theorem 7.3.4]. �
6.2. The action of K-theory on K̂-theory. From Theorem 4.2(ii) re-

call that B̂GL is a BGL-module, i.e., there is a natural BGL-action

μ : BGL ∧ B̂GL → B̂GL.

For any smooth scheme f : X/S, this induces a map called the canoncial

BGL-action on Ĥ-groups:

Hn(X)×Ĥm(X) = HomSH(S)(X+,BGL[n])×Hom(X+, B̂GL[m])

→ Hom(X+ ∧X+,BGL ∧ B̂GL[n+m])

Δ∗◦μ∗−→ Hom(X+, B̂GL[n+m]) = Ĥn+m(X).

Here Δ : X+ → X+ ∧X+ = (X×X)+ is the diagonal map.
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Theorem 6.3. Let S be a regular base scheme satisfying Condition (c) of

Theorem 6.1. Then, at least up to torsion, the canonical comparison isomor-

phism K̂n(X) ∼= Ĥ−n(X) is compatible with the canonical BGL-action on the

right hand side and the K∗-action

K∗(X)×K̂∗(X) → K̂∗(X)

induced by the product structure on K̂T
∗ (X) established by Gillet and Soulé

(for K̂0) [GS90c, Theorem 7.3.2] and Takeda (for higher K̂T -theory) [Tak05,

Section 6] on the left hand side.

Similarly, the pairing

CHn(X)×ĈHm(X) → ĈHn+m(X)

induced by the ring structure on ĈH
∗
GS(X) agrees, after tensoring with Q, with

the canonical pairing

H2n(X,n)×Ĥ2m(X,m) → Ĥ2(n+m)(X,n+m).

Proof. Before proving the theorem proper, we sketch the definition of the

product on K̂T
∗ : instead of the S-construction, Takeda uses the Gillet-Grayson

G-construction G∗(−) := G∗(P̂ (−)) of the exact category of hermitian vec-

tor bundles on a scheme (see p. 761). There is a natural weak equivalence

G∗(T ) → ΩsS∗(T ). In particular, πn(G∗(T )) = Kn(T ) for any scheme T and

n ≥ 0. This gives rise to a canonical isomorphism

K̂n(X) = πn hofibΔop(Sets)(G∗(X)
chG−→ Ds(X))

(cf. [Tak05, Theorem 6.2]). The advantage of the G-construction is the exis-

tence of a bisimplicial version G
(2)
∗ of G-theory together with a weak equiva-

lence R : G∗ → G
(2)
∗ and a map μG : G∗(X) ∧G∗(X) → G

(2)
∗ (X), so that the

induced map πn(G∗(X))×πm(G∗(X)) → πn+m(G∗(X)) is the usual product

on K-theory. Moreover, chG factors over R.

Consider the following diagram, where μD : Ds ∧ Ds → Ds is the product

(cf. Section 3) and the terms in the second column denote the homotopy fibers

(with respect to the section-wise model structure) of the respective right-most
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horizontal maps:

Ωs(G ∧Ds) ��

ΩsμD◦chG

��

G ∧ Ĝ ��

��

G ∧G
id∧chG��

μG

��

G ∧Ds

μD◦chG

��

ΩsDs
�� Ĝ(2) �� G(2) �� Ds

ΩsDs
�� Ĝ ��

��

G

R

��

chG �� Ds.

The lower right square is commutative (on the nose) according to [Tak05].

The upper right square is commutative up to (a certain) homotopy [Tak05,

Theorem 5.2], so there is some dotted map such that the left-upper square

commutes up to homotopy. This yields a map φ : G ∧ Ĝ → Ĝ in Ho•(S)

fitting into the following diagram (in Ho(S)):

(6.20) G ∧ ΩsDs
��

μD◦chG

��

G ∧ Ĝ ��

φ
��

G ∧G ��

μG

��

G ∧Ds

μD◦chG

��

ΩsDs
�� Ĝ �� G �� Ds.

The K∗-action on K̂∗ is induced by φ. Thus, to prove the theorem, it is

sufficient to show that the diagram

Ω∞
P1(BGL ∧ B̂GL)

∼= ��

Ω∞
P1

μ

��

G ∧ Ĝ

φ

��

Ω∞
P1(B̂GL)

∼= �� Ĝ

is commutative in Ho(S). Here the horizontal isomorphisms are the ones

from Theorem 6.1. For this, it is sufficient to show that the dotted map

in (6.20) is unique (in Ho•(S)). The latter statement looks very much like

Theorem 6.1(i). Indeed, it can be shown in the same manner, as we now

sketch: again, one first does the stable analogue, namely the unicity of a

map BGL ∧ B̂GL → B̂GL in SH(S) making the diagram analogous to (6.20)

commute. To do so, the sequences in (6.7) are altered by replacing Hom(?, ∗)
by Hom(BGL∧?, ∗) everywhere. For any E ∈ DMB(S), we have

HomSH(S)Q(BGL∧?, E) =
∏
p∈Z

HomSH(S)Q(HB{p}∧?, E)

=
∏
p

HomSH(S)Q(?{p}, E)
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since DMB(S) ⊂ SH(S)Q is a full subcategory. This applies to E = HD

and E = BGLQ =
⊕

p HB{p}. Therefore, both the surjectivity of α and the

injectivity of γ in (6.7) carries over to the situation at hand.5 Then, the

unstable unicity statement mentioned above is deduced from the stable one.

The statement for the arithmetic Chow groups follows from this: ĈH∗(X)Q
is a direct factor of K̂0(X)Q in a way that is compatible with the action of the

direct factor CH∗(X)Q ⊂ K0(X)Q, by the multiplicativity of the arithmetic

Chern class K̂T
0 (X)Q ∼=

⊕
p ĈH

p

GS(X)Q [GS90c, Theorem 7.3.2(ii)]. Similarly,

the HB-action on ĤB is a direct factor of the BGLQ-action on B̂GLQ. �
6.3. Pushforward. Let f : X → S be a smooth proper map. According

to Definition and Lemma 4.10,

Hom(BGL → f∗f
∗BGL

trBGL
f ,∼=
−→ f!f

!BGL, B̂GL)

defines a functorial pushforward

f∗ : Ĥn(X) → Ĥn(S)

and similarly

f∗ : Ĥn(X, p) → Ĥn−2 dim f (S − dim f),

where dim f := dimX − dimS is the relative dimension of f . We now com-

pare this with the classical pushforward on arithmetic K and Chow groups.

Recall from [Roe99, Prop. 3.1] the pushforward f∗ : K̂T
0 (X) → K̂T

0 (S). This

pushforward depends on an auxiliary choice of a metric on the relative tan-

gent bundle. It should be emphasized that the difficulty in the construction

of f∗ on the full groups K̂T
0 (X) is due to the presence of analytic torsion. We

now show that its restriction to K̂0(X) agrees with f∗ : Ĥ0(X) → Ĥ0(S) in an

important case. This shows that analytic torsion phenomena and the choice

of metrics only concern the quotient K̂T
0 /K̂0. See also [BFiML11] for similar

independence results.

Theorem 6.4.

(i) The pushforward i∗ : Ĥ0(Fp) = H0(Fp) = Z → Ĥ0(Z) = Z ⊕ R is given

by (0, log p).

(ii) Let OF be a number ring and S ⊂ SpecOF an open subscheme and let

f : X → S be smooth projective. For any n ∈ Z, the following diagram is

commutative, where the right vertical map is the pushforward on Gillet-

Soulé’s arithmetic Chow groups [GS90a, Theorem 3.6.1] and the middle

5We need to restrict to Q-coefficients, since the author does not know how to compute
BGL ∧ BGL.
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map is its restriction:

Ĥ2(dimX+n)(X, dimX + n)

f∗

��

∼=
6.1

�� ĈHdimX+n(X)Q

f∗

��

� � �� ĈH
dimX+n

GS (X)

f∗
��

Ĥ2+2n(S, n+ 1)
∼=,6.1

�� ĈHn+1(S)Q
� � �� ĈH

n+1

GS (S).

(iii) Under the same assumptions, the following diagram commutes, where the

right vertical map is the pushforward mentioned above and the middle

one is its restriction. In particular, the restriction of the K̂T
0 -theoretic

pushforward to the subgroups K̂0 does not depend on the choice of the

metric on the tangent bundle Tf used in its definition:

Ĥ0(X)Q

f∗
��

∼=
6.1

�� K̂0(X)Q

f∗
��

� � �� K̂T
0 (X)Q

f∗
��

Ĥ0(S)
∼=,6.1

�� K̂0(S)Q
� � �� K̂T

0 (S).

In order to prove (ii), we need some facts pertaining to the Betti realization

due to Ayoub [Ayo10]: for any smooth scheme B/C, let

−An : Sm/B → AnSm/BAn

be the functor which maps a smooth (algebraic) variety over B to the associ-

ated smooth analytic space (seen as a space over the analytic space attached

to B), equipped with its usual topology. (This functor was denoted −(C)

above.) The adjunction

An∗ : PSh(Sm/B,C) � PSh(AnSm/BAn,C) : An∗

between the category of presheaves of complexes of C-vector spaces on Sm/B

and the similar category of presheaves on smooth analytic spaces over BAn

carries over to an adjunction of stable homotopy categories:

(6.21) An∗ : SH(B,C) � SHAn(BAn,C) : An∗.

We refer to [Ayo10, Section 2] for details and notation; we use P1
BAn -spectra in-

stead of (A1
BAn/GmBAn)-spectra, which does not make a difference. Secondly,

there is a natural equivalence

φX : SHAn(XAn,C)
∼=−→ D(ShvAn(X

An,C))

of the stable analytic homotopy category and the derived category of sheaves

(of C-vector spaces), for any smooth B-scheme X. Both this equivalence and
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(6.21) are compatible with the exceptional inverse image and direct image

with compact support in the sense that

fAn!φSAn∗ = φXAn∗f !, fAn
! φXAn∗ = φSAn∗f!

for any smooth map f : X → S of smooth B-schemes [Ayo10, Th. 3.4]. Here

f! and f ! are the usual functors on the stable homotopy category, while fAn!

and fAn
! are the classical ones on the derived category.

To show (i), we need the following auxiliary lemma. It is probably well-

known, but we give a proof here for completeness.

Lemma 6.5. In a triangulated category, let A
α→ B

β→ C
γ→ A[1] and

A′ α′
→ B′ β′

→ C ′ γ′

→ A′[1] be two distinguished triangles. Consider the maps

of Hom-groups induced by α, α′, etc. We suppose that β∗ is onto and γ∗ is

bijective, as shown:

Hom(B,A′)

α∗

��

α′
∗

����
���

���
���

Hom(C,B′)

β∗

����

β′
∗

����
���

���
���

�
Hom(A[1], C ′)

γ∗,∼=
��

γ′
∗

����
���

���
���

��

Hom(A,A′) Hom(B,B′) Hom(C,C ′) Hom(A[1], A′[1]).

Then, for any ξ ∈ Hom(B,A′), (α∗ξ)[1] = (ξ ◦ α)[1] agrees with the image of

any lift of α′
∗ξ in Hom(A[1], A′[1]) under the above maps.

Proof. Consider the following diagram:

B
β

��

ξ

��

(1)

C
γ

��

υ

��

(2)

A[1]
α[1]

��

ζ,ζ′

��

(3)

B[1]

ξ[1]

��

A′ α′
�� B′ β′

�� C ′ γ′
�� A[1].

By assumption, there is a map υ making the square (1) commute. Next, there

is a unique map ζ making the square (2) commute. On the other hand, by

the axioms of a triangulated category, there is a (a priori non-unique) map

ζ ′ making both (2) and (3) commute. Therefore, ζ = ζ ′. This implies the

claim. �
Proof of Theorem 6.4. (i) Let i : SpecFp → S := SpecZ ← U :=

SpecZ[1/p] : j. Consider the triangles

S0 → i∗i
∗S0 → j!j

∗S0[1] → S0[1],

B̂GL → BGL
ch→

⊕
p

HD{p} → B̂GL[1].

The assumptions of Lemma 6.5 are satisfied, as can be checked using (6.1):

the generator of K0(Fp) lifts to (p,±1) under K1(U) = pZ×{±1} � K0(Fp),
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which in turn gets mapped to log p ∈ H1
D(Q, 1) = R under the Beilinson (or

Dirichlet) regulator, which agrees with the Chern class ch by Theorem 5.7.

Therefore, the pushforward i∗ : Ĥ0(Fp) = H0(Fp) = K0(Fp) = Z → Ĥ0(Z) =

K̂0(S) = Z⊕R is the map (0, log p), so it agrees with the classical K̂-theoretic

pushforward.

(ii) Put d′ := d+ n. We need to show the commutativity of the following

diagram:

(6.22) (HB, f
!ĤB{n+ 1}) p̂

�� (HB, ĤB{d′})
∼= �� ĈHd′

(X)Q

f∗

��

(HB, f!f
!ĤB{n+ 1})

f!f
!→id

��

(HB, ĤB{n+ 1})
∼= �� ĈHn+1(S)Q.

Here p̂ is the relative purity isomorphism f !ĤB{1} ∼= f∗ĤB{d}.
We may assume n ≥ 0 since ĈH≤0(S) = 0. The group CHd′

(X) is finite

for n = 0 by class field theory [KS86, Theorem 6.1] and zero for n > 0. Hence

H2d′−1
D (X, d′) → K̂0(X)

(d′)
Q is onto, by Theorem 4.5. On the other hand, for

dimension reasons, H2d′−1
D (X, d′) = H2d′−2

B (X,R(d′ − 1)). By definition, the

pushforward in arithmetic Chow groups [GS90a, Thm. 3.6.1] is compatible

with

f∗ : H2d′−2
B (XAn,R(d′ − 1)) → H2n

B (CAn,R(n)) = R(6.23)

ω �→ 1

(2πi)d−1

∫
XAn

ω.

Let C∗ be the presheaf complex of real-valued C∞-differential forms on smooth

analytic spaces. This is a flasque complex, and its (presheaf) cohomology

groups agree with Betti cohomology with real coefficients. The construction

and properties of HD (esp. Theorem 2.8) carry over and yield a spectrum

An∗(B) representing Betti cohomology. The maps of complexes of sheaves on

the analytic site,

[R(p) → O → Ω1 → . . . → Ωp−1] → R(p)
∼→ C∗(p),

give rise to a map of spectra HD(p) → An∗B(p). The rectangle (6.22) is

functorial with respect to maps of the target spectrum. Thus, we can replace

ĤB{n + 1} by An∗B(n + 1)[2n + 1] and f∗ : ĈHd′
(X)Q → ĈHn+1(X)Q by

f∗ : H2d′−2
B (XAn,R(d′ − 1)) → H2n

B (C,R(n))
n=0
= R. This settles our claim,
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since the adjointness map fAn
! fAn!C → C does induce the integration map

(6.23) [KS90, Exercise III.20].

(iii) The diagram

K1(X) ��

f∗

��

H−1
D (X)

f∗◦(−∪TdTf )

��

�� K̂0(X)

f∗
��

�� K0(X)

f∗

��

K1(S) �� H−1
D (S) �� K̂0(S) �� K0(X)

is commutative; see [Tak05, Section 7]. On the other hand, applying

HomBGL−Mod(f!f
∗BGL

trBGL

→ f!f
!BGL → BGL,−)

to the triangle (6.3) yields a diagram which is the same, except that K∗ is

replaced by H−∗ and K̂∗ by Ĥ−∗ (and their respective pushforwards estab-

lished in Definition and Lemma 4.10). Indeed, the pushforward on Deligne

cohomology induced by trBGL (as opposed to trB) is the usual pushforward,

modified by the Todd class. This is a consequence of Theorem 2.5.

Now, (iii) is shown exactly as (ii): the only non-trivial part is K̂0(X)
(d)
Q ,

which is mapped onto by H2d−1
D (X, d), since K0(X)

(d)
Q = CHd(X)Q = 0. �

Remark 6.6. The same proof works more generally for f∗ : Ĥn(X, p) →
Ĥn−2 dim f (S, p− dim f), provided that Hn(X, p) = K2p−n(X)

(p)
Q → Hn

D(X, p)

is injective. For example, given a smooth projective complex variety X of

dimension d, a conjecture of Voisin [Voi07, 11.23] generalizing Bloch’s conjec-

ture on surfaces satisfying pg = 0 says that the cycle class map K0(X)
(d−l)
Q

∼=
CHd−l(X)Q → H

2(d−l)
B (X,Q) is injective (or, equivalently, that the cycle class

map to Deligne cohomology is injective) for l ≤ k if the terms in the Hodge

decomposition Hp,q(X) are zero for all p �= q, q ≤ k.

7. The Arakelov intersection pairing

Let S = SpecZ[1/N ] be an open, non-empty subscheme of SpecZ, where

N = p1 · . . . · pn is a product of distinct primes. We write Log(N) :=
∑

i Z ·
log pi ⊂ R for the subgroup (∼= Zn) spanned by the logarithms of the pi.

In this section, we give a conceptual explanation of the height pairing by

showing that it is the natural pairing between motivic homology and Arakelov

motivic cohomology.
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7.1. Definition.

Definition 7.1. For M ∈ SH(S), put

H0(M) := HomSH(S)(S
0,M)

H0(M, 0) := HomSH(S)Q(S
0,MQ).

The second group is called motivic homology of M (seen as an object of SH

with rational coefficients): forM∈DMB(S), H0(M, 0)∼=HomSH(S)Q(HB,MQ).

Definition 7.2. Fix some M ∈ SH(S). The Arakelov intersection pairing

is either of the following two maps

: H0(M)×Ĥ0(M) → Ĥ0(S0) = K̂0(S) = Z⊕ R/Log(N),

πM : H0(M, 0)×Ĥ2(M, 1) → Ĥ2(S0, 1) = K̂0(S)
(1)
Q = (R/Log(N))⊗Q,

(α, β) �→ β ◦ α.

Remark 7.3.

(i) The tensor structure on the category DMc
B(S), the subcategory of com-

pact objects of DMB(S) ⊂ SH(S)Q, is rigid in the sense that the nat-

ural map M → M∨∨ is an isomorphism for any M ∈ DMc
B(S), where

M∨ := HomDMB(S)(M,HB) [CD09, 15.2.4]. This implies that the nat-

ural map Hom(M,N) → Hom(N∨,M∨) is an isomorphism for any two

such motives. In particular H0(M, 0) ∼= H0(M∨, 0), so the pairing can

be rewritten as

(7.1) H0(M∨, 0)×Ĥ2(M, 1) → H2(S, 1).

This is the shape familiar from other dualities, such as Artin-Verdier

duality,

H0(SpecZ,F∨)×H3
c(SpecZ,F(1)) → H3(SpecZ, μ�) = Q/Z.

In this analogy, an étale constructible �-torsion sheaf F corresponds to

a motive M and étale cohomology with compact support gets replaced

by Arakelov motivic cohomology. The pairing (7.1) is conjecturally per-

fect when replacing ĤB by ĤB,R, which is constructed in the same way,

except that HB gets replaced by HB,R, a spectrum representing motivic

cohomology tensored with R. The implications of this conjecture and

its relation to special L-values is the main topic of [Sch13].

(ii) By definition, the intersection pairing is functorial: given a map f :

M → M ′, the following diagram commutes:

πM : H0(M, 0) × Ĥ2(M∨, 1) −→ R

↑ ↓ ↓=
πM ′ : H0(M ′, 0) × Ĥ2(M ′∨, 1) −→ R.
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7.2. Comparison with the height pairing. For a regular, flat, and

projective scheme X/Z of absolute dimension d, Gillet and Soulé have defined

the height pairing μGS :

CHm(X)0� �

��

× CHd−m(X)0
μB

�� ĈH1(S)

CHm(X) × ĈHd−m(X)� �

��

����

μ
�� ĈH1(S)

ĈHm
GS(X) ×

����

ĈHd−m
GS (X)

μGS
�� ĈH1(S).

Here, CHm(X)0 := kerCHm(X) → H2m
D (X,m) is the subgroup of the Chow

group consisting of cycles that are homologically trivial at the infinite place.

The pairing μ is uniquely determined by μGS . It is given by

(Z, (Z ′, g′)) �→ (Z · Z ′, δZ ∧ g′),

where Z and Z ′ are cycles of codimension m and d − m, δZ is the Dirac

current, and g′ is a Green current satisfying the differential equation

ω(Z ′, g′) = − 1

2πi
∂∂g′ + δZ′ = 0.

See [GS90a, Sections 4.2, 4.3] for details. The pairing μB is the height pairing

defined by Beilinson [Bĕı87, 4.0.2]. More precisely, Beilinson considered the

group of homologically trivial cycles on X×SQ, but we will focus on the case

where the variety in question is given over the one-dimensional base S.

We now give a very natural interpretation of the height pairing μ in terms of

the Arakelov intersection pairing. Our statement applies to smooth schemesX

only, essentially because of the construction of the stable homotopy category,

which is built out of presheaves on Sm/S (as opposed to regular schemes,

say).

Theorem 7.4. Let S ⊂ SpecZ be an open (non-empty) subscheme and

let f : X → S be smooth and proper of absolute dimension d. For any m,

let n := m − dim f = m − d + 1 and let M = M(X){n} = f!f
!HB{n} be the

motive of X (twisted and shifted). Then the height pairing μ (tensored with

Q) mentioned above agrees with the Arakelov intersection pairing in the sense
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that the following diagram commutes:

CHm(X)Q

∼= 2.2

��

× ĈHd−m(X)Q

∼= 6.2
��

μ
�� ĈH1(S)Q

∼=
��

H0(M, 0) × Ĥ2(M, 1)
πM �� Ĥ2(S, 1).

Proof. We need to show that the following diagram is commutative. Here

1 := HB is the Beilinson motivic cohomology spectrum, 1̂ := ĤB is its Arak-
elov counterpart (Definition 4.1), and (−,−) stands for HomDMB(?)(−,−),
where the base scheme ? is S or X, respectively. Every horizontal map is an
isomorphism. The maps labelled p and p̂ are relative purity isomorphisms f ! ∼=
f∗{d − 1}, applied to 1 and 1̂, respectively. The isomorphisms between the
(arithmetic) Chow groups and (Arakelov) motivic cohomology are discussed
in Section 2.2 and Corollary 6.2.

(1, f!f
!1{n}) p

��

×

(1,1{m})

×

(1,1{m}) ��

×

CHm(X)Q

×

(f!f
!1{n}, 1̂{1})

(1)πM

��

p
�� (1{m}, f !1̂{1}) p̂

��

◦
��

(2)

(1{m}, 1̂{d})

◦
��

��

(3)

ĈHd−m(X)Q

μ

��

(1, f !1̂{1}) p̂
��

(4)

(1, 1̂{d}) �� ĈHd(X)Q

f∗

��

(1, f!f
!1̂{1})

f!f
!→id

��

(1, 1̂{1}) (1, 1̂{1}) �� ĈH1(S)Q.

The commutativity of (1) is a routine exercise in adjoint functors. The com-

mutativity of (2) is obvious. The commutativity of (3) and (4) is settled in

Theorems 6.3 and 6.4. �
Example 7.5. Using Remark 7.3(ii), we can also describe the baby exam-

ple of the Arakelov intersection pairing forM = M(Fp): according to Theorem

6.4(i), it is given by

H0(Fp) × Ĥ0(Fp) = Z

i∗(0,log p)

��

πFp
�� Ĥ0(Z) = Z⊕ R

H0(Z) = Z

i∗∼=

��

× Ĥ0(Z)
πZ �� Ĥ0(Z) = Z⊕ R.
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Using Theorem 6.3, the bottom row is the obvious multiplication map. There-

fore, πFp
is given by (1, 1) �→ (0, log p).
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[GS90c] Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector
bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), no. 2, 205–
238, DOI 10.2307/1971493. MR1043268 (91m:14032b)

[Hir03] Philip S. Hirschhorn, Model categories and their localizations, Mathematical
Surveys and Monographs, vol. 99, American Mathematical Society, Providence,
RI, 2003. MR1944041 (2003j:18018)

[HoS] Andreas Holmstrom and Jakob Scholbach, Arakelov motovic cohomology I,
J. Algebraic Geometry (to appear).

[Jar00] J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–553 (elec-
tronic). MR1787949 (2002b:55014)

http://www.ams.org/mathscinet-getitem?mr=2602027
http://www.ams.org/mathscinet-getitem?mr=2602027
http://www.ams.org/mathscinet-getitem?mr=0923131
http://www.ams.org/mathscinet-getitem?mr=0923131
http://www.ams.org/mathscinet-getitem?mr=1489119
http://www.ams.org/mathscinet-getitem?mr=1489119
http://www.ams.org/mathscinet-getitem?mr=1621424
http://www.ams.org/mathscinet-getitem?mr=1621424
http://www.ams.org/mathscinet-getitem?mr=0944991
http://www.ams.org/mathscinet-getitem?mr=0944991
http://www.ams.org/mathscinet-getitem?mr=2662616
http://www.ams.org/mathscinet-getitem?mr=2662616
http://www.ams.org/mathscinet-getitem?mr=1711612
http://www.ams.org/mathscinet-getitem?mr=1711612
http://www.ams.org/mathscinet-getitem?mr=2473633
http://www.ams.org/mathscinet-getitem?mr=2473633
http://www.ams.org/mathscinet-getitem?mr=1087394
http://www.ams.org/mathscinet-getitem?mr=1087394
http://www.ams.org/mathscinet-getitem?mr=1038362
http://www.ams.org/mathscinet-getitem?mr=1038362
http://www.ams.org/mathscinet-getitem?mr=1043268
http://www.ams.org/mathscinet-getitem?mr=1043268
http://www.ams.org/mathscinet-getitem?mr=1944041
http://www.ams.org/mathscinet-getitem?mr=1944041
http://www.ams.org/mathscinet-getitem?mr=1787949
http://www.ams.org/mathscinet-getitem?mr=1787949


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

786 JAKOB SCHOLBACH

[KS86] Kazuya Kato and Shuji Saito, Global class field theory of arithmetic schemes,
theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math.
Soc., Providence, RI, 1986, pp. 255–331, DOI 10.1090/conm/055.1/862639.
MR862639 (88c:11041)

[KS90] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, with a chapter in
French by Christian Houzel, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag,
Berlin, 1990. MR1074006 (92a:58132)

[MV99] Fabien Morel and Vladimir Voevodsky, A1-homotopy theory of schemes, Inst.

Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR1813224
(2002f:14029)
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