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ARAKELOV MOTIVIC COHOMOLOGY I

ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Abstract

This paper introduces a new cohomology theory for schemes of finite
type over an arithmetic ring. The main motivation for this Arakelov-
theoretic version of motivic cohomology is the conjecture on special val-
ues of L-functions and zeta functions formulated by the second author.
Taking advantage of the six functors formalism in motivic stable homo-
topy theory, we establish a number of formal properties, including pull-
backs for arbitrary morphisms, pushforwards for projective morphisms
between regular schemes, localization sequences, h-descent. We round
off the picture with a purity result and a higher arithmetic Riemann-
Roch theorem.

In a sequel to this paper, we relate Arakelov motivic cohomology to

classical constructions such as arithmetic K and Chow groups and the
height pairing.

1. Introduction

For varieties over finite fields, we have very good cohomological tools for

understanding the associated zeta functions. These tools include �-adic coho-

mology, explaining the functional equation and the Riemann hypothesis, and

Weil-étale cohomology, which allows for precise conjectures and some partial

results regarding the “special values”, i.e., the vanishing orders and leading

Taylor coefficients at integer values. The conjectural picture for zeta functions

of schemes X of finite type over SpecZ is less complete. Deninger envisioned a

cohomology theory explaining the Riemann hypothesis, and Flach and Morin

have developed the Weil-étale cohomology describing special values of zeta

functions of regular projective schemes over Z at s = 0 [Den94,FM12,Mor11].

In [Sch13], the second author proposed a new conjecture, which describes

the special values of all zeta functions and L-functions of geometric origin, up

to a rational factor. It is essentially a unification of classical conjectures of

Beilinson, Soulé and Tate, formulated in terms of the recent Cisinski-Déglise
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theory of triangulated categories of motives over Z. This conjecture is for-

mulated in terms of a new cohomology theory for schemes of finite type over

Z. The purpose of this paper is to construct this cohomology theory and

establish many of its properties.

This cohomology theory, which we call Arakelov motivic cohomology, is re-

lated to motivic cohomology, roughly in the same way as arithmetic Chow

groups relate to ordinary Chow groups or as arithmetic K-theory relates to

algebraic K-theory. The key principle for cohomology theories of this type

has always been to connect some algebraic data, such as the algebraic K-

theory, with an analytical piece of information, chiefly Deligne cohomology,

in the sense of long exact sequences featuring the Beilinson regulator map

between the two and a third kind of group measuring the failure of the

regulator to be an isomorphism. This was suggested by Deligne and Soulé

in the 1980s. Beilinson also expressed the idea that the “boundary” of an

algebraic cycle on a scheme over Z should be a Deligne cohomology class

[Bĕı87]. Gillet, Roessler, and Soulé then started developing a theory of arith-

metic Chow groups [GS90b,GS90c,GS90a,Sou92], arithmetic K0-theory and

an arithmetic Riemann-Roch theorem [Roe99, GRS08]. Burgos and Wang

[Bur94, Bur97, BW98] extended some of this to not necessarily projective

schemes and gave an explicit representation of the Beilinson regulator. More

recently, Goncharov gave a candidate for higher arithmetic Chow groups for

complex varieties, Takeda developed higher arithmetic K-theory, while Bur-

gos and Feliu constructed higher arithmetic Chow groups for varieties over

arithmetic fields [Gon05, Tak05, BGF12]. The analogous amalgamation of

topological K-theory and Deligne cohomology of smooth manifolds is known

as smooth K-theory [BS09].

In a nutshell, these constructions proceed by representing the regulator as

a map of appropriate complexes. Then one defines, say, arithmetic K-theory

to be the cohomology of the cone of this map. Doing so, however, requires

a good command of the necessary complexes, which so far has prevented ex-

tending higher arithmetic Chow groups to schemes over Z and also requires

one to manually construct homotopies whenever a geometric construction is

to be done, for example the pushforward. The idea of this work is to both

overcome these hurdles and enhance the scope of these techniques by intro-

ducing a spectrum, i.e., an object in the stable homotopy category of schemes,

representing the sought cohomology theory.

This paper can be summarized as follows: let S be a regular scheme of

finite type over a number field F , a number ring OF , R, or C. In the stable

homotopy category SH(S) (cf. Section 2.1) there is a ring spectrum HD rep-

resenting Deligne cohomology with real coefficients of smooth schemes X/S
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(Theorem 3.6). We define (cf. Definition 4.1) the Arakelov motivic cohomol-

ogy spectrum Ĥ� as the homotopy fiber of the map

H�
id∧1HD−→ H� ∧ HD.

Here, H� is Riou’s spectrum representing the Adams eigenspaces in algebraic

K-theory (tensored by Q). Étale descent for HD implies that the canonical

map HD → H� ∧ HD is an isomorphism (Theorem 3.6), so there is a distin-

guished triangle

Ĥ� → H� → HD → Ĥ�[1].

We define Arakelov motivic cohomology to be the theory represented by this

spectrum, that is to say,

Ĥn(M,p) := HomSH(S)Q(M, Ĥ�(p)[n])

for any M ∈ SH(S). Thus, there is a long exact sequence involving Arakelov

motivic cohomology, motivic cohomology and Deligne cohomology (Theorem

4.5). Moreover, Arakelov motivic cohomology shares the structural proper-

ties known for motivic cohomology, for example a projective bundle formula,

a localization sequence, and h-descent (Theorem 4.14). It also has the ex-

pected functoriality : pullback for arbitrary morphisms of schemes (or motives,

Lemma 4.9) and pushforward along projective maps between regular schemes

(Definition and Lemma 4.10). All of this can be modified by replacing H� by

BGL, the spectrum representing algebraic K-theory. The resulting Arakelov

version is denoted B̂GL and the cohomology theory so obtained is denoted

Ĥn(M).

We extend the motivic Riemann-Roch theorem given by Riou to arbitrary

projective maps between regular schemes (Theorem 2.5), a statement that

is of independent interest. We deduce a higher arithmetic Riemann-Roch

theorem (Theorem 4.13) for the cohomology theories Ĥ∗(M,−) vs. Ĥ∗(M). It

applies to smooth projective morphisms and for projective morphisms between

schemes that are smooth over the base.

In the second part of this paper [Sch12], we will show how to relate the

homotopy-theoretic construction of Arakelov motivic cohomology to the clas-

sical definitions of arithmetic K- and Chow groups. For example, the arith-

metic K0-groups K̂
T
0 (X) defined by Gillet and Soulé [GS90c, Section 6] for a

regular projective variety X (over a base S as above) sit in an exact sequence

K1(X) →
⊕
p≥0

Ap,p(X)/(im∂ + im ∂) → K̂T
0 (X) → K0(X) → 0,

where Ap,p(X) is the group of real-valued (p, p)-forms ω on X(C) such that

Fr∗∞ ω = (−1)pω. The full arithmetic K-groups K̂T
0 (X) are not homotopy
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invariant and can therefore not be addressed using A1-homotopy theory. In-

stead, we consider the subgroup

K̂0(X) := ker

⎛⎝ch : K̂T
0 (X) →

⊕
p≥0

Ap,p(X)

⎞⎠ .

For smooth schemes X/S, we show a canonical isomorphism

(1.1) Ĥ0(M(X)) ∼= K̂0(X)

and similarly for higher arithmetic K-theory, as defined by Takeda. The

homotopy-theoretic approach taken yields a considerable simplification since it

is no longer necessary to construct explicit homotopies between the complexes

representing arithmetic K-groups, say. For example, the Adams operations

on K̂i(X) defined by Feliu [Fel10] were not known to induce a decomposition

K̂∗(X)Q ∼=
⊕

p K̂∗(X)
(p)
Q . Using that the isomorphism (1.1) is compatible with

Adams operations, this statement follows from the essentially formal analogue

for Ĥ∗. Moreover, (1.1) is shown to be compatible with the pushforwards on

both sides in an important case. This implies that the height pairing on a

smooth projective scheme X/S, S ⊂ Spec Z, is expressible in terms of the

natural pairing of motivic homology and Arakelov motivic cohomology of the

motive of X. According to the second author’s conjecture, the L-values of

schemes (or motives) over Z are given by the determinant of this pairing.

2. Preliminaries

In this section, we provide the motivic framework that we are going to

work with in Sections 3 and 4: we recall the construction of the stable homo-

topy category SH(S) and some properties of the Cisinski-Déglise triangulated

category of motives. In Section 2.3, we generalize Riou’s formulation of the

Riemann-Roch theorem to regular projective morphisms. This will then be

used to derive a higher arithmetic Riemann-Roch theorem (Theorem 4.13).

Finally, we recall the definition and basic properties of Deligne cohomology

that are needed in Section 3 to construct a spectrum representing Deligne

cohomology.

2.1. The stable homotopy category. This section sets the notation

and recalls some results pertaining to the homotopy theory of schemes due to

Morel and Voevodsky [MV99].

Let S be a Noetherian scheme. We only use schemes which are of finite

type over Z, Q, or R. Unless explicitly mentioned otherwise, all morphisms of

schemes are understood to be separated and of finite type. Let Sm/S be the
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category of smooth schemes over S. The category of presheaves of pointed

sets on this category is denoted PSh• := PSh•(Sm/S). We often regard a

scheme X ∈ Sm/S as the presheaf (of sets) represented by X, and we write

X+ := X � {∗} for the associated pointed version. The projective line P1
S is

always viewed as pointed by ∞. The prefix Δop− indicates simplicial objects

in a category. The simplicial n-sphere is denoted Sn; this should not cause

confusion with the base scheme S.

We consider the pointwise and the motivic model structure on the category

Δop(PSh•) [Jar00, Section 1.1]. The latter is obtained by considering objects

that are local with respect to projections U×A1 → U and the Nisnevich

topology. The corresponding homotopy categories will be denoted by Hosect,•
and Ho•, respectively. The identity functor is a Quillen adjunction with

respect to these two model structures.

The category Spt := SptP
1

(ΔopPSh•(Sm/S)) consists of symmetric P1
S-

spectra, that is, sequences E = (En)n≥0 of simplicial presheaves which are

equipped with an action of the symmetric group Sn and bonding maps P1 ∧
En → En+1 such that (P1)∧m ∧En → En+m is Sn × Sm-equivariant (and the

obvious morphisms). The functor Σ∞
P1 : Δop(PSh•) 
 F �→

(
(P1)∧n ∧ F

)
n≥0

(bonding maps are identity maps; Sn acts by permuting the factors P1) is

left adjoint to Ω∞ : (En) �→ E0. Often, we will not distinguish between a

simplicial presheaf F and Σ∞
P1(F ).

The category Spt is endowed with the stable model structure [Jar00, The-

orems 2.9, 4.15]. The corresponding homotopy category is denoted SH (or

SH(S)) and referred to as the stable homotopy category of smooth schemes

over S. The pair (Σ∞
P1 ,Ω∞) is a Quillen adjunction with respect to the mo-

tivic model structure on ΔopPSh• and the stable model structures on Spt.

We sum up this discussion by saying that there are adjunctions of homotopy

categories

(2.1) Hosect,• � Ho• � SH.

The stable homotopy categories are triangulated categories. We will use

both the notationM [p] andM∧(S1)∧p, p ∈ Z, for the shift functor. Moreover,

inHo(S) there is an isomorphism P1
S
∼= S1∧(Gm,S , 1). Thus, in SH(S), wedg-

ing with Gm,S is invertible as well, and we write M(p) for M ∧ (Gm,S)
∧p[−p],

p ∈ Z, for the Tate twist. For brevity, we also put

M{p} := M(p)[2p].

For any triangulated, compactly generated category C that is closed under

coproducts, we let CQ be the full triangulated subcategory of those objects Y

such that HomC(−, Y ) is a Q-vector space. The inclusion i : CQ ⊂ C has a right
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adjoint which will be denoted by (−)Q. The natural map HomC(X,Y )⊗Q →
HomC(X, i(YQ)) = HomCQ

(XQ, YQ) is an isomorphism if X is compact; see

e.g. [Rio07, Appendix A.2]. In particular, we will use SH(S)Q. Wherever

convenient, we use the equivalence of this category with DA1(S,Q), the ho-

motopy category of symmetric P1-spectra of complexes of Nisnevich sheaves of

Q-vector spaces (with the Tate twist and A1 inverted) [CD09, 5.3.22, 5.3.37].

Given a morphism f : T → S, the stable homotopy categories are connected

by adjunctions:

(2.2) f∗ : SH(S) � SH(T ) : f∗,

(2.3) f! : SH(T ) � SH(S) : f !,

(2.4) f� : SH(T ) � SH(S) : f∗.

For the last adjunction, f is required to be smooth. (2.2) also applies to

morphisms which are not necessarily of finite type ([Ayo07, Scholie 1.4.2]; see

also [CD09, 1.1.11, 1.1.13; 2.4.4., 2.4.10]).

2.2. Beilinson motives. Let S be a Noetherian scheme of finite dimen-

sion. The key to Beilinson motives (in the sense of Cisinski and Déglise) is the

motivic cohomology spectrum H�,S due to Riou [Rio07, IV.46, IV.72]. There

is an object BGLS ∈ SH(S) representing algebraic K-theory in the sense that

(2.5) HomSH(S)(S
n ∧ Σ∞

P1X+,BGLS) = Kn(X)

for any regular scheme S and any smooth scheme X/S, functorially (with

respect to pullback) in X. The Q-localization BGLS,Q decomposes as

BGLS,Q =
⊕
p∈Z

BGL
(p)
S

such that the pieces BGL
(p)
S represent the graded pieces of the γ-filtration on

K-theory:

(2.6) HomSH(S)(S
n ∧ Σ∞

P1X+,BGL
(p)
S ) ∼= grpγ Kn(X)Q.

The Beilinson motivic cohomology spectrum H� is defined by

(2.7) H�,S := BGL
(0)
S

and the resulting Chern character map BGLS,Q →
⊕

p H�,S{p} is denoted ch.

The parts of the K-theory spectrum are related by periodicity isomorphisms

(2.8) BGL
(p)
S = H�,S{p}.

For any map f : T → S, not necessarily of finite type, there are natural

isomorphisms

(2.9) f∗BGLS = BGLT , f∗H�,S = H�,T .
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The following definition and facts are due to Cisinski and Déglise [CD09,

Sections 12.3, 13.2]. By a result of Röndigs, Spitzweck and Ostvaer [RSØ10],

BGLS ∈ SH(S) is weakly equivalent to a certain cofibrant strict ring spectrum

BGL′
S , that is to say, a monoid object in the underlying model category

SptP
1

(PSh•(Sm/S)). In the same vein, H�,S can be represented by a strict

commutative monoid object H′
�,S [CD09, Cor. 14.2.6]. The model structures

on the subcategory of SptP
1

of BGL′
S- and H′

�,S-modules are endowed with

model structures such that the forgetful functor is Quillen right adjoint to

smashing with BGL′
S and H′

�,S , respectively. The homotopy categories are

denoted DMBGL(S) and DM�(S), respectively. Objects in DM�(S) will be

referred to as motives over S. We have adjunctions

(2.10) − ∧ BGLS : SH(S) � DMBGL(S) : forget

(2.11) − ∧ H�,S : SH(S)Q � DM�(S) : forget.

There is a canonical functor from the localization of SH(S)Q by all H�-

acyclic objects E (i.e., those satisfying E⊗H�,S = 0) to DM�(S). This

functor is an equivalence of categories, which shows that the above definition

is independent of the choice of H′
�,S . This also has the consequence that the

forgetful functor DM�(S) → SH(S)Q is fully faithful [CD09, Prop. 14.2.8],

which will be used in Section 4.1. All this stems from the miraculous fact that

the multiplication map H� ∧H� → H� is an isomorphism.

Motivic cohomology of any object M in SH(S)Q is defined as

Hn(M,p) := HomSH(S)Q(M,H�(p)[n])(2.12)

(2.11)
= HomDM�(S)(M ∧H�,S ,H�,S(p)[n]).

The adjunctions (2.10), (2.11) are morphisms of motivic categories [CD09,

Def. 2.4.45], which means in particular that the functors f�, f∗, f
∗, f! and f !

of (2.2), (2.3), (2.4) on SH(−) can be extended to ones on DMBGL(−) and

DM�(−) in a way that is compatible with these adjunctions [CD09, 13.3.3,

14.2.11]. For DM�(S) this can be rephrased by saying that these functors

preserve the subcategories DM�(−) ⊂ SH(−)Q.

For any smooth quasi-projective morphism f : X → Y of constant relative

dimension n and any M ∈ DM�(Y ), we have the relative purity isomorphism

(functorial in M and f)

(2.13) f !M ∼= f∗M{n}.

For example, f !H�,Y ∼= H�,X{n}. This is due to Ayoub; see e.g. [CD09,

2.4.21].
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For any closed immersion i : X → Y between two regular schemes X and Y

with constant relative codimension n, there are absolute purity isomorphisms

[CD09, 13.6.3, 14.4.1]

(2.14) i!H�,Y ∼= H�,X{−n}, i!BGLY
∼= BGLX .

Definition 2.1. Let f : X → S be any map of finite type. We define the

motive of X over S to be

M(X) := MS(X) := f!f
!H�,S ∈ DM�(S).

Remark 2.2. In [CD09, 1.1.34] the motive of a smooth scheme f : X → S

is defined as f�f
∗H�,S . These two definitions agree up to functorial isomor-

phism: we can assume that f is of constant relative dimension d. By relative

purity, the functors f ! and f∗{d} are isomorphic. Thus their left adjoints,

namely f! and f�{−d}, agree too. Therefore, f!f
!H�,S = f!f

∗H�,S{d} =

f�f
∗H�,S .

Definition 2.3. A map f : X → Y of S-schemes is a locally complete inter-

section (l.c.i.) morphism if both X and Y are regular and, for simplicity of

notation, of constant dimension and if

f = p ◦ i : X i→ X ′ p→ Y

where i is a closed immersion and p is smooth. Note that this implies that

X ′ is regular. If there is such a factorization with p : X ′ = Pn
Y → Y the

projection, we call f a regular projective map.

We shall write dim f := dimX − dimY for any map f : X → Y of finite-

dimensional schemes.

Example 2.4. Let f = p ◦ i be an l.c.i. morphism. Absolute purity for i

(2.14), relative purity for p, and the periodicity isomorphism BGL ∼= BGL{1}
give rise to isomorphisms

f !H�,S ∼= f∗H�,S{dim(f)}, f !BGLS
∼= f∗BGLS .

Let f : X → Y be a projective regular map. Recall the trace map in

SH(Y ):

(2.15) trBGL
f : f∗BGLX = p∗i∗i

∗BGLX′
(2.14)→ p∗BGLX′ → BGLY ,

constructed in [CD09, 13.7.3]. This is not an abuse of notation insofar as

trBGL
f is independent of the choice of the factorization. This is shown by

adapting [Dég08, Lemma 5.11] to the case where all schemes in question are

merely regular.
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The trace map for H� is defined as the composition

(2.16) tr�f : f∗f
∗H�,Y {dim f} � f∗f

∗BGLQ,Y

trBGL
f−→ BGLQ,Y � H�,Y .

In case f = i, this is the definition of [CD09, Section 14.4].

Given another regular projective map g, the composition g ◦ f is also of

this type. The trace maps are functorial: the composition

f∗g∗BGL
trBGL

f−→ f !g∗BGL
f !trBGL

g−→ f !g!BGL

agrees with trBGL
g◦f and similarly with tr�? . This can be deduced from the

independence of the factorization; cf. [Dég08, Prop. 5.14].

By construction, for any smooth map f : Y ′ → Y , the induced map

Hom(f�f
∗S0, trBGL

f [−n]) : Kn(X
′) → Kn(Y

′) is the K-theoretic pushforward

along f ′ : X ′ := X×Y Y
′ → Y ′ [CD09, 13.7.3]. Similarly,

Hom(f�f
∗S0, tr�f [−n](p)) is the pushforward Kn(X

′)
(p)
Q → Kn(Y

′)
(p)
Q . In-

deed, the pushforward on the Adams graded pieces of K-theory is defined as

the induced map of the graded homomorphism f ′
∗ on K-theory [FL85, V.6.4].

The adjoint maps

BGLX = f∗BGLY → f !BGLY , f∗f
∗BGLY → BGLY

will also be denoted trBGL
f and similarly with tr�f .

2.3. The Riemann-Roch theorem. We now turn to a motivic Riemann-

Roch theorem, which will imply an arithmetic Riemann-Roch theorem for

Arakelov motivic cohomology (Theorem 4.13). It generalizes the statement

given by Riou for smooth morphisms [Rio10, Theorem 6.3.1] to regular pro-

jective maps. Independently, F. Déglise has obtained a similar result [Dég11].

Recall the virtual tangent bundle of a regular projective map f = p ◦ i :

X
i→ X ′ p→ Y , Tf := i∗Tp − CX/X′ ∈ K0(X) (see e.g. [FL85, V.7]). Here

Tp := Ω∨
X′/Y is the tangent bundle of p and CX/X′ := (I/I2)∨ is the conor-

mal sheaf associated to the ideal I defining i. As an element of K0(X), Tf

does not depend on the factorization. Its Todd class Td(Tf ) is an element of⊕
p∈Z K0(X)

(p)
Q (see e.g. [FL85, p. 20] for the general definition of Td; this

is applied to the Chern character ch : K0(−) →
⊕

p K0(−)
(p)
Q [FL85, pp. 127,

146]). It is regarded as an endomorphism of
⊕

p∈Z H�,X{p} via the natural

identification
⊕

p∈Z K0(X)
(p)
Q = EndDMBGL(X)Q(

⊕
p∈Z H�,X{p}).
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Theorem 2.5 (Riemann-Roch). Let f : X → Y be a regular projective

map. The following diagram is a commutative diagram in SH(Y )Q (or, equiv-

alently, in DM�(Y )):

f∗f
∗BGLQ,Y

trBGL
f

��

∼=ch

��

BGLQ,Y

∼=ch

��

f∗f
∗
�Y

f∗ Td(Tf )
�� f∗f

∗
�Y

tr�f
�� �Y .

Here, �Y is shorthand for
⊕

p∈Z H�,Y {p}.
Proof. The statement is easily seen to be stable under composition of reg-

ular projective maps, so it suffices to treat the cases f = p : Pn
Y → Y and

f = i : X → Pn
Y separately. The former case has been shown by Riou, so

we can assume f : X → Y is a closed embedding of regular schemes. The

classical Riemann-Roch theorem says that the map

K0(X)Q →
⊕
p

K0(Y )
(p)
Q , x �→ ch f∗(x)− f∗(Td(Tf ) ∪ ch(x))

vanishes. Viewing x as an element of HomSH(Y )Q(S
0, f∗f

∗BGLQ,Y ), this can

be rephrased by saying that x �→ αf ◦ x is zero, where

αf := chX ◦ trBGL
f − tr�f ◦ f∗ Td(Tf ) ◦ f∗f∗ chY ∈ Hom(f∗f

∗BGLQ,Y ,�Y ).

To show αf = 0, we first reduce to the case where f : X → Y has a retraction,

that is, a map p : Y → X such that p ◦ f = idX . Then, we prove the theorem

by reducing it to the classical Riemann-Roch theorem.

For the first step, recall the deformation to the normal bundle [FL85, IV.5]:

(2.17) ∅ ��

��

X
i∞ ��

��

P1
X

pr
��

F

��

X

f

��

X

����������

����������

f ′

��

X

i0
���������

f

��

Ỹ �� Ỹ + Y ′ s+g′
�� M

π �� Y

Y ′

�����������

��

�
�
�
� �
	



g′

����������������������������� Y

g

����������

����������������

����������������

We have written M := BlX×∞(P1
Y ) and Y ′ := P(CX/Y ⊕ OX), Ỹ := BlXY

and Y ′+ Ỹ for the scheme defined by the sum of the two divisors. All schemes

except Y ′ + Ỹ are regular; all maps except π and pr are closed immersions.
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The diagram is commutative and every square in it is cartesian. The map f ′

has a retraction. We show

αf ′ = 0 ⇒ αf = 0

by indicating how to replace each argument in [FL85, proof of Theorem II.1.3],

which shows αf ′ ◦ x = 0 ⇒ αf ◦ x = 0 for any x as above, in a manner that

is independent of x.

The identity f∗(x) = f∗i
∗
0pr

∗(x) = g∗F∗pr
∗(x) is replaced by the commuta-

tivity of the following diagram of maps of (BGL-)motives, where v := g ◦ f =

F ◦ i0:

F!F
!BGLM

O
P1
X
∈K0(P

1
X)

��

OX∈K0(X)

��

BGLM

OY ∈K0(Y )

��

v!v
!BGLM OX∈K0(X)

�� g!g
!BGLM

The maps are given by the indicated structural sheaves in K0(?), via the

identifications of Hom-groups in DMBGL(Y ) with K-theory. For example,

the upper horizontal map is the adjoint map to the inverse of the trace map

isomorphism trBGL
F : F ∗BGL → F !BGL, which corresponds via absolute pu-

rity to OP1
X

∈ K0(P
1
X) = HomDMBGL(Y )(F!F

!BGL,BGL). The composition

of the map given by OP1
X

and OY is given by their tensor product (viewed as

OM -modules), that is, OX , so the diagram commutes. The same argument

applies to f ′
∗(x) = g′∗F∗pr

∗(x).

The projection formula is [CD09, Theorem 2.4.50(v)]. The divisors Y and

Y ′ + Ỹ ⊂ M are linearly equivalent, which implies g∗(1) = g′∗(1) + s∗(1) ∈
K0(M)

(1)
Q [FL85, IV.(5.11), Prop. V.4.4]. This in turn is equivalent to the

agreement of the following two elements of Hom(H�,M ,H�,M{−1}):

H�,M
adj.→ g∗g

∗H�,M
g!tr

�

g−→ g!g
!H�,M{−1} adj.→ H�,M{−1}

and

H�,M
adj.→ g′∗g

′∗H�,M ⊕ s∗s
∗H�,M

g′
! tr
�

g′⊕s!tr
�

s−→ g′!g
′!H�,M{−1} ⊕ s!s

!H�,M{−1}
adj.→ H�,M{−1}.

Finally, the identity s∗F∗pr
∗(x) = 0 is formulated independently of x using

again base-change (and using that the motive of the empty scheme is zero).

This finishes the first step.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

730 ANDREAS HOLMSTROM AND JAKOB SCHOLBACH

Thus, we can assume that f has a retraction p : Y → X. By [Rio10,

Section 5, esp. 5.3.6; cf. the proof of 6.1.3.2], the obvious “evaluation” maps

Hom(BGLX,Q,BGLX,Q) injectively to∏
i∈Z,T∈Sm/X

HomQ

(
Hom((P1)∧i ∧ T+,BGLX,Q),Hom((P1)∧i ∧ T+,BGLX,Q)

)
.

The outer Hom denotes Q-linear maps; the inner ones are morphisms in

SH(X)Q. There is an isomorphism u : f∗BGLQ,Y → f !
�Y , for exam-

ple the Chern class followed by the absolute purity isomorphism (Example

2.4). Appending u on both sides, we conclude that the evaluation maps

Hom(f∗BGLY,Q, f
!
�Y ) into∏

i,T

HomQ

(
Hom((P1)∧i ∧ T+, f

∗BGLY,Q),Hom((P1)∧i ∧ T+, f
!
�Y )

)
.

For any T ∈ Sm/X, consider the following cartesian diagram:

T
fT

��

t

��

U

��

pT
�� T

t

��

X
f

�� Y
p

�� X.

Recall that T ∈ SH(X) is given by t�t
∗S0. Here t� is left adjoint to t∗; cf.

(2.4). Thus, the term simplifies to∏
i,T

HomQ

(
Hom((P1)∧i, t∗f∗BGLY,Q),Hom((P1)∧i, t∗f !

�Y )
)
.

The diagram X → Y → X is stable with respect to smooth pullback: fT is

also an embedding of regular schemes; pT is a retract of fT . Moreover, the

trace map trBGL
f behaves well with respect to smooth pullback, i.e., t∗trBGL

f =

trBGL
fT

and similarly for tr�? , ch? and Td(T?). Thus, it is sufficient to consider

the case T = X. That is, we have to show that βf , the image of αf in∏
i∈Z

HomQ

(
Hom((P1)∧i, f∗BGLY,Q),Hom((P1)∧i, f !

�Y )
)

=
∏
i∈Z

HomQ

(
HomSH(X)Q((P

1
X)∧i,BGLX,Q),HomSH(Y )Q((P

1
Y )

∧i, f∗f
!
�Y )

)
is zero. The composition

Hom((P1
Y )

∧i, f!f
∗
�Y )

tr�f ,∼=
−→ Hom((P1

Y )
∧i, f!f

!
�Y )

γf−→ Hom((P1
Y )

∧i,�Y )

is the pushforward f∗ :
⊕

p∈Z K0(X)
(p)
Q → ⊕K0(Y )

(p)
Q , which is injective since

p∗f∗ = id. Thus, the right hand adjunction map γf is also injective, and it is
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sufficient to show γf ◦ βf = 0. For any i ∈ Z,

γf ◦ βf
by def.
= (f∗ ◦ (− ∪ Td(Tf )) ◦ chX)− (chY ◦f∗)
RR
= 0

∈ HomQ

(
K0(X)Q,⊕K0(Y )

(p)
Q

)

= HomQ

(
HomSH(X)Q((P

1)∧i, f∗BGLY,Q),HomSH(Y )Q((P
1)∧i,�Y )

)
.

The vanishing labeled RR is the classical Riemann-Roch theorem for f . �
2.4. Deligne cohomology.

Definition 2.6 ([GS90a, 3.1.1.]). An arithmetic ring is a datum (S,Σ,Fr∞),

where S is a ring, Σ = {σ1, . . . , σn : S → C} is a set of embeddings of S into

C and Fr∞ : CΣ → CΣ is a C-antilinear involution (called infinite Frobenius)

such that Fr∞ ◦σ = σ, where σ = (σi)i : S → CΣ. For simplicity, we suppose

that Sη := S×SpecZSpecQ is a field. If S happens to be a field itself, we refer

to it as an arithmetic field . For any scheme X over an arithmetic ring S, we

write

XC := X×S,σC
Σ

and X(C) for the associated complex-analytic space (with its classical topol-

ogy). We also write Fr∞ : XC → XC for the pullback of infinite Frobenius on

the base.

The examples to have in mind are the spectra of number rings, number

fields, R or C, equipped with the usual finite set Σ of complex embeddings

and Fr∞ : (zv)v∈Σ �→ (zv)v.

We recall the properties of Deligne cohomology that we need in the sequel.

In order to construct a spectrum representing Deligne cohomology in Section 3

we recall Burgos’ explicit complex whose cohomology groups identify with

Deligne cohomology. In the remainder of this subsection, X/S is a smooth

scheme (of finite type) over an arithmetic field.

Definition 2.7 ([Bur97, Def. 1.2, Thm. 2.6]). Let E∗(X(C)) be the following

complex:

(2.18) E∗(X(C)) := lim−→E∗
X(C)

(logD(C)),

where the colimit is over the (directed) category of smooth compactifications

X of X such that D := X\X is a divisor with normal crossings. The complex

E∗
X(C)

(logD(C)) is the complex of C∞-differential forms on X(C) that have

at most logarithmic poles along the divisor (see [Bur97] for details). We

write E∗(X) ⊂ E∗(X(C)) for the subcomplex of elements fixed under the

Fr∗∞-action. Forms in E∗(X) that are fixed under complex conjugation are
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referred to as real forms and denoted E∗
R(X). As usual, a twist is written as

E∗
R(X)(p) := (2πi)pE∗

R(X) ⊂ E∗(X). The complex E∗(X) is filtered by

F pE∗(X) :=
⊕

a≥p,a+b=∗
Ea,b(X).

Let D∗(X, p) be the complex defined by

Dn(X, p) :=

{
E2p+n−1

R (X)(p− 1) ∩
⊕

a+b=2p+n−1,a,b<p E
a,b(X), n < 0,

E2p+n
R (X)(p) ∩

⊕
a+b=2p+n,a,b≥p E

a,b(X), n ≥ 0.

The differential dD(x), x ∈ Dn(X, p), is defined as −proj(dx) (n < −1),

−2∂∂x (n = −1), and dx (n ≥ 0). Here d is the standard exterior derivative,

and proj denotes the projection onto the space of forms of the appropriate

bidegrees. We also set

D :=
⊕
p∈Z

D(p).

The pullback of differential forms turns D into complexes of presheaves on

Sm/S. Deligne cohomology (with real coefficients) of X is defined as

Hn
D(X, p) := Hn−2p(D(p)(X)).

For a scheme X over an arithmetic ring such that Xη := X×SSη is smooth

(possibly empty), we set Hn
D(X, p) := Hn

D(Xη).

Recall that a complex of presheaves X �→ F∗(X) on Sm/S is said to have

étale descent if for any X ∈ Sm/S and any étale cover f : Y → X the

canonical map

F∗(X) → Tot(F∗(. . . → Y×XY → Y ))

is a quasi-isomorphism. The right hand side is the total complex defined

by means of the direct product. (Below we apply it to F∗(X) = D(p)(X),

which is a complex bounded by the dimension of X, so that it agrees with the

total complex defined using the direct sum in this case.) The total complex is

applied to the Čech nerve. At least if F is a complex of presheaves of Q-vector

spaces, this is equivalent to the requirement that

F∗(X) → Tot(F∗(Y))

is a quasi-isomorphism for any étale hypercover Y → X. Indeed the latter is

equivalent to F∗ satisfying Galois descent (as in (2.26)) and Nisnevich descent

in the sense of hypercovers. The latter is equivalent to the one in the sense

of Čech nerves by the Morel-Voevodsky criterion (see e.g. [CD09, Theorem

3.3.2]).
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Theorem 2.8.

(i) The previous definition of Deligne cohomology agrees with the classical

one (for which see e.g. [EV88]). In particular, there is a long exact

sequence

Hn
D(X, p) → Hn(X(C),R(p))(−1)p → (Hn

dR(XC)/F
pHn

dR(XC))
Fr∞(2.19)

→ Hn+1
D (X, p)

involving Deligne cohomology, the (−1)p-eigenspace of the Fr∗∞ action

on Betti cohomology, and the Fr∞-invariant subspace of de Rham coho-

mology modulo the Hodge filtration.

(ii) The complex D(p) is homotopy invariant in the sense that the projection

map X×A1 → X induces a quasi-isomorphism D(A1×X) → D(X) for

any X ∈ Sm/S.

(iii) There is a functorial first Chern class map

(2.20) c1 : Pic(X) → H2
D(X, 1).

(iv) The complex D is a unital differential bigraded Q-algebra which is asso-

ciative and commutative up to homotopy. The product of two sections

will be denoted by a ·D b. The induced product on Deligne cohomology

agrees with the classical product ∪ on these groups [EV88, Section 3].

Moreover, for a section x ∈ D0(X) satisfying dD(x)(= dx) = 0 and any

two sections y, z ∈ D∗(X), we have

(2.21) x ·D (y ·D z) = (x ·D y) ·D z

and

(2.22) x ·D y = y ·D x.

(v) Let E be a vector bundle of rank r over X. Let p : P := P(E) → X be

the projectivization of E with tautological bundle OP (−1). Then there

is an isomorphism

(2.23) p∗(−) ∪ c1(OP (1))
∪i :

r−1⊕
i=0

Hn−2i
D (X, p− i) → Hn

D(P, p).

In particular the following Künneth-type formula holds:

(2.24) Hn
D(P

1×X, p) ∼= Hn−2
D (X, p− 1)⊕Hn

D(X, p).

(vi) The complex of presheaves D(p) satisfies étale descent.

Proof. (i) This explicit presentation of Deligne cohomology is due to

Burgos [Bur97, Prop. 1.3.]. The sequence (2.19) is a consequence of this

and the degeneration of the Hodge to de Rham spectral sequence. See e.g.

[EV88, Cor. 2.10]. (ii) follows from (2.19) and the homotopy invariance of
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Betti cohomology, de Rham cohomology, and, by functoriality of the Hodge

filtration, homotopy invariance of F pHn
dR(−). For (iii), see [BGKK07, Sec-

tion 5.1.] (or [EV88, Section 7] for the case of a proper variety). (iv) is

[Bur97, Theorem 3.3.].1

For (v), see e.g. [EV88, Prop. 8.5.].

(vi) This statement can be read off the existence of the absolute Hodge

realization functor [Hub00, Cor. 2.3.5] (and also seems to be folklore). Since

it is crucial for us in Theorem 3.6, we give a proof here. Let

D̃∗(X, p) := cone(E∗
R(X)(p)⊕ F pE∗(X)

(+1,−1)−→ E∗(X))[−1 + 2p].

By [Bur97, Theorem 2.6.], there is a natural (fairly concrete) homotopy equiv-

alence between the complexes of presheaves D̃(p) and D(p). The descent state-

ment is stable under quasi-isomorphisms of complexes of presheaves and cones

of maps of such complexes. Therefore it is sufficient to show descent for the

complexes E∗
R(−)(p), F pE∗(−), E∗(−). Taking invariants of these complexes

under the Fr∗∞-action is an exact functor, so we can disregard that operation

in the sequel. From now on, everything refers to the analytic topology; in par-

ticular we just write X for X(C), etc. Let j : X → X be an open immersion

into a smooth compactification such that D := X\X is a divisor with normal

crossings. The inclusion

Ω∗
X
(logD) ⊂ E∗

X(logD)

of holomorphic forms into C∞-forms (both with logarithmic poles) yields

quasi-isomorphisms of complexes of vector spaces

RΓRj∗C → RΓRj∗Ω
∗
X ← RΓΩ∗

X
(logD) → ΓE∗

X(logD)

that are compatible with both the real structure and the Hodge filtration

[Bur94, Theorem 2.1.], [Del71, 3.1.7, 3.1.8]. Here (R)Γ denotes the (total

derived functor of the) global section functor on X. The complex E∗(X),

whose cohomology is H∗(X,C), is known to satisfy étale descent [Hub00, Prop.

2.1.7]. This also applies to E∗
R(X)(p) instead of E∗(X). (Alternatively for the

former, see also [CD12, 3.1.3] for the étale descent of the algebraic de Rham

complex Ω∗
X .)

1Actually, the product on D(X) is commutative on the nose. We shall only use the

commutativity in the case stated in (2.22) and the associativity as in (2.21); cf. Definition
and Lemma 3.3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ARAKELOV MOTIVIC COHOMOLOGY I 735

It remains to show the descent forX �→ F pE∗(X). Consider a distinguished

square in Sm/S,

X ′ ��

��

X

��

Y ′ �� Y,

i.e., cartesian such that Y ′ → Y is an open immersion, X/Y is étale and

induces an isomorphism (X\X ′)red → (Y \Y ′)red. Then the sequence

Hn(F pE∗(Y )) → Hn(F pE∗(Y ′))⊕Hn(F pE∗(X)) → Hn(F pE∗(X ′))(2.25)

→ Hn+1(F pE∗(Y ))

is exact: firstly, the direct limit in (2.18) is exact. Moreover,

Hn(Γ(F pEX(logD))) maps injectively into Hn(X,Ω∗
X
(logD)), and the image

is precisely the p-th filtration step of the Hodge filtration on Hn(X,Ω∗
X
(logD))

= Hn(X,C). Similarly forX ′, etc., so that the exactness of (2.25) results from

the sequence featuring the Betti cohomology groups of Y , Y ′ �X and X ′, to-

gether with the strictness of the Hodge filtration [Del71, Th. 1.2.10]. This

shows Nisnevich descent for the Hodge filtration. Secondly, for any scheme

X and a Galois cover Y → X with group G, the pullback map into the

G-invariant subspace

(2.26) Hn(F pE∗(X)) → Hn(F pE∗(Y )G)

is an isomorphism. Indeed, a similar statement holds for E∗(−) instead of

F pE∗(−). We work with Q-coefficients, so taking G-invariants is an ex-

act functor; hence Hn(F pE∗(Y )G) = (Hn(F pE∗(Y )))G = (F pHn
dR(Y ))G =

F p(Hn
dR(Y )G), the last equality by functoriality of the Hodge filtration. Then,

again using the strictness of the Hodge filtration, the claim follows. Hence

the presheaf X �→ F pE∗(X) has étale descent. �

3. The Deligne cohomology spectrum

Let S be a smooth scheme (of finite type) over an arithmetic field (Defini-

tion 2.6). The aim of this section is to construct a ring spectrum in SH(S)

which represents Deligne cohomology for smooth schemes X over S. The

method is a slight variation of the method of Cisinski and Déglise used in

[CD12] to construct a spectrum for any mixed Weil cohomology, such as al-

gebraic or analytic de Rham cohomology, Betti cohomology, and (geometric)

étale cohomology. The difference compared to their setting is that the Tate

twist on Deligne cohomology groups is not an isomorphism of vector spaces.
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In this section, all complexes of (presheaves of) abelian groups are con-

sidered with homological indexing: the degree of the differential is −1, and

C[1] is the complex whose n-th group is Cn+1. As usual, any cohomological

complex is understood as a homological one by relabeling the indices. In par-

ticular, we apply this to (the restriction to Sm/S of) the complexes D(p), D

defined in Definition 2.7, and let

(3.1) Dn := D−n =
⊕
p∈Z

D−n(p).

In order to have a complex of simplicial presheaves (as opposed to a complex

of abelian groups), we use the Dold-Kan equivalence

K : Com≥0(Ab) � Δop(Ab) : N

between homological complexes concentrated in degrees ≥ 0 and simplicial

abelian groups. We write τ≥n for the good truncation of a complex.

Definition 3.1. We write

Ds := K(τ≥0D),

Ds(p) := K(τ≥0D(p)).

Via the Alexander-Whitney map, the product on D transfers to a map

(3.2) Ds(p) ∧Ds(p
′) → Ds(p+ p′).

Lemma 3.2. For X smooth over S and any k ≥ 0, p ∈ Z we have:

(3.3) HomHo•(S
k ∧X+,Ds(p)) = H2p−k

D (X, p)

and similarly for Ds.

Proof. In Hosect,• (cf. Section 2.1 for the notation), the Hom-group reads

HomHosect,•(S
k ∧X+,K(τ≥0(D))) = πkK(τ≥0(D(X)))

= Hk(τ≥0(D(X)))

=
⊕
p∈Z

H2p−k
D (X, p).

We have used the fact that any simplicial abelian group is a fibrant simplicial

set and the identification πn(A, 0) = Hn(N (A)) for any simplicial abelian

group.

The presheaf Ds is fibrant with respect to the motivic model structure,

since Deligne cohomology satisfies Nisnevich descent and is A1-invariant by

Theorem 2.8 (vi) and (ii). Thus the Hom-groups agree when taken in Hosect,•
and Ho, respectively. �
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Definition and Lemma 3.3. The Deligne cohomology spectrum HD is

the spectrum consisting of the Ds(p) (p ≥ 0), equipped with the trivial action

of the symmetric group Σp. We define the bonding maps to be the composition

σp : P1
S ∧Ds(p)

c∗∧id→ Ds(1) ∧Ds(p)
(3.2)→ Ds(p+ 1).

Here c∗ is the map induced by c := c1(OP1(1), FS) ∈ D0(1)(P1), the first

Chern form of the bundle O(1) equipped with the Fubini-Study metric. This

defines a symmetric P1-spectrum.

Define the unit map 1D : Σ∞
P1S+ → HD in degree zero by the unit of the

DGA D(0). In higher degrees, we put

(3.4) (1D)p : (P1)∧p (c∗)∧p

−→ Ds(1)
∧p μ−→ Ds(p).

Equivalently, (1D)p := σp−1 ◦ (idP1 ∧ (1D)p−1). This map and the product map

μ : HD ∧ HD → HD induced by (3.2) turn HD into a commutative monoid

object of SH(S), i.e., a commutative ring spectrum.

Proof. Recall that c is a (1, 1)-form which is invariant under Fr∗∞ and under

complex conjugation, so c is indeed an element of D0(1)(P1). Its restriction

to the point ∞ is zero for dimension reasons, so c is a pointed map (P1,∞) →
(D0(1), 0). It remains to show that the map

(P1)∧m ∧Ds(n)
id∧m−1∧c∗∧id−→ (P1)∧m−1 ∧Ds(1) ∧Ds(n)

(3.2)→ (P1)∧m−1 ∧Ds(n+ 1)

→ . . .

→ Ds(m+ n)

is Σm×Σn-equivariant, i.e., invariant under permuting the m wedge factors

P1. Given some map f : U → (P1)×m with U ∈ Sm/S, let fi : U → P1 be the

i-th projection of f and ci := f∗
i c1(OP1(1)). Given some form ω ∈ D(n)(U)∗,

we have to check that the expression

(3.5) c1 ·D (c2 ·D (. . . (cm ·D ω) . . . ))

is invariant under permutation of the ci. Here ·D stands for the product map

(3.2). This holds before applying the Dold-Kan functor K (i.e. (P1)×m×D(n)

→ D(n + m) is Σm-invariant) since the forms ci ∈ D0(1)(U) are closed, so

by Theorem 2.8(iv) the expression (3.5) is associative and commutative. The

Alexander-Whitney map is symmetric in (simplicial) degree 0, i.e. K(D(p))∧
K(D(p′)) → K(D(p)⊗D(p′)) commutes with the permutation of the two fac-

tors when restricting to elements of degree 0. Moreover, it is associative in all

degrees. As ci ∈ D0(1), the previous argument carries over to the product on

Ds(−) instead of D(−). This shows that HD is a symmetric spectrum.
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By Theorem 2.8(iv), the product on D is (graded) commutative and asso-

ciative up to homotopy; thus the diagrams checking, say, the commutativity

of HD ∧ HD → HD do hold in SH(S). The details of that verification are

omitted. �

Remark 3.4. (1) Consider the spectrum D′ obtained in the same way

as HD, but replacing Ds(p) by HD. Then the obvious map φ :⊕
p∈Z HD{p} → D′ is an isomorphism. To see that, it is enough

to check that HomSH(S)(S
n∧Σ∞

P1X+,−) yields an isomorphism when

applied to φ. By the compactness of Sn ∧ Σ∞
P1X+ in SH(S), this

Hom-group commutes with the direct sum. Then the claim is trivial.

(2) Choosing another metric λ on O(1) in the above definition, the result-

ing Deligne cohomology spectrum would be weakly equivalent to HD

since the difference of the Chern forms c1(O(1), FS)− c1(O(1), λ) lies

in the image of dD : D1(1) → D0(1); see e.g. [Jos06, Lemma 5.6.1].

Lemma 3.5. The Deligne cohomology spectrum HD is an Ω-spectrum (with

respect to smashing with P1).

Proof. We have to check that the adjoint map to σp (Definition and Lemma

3.3),

bp : Ds(p) → RHom•(P
1,Ds(p+ 1)),

is a motivic weak equivalence. As P1 is cofibrant and Ds(p+1) is fibrant, the

non-derived Hom•(P
1,Ds(p)) is fibrant and agrees with RHom•(P

1,Ds(p)).

The map is actually a sectionwise weak equivalence, i.e., an isomorphism in

Hosect,•(S). To see this, it is enough to check that the map

Ds(p)(U) → Hom•(P
1,Ds(p+ 1)(U))

is a weak equivalence of simplicial sets for all U ∈ Sm/S [MV99, 1.8., 1.10,

p. 50]. Them-th homotopy group of the left hand side is H2p−m
D (U, p) (Lemma

3.2), while πm of the right hand simplicial set identifies with those elements of

πm(Hom(P1×U,Ds(p+ 1))) = H
2(p+1)−m
D (P1×U, p+ 1) which restrict to zero

when applying the restriction to the point ∞ → P1. By the projective bundle

formula (2.24), the two terms agree. �
Theorem 3.6.

(i) The ring spectrum HD represents Deligne cohomology in SH(S): for any

smooth scheme X over S and any n, m ∈ Z we have

HomSH(S)((S
1)∧n ∧ (P1

S)
∧m ∧ Σ∞

P1X+,HD) = H−n−2m
D (X,−m).

(See Section 2.1 for the meaning of (S1)∧n, (P1
S)

∧m with negative expo-

nents.)
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(ii) The Deligne cohomology spectrum HD has a unique structure of an H�,S-

algebra, and
⊕

p∈Z HD{p} has a unique structure of a BGLS-algebra. In

particular, HD is an object in DM�(S), so that ( i) and (2.11) yield

a natural isomorphism HomDM�(S)(MS(X),HD(p)[n]) = Hn
D(X, p) for

any smooth X/S.

(iii) The map idD ∧ 1H� : HD → HD ∧H� is an isomorphism in SH(S)Q.

Definition 3.7. The maps induced by the unit of HD are denoted ρD : H� →
HD and chD : BGL →

⊕
p HD{p}, respectively.

Proof. By Lemma 3.5, HD is an Ω-spectrum. Thus (i) follows from Lemma

3.2.

(ii) By 3.3, HD is a commutative ring spectrum. Recall the definition of

étale descent for spectra and that for this it is sufficient that the individual

pieces of the spectrum have étale descent [CD09, Def. 3.2.5, Cor. 3.2.18].

Thus, HD satisfies étale descent by Theorem 2.8(vi). Moreover, HD is ori-

entable since HomSH(S)(P
∞
S ,HD{1}) = lim←−n

Hom(Pn,HD{1}) by the Milnor

short exact sequence (see e.g. [CD12, Cor. 2.2.8] for a similar situation). This

term equals H2
D(P

1, 1) by (2.23). Any object in SH(S)Q satisfying étale de-

scent is an object of DM�(S), i.e., an H�,S-module [CD09, proof of 16.2.18].

If it is in addition an orientable ring spectrum, there is a unique H�,S-algebra

structure on it [CD09, Cor. 14.2.16]. This settles the claim for HD. Secondly,

the natural map (in SH(S))

BGL → BGLQ

(2.8)∼=
⊕
p∈Z

H�{p}
ρD{p}−→

⊕
p

HD{p}

and the ring structure of⊕HD{p} defines a BGL-algebra structure on⊕HD{p}.
This uses that the isomorphism (2.8) is an isomorphism of monoid objects

[CD09, 14.2.17]. The unicity of that structure follows from the unicity of the

one on HD and HomSH(S)(BGLQ,⊕HD{p}) = HomSH(S)Q(BGLQ,⊕HD{p}),
since HD is a spectrum of R- (a fortiori: Q-) vector spaces.

(iii) follows from (ii), using [CD09, 14.2.16]. �

4. Arakelov motivic cohomology

Let S be a regular scheme of finite type over an arithmetic ring B. The

generic fiber Sη := S×ZQ → Bη := B×ZQ is smooth, since Bη is a field (by

Definition 2.6). We now define the Arakelov motivic cohomology spectrum

Ĥ�,S which glues, in a sense, the Deligne cohomology spectrum HD ∈ SH(Sη)

(Section 3) with the Beilinson motivic cohomology spectrum H�,S (2.7). Par-

allelly, we do a similar construction with BGLS instead of H�,S . Once this
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is done, the framework of the stable homotopy category and motives readily

imply the existence of functorial pullbacks and pushforwards for Arakelov mo-

tivic cohomology (Section 4.2). We also prove a higher arithmetic Riemann-

Roch theorem (Theorem 4.13) and deduce further standard properties, such

as the projective bundle formula in Section 4.4.

4.1. Definition. Recall from Section 2.1 the category Spt(S) :=

SptP
1

(ΔopPSh•(Sm/S)) with the stable model structure. The resulting ho-

motopy category is SH(S).

Definition 4.1. For any A ∈ Spt(S), we put

(4.1) Â := hofibSpt(S)

(
A ∧QR(S0)

id∧QR(1D)−→ A ∧QRη∗HD

)
∈ Spt(S).

Here, hofib stands for the homotopy fiber, 1D : S0 → HD is the unit map given

in (3.4), and Q and R are the cofibrant and fibrant replacement functors in

Spt(S). The map 1D is a map in Spt(Sη), as opposed to a map in the

homotopy category SH(Sη). Hence so is the map used in (4.1). We wrote

QR here for clarity, but drop these below, given that the fibrant-cofibrant

replacement of any spectrum is weakly equivalent to the original one.

We write [Â] for the image of Â in SH(S) (or SH(S)Q) under the localiza-

tion functor. Using the strict ring spectra H′
�,S and BGL′

S (Section 2.2), we

define the Arakelov motivic cohomology spectrum Ĥ�,S as

Ĥ�,S := [Ĥ′
�,S ] ∈ SH(S)Q

and similarly

B̂GLS := [B̂GL′] ∈ SH(S).

Theorem 4.2.

(i) Given a morphism f : A → A′ in SH, there is a canonical morphism

[f̂ ] : [Â] → [Â′] in SH which is an isomorphism if f is. In particular,

the Chern character isomorphism ch : BGLS,Q
∼=

⊕
p∈Z H�,S{p} gives

rise to an isomorphism called Arakelov Chern character,

(4.2) ĉh : B̂GLS,Q
∼= ⊕Ĥ�,S{p}

in SH(S)Q.

(ii) If A is a strict ring spectrum, then [Â] is an A-module in a canonical way.

In particular, Ĥ�,S is in DM�(S) and B̂GLS is an object of DMBGL(S).
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Proof. (i) We can represent f by a zig-zag of maps fi and define f̂ to be

the zig-zag of f̂i := hofib(fi ∧ (S0
1HD→ HD)). As any choice of the zig-zag

represents the same given map [f ] : [A] → [A′] in SH(S), the resulting map

[f̂ ] : [Â] → [Â′] is also independent of the choice of the zig-zag.

(ii) The map in (4.1) is a map of A-modules. Its homotopy fiber in the

category of A-modules is an object ÂMod ∈ A − Mod. By the Quillen ad-

junction (2.11) and [Hir03, Theorem 19.4.5], ÂMod is weakly equivalent (in

Spt) to Â. Therefore, the image of [ÂMod] in SH under the forgetful functor

Ho(A − Mod) → SH is isomorphic to [Â]; i.e., the latter is canonically an

A-module. �

Remark 4.3. (i) Theorem 4.2(i) shows that B̂GL does not depend on the

choice of the spectrum representing BGL. In a similar vein, one can

show that given a map A → A′ of strict ring spectra (respecting the ring

structure) that is also a weak equivalence, [Â] is mapped to [Â′] under

the canonical equivalence of categories − : ⊗L
AA

′ : Ho(A − Mod) →
Ho(A′ −Mod). In this sense, the BGL-module structure on B̂GL does

not depend on the choice of the strict ring spectrum. We will not use

this fact, though.

(ii) We are mainly interested in gluing motivic cohomology with Deligne

cohomology. However, nothing is special about Deligne cohomology. In

fact, given some scheme f : T → S (not necessarily of finite type) and

complexes of presheaves of Q-vector spaces D(p) on Sm/T satisfying the

conclusion of Theorem 2.8(ii), (iii), (iv), (v) (actually (2.24) suffices),

and (vi), everything could be done with f∗D(p) instead of η∗D(p).

Definition 4.4. For any M ∈ SH(S), we define

Ĥn(M) := HomSH(S)(M, B̂GLS [n]),

Ĥn(M,p) := HomSH(S)Q(MQ, Ĥ�(p)[n]).

The latter is called Arakelov motivic cohomology of M . For any finite type

scheme f : X → S, we define Arakelov motivic cohomology of X as

Ĥn(X/S, p) := HomSH(S)Q(f!f
!Σ∞

P1S0, Ĥ�,S(p)[n])

and likewise

Ĥn(X/S) := HomSH(S)(f!f
!Σ∞

P1S0, B̂GLS [n]).

Here Σ∞
P1S0 is the infinite P1-suspension of the 0-sphere, i.e., the unit of the

monoidal structure in SH. When the base S is clear from the context, we

will just write Ĥn(X, p) and Ĥn(X). See Theorem 4.13(i) for a statement

concerning the independence of the base scheme S of the groups Ĥn(X/S).
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Theorem 4.5.

(i) For any M ∈ SH(S) there are long exact sequences relating Arakelov

motivic cohomology to (usual) motivic cohomology (2.12) and, for ap-

propriate motives, Deligne cohomology (Definition 2.7):

(4.3)

. . . → Ĥn(M,p) → Hn(M,p)
ρ→ HomSH(S)(M, η∗HD(p)[n]) → Ĥn+1(M,p)

(4.4)

. . . → Ĥn(M) → Hn(M)
ch→ HomSH(S)(M,⊕η∗HD{p}[n]) → Ĥn+1(M) . . . .

The maps ρ and ch agree with the one induced by ρD and chD (Definition

3.7).

(ii) For any l.c.i. scheme X/S (Definition 2.3, for example X = S) we get

exact sequences

· · · → Ĥn(X, p) → K2p−n(X)
(p)
Q → Hn

D(X, p) → Ĥn+1(X, p) → · · · ,

(4.5) · · · → Ĥn(X) → K−n(X) →
⊕
p

H2p−n
D (X, p) → Ĥn+1(X) → · · · .

(iii) If S′ f→ S is a scheme of positive characteristic over S, the obvious map

Ĥn(f∗M,p) → Hn(f∗M,p) is an isomorphism for any M ∈ SH(S′).

(iv) There is a functorial isomorphism

(4.6) Ĥn(M) = HomDMBGL(S)(BGLS ∧M, B̂GLS),

where we view B̂GLS as a BGL-module using Theorem 4.2( ii). A similar

statement holds for H�,S . In addition, there is a canonical isomorphism

Ĥn(M,p) = Ĥn(M ∧ H�,S , p). For example, Ĥn(X, p) = Ĥn(MS(X), p)

for any X/S of finite type. For any compact object M ∈ SH(S), there

is an isomorphism called the Arakelov Chern character:

(4.7) ĉh : Ĥn(M)⊗ZQ =
⊕
p∈Z

Ĥn+2p(M,p).

Proof. The long exact sequence in (i) follows from Theorem 3.6(iii), the

projection formula H� ∧ η∗HD = η∗(H� ∧ HD), and generalities on the ho-

motopy fiber in stable model categories. Similarly, BGL ∧ HD is canonically

isomorphic, via the Chern class, to ⊕H� ∧HD{p} ∼= ⊕HD{p}. The agreement

of ρ and ρD is also clear, since the H�-module structure map H� ∧HD → HD

is inverse to 1� ∧ idD : HD → H� ∧ HD.

For (ii), we use (iv) and apply (i) to MS(X) and f!f
!BGLS , respectively

where f : X → S is the structural map. In order to identify the motivic

cohomology with the Adams eigenspace in K-theory, we use the adjunc-

tion (2.3) and the purity isomorphism for f (Example 2.4). To calculate
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Hom(f!f
!H�,S ,HD), we can replace B by the arithmetic field Bη := B×ZQ.

The scheme S is regular; thus s : S → B is smooth (of finite type). The same

is true for the structural map x : X → B. Now, combining the relative purity

isomorphisms for x and for s, we get an isomorphism

f !HD = f !s∗HD = f !s!HD{− dim s}
= x!HD{− dim s} = x∗HD{− dim s+ dimx} = f∗HD{dim f}.

We conclude

HomSH(S)(f!f
!H�,S ,HD(p)[n]) = Hom(f !H�,S , f

!HD(p)[n])

= Hom(f∗H�,S{dim f}, f∗HD(p)[n]{dim f})
= Hom(H�,X ,HD(p)[n])

3.6
= H2p−n

D (X, p).

(iii) follows from localization. The first isomorphism in (iv) follows from

(2.11). The second one uses in addition the full faithfulness of the forgetful

functor DM� → SHQ (Section 2.2). The map ĉh is induced by (4.2). �
Remark 4.6. By (4.3), each group Ĥn(M) is an extension of a Z-module by

a quotient of a finite-dimensional R-vector space by some Z-module. Both

Z-modules are conjectured to be finitely generated in case S = SpecZ and M

compact (Bass conjecture). Similarly, the groups Ĥn(M,p) are extensions of

Q-vector spaces by groups of the form Rk/some Q-subspace. In particular,

we note that the Arakelov motivic cohomology groups Ĥn(M,p) are typically

infinite-dimensional (as Q-vector spaces). However, one can redo the above

construction using the spectrum H� ⊗ R instead of H� to obtain Arakelov

motivic cohomology groups with real coefficients, Ĥn(M,R(p)). These groups

are real vector spaces of conjecturally finite dimension, with formal properties

similar to those of Ĥn(M,p), and these are the groups needed in the second

author’s conjecture on ζ and L-values [Sch13].

Remark 4.7. In [Sch12, Theorem 6.1], we show that Ĥn(X) agrees with

K̂T
−n(X) for n ≤ −1 and is a subgroup of the latter for n = 0. The group

Ĥ1(X) = coker(K0(X) → ⊕H2p
D (X, p)) is related to the Hodge conjecture,

which for any smooth projective X/C asserts the surjectivity of K0(X)Q →
H2p

D (X,Q(p)) (Deligne cohomology with rational coefficients). For n ≥ 2,

Ĥn(X) = ⊕H2p+n−1
D (X, p).

Example 4.8. We list the groups Ĥ−n := Ĥ−n(SpecOF ) of a number ring

OF . These groups and their relation to the Dedekind ζ-function are well-

known; cf. [Sou92, III.4], [Tak05, p. 623]. For any n ∈ Z, (4.5) reads

H0
D(X,n+ 1)→Ĥ−2n−1→K2n+1

ρ∗→H1
D(X,n+ 1)→Ĥ−2n→K2n

ρ∗→H0
D(X,n).
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In [Sch12, Theorem 5.7], we show that the map ρ∗ induced by the BGL-

module structure of ⊕HD{p} agrees with the Beilinson regulator. We conclude

by Borel’s work that Ĥ−2n−1 is an extension of (K2n+1)tor(= μF if n = 0) by

H0
D(X,n + 1) for n ≥ 0. Moreover, for n > 0, Ĥ−2n is an extension of the

finite group K2n by a torus, i.e., a group of the form Rsn/Zsn for some sn
that can be read off (2.19). Finally, Ĥ0 is an extension of the class group of

F by a group Rr1+r2−1/Zr1+r2−1 ⊕ R.

For higher-dimensional varieties, the situation is less well-understood. For

example, by Beilinson’s, Bloch’s, and Deninger’s work we know that

K2n+2(E)
(n+2)
R → H2

D(E, n+ 2)

is surjective for n ≥ 0, where E is a regular proper model of certain elliptic

curves over a number field (for example a curve over Q with complex mul-

tiplication in case n = 0). We refer to [Nek94, Section 8] for references and

further examples.

4.2. Functoriality. Let f : X → Y be a map of S-schemes. The struc-

tural maps of X/S and Y/S are denoted x and y, respectively. We establish

the expected functoriality properties of Arakelov motivic cohomology. To de-

fine pullback and pushforward, we apply HomDM�
(−, Ĥ�,S) to appropriate

maps, using (4.6).

Lemma 4.9. There is a functorial pullback

f∗ : Ĥn(Y, p) → Ĥn(X, p), f∗ : Ĥn(Y ) → Ĥn(X).

More generally, for any map φ : M → M ′ in SH(S) there is a functorial

pullback

φ∗ : Ĥn(M ′, p) → Ĥn(M,p), φ∗ : Ĥn(M ′) → Ĥn(M).

This pullback is compatible with the long exact sequence (4.3) and, for compact

objects M and M ′, with the Arakelov-Chern class (4.7).

Proof. The second statement is clear from the definition. The first claim

follows by applying the natural transformation

x!x
! = y!f!f

!y!
(2.3)−→ y!y

!

to BGLS or H�,S , respectively. The last statement is also clear since (2.3) is

functorial; in particular it respects the isomorphism ĉh : B̂GLQ,S
∼= ⊕Ĥ�,S{p}.

�
In the remainder of this section, we assume that f and y (hence also x) are

regular projective maps (Definition 2.3). Recall that dim f = dimX −dimY .
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Definition and Lemma 4.10. We define the pushforward

f∗ : Ĥn(X, p) → Ĥn−2 dim(f)(Y, p− dim(f))

on Arakelov motivic cohomology to be the map induced by the composition

MS(Y ) = y!y
!H�,S

(tr�y )−1

−→ y!y
∗H�,S{dim(y)}

(2.2)−→ y!f∗f
∗y∗H�,S{dim(y)}

= x!x
∗H�,S{dim(y)}

tr�x−→ x!x
!H�,S{dim(y)− dim(x)}

= MS(X){− dim(f)}.

Similarly,

f∗ : Ĥn(X) → Ĥn(Y )

is defined using the trace maps on BGL instead of the ones for H� (2.15),

(2.16).

This definition is functorial (with respect to the composition of regular pro-

jective maps).

Proof. Let g : Y → Z be a second map of S-schemes such that both g

(hence h := g ◦ f) and the structural map z : Z → S are regular projective.

The functoriality of the pushforward is implied by the fact that the following

two compositions agree (we do not write H�,−{−} or BGL− for space reasons):

z!z
! tr−1

z→ z!z
∗ → z!h∗h

∗z∗ = x!x
∗ trx→ x!x

!,

z!z
! tr−1

z→ z!z
∗ → z!g∗g

∗z∗ = y!y
∗ try→ y!y

!
tr−1

y→ y!y
∗ → y!f∗f

∗y∗ = x!x
∗ trx→ x!x

!.

This agreement is an instance of the identity adh = y∗adfy
∗ ◦ adg. �

4.3. Purity and an arithmetic Riemann-Roch theorem. In this sub-

section, we establish a purity isomorphism and a Riemann-Roch theorem for

Arakelov motivic cohomology. We cannot prove it in the expected full gener-

ality of regular projective maps, but need some smoothness assumption.

Given any closed immersion i : Z → SpecZ, we let j : U → SpecZ be

its open complement. The generic point is denoted η : SpecQ → SpecZ.

We also write i, j, η for the pullback of these maps to any scheme, e.g.

i : XZ := X×SpecZZ → X. Recall that B is an arithmetic ring whose generic

fiber Bη is a field (Definition 2.6).

Let f : X → S be a map of regular B-schemes. For clarity, we write

D(p)Xη
for the complex of presheaves on Sm/Xη that was denoted D(p)

above and HD,Xη
for the resulting spectrum. Moreover, we write HD,X :=

η∗HD,Xη
∈ SH(X). The complex D(p)Xη

is the restriction of the complex
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D(p)Bη
. Therefore, there is a natural map f∗D(p)S → D(p)X , which in turn

gives rise to a map of spectra

αf
D : f∗HD,S → HD,X .

This map is an isomorphism if f is smooth, since f∗ : PSh(Sm/S) →
PSh(Sm/X) is just the restriction in this case. Is αf

D an isomorphism for

a closed immersion f between flat regular B-schemes? The corresponding

fact for BGL, i.e., the isomorphism f∗BGLS = BGLX , ultimately relies on

the fact that algebraic K-theory of smooth schemes over S is represented in

SH(S) by the infinite Grassmannian, which is a smooth scheme over S. There-

fore, it would be interesting to have a geometric description of the spectrum

representing Deligne cohomology, as opposed to the merely cohomological

representation given by the complexes D(p).

Lemma 4.11.

(i) Given another map g : Y → X of regular B-schemes, there is a natural

isomorphism of functors αg
D ◦ g∗αf

D = αf◦g
D .

(ii) The following are equivalent:

• αf
D is an isomorphism in SH(X).

• For any i : Z → SpecZ, the object i!f∗HD,S is zero in SH(X×ZZ).

• For any sufficiently small j : U → SpecZ, the adjunction morphism

f∗HD,S → j∗j
∗f∗HD,S is an isomorphism in SH(X).

(iii) The conditions in ( ii) are satisfied if f fits into a diagram

X

f

��

x �� B′ �� B

S

s

����������

where B′ is regular and of finite type over B, x and s are smooth. In

particular, this applies when f is smooth or when both X and S are

smooth over B.

Proof. (i) is easy to verify using the definition of the pullback functor.

(iii) is a consequence of the above remark and (i) using the chain of natural

isomorphisms f∗HD,S = f∗s∗HD,B′ = x∗HD,B′ = HD,X . For (ii), consider the

map of distinguished localization triangles:

i∗i
!f∗HD,S

��

��

f∗HD,S
��

αf
D

��

j∗j
∗f∗HD,S

j∗j
∗αf

D=j∗α
fU
D

��

0 = i∗i
!HD,X

�� HD,X
�� j∗j

∗HD,X .
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The map αfU
D is an isomorphism as soon as j is small enough so that XU and

SU are smooth over BU . Such a j exists by the regularity of X and S. This

shows the equivalence of the three statements in (ii). �
Below, we write � :=

⊕
p∈Z H�{p} and �̂X := hofib(�X → �X ∧ HD,X).

We define

f?B̂GLS := hofib(f !BGLS
id∧1−→ f !BGLS ∧ f∗HD,S)

and similarly for f?
�̂S . (The notation is not meant to suggest a functor

f?; it is just shorthand.) The Chern class ch : BGLS → �S induces a map

f?ĉh : f?B̂GLS → f?
�̂S .

Theorem 4.12. Let f : X → S be a regular projective map (Definition

2.3) such that αf
D is an isomorphism. (In particular (Lemma 4.11 ( iii)) this

applies when B is a field or when X and S are smooth over B or when f is

smooth.) Then there is a commutative diagram in SH(X)Q as follows. Its top

row horizontal maps are BGLX -linear (i.e., induced by maps in DMBGL(X)),

and the bottom horizontal maps are �X -linear. All maps in this diagram are

isomorphisms (in SH(X)Q).

(4.8) B̂GLX

̂chX

��

f∗B̂GLS
α̂��

f∗
̂chS

��

t̂rBGL �� f?B̂GLS

f?
̂chS

��

β
�� f !B̂GLS

f !
̂chS

��

�̂X f∗
�̂S

α̂
��

T̂d(Tf )

�� f∗
�̂S

̂tr�

�� f?
�̂S

β
�� f !
�̂S .

Proof. To define the maps α̂ in (4.8), we don’t make use of the assumption

on αf
D. Pick fibrant-cofibrant representatives of BGL and H�, and HD. Thus,

in the following diagram of spectra, f∗ and ∧ are the usual, non-derived

functors for spectra:

f∗BGLS

f∗(id∧1D)

��

f∗BGLS

αf
BGL ��

id∧f∗1D

��

BGLX

id∧1D

��

f∗(BGLS ∧ HD,S) f∗BGLS ∧ f∗HD,S
��

αf
BGL∧αf

D�� BGLX ∧HD,X .

As f∗ is a monoidal functor (on the level of spectra), the canonical lower

left hand map is an isomorphism of spectra and the left square commutes.

The right square commutes because of αf
D(f

∗1D) = 1D. This diagram in-

duces a map between the homotopy fibers of the two vertical maps, which

are f∗B̂GLS and B̂GLX , respectively. This is the map α̂ above. The one for

�̂ is constructed the same way by replacing BGL by � throughout. Using

f∗ chS = chX , this shows the commutativity of the left hand square in (4.8).
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By definition of BGL, αf
BGL : f∗BGLS → BGLX is a weak equivalence. Thus,

both maps α̂ are isomorphisms in SH(X) when αf
D is so. They are clearly

BGLX - and �X -linear, respectively.

The horizontal maps in the middle quadrangle are defined as in Theo-

rem 4.2(i): for example, the map trBGL : f∗BGL → f !BGL gives rise to

t̂rBGL : f∗B̂GLS → f?B̂GLS . It is BGLX -linear since trBGL is so. Similarly,

we define T̂d(Tf ) (viewing Td(Tf ) as a (�X -linear) map f∗
�S → f∗

�S) and

t̂r�. Picking representatives of all maps, the quadrangle will in general not

commute in the category of spectra, but does so up to homotopy, by con-

struction and by the Riemann-Roch Theorem 2.5. This settles the middle

rectangle.

By the regularity of X and S, we can choose j : U ⊂ SpecZ such that XU

and SU are smooth over BU . We will also write j for XU → X, etc.

By assumption, αf
D is an isomorphism. Hence, the adjunction map f !BGL∧

f∗HD → j∗j
∗(f !BGL ∧ f∗HD) is an isomorphism in SH. In fact, both

terms are isomorphic in SH to
⊕

p HD{p}, as one checks for example us-

ing the purity isomorphism f !BGLS
∼= f∗BGLS = BGLX . Thus, f?B̂GL

is canonically isomorphic to the homotopy fiber of f !BGL → j∗j
∗f !BGL →

j∗j
∗(f !BGL ∧ f∗HD) = j∗(j

∗f !BGL ∧ j∗f∗HD). Here, the last equality is a

canonical isomorphism on the level of spectra, since j∗ is just the restriction.

By definition, j∗f ! = j!f !. We may therefore replace f by fU . Now, f !
UM is

functorially isomorphic (in SH) to f∗
UM{n}, n := dim fU , by construction of

the relative purity isomorphism by Ayoub [Ayo07, Section 1.6]. Indeed, a is

a closed immersion, and p and every map in the diagram with codomain BU

are smooth:

XU a
��

fU
��

		






















 Pn

SU



�
��

��
��

� p
�� SU

��

BU .

Hence to construct β, it is enough to construct a commutative diagram of

spectra:

f∗
UBGLSU

{n}

id∧1D

��

f∗
UBGLSU

{n}

f∗(id∧1D)

��

f∗
UBGLSU

{n} ∧ f∗
UHD,SU

γ
�� f∗

U (BGLSU
∧ HD,SU

){n}.

The map γ is the natural map of spectra f∗
Ux∧f∗

Uy → f∗
U (x∧y), which clearly

makes the diagram commute in the category of spectra. We have constructed
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a map (in SH) β : f?B̂GL → f !B̂GL in a way that is functorial with respect

to (a lift to the category of spectra of) the map ch : BGL → �. Therefore,

the analogous construction for �̂ produces the desired commutative square

of isomorphisms (in SH). Again, the top row map β is BGL-linear and the

bottom one is �X -linear.

Finally, the vertical maps in (4.8) are isomorphisms using the Arakelov

Chern character (4.2). �
We can now conclude a higher arithmetic Riemann-Roch theorem. It con-

trols the failure of ĉh to commute with the pushforward.

Theorem 4.13. Let f : X → S be a regular projective map (Definition

2.3) of schemes of finite type over an arithmetic ring B (Definition 2.6).

Moreover, we assume that f is such that

αf
D : f∗HD,S → HD,X

is an isomorphism. This condition is satisfied, for example, when f is smooth

or when X and S are smooth over B (Lemma 4.11). Then, the following hold:

(i) (Purity) The absolute purity isomorphisms for BGL and H� (2.14) in-

duce isomorphisms (of BGLX- and H�X -modules, respectively):

B̂GLX
∼= f∗B̂GLS

∼= f !B̂GLS , Ĥ�X
∼= f∗Ĥ�S

∼= f !Ĥ�S{− dim f}.
In particular, Arakelov motivic cohomology is independent of the base

scheme in the sense that there are isomorphisms

Ĥn(X/S) ∼= Ĥn(X/X), Ĥn(X/S, p) ∼= Ĥn(X/X, p).

(ii) (Higher arithmetic Riemann-Roch theorem) There is a commutative

diagram

Ĥn(X/X)
f∗

��

̂chX

��

Ĥn(S/S)

̂chS

��⊕
p∈Z Ĥ

n+2p(X, p)
f∗◦̂Td(Tf )

��
⊕

p∈Z Ĥ
n+2p(S, p).

Here, the top line map f∗ is given by

Ĥn(X/X) := HomSH(X)(S
−n, B̂GLX)

(4.8)→ HomSH(X)(S
−n, f !B̂GLS)

(2.2)→ HomSH(S)(S
−n, B̂GLS) = Ĥn(S/S).

Using the identifications Ĥn(X/X) ∼= Ĥn(X/S), this map agrees with

the one defined in Lemma 4.10. The bottom map f∗ is given similarly

replacing BGL with �.
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Proof. The isomorphisms for B̂GL? in (i) are a restatement of Theorem

4.12. The ones for Ĥ�? also follow from that by dropping the isomorphism

T̂d(Tf ) in the bottom row of (4.8) and noting that tr�, hence t̂r�, shifts the

degree by dim f . The isomorphisms in the second statement are given by the

following identifications of morphisms in DMBGL(−), using (4.6):

Hom(BGLX , B̂GLX)
4.12−→ Hom(BGLX , f !B̂GLS)

(trBGL)
−1

−→ Hom(f !BGLS , f
!B̂GLS)

= Hom(f!f
!BGLS , B̂GLS)

and likewise for H�.

(ii) is an immediate corollary of Theorem 4.12, given that the two isomor-

phisms (in SH(X)Q) T̂d(Tf ) ◦ α̂−1 and α̂−1 ◦ T̂d(Tf ), where Td(Tf ) is seen

as an endomorphism of f∗
�S and of �X , respectively, agree. This agreement

follows from the definition of α̂. The agreement of the two definitions of f∗ is

clear from the definition. �
This also elucidates the behavior of (4.5) with respect to pushforward:

in the situation of the theorem, the pushforward f∗ : Ĥn(X) → Ĥn(S) sits

between the usual K-theoretic pushforward and the pushforward on Deligne

cohomology (which is given by integration of differential forms along the fibers

in case f(C) is smooth, and by pushing down currents in general), multiplied

by the Todd class (in Deligne cohomology) of the relative tangent bundle.

4.4. Further properties.

Theorem 4.14.

(i) Arakelov motivic cohomology satisfies h-descent (thus, a fortiori, Nis-

nevich, étale, cdh, qfh and proper descent). For example, there is an

exact sequence

. . . → Ĥn(X, p) → Ĥn(U � V, p) → Ĥn(W, p) → Ĥn+1(X, p) → . . .

where

W ��

��

V

p

��

U
f

�� X

is a cartesian square of smooth schemes over S that is either a distin-

guished square for the cdh-topology (f is a closed immersion, p is proper

such that p is an isomorphism over X\U) or a distinguished square for

the Nisnevich topology (f an open immersion, p étale inducing an iso-

morphism (p−1(X\U)red → (X\U)red)) or such that U � V → X is an

open cover.
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(ii) Arakelov motivic cohomology is homotopy invariant and satisfies a pro-

jective bundle formula:

Ĥn(X×A1, p) ∼= Ĥn(X, p),

Ĥn(P(E), p) ∼=
d⊕

i=0

Ĥn−2i(X, p− i).

Here X/S is arbitrary (of finite type), E → X is a vector bundle of rank

d+ 1, and P(E) is its projectivization.

(iii) Any distinguished triangle of motives induces long exact sequences of

Arakelov motivic cohomology. For example, let X/S be an l.c.i. scheme

(Example 2.4). Let i : Z ⊂ X be a closed immersion of regular schemes

of constant codimension c with open complement j : U ⊂ X. Then there

is an exact sequence

Ĥn−2c(Z, p− c)
i∗→ Ĥn(X, p)

j∗→ Ĥn(U, p) → Ĥn+1−2c(Z, p− c).

(iv) The cdh-descent and the properties ( ii), ( iii) hold mutatis mutandis for

Ĥ∗(−).

Proof. The h-descent is a general property of modules over H�,S [CD09,

Thm 16.1.3]. The A1-invariance and the bundle formula are immediate from

M(X) ∼= M(X×A1) and M(P(E)) ∼=
⊕d

i=0 M(X){i}. For the last statement,

we use the localization exact triangle [CD09, 2.3.5] for U
j→ X

i← Z:

f!j!j
!f !H�,S → f!f

!H�,S → f!i∗i
∗f !H�,S .

The purity isomorphism f∗H�,S{dim f} = f !H�,S (Example 2.4) for the struc-

tural map f : X → S and the absolute purity isomorphism (2.14) for i imply

that the rightmost term is isomorphic to f!i!i
!f !H�,S{− dim i} = MS(Z){−c}.

Mapping this triangle into Ĥ�,S(p)[n] gives the desired long exact sequence.

The arguments for B̂GLS are the same. The only difference is that descent

for topologies exceeding the cdh-topology requires rational coefficients. �
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