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Admissibility and rectification of colored symmetric operads

Dmitri Pavlov and Jakob Scholbach

Abstract

We establish a highly flexible condition that guarantees that all colored symmetric operads
in a symmetric monoidal model category are admissible, that is, the category of algebras
over any operad admits a model structure transferred from the original model category. We
also give a necessary and sufficient criterion that ensures that a given weak equivalence of
admissible operads admits rectification, that is, the corresponding Quillen adjunction between
the categories of algebras is a Quillen equivalence. In addition, we show that Quillen equivalences
of underlying symmetric monoidal model categories yield Quillen equivalences of model categories
of algebras over operads. Applications of these results include enriched categories, colored
operads, prefactorization algebras, and commutative symmetric ring spectra.
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1. Introduction

This paper is devoted to the model-categorical study of operads and their algebras. The concept
of an algebra over a colored symmetric operad allows for a uniform treatment of algebraic
structures that produce an output from multiple inputs, subject to some symmetry constraints.
For example, a commutative monoid X in a symmetric monoidal category C is specified by
Σn-equivariant maps X⊗n → X, subject to the usual associativity and unitality constraints.
In a seemingly artificial way, this can be rewritten as

Commn ⊗Σn
X⊗n → X,

where Comm is the so-called commutative operad, which satisfies Commn = 1, the monoidal
unit. More generally, an algebra of a single-colored operad O is an object A ∈ C together with
maps

On ⊗Σn
A⊗n → A,

which are compatible with the multiplication in O in a suitable sense. Colored symmetric
operads, also known as symmetric multicategories, are a many-objects version of ordinary

Received 23 January 2016; revised 5 December 2016; published online 12 June 2018.

2010 Mathematics Subject Classification 55P48, 18D50, 18G55, 55U35 (primary), 55P43, 18D20 (secondary).

This work was partially supported by the SFB 878 grant.



560 DMITRI PAVLOV AND JAKOB SCHOLBACH

operads. They allow input from more than one object. For example, there is a two-colored
operad whose algebras are pairs (R,M), where R is a commutative monoid in C and M is an
R-module. Interestingly, operads themselves are algebras over a certain operad.

Symmetric operads and their algebras, which were first introduced by May, are ubiquitous in
homotopy theory and beyond. A prototypical example is the m-fold loop space ΩmX of some
topological space X: concatenation of paths yields a multiplication map

μn : (ΩmX)n → ΩmX,

which is neither associative nor commutative, but only associative and commutative up to
homotopy. This and the compatibility of these homotopies for various n is concisely encoded in
the fact that ΩmX is an algebra over some operad O, meaning that there are maps (for all n,
and compatible with each other):

On ×Σn
(ΩmX)n → ΩmX.

If On was just a point, then this would mean that the multiplication on ΩmX is strictly
commutative and associative, which it is not. However, O can be chosen to be the little disks
operad Em. For m = ∞ these levels On are contractible spaces, which can be interpreted
as saying that infinite loop spaces are homotopy coherent commutative monoids. Recently,
En-algebras have been attracting a lot of attention in questions related to factorization
homology (also known as topological chiral homology) and Goodwillie calculus of functors.

Our first main theorem is a highly flexible existence criterion for a model structure on algebras
over operads in a model category. This is a powerful tool for homotopical computations related
to algebras over operads, such as the loop space.

Theorem 1.1 (see Theorems 5.11, 6.3, 6.7). Suppose that C is a symmetric monoidal model
category that is symmetric h-monoidal and satisfies some minor technical assumptions. Then
any symmetric W -colored operad O is admissible, that is, the category AlgO(C) of O-algebras
carries a model structure whose weak equivalences and fibrations are inherited from C.

The forgetful functor AlgO(C) → CW preserves cofibrant objects and cofibrations between
them if C is symmetroidal and O is weakly well-pointed (essentially, this means O is levelwise
injectively cofibrant). Alternatively, the same statement is true if O is well-pointed (essentially,
O is levelwise projectively cofibrant).

This admissibility result is widely applicable because its assumptions are satisfied for many
basic model categories such as simplicial sets, topological spaces, simplicial presheaves, chain
complexes of rational vector spaces. It does not apply to chain complexes of abelian groups, and
in fact the commutative operad is provably not admissible in this category. Moreover, as was
shown in [45], symmetric h-monoidality (and similarly with symmetroidality and symmetric
flatness) are stable under transfer and monoidal left Bousfield localizations, which allows to
easily promote these properties from basic model categories to more advanced model categories,
such as spectra. The latter are shown in [44] to be symmetric h-monoidal, symmetroidal, and
symmetric flat.

The key condition of symmetric h-monoidality is a symmetric strengthening of the h-
monoidality condition. The latter was introduced by Batanin and Berger in [5] and is closely
related to the monoid axiom. Essentially, it means that for any object Y in ΣnC (objects of C
with a Σn-action) and any cofibration f , the map

Y ⊗Σn
s�n := (Y ⊗ s�n)Σn

is an h-cofibration, which is a weak equivalence if f is an acyclic cofibration. Here f�n is the
n-fold pushout product of f . Symmetroidality is a related condition, obtained by replacing
‘h-cofibration’ above by ‘cofibration’ and Y ⊗− by y � − for some map y.
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In practice, a frequent question is how to replace algebras over some operad by those over
a weakly equivalent operad. A common class of (weakly equivalent) operads is defined by the
condition that On is a contractible space and has a free Σn-action. Such operads are referred to
as E∞-operads, and many variants of little disks operads are of this type. One can therefore ask
whether Ω∞X, together with the multiplications μn, is weakly equivalent to some space with
a strictly commutative and associative multiplication. In this example, it is well known that
connected E∞-spaces with nontrivial Postnikov invariants, for example, the identity component
of the space Ω∞Σ∞S0, cannot be strictified to a simplicial abelian group. Indeed by a classical
result of Moore [39, Theorem 3.29], connected simplicial abelian groups have trivial Postnikov
invariants.

The following rectification theorem identifies a criterion when a rectification of operadic
algebras is possible.

Theorem 1.2 (see Theorem 7.5). For any map of admissible operads O → P in a symmetric
monoidal model category, there is a Quillen adjunction

AlgO(C) � AlgP (C).

Provided that C satisfies some minor technical assumptions, it is a Quillen equivalence if and
only if O → P is a symmetric flat map in C.

The symmetric flatness condition essentially requires that the map

On ⊗Σn
X⊗n → Pn ⊗Σn

X⊗n

is a weak equivalence for all cofibrant objects X and all n � 0. If C is the model category of
rational chain complexes, this condition holds for all weak equivalences O → P . In [44], we
show that the same is true for symmetric spectra in an abstract model category. However, this
condition does not hold for all maps in simplicial sets, in particular, it fails for the components
of E∞ → Comm. This matches the above observation of the nonrectifiability of E∞-algebras to
strictly commutative simplicial monoids. Nevertheless, it is satisfied for any pair of E∞ operads
in simplicial sets, which shows that the algebras over such operads are all Quillen equivalent
to each other.

As a consequence of this rectification result, we obtain Theorem 7.11, which relates algebras
over operads in the strict sense, as above, and algebras over quasicategorical operads as
introduced by Lurie.

Operads and their algebras in different model categories also behave as nicely as possible.
Such a result allows to replace C by a more convenient model category, which is often necessary
in practice.

Theorem 1.3 (see Theorem 8.10). For any Quillen equivalence

F : C � D : G

between symmetric monoidal model categories as above, where F is symmetric oplax monoidal
such that the canonical maps FQ(1C) → 1D and F (C ⊗ C ′) → F (C) ⊗ F (C ′) are weak
equivalences for all cofibrant objects C,C ′ ∈ C, there is a Quillen equivalence of the categories
of W -colored (symmetric) operads

F (s)Oper : (s)Oper(C) � (s)Oper(C′) : G.

Moreover, there is a Quillen equivalence for any cofibrant (symmetric) operad O,

FAlg : AlgO(C) � AlgF (s)Oper(O)(D) : G.
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The admissibility and rectification of nonsymmetric and symmetric operads is a topic
that was addressed by various authors. Spitzweck has shown the existence of a semi-model
structure for special symmetric operads, namely those whose underlying symmetric sequence is
projectively cofibrant (which roughly means that Σn acts freely on On) [52, Theorem 4.7]. This
rules out the commutative operad, whose algebras are commutative monoids. The admissibility
of the commutative operad was shown by Lurie under the assumption of symmetroidality of the
commutative operad (see [37, Lemma 4.5.4.11(1) and Proposition 4.5.4.6]). An independent
account of this result was later given by White [56, Theorem 3.2]. The admissibility of all
operads was shown by Elmendorf and Mandell for C = sSet [17, Theorem 1.3], Berger and
Moerdijk [6], and Caviglia [14] for colored operads. The latter two results use an assumption
on the path object, which serves to cut short a certain homotopical analysis of pushouts
performed in this paper. The path object argument was also used by Johnson and Yau to
establish a model structure on colored PROPs [31]. PROPs are more general than symmetric
operads in that not only multiple inputs, but also multiple outputs are allowed. Harper showed
the admissibility of all symmetric operads in simplicial symmetric spectra [22]. This was
generalized by Hornbostel to spectra in simplicial presheaves [29]. Finally, Muro has shown
the admissibility of all nonsymmetric operads [40, 43]. A more detailed review of these results
is found in § 5.

Harper also established a rectification result under the assumption that every symmetric
sequence is projectively cofibrant [23, Theorem 1.4]. This strong assumption applies to
categories such as rational chain complexes. In this case, rectification is due to Hinich [26]. Lurie
[37] established rectification of E∞-algebras in the context of ∞-operads, again under a strong
assumption that only applies to special model categories such as rational chain complexes.
These and further results are reviewed in § 7.

Thus, all previous results have either restrictions on the operad and/or on the category in
which the operad lives. Our results are applicable to all operads and to a very broad range of
model categories. This wide applicability results from the fact that conditions of symmetric h-
monoidality, symmetroidality, and symmetric flatness occurring above are stable under transfer
and monoidal left Bousfield localization. Thus, they are easily promoted from simplicial sets
to simplicial presheaves, say.

In § 2, we recall the symmetricity properties introduced in [45]: symmetric h-monoidality,
symmetroidality, and symmetric flatness, and a few other basic notions on model categories. As
was shown in [45, 5.7, 5.8, 6.4, 6.5], these properties are stable transfer and monoidal Bousfield
localizations. Given that these two methods are the most commonly used tools to construct
model structures, the admissibility and rectification results in this paper are applicable to a
wide range of model categories.

In § 3, we start with a brief review of colored symmetric collections and the substitution
product. Symmetric operads are defined as monoids in this category sCollW (C). In § 5, we
show that symmetric h-monoidality is the key condition needed to ensure the admissibility
of arbitrary symmetric operads O, that is, the existence of the transferred model structure
on O-algebras. In § 6, we show that symmetroidality is needed to additionally guarantee the
strong admissibility of O, that is, the functor forgetting the O-algebra structure preserves
cofibrations with cofibrant source. In § 7, we show the rectification of algebras of weakly
equivalent symmetric operads. In § 8, we establish Quillen equivalences of operads and their
algebras in different model categories.

We obtain the above-mentioned theorems by systematically using the symmetricity prop-
erties above combined with Berger–Moerdijk and Spitzweck’s description of certain pushouts
of operads [9, 52]. In § 9, we finish this paper with examples and applications ranging from
low-dimensional category theory to prefactorization algebras.
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2. Symmetricity properties

Let C be a symmetric monoidal model category in the sense of [30, Definitions 4.1.6, 4.2.6],
except that we do not require the unit axiom. In this section, we briefly recall the symmetricity
properties from [45, § 4], which are the key conditions in the admissibility, strong admissibility,
and rectification results of this paper (see Theorems 5.11, 6.7, 7.5).

We use the notation of [45, especially § 3.1, Definition 4.2.1]. In particular, in the definitions
below, n = (n1, . . . , ne) is an arbitrary finite multi-index. For a family s = (s1, . . . , se) of maps
in C, Σn :=

∏
i Σni

acts on the pushout product s�n := �i
s�ni
i . A subscript Σn denotes the

coinvariants of the Σn-action, such as −⊗Σn
−.

The concept of h-monoidality in Part (iii) is due to Batanin and Berger [5, Definition 1.7].
Recall from the same work that an h-cofibration f : X → Y is a map such that in any pushout
diagram

the map g′ is a weak equivalence if g is one. If, in addition, f is a weak equivalence, it is an
acyclic h-cofibration.

Definition 2.1. Suppose C is a symmetric monoidal model category.

(i) C is admissibly generated if it is cofibrantly generated and if the (co)domains of a set
I of generating cofibrations (equivalently, by [28, Corollary 10.4.9], all cofibrant objects) are
small with respect to the subcategory

cell(Y ⊗Σn
s�n) (2.2)

for any finite family s of cofibrations, and any object Y ∈ ΣnC. As usual, cell denotes the
closure of a class of maps under pushouts and transfinite composition.

(ii) C is strongly admissibly generated if it is cofibrantly generated and if (co)dom(I) are
(ℵ0-)compact (also known as finite) relative to (2.2) [28, Definition 10.8.1].

(iii) C is h-monoidal if the map Y ⊗ s is an (acyclic) h-cofibration for any (acyclic)
cofibration s, and any object Y ∈ C.

(iv) C is symmetric h-monoidal if Y ⊗Σn
s�n is an (acyclic) h-cofibration for any finite

family s of (acyclic) cofibrations, and any Y ∈ ΣnC.
(v) Let Y = (Yn)n�1 be a collection of classes Yn of morphisms in ΣnC, where n � 1 is any

finite multi-index. We suppose that for y ∈ Yn, y � − preserves injective (acyclic) cofibrations
in ΣnC, that is, those maps that are (acyclic) cofibrations in C. Then C is Y-symmetroidal if
the morphism

y �Σn
s�n

is an (acyclic) cofibration in C for all finite families s of (acyclic) cofibrations and all maps
y ∈ Yn. If Yn = CΣin

n C (injective cofibrations), we say that C is (acyclic) symmetroidal.
(vi) A weak equivalence y is flat if y � s is a weak equivalence in C for any cofibration s.

C is flat if all weak equivalences are flat.
(vii) A weak equivalence y ∈ ΣnC is called symmetric flat if y �Σn

s�n is a weak equivalence
(in C) for any family s of cofibrations. We say that C is symmetric flat if all weak equivalences
in ΣnC are so.

These conditions are usually stable under weak saturation (that is, saturation under
pushouts, transfinite compositions, and retracts). Thus, they only have to be checked for
generating (acyclic) cofibrations s. Simplicial sets with their standard model structure are
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symmetroidal, symmetric h-monoidal, and flat (but not symmetric flat). The same is true for
simplicial presheaves with the projective, injective, or local (with respect to some topology)
model structures, and also for simplicial modules.

For any commutative ring R, chain complexes of R-modules with their projective model
structure are flat and h-monoidal. They are symmetroidal, symmetric h-monoidal, and
symmetric flat if and only if R contains Q.

The admissible generation is automatic if C is combinatorial [36, Definition A.2.6.1]. More-
over, topological spaces are admissibly generated, symmetric h-monoidal, and symmetroidal.

To check symmetricity properties of more involved model categories, one can use the fact that
the properties above are stable under transfer (appropriately compatible with the monoidal
structure), and monoidal Bousfield localizations. Combining these principles, we show in
[44, § 3.5] that spectra with values in a flat, h-monoidal (but not necessarily symmetric flat nor
symmetric h-monoidal) category C, with the positive stable model structure, are symmetric
flat, symmetroidal, and symmetric h-monoidal. In particular, this allows to replace C by a
Quillen equivalent symmetric flat and symmetric h-monoidal model category.

The reader is referred to [45, Theorems 4.3.8, 5.8, 6.5, § 7] for precise statements of the above
facts and further examples.

Many results below include a condition that weak equivalences in C are stable under
transfinite compositions or filtered colimits. This condition is satisfied if C is cofibrantly
generated and its generating cofibrations I have compact domain and codomain or, slightly
more generally, if C is pretty small in the sense of [45, Definition 2.1]. This condition is satisfied
for sSet, Ch(ModR), and many other basic model categories, but not for Top. However, Top
is strongly admissibly generated, which is enough to conclude that the filtered colimits of
the weak equivalences that actually occur (as a result of a cellular presentation of cofibrant
objects) are indeed again weak equivalences. We call C tractable if its (acyclic) cofibrations are
contained in the weak saturation of (acyclic) cofibrations with cofibrant source (and target).
This condition was introduced by Barwick [4, Definition 1.21], who also includes the condition
that C be combinatorial. Again, this holds for sSet, Top, Ch(ModR). All three conditions
are stable under monoidal Bousfield localizations and transfer, turning them into viable and
effectively checkable conditions.

3. Colored collections

In § 3–4, let C be a closed symmetric monoidal category. In this section, we give a very brief
overview of W -colored (symmetric) operads and colored modules over them (for example,
algebras over operads). The reader can consult Gambino and Joyal [19] for more details.
Constructions in this section involve a set W , whose elements are called colors. The reader
may assume that W has exactly one element, which yields ordinary operads.
W -colored symmetric operads in C are defined as monoids in a certain monoidal cate-

gory (sCollW (C), ◦) and V -colored modules over a given W -colored (symmetric) operad O
are defined as left modules over O in the category (sCollV,W (C), ◦), which itself is a left
module over the monoidal category (sCollW (C), ◦). The idea behind (sCollW (C), ◦) is that an
object in sCollW (C) encodes all possible operations, whereas the monoid structure encodes
the composition of operations. Operations have a multisource, consisting of a finite family of
colors, and a target, which is a single color. Furthermore, for any operation we can permute
elements in its source and obtain another operation. Operations with a fixed multisource and
target form an object of sCollW (C). Likewise, an object in sCollV,W (C) encodes operands
that can be acted upon from the left by operations in a W -colored operad and the left module
structure encodes these actions. The operands are encoded by a V -valued multisource and a
target in W . Thus, the data of all operations can be encoded as a C-valued presheaf on a certain
groupoid sSeqW or sSeqV,W , which we define first.
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We simultaneously treat symmetric and nonsymmetric W -colored operads with values in a
symmetric monoidal category C, indicating the modifications necessary for the symmetric case
in parentheses. That is, we write (s)Oper to mean either sOper (symmetric operads) or Oper
(nonsymmetric operads) and likewise for other notations.

Definition 3.1. Given two sets V , W , define the groupoid of (symmetric) V,W -sequences
as

(s)SeqV,W := (s)Seq×
V ×W,

where W denotes a category with objects W and identities as morphisms and (s)Seq×
V is the

category of functions s : I → V , where I is a finite ordered set (respectively, finite unordered
set, in the symmetric case) set and morphisms s → s′ are isomorphisms of ordered (respectively,
unordered) sets f : I → I ′ such that s = s′f . We abbreviate (s)SeqW := (s)SeqW,W .

The idea is that an object (s, t) in (s)Seq×
W ×W encodes multisource s and target t ∈ W .

Morphisms in sSeq×
W account for the fact that one can permute sources in the symmetric case.

In the nonsymmetric variant Seqs
W , no permutation of multisources is allowed. If W = {∗},

then (s)SeqW is the category N of finite ordered sets and identity morphisms (respectively,
the category Σ of symmetric sequences, that is, finite sets and bijections). Their objects can be
interpreted as arities. For some s : I → W , we write Σs := Aut(s)Seq×

W
(s). In the nonsymmetric

case, this group is trivial. In the symmetric case, there is an isomorphism

Σs =
∏

w∈W

Σs−1(w). (3.2)

For example, if W = {∗}, then Σs = Σ�I .
Given a (symmetric) sequence X ∈ (s)SeqW , we write X0 ∈ CW for the restriction to objects

with empty multisource, that is, s : ∅ → W . We refer to this by saying that X0 is concentrated
in degree 0. We refer to the Xs,w with s : I → W satisfying �I = 1, s(i) = w as the unit degrees
and will write Xw,w in this case. The remaining components are called the nonunit degrees.

Definition 3.3. Given symmetric monoidal categories V and C such that C is enriched
over V, for a given pair of sets V and W define the categories

(s)CollV,W (C) := Fun((s)Seqop
V,W , C),

where Fun denotes the V-enriched category of functors. Set

(s)CollW (C) = (s)CollW,W (C),

which we call the category of W -colored (symmetric) collections in C. The category (s)CollW (C)
is a monoidal category and the category (s)CollV,W (C) is a left module over (s)CollW (C) via
the substitution product

◦ : (s)CollV,W (C) × (s)CollU,V (C) → (s)CollU,W (C). (3.4)

The substitution product of F ∈ sCollV,W (C) and G ∈ sCollU,V (C) can be computed as the
left Kan extension
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where TU,V,W is the category whose objects are quadruples (u : I → U, v : J → V,w : 1 → W,
f : I → J), where I and J are finite sets, and morphisms are commutative diagrams

where i and j are isomorphisms and w = w′. The functor F ∗G sends an object (u, v, w, f)
to F (v, w) ⊗⊗

p∈J G(u|f−1(p), p) and a morphism (i, j) to the isomorphism F (j) ⊗⊗
p∈J G(i|f−1(p)).
The monoidal unit of (s)CollW is the W -colored collection that assigns the monoidal unit

1 ∈ C to all unit degrees (w,w), w ∈ W and the initial object of C to anything else. We denote
it by 1 [1].

See Gambino and Joyal [19, Theorem 10.2 and Remark 11.7] for additional details. In the
notation of Gambino and Joyal, R stands for C.

Example 3.5. For example, for U = ∅, which is the special case relevant for algebras over
colored operads,

(F ∗G)(v, w) = F (v, w) ⊗
⊗
p∈J

G(p)

and (F ∗G)(j) = F (j) ⊗ id.
In the case W = {∗}, the substitution product in sColl can be expressed concisely using the

symmetric smash product ⊗ on symmetric sequences (see Kelly [32, § 3 and § 4]):

F ◦G =
∫ m∈Σ

F (m) ⊗G⊗m =
∐
m�0

F (m) ⊗Σm
G⊗m.

Recall that a category I is sifted if for all finite sets k the diagonal functor I → Ik is cofinal.
Filtered categories are sifted. An example of a sifted category that is not filtered is given by
the walking reflexive pair category, consisting of two objects 0 and 1 with two parallel arrows
f, g : 0 → 1, and another arrow h : 1 → 0 such that fh = gh = id1. Sifted colimits of this type
are precisely reflexive coequalizers. Any colimit can be expressed using reflexive coequalizers
and coproducts, which explains why reflexive coequalizers appear constantly in constructions
involving monoids and algebras over monoids.

Proposition 3.6. The substitution product (3.4) is associative and unital. Moreover, it
is cocontinuous in the first variable and preserves sifted colimits in the second variable. In
particular, the substitution product is right closed, that is, the functor − ◦G has a right
adjoint for any G.

Proof (see [19, Proposition 10.9 and Theorem 14.8]). The bicategory of distributors used
there is the opposite of the bicategory of finite sets, symmetric collections (with ◦ as the
composition) and morphisms of collections. �

We emphasize that the substitution product does not preserve nonsifted colimits in the
second variable, for example, coproducts, because the functor X 
→ X⊗k in general does not
preserve nonsifted colimits. In particular, the substitution product is not left closed. The



ADMISSIBILITY AND RECTIFICATION OF COLORED SYMMETRIC OPERADS 567

substitution product is also not braided (in particular, not symmetric). Note that the definition
of the associator of ◦ in the nonsymmetric case needs C to be symmetric monoidal (see Muro
[40, Remark 2.2]).

Definition 3.7. The category (s)Oper := (s)OperW (C) of W -colored (symmetric) operads
in C is the category of monoids in ((s)CollW C, ◦), that is, O ∈ (s)CollW C together with
a unit map 1[1] → O and a multiplication map O ◦O → O satisfying the associativity and
unitality conditions. For any set V , the category of V -colored (symmetric) modules over a
(symmetric) W -colored operad O is the category of left modules over O in (s)CollV,W (C). It is
denoted by ModV

O . Explicitly, its objects are given by M ∈ (s)CollV,W (C) together with a map
O ◦M → M subject to the standard associativity and unitality requirements. For V = ∅ and
V = W , we speak of O-algebras and O-modules, respectively, and denote them by AlgO and
ModO. Note that any O-algebra is naturally an O-module whose non-zero degrees are ∅.

The following result describes the categorical properties of colored modules over colored
operads.

Theorem 3.8. Suppose (C,⊗) is a symmetric monoidal category that is enriched over a
symmetric monoidal category V. Fix two sets V and W , and a W -colored (symmetric) operad
O in C.

(i) If C is complete, then so is ModV
O and the forgetful functor U : ModV

O → (s)CollV,W
creates limits.

(ii) If C admits sifted colimits (respectively, filtered colimits or reflexive coequalizers), which
are preserved in each variable by the monoidal product in C, then ModV

O admits sifted colimits,
which are created by U .

(iii) If C admits reflexive coequalizers, which are preserved in each variable by the monoidal
product in C, then ModV

O is cocomplete.
(iv) If C is locally presentable and ⊗ preserves filtered colimits in each variable, then ModV

O

is locally presentable.
(v) Suppose f : O → P is a morphism of W -colored (symmetric) operads in C. If C admits

reflexive coequalizers that are preserved in each variable by the monoidal product in C, then
the pullback functor f∗ : ModV

P → ModV
O admits a left adjoint f∗.

Proof. Via Proposition 3.6, these statements are reduced to similar statements about
modules in (nonsymmetric, nonbraided) monoidal categories. (i), (iv), and (v) are then special
cases of [3, Theorem 3.4.1; 13, Theorem 5.5.9; 35, Corollary 1], respectively.

(ii) [13, Proposition 4.3.2] implies that ModV
O has sifted colimits, which are preserved

by U . Reflection of sifted colimits by U is then implied by [12, Proposition 2.9.7] applied to
the opposite functor Uop : (ModV

O)op → (ModV
O)op. The cases of filtered colimits and reflexive

coequalizers are treated identically.
(iii) By (ii), ModV

O admits reflexive coequalizers, which are created by U . Now apply
[35, Corollary 2], which in our case says that ModV

O has small colimits if it has reflexive
coequalizers and (s)CollV,W (C) has small coproducts. �

4. The enveloping operad

The enveloping operad (see, for example, [9, Propositions 1.5; 6, Proposition 5.4]) turns a
module or algebra over an operad back into an operad. This is used to relate properties of
operadic algebras to those of operads, for example, pushouts (Proposition 5.7) and transports
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along weak monoidal Quillen adjunctions (see Theorem 8.10(ii) and its proof). We continue
using the notation of § 3.

Definition 4.1. The category Pairs consists of pairs (O,A), where O ∈ (s)OperW is a
(symmetric) W -colored operad in C and A ∈ (s)CollW is an O-module, and a morphism of
pairs (O,A) → (P,B) is a morphism f : O → P of operads together with a morphism g : A →
f∗B of O-modules, where f∗ is the restriction functor from P - to O-modules.

Lemma 4.2. There are adjunctions

(s)CollW
1[1]×id

�
U

Pairs
Env

�
id×U

(s)OperW (4.3)

The functor id × U sends an operad O to (O,U(O)), where U(O) is regarded as an O-module
in the obvious way. The functor 1[1] × id sends X to (1[1], X), where 1 [1] is the initial operad.
The functor U at the left sends (O,M) to U(M), that is, it forgets the O-module structure
on M . The functor Env is called the enveloping operad. It satisfies Env(1[1], X) = Free(X),
where Free : (s)CollW � (s)OperW : U is the free-forgetful adjunction.

Proof. The left adjunction holds since

Pairs((1[1], X), (O,M)) = (s)CollW (X, η∗M) = (s)CollW (X,U(M)).

Here η : 1[1] → O is the unit of O, which is the unique morphism of operads 1[1] → O.
The right adjunction is a special case of Theorem 3.8(v) since Pairs are algebras over an
operad similar to the operad of operads (§ 9.4). The last statement follows from the two
adjunctions. �

Proposition 4.4. Fix a (symmetric) operad O and consider the functor Env(O,−) :
ModO → (s)OperW . (We also apply this functor to O-algebras.)

(i) The enveloping monoid of the initial O-algebra is given by Env(O,O ◦ ∅) = O.
(ii) The enveloping operad functor Env(O,−) preserves connected colimits of O-algebras,

in particular, transfinite compositions.
(iii) Given a map x : X → X ′ in (s)CollW , an O-module A, and a map X → U(A) in

(s)CollW , we form the pushout square in ModO,

(4.5)

Then the following diagram is cocartesian in (s)OperW , where the top horizontal map is

Free(X) 4.2= Env(1[1], X)
Env(n,f)

−−−−−→Env(O,A):

(4.6)

(iv) For any A ∈ AlgO, there is an equivalence of categories with the undercategory of A in
AlgO:

AlgEnv(O,A) = A ↓ AlgO.

In particular, Env(O,A)0 = A.
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Proof. (i) For any operad T , we have by adjunction

(s)OperW (Env(O,O ⊗ ∅), T ) = {(f ∈ (s)Oper(O, T ), g : O ◦ ∅ → f∗U(T ) ∈ AlgO)}.
As O ◦ ∅ is initial in AlgO, g is unique, so that this set of homomorphisms is isomorphic to
(s)OperW (O, T ). Hence, our claim.

(ii) For a connected index category I, O is the colimit of the constant diagram i 
→ O.
Therefore,

(O, colimAi) = colim(O,Ai).

Now apply the cocontinuity of the enveloping operad functor Pairs → (s)Oper.
(iii) By Lemma 4.2, the diagram (4.6) is obtained by applying Env to the following diagram

of pairs, which is easily seen to be cocartesian. We conclude using that Env preserves all
colimits, in particular pushouts.

(iv) Since the monoidal product in (s)CollW C is right closed, an Env(O,A)-module
structure on some X ∈ (s)CollW is the same as a morphism of operads Env(O,A) → End(X),
where End(X) := Hom(X,X) ∈ (s)OperW is the endomorphism operad. The adjunction (4.3)
tells us that morphisms Env(O,A) → End(X) correspond to morphisms of pairs (O,A) →
(End(X), U(End(X))). This is the same as an O-module structure on X and a map A →
End(X) of O-modules, where End(X) is regarded as an O-module via the chosen O-module
structure on X. Giving A → End(X) is the same as A = A ◦X → X. The last equality uses
that A is an algebra, that is, concentrated in degree 0.

The second claim holds since Env(O,A)0 = Env(O,A) ◦ ∅ is the initial Env(O,A)-module,
which by the previous step is A. �

5. Admissibility of operads

The following definition of admissibility of operads is standard (see, for example, [9, § 2]).

Definition 5.1. A W -colored (symmetric) operad O in a symmetric monoidal model
category C is admissible if the product model structure on CW transfers to AlgO via the
forgetful functor

CW ← AlgO : U,

that is, if the classes WAlgO
= U−1(WCW ) of weak equivalences and FAlgO

= U−1(FCW ) of
fibrations define a model category structure on AlgO. Moreover, O is strongly admissible if it
is admissible and if in addition U preserves cofibrations with cofibrant source, that is, for a
cofibration a : A → A′ of O-algebras, U(a) is a cofibration and U(A) is cofibrant in CW .

The admissibility of symmetric operads is a central problem in homotopical algebra. It was
addressed by Berger and Moerdijk [6, Theorem 3.2] using the path object argument. Their
theorem requires the existence of a symmetric monoidal fibrant replacement functor and the
monoidal unit to be cofibrant. A well-known result due to Lewis [34, Theorem 1.1] precludes
the existence of such data for a stable monoidal model category of spectra. The conditions of
their theorem were weakened by Kro [33, Corollary 2.7], whose version does not require the
monoidal unit to be cofibrant. Previously, Spitzweck had shown the existence of a semi-model
structure for operads whose underlying symmetric sequence is projectively cofibrant (which



570 DMITRI PAVLOV AND JAKOB SCHOLBACH

roughly means that Σn acts freely on On) [52, Theorem 4.7]. This covers the Barratt–Eccles
operad, for example, which satisfies On = EΣn, but excludes, say, the commutative operad
Comm, which is given by Commn = 1, the monoidal unit. This is one of the most important
examples of a symmetric operad, since its algebras are commutative monoid objects. The
admissibility of Comm, that is, the model structure on commutative monoid objects in C,
was established by Harper [22, Proposition 4.20] and Lurie [37, Proposition 4.5.4.6] if C is
freely powered. Their proofs actually only use the weaker condition that the map f�n

Σn
is an

acyclic cofibration whenever f is. This property was later called the commutative monoid
axiom by White, who also suggested a weakening similar to the one discussed in Remark 5.13
[56, Theorem 3.2, Remark 3.3].

The admissibility of arbitrary operads was also shown by Harper under the hypothesis
that all objects in ΣnC are projectively cofibrant. Again this is much stronger than being
symmetric h-monoidal (see [45, Remark 4.2.7, § 7]). Subsequently to the present paper, White
and Yau reproduced the admissibility of arbitrary operads under the condition that X ⊗Σn

f�n

is an (acyclic) cofibration when f is [57, Theorem 6.1.1]. This is a stronger assumption
than symmetric h-monoidality, and is inapplicable to various flavors of spectra (for example,
symmetric, orthogonal, etc.) and other constructions used in stable homotopy theory, for
example, L-spaces.

For nonsymmetric operads, the situation is quite a bit simpler, since no modding out by
Σn occurs in the definition of the circle product on nonsymmetric sequences. Muro has shown
the admissibility of all nonsymmetric operads under assumptions on C [40, Theorem 1.2; 43],
which by [45, Lemma 3.2.3] are very closely related to the nonsymmetric part of Theorem 5.11
(see Remark 5.13). Another type of admissibility result is due to Batanin and Berger who
showed that so-called tame polynomial monads (or the colored operads associated to them)
are admissible if C satisfies the monoid axiom [5, Theorem 8.1].

A technical key part in all proofs below is the analysis of pushouts of free O-algebra maps
and free operad maps. We will start with pushouts of operads and then deduce the pushouts
of algebras from this. The following description of pushouts of free (symmetric) operads is due
to Spitzweck [52, Proposition 3.5] and, in the slightly different formulation given below, to
Berger and Moerdijk [9, Lemma 3.1; 6, § 5.11].

The description of such pushouts is based on the groupoid (s)TreeW of W -colored
(symmetric) marked trees. These are finite planar trees whose edges are labeled with colors
w ∈ W . The root vertex has a half-open (that is, having only one boundary vertex) outgoing
edge without called the root edge. It also has a (finite) number of vertices having half-open
ingoing edges called the input edges. Any edge that is not a root edge nor an input edge is called
an internal edge. Their boundary consists of two vertices. Moreover, a (finite) number of vertices
of the tree is marked, the others are not marked. The markings is required to be such that every
internal edge has at least one marked vertex at its boundary. Automorphisms of symmetric trees
are isomorphisms of trees that do not respect the planar structure, but do respect the markings,
the colors of the edges, and send input edges to input edges. Automorphisms of nonsymmetric
trees are only identity morphisms. For a vertex r in a tree, the valency val(r) ∈ (s)SeqW is
given by (s, w), where the multisource s : I → W is given by the set I of the incoming edges
of r, ordered according to the planar structure (which is only needed to make this notion
unambiguous) and their corresponding colors, and target w given by the color of the outgoing
edge. In the same vein, the valency val(T ) of the tree is given by the colors of the input edges and
the root edge. The subgroupoid of trees with k marked vertices and valency (s, w) ∈ (s)SeqW

is denoted by (s)Tree(k)
s,w.

Using the notation of Proposition 5.2, the intuitive meaning of these notions is that a tree T
with valency (s, w) stands for an operation in O′ with inputs given by the multisource s and
target w. Such operations are nested applications of the more elementary operations given by
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vertices. If T contains no marked vertices, that is, k = 0, then T is just a corolla consisting of
a root edge and finitely many input edges, corresponding to the operations that are present in
O. More generally, for k � 0, k operations coming from Free(X) have been identified by their
image in Free(X ′).

Proposition 5.2 (Spitzweck, Berger–Moerdijk). Let C be a symmetric monoidal model
category. For any map x : X → X ′ in (s)CollW and any pushout diagram in (s)OperW ,

(5.3)

the map U(o)s,w ∈ ΣsC is the transfinite composition of maps O
(k)
s,w → O

(k+1)
s,w , for k � 0, which

arise as the following pushouts in ΣsC:

(5.4)

The coproducts run over all isomorphism classes of (s)Tree(k)
s,w as defined above. For such a

tree T , the map ε(T ) : x∗(T ) → x(T ) is inductively defined as

ε(T ) := ε(r(T )) � �
i

ε(Ti)�ti

︸ ︷︷ ︸
=:ε′(T )

,

where ε(r(T )) ∈ Σval(r(T ))C is defined as

ε(r(T )) :=
{
xval(r(T )), if r(T ) is marked;
(ηO)val(r(T )), if r(T ) is not marked,

(5.5)

where ηO : 1[1] → U(O) is the unit map of O and val(r(T )) is the valency of the root r(T ) of
T . Isomorphic subtrees (with markings, colors, and input edges induced from T ) of the root
are grouped together and denoted by Ti, 1 � i � k. The number of subtrees isomorphic to Ti

is denoted by ti, so that
∑k

i=1 ti equals the cardinality of the multisource of r(T ). The group

Aut(T ) =
k∏

i=1

Aut(Ti)ti �

k∏
i=1

Σti

acts on ε(r(T )) via the quotient
∏

Σti and in the natural way on ε′(T ) ∈ (
∏

Aut(Ti)ti)C.

Proof. This is exactly the statement of Berger and Moerdijk cited above, if we replace
ε(T ) by εu(T ), which is defined as above, except that ε(r(T )) := uval(r(T )) if the vertex r(T ) is
marked, where u : U(O) → U(O) X X ′ is the pushout of x. We conclude using the pushout
square Σs ·AutT ε(T ) → Σs ·AutT εu(T ) and [45, Proposition 3.1.6]. �

Proposition 5.2 has the following model-categorical consequence, which again is due to
Spitzweck [52, Lemma 3.6] and, in the form below, to Berger–Moerdijk [6, Proposition 5.1].
We will show in Lemma 6.2(i) that U(ηO) is a cofibration for any cofibrant operad O, so
the corollary is applicable to such pushouts. This will be important in the study of strong
admissibility. Recall that (s)CollW (C) is equipped with the projective model structure. Unless
the contrary is explicitly stated, all cofibrations in categories of the form GC, for a finite group
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G, are understood as projective cofibrations. (The distinction between injective and projective
model structures only matters in the symmetric case, for the category of nonsymmetric
collections CollW (C) is just a product of copies of C.)

Corollary 5.6. In the situation of Proposition 5.2, suppose that U(ηO) is a cofibration in
(s)CollW . Also suppose that x is a cofibration in (s)CollW . Then the vertical maps in (5.4)
are cofibrations in ΣsC. Therefore, U(o) is also a cofibration in (s)CollW .

The following description of pushouts of free O-algebras is due to Fresse [18, Proposi-
tion 18.2.11], Elmendorf and Mandell [17, § 12], and Harper [22, Proposition 7.12].

Proposition 5.7. Let C be a symmetric monoidal model category and O a (symmetric)
operad. Let

(5.8)

be a pushout diagram of O-algebras, where x : X → X ′ is a map in CW . For any color w ∈ W ,
the map U(a)w ∈ C lies in the weak saturation of morphisms of the form

Env(O,A)s,w ⊗Σs�
r∈W

x�s−1(r)
r , s : I → W ∈ (s)Seq×

W , I �= ∅. (5.9)

(The pushout product is finite, since I is a finite set.) For example, if W consists of a single
color and we consider symmetric operads, U(a) lies in

cof({Env(O,A)n ⊗Σn
x�n, n � 1}).

Proof. By Proposition 4.4(iv), the map U(a)w is the level (∅, w) of Env(O,A) → Env(O,A′),
which by the pushout diagram (4.6) and description of pushouts in Proposition 5.2 is a
transfinite composition of pushouts of the maps (5.4) (where the O there is now Env(O,A)).
The map x is concentrated in degree 0, so the only trees T such that the map ε(T ) defined
in (5.5) is not an isomorphism are the trees (with valence (∅, w)) whose marked vertices have
valency 0, that is, are stumps. Since any internal edge has at least one marked vertex, the
only such trees T are corollas whose root is not marked and has valence (t : I → W,w) and
whose leaves are marked. We get ε(T ) = Env(O,A)t,w ⊗�i∈I

xt(i) and Aut(T ) = Σt. Hence,
the left-hand vertical map in (5.4) agrees with (5.9). �

The next result identifies (symmetric) h-monoidality as the key condition for admissibility
of all (symmetric) operads. We emphasize that symmetric h-monoidality requirement is stable
under weak saturation, transfer of model structures, and monoidal left Bousfield localization
(see [45, Theorems 4.3.8, 5.8 and 6.5] for the precise statements). Basic examples of symmetric
h-monoidal model categories include simplicial sets, simplicial presheaves, topological spaces,
chain complexes of rational vector spaces, and symmetric spectra (see [45, § 7]). Chain
complexes of abelian groups are not symmetric h-monoidal and, in fact, the commutative
operad is provably not admissible in chain complexes of abelian groups. Recall the definitions
of the terms below from Definition 2.1.

Lemma 5.10. Suppose C is a model category.

(i) If the class of weak equivalences in C is stable under colimits of chains, then the same is
true for the class of h-cofibrations, and, if C is left proper, for acyclic h-cofibrations.
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(ii) If a symmetric monoidal category C is left proper, strongly admissibly generated, and
satisfies the acyclic part of symmetric h-monoidality, then any transfinite composition of
pushouts of maps of the form Y ⊗Σs

x�s is an acyclic h-cofibration, where Y ∈ ΣsC is arbitrary
and x is a finite family of acyclic cofibrations.

Proof. The first part is [45, Lemma 2.5(iv)] and the second part is [45, Proposition 7.5.3]
(first paragraph in the proof). For the convenience of the reader, we sketch the argument
in the latter case. The maps in question lie in the class (2.2) and are acyclic h-cofibrations
by acyclic symmetric h-monoidality. Hence, by assumption, the (co)domains of generating
cofibrations of C are compact with respect to the cellular closure of these maps. Analogously to
[45, Lemma 2.2(iii)], a transfinite composition f∞ of weak equivalences fi (in our case, cobase
changes of the above maps) is a weak equivalence, provided that (co)domains of the generating
cofibrations of C are compact relative to the class spanned by the acyclic cofibrations and the
maps in the transfinite chain. Similarly, f∞ is an h-cofibration provided that the fi and the
maps in the chain are h-cofibrations. �

Theorem 5.11. Suppose C is a symmetric monoidal model category and W is a set.
Furthermore, suppose that one of the following is satisfied:

(a) C is combinatorial and weak equivalences are closed under transfinite compositions, or
(b) C is admissibly generated and tractable.

If C is (symmetric) h-monoidal (the acyclic part is sufficient), then any W -colored (symmetric)
operad O in C is admissible.

Proof. We apply [28, Theorem 11.3.2] to the adjunction O ◦ − : CW � AlgO : U . By
Theorem 3.8, U preserves sifted colimits and AlgO is complete and cocomplete.

We now show that transfinite compositions of the images under U of cobase changes of
elements in F (J) are weak equivalences in CW . Consider a cocartesian diagram of O-algebras
as in (5.8), where x : X → X ′ is generating acyclic cofibration in CW , hence also an acyclic
(symmetric) h-cofibration. By Proposition 5.7, the morphism U(a) is the (countable) transfinite
composition of cobase changes of morphisms

Env(O,A)s,w ⊗Σs�
r∈W

x�s−1(r)
r , s : I → W ∈ (s)Seq×

W . (5.12)

Here, Env is the enveloping operad (Lemma 4.2) and Σs is the group of automorphisms of
the multisource s, which is trivial for nonsymmetric operads, and as in (3.2) for symmetric
operads. Each of the above morphisms is a couniversal weak equivalence or, equivalently
[5, Lemmas 1.6 and 1.8], an acyclic h-cofibration since x is an acyclic (symmetric) h-cofibration,
that is, each xr is one. Their transfinite composition is again a couniversal weak equivalence
by Lemma 5.10.

We finally show that F (I) and F (J) permit the small object argument [28, Defini-
tion 10.5.15]. If C is combinatorial, this is tautological since all objects are small. Suppose
now that C is admissibly generated and tractable. By Definition 2.1, all cofibrant objects, in
particular the (co)domains of I are small relative to cell(−) applied to the maps in (5.12),
where x is a cofibration. Therefore, they are small relative to U(cell(O ◦ I)). By adjunction,
the (co)domains of O ◦ I are therefore small relative to cell(O ◦ I). Again using the tractability,
the same argument shows that O ◦ J is small relative to cell(O ◦ I), a fortiori relative
to cell(O ◦ J). �
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Remark 5.13. The proof also shows the following statement: suppose C is a symmetric
monoidal category, C′ is a combinatorial (more generally, admissibly generated) and such that
C′ is a commutative C-algebra. Finally, suppose that for a finite family of generating cofibrations
xr1 , . . . , xrk in C′, and n1, . . . , nk � 1, any object E ∈ (

∏k
j=1 Σnj

)C, the map

E ⊗∏
j Σnj �

j

x�nj
rj (5.14)

lies in a class whose saturation under transfinite composition and pushouts consists of weak
equivalences (in C′). Then any W -colored symmetric operad O in C is admissible, that is, the
O-algebras in C′ carry a transferred model structure. Since the differences are purely
grammatical, we omit the proof of this assertion.

The same statement holds for nonsymmetric operads after dropping
∏

Σnj
in (5.14). If, in

addition, the monoidal product of C′ turns C′ into a monoidal model category it can be further
simplified to requiring the above condition only for the maps E ⊗ x, where E ∈ C and x ∈ C′

is a generating acyclic cofibration. This is exactly the monoid axiom [50, Definition 3.3], so
the above proof reproduces one of Muro’s aforementioned admissibility result of nonsymmetric
operads [40, Theorem 1.2; 43].

In particular, the nonacyclic part of (symmetric) h-monoidality is not necessary for the
admissibility statement. We mention the nonacyclic part in the definition of (symmetric)
h-monoidality, since the combination of the acyclic and the nonacyclic part of (symmetric)
h-monoidality is easier to localize. Also, for concrete model categories, it is usually easier to
establish both properties simultaneously. For the same reason, we have separated the saturation
with respect to transfinite compositions and the one with respect to pushouts (governed by
(symmetric) h-monoidality). See [45, Theorem 6.5(ii), § 7] and the remarks at the end of § 2.

6. Strong admissibility of operads

In addition to the admissibility of operads, it is in practice desirable to know when the forgetful
functor

CW ← AlgO : U

preserves cofibrant objects or even cofibrations with cofibrant source, that is, when O is strongly
admissible, as defined in Definition 5.1. We present two results in this direction: Proposition 6.3
is a result for levelwise projectively cofibrant operads. It works in any symmetric monoidal
model category. Theorem 6.7 is a much more flexible criterion for levelwise injectively cofibrant
operads. Here, the additional key condition is the symmetroidality of C. More precisely, we use
the following conditions on O (well-pointedness, also known as Σ-cofibrancy was considered in
[6, 9]):

Definition 6.1. A (symmetric) colored operad O is well-pointed (respectively, weakly
well-pointed) if the unit map U(ηO) is a projective (respectively, injective) cofibration in
(s)CollW (C).

Strong admissibility does not seem to have been studied before as an independent
notion. See Mandell [38, Lemma 13.6], Shipley [51, Proposition 4.1], and Harper and Hess
[24, Theorem 5.18] for strong admissibility statements for operads in chain complexes,
simplicial symmetric spectra, and arbitrary monoidal model categories, though.

The following preparatory lemma captures the preservation of cofibrant objects under various
forgetful functors. We do not claim originality for this lemma, for example, Part (ii) is similar
to [9, Proposition 2.3].
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Lemma 6.2. With C and W as before, the following claims hold:

(i) Let f : O → O′ be a cofibration in (s)OperW such that O is well-pointed, that is, U(ηO)
is a cofibration in (s)CollW . Then U(f) is a cofibration in (s)CollW . In particular,

(1) any cofibrant operad O is well-pointed, in other words, the levels Os,w are cofibrant
in Σpro

s C for all s : I → W if �I �= 1 or if �I = 1 and s(∗) �= w and the unit map 1 → Ow,w

is a cofibration in C for all w ∈ W ;
(2) the forgetful functor U sends cofibrations with cofibrant source to cofibrations;
(3) if the unit 1 ∈ C is cofibrant, U also preserves cofibrant objects, that is, the underlying
(symmetric) sequence U(O) ∈ (s)CollW of any cofibrant operad O is cofibrant.

(ii) For any (symmetric) operad O, the functor AlgO → (s)OperW , A 
→ Env(O,A)
preserves cofibrations. For example, O → Env(O,A) is a cofibration for any cofibrant
O-algebra A.

Proof. (i) The map f is a retract of a transfinite composition of pushouts of maps Free(x) as
in (5.3), where x is a cofibration in (s)CollW and, by assumption and cellular induction, O is
well-pointed. The functor U commutes with retracts and transfinite compositions. Cofibrations
(in (s)CollW ) are stable under these two types of saturation. Therefore the statement follows
from Corollary 5.6, using that O is well-pointed.

The remaining statements are special cases: (i.1) follows by applying the general statement
to ηO : 1[1] → O. (i.2) follows by combining the general statement and (i.1). Finally, (i.3) holds
since 1 [1] is the initial operad, whose underlying symmetric sequence is cofibrant in (s)CollW
if and only if 1 is cofibrant in C.

(ii) The claim about Env(O,−) follows from Proposition 4.4: if a is a pushout of a free O-
algebra map O ◦ x on a cofibration x ∈ (s)CollW as in (5.8), the map Env(O, a) : Env(O,A) →
Env(O,A′) is the pushout of Free(x), which is a cofibration (in (s)OperW ). For a transfinite
composition of cofibrations of O-algebras, we use that both U and Env(O,−) preserve filtered
colimits. By Proposition 4.4(i), the last statement is the special case a : O0 = O ◦ ∅ → A. �

The following result guarantees strong admissibility for those operads whose levels are
projectively cofibrant (except for unit degrees, in which case the map from the monoidal unit
to the level is required to be a cofibration). By [52, Theorem 4], any cofibrant operad O is
admissible if C satisfies the monoid axiom, so it is strongly admissible in this case by the result
below.

Proposition 6.3. Suppose C is a symmetric monoidal model category. Any admissible
well-pointed (symmetric) operad O ∈ (s)OperW (C) is strongly admissible. For example, any
admissible cofibrant operad is strongly admissible.

Proof. Let E := O ◦ ∅ = O0 be the initial O-algebra. For any two cofibrations E →
A → B of O-algebras, both maps O

4.4(i)
= Env(O,E) ε→ Env(O,A) α→ Env(O,B) are cofibra-

tions of operads by Lemma 6.2(ii). By assumption and Lemma 6.2(i), U(ε) is a cofibration
in (s)CollW (C). Therefore, Env(O,A) is again well-pointed, so that U(α) is a cofibration
for the same reason. In particular, the zeroth level of U(α), which by Proposition 4.4(iv) is
U(A) → U(B), is a cofibration in CW . �

The next theorem is a supplementary condition for strong admissibility of arbitrary
symmetric operads. Recall from [45, § 7] that rational chain complexes and symmetric spectra
(with an appropriate stable positive model structure) are symmetroidal. The latter statement
also shows that under very mild conditions, any monoidal model category is Quillen equivalent
to a symmetroidal model category. Moreover, symmetroidality is stable under monoidal
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Bousfield localization and transfer (see [45, Theorem 5.8 and Theorem 6.5] for the precise
statements). These results turn Theorem 6.7 into a powerful tool ensuring strong admissibility
of operads.

The following lemma is the key stepstone for strong admissibility. In order to keep the
exposition brief, we will again speak of ‘(symmetric) operads’ in a symmetric monoidal category
to simultaneously cover the case of symmetric and of nonsymmetric operads. In the latter case,
all the groups Σs and AutT appearing below are trivial by definition.

Lemma 6.4. Let C be a symmetric monoidal model category. Let O be a (symmetric)
W -colored operad and A any cofibrant O-algebra. For any (s : I → W,w) ∈ (s)SeqW , the
levels of the unit map

(ηEnv(O,A))s,w : 1[1]s,w → Env(O,A)s,w

in ΣsC are contained in cof((YO)s), where (YO)s is the smallest class of morphisms in ΣsC
that contains all isomorphisms, the generating cofibrations of C (for �I = 0 only), and finally
contains

(ηO)s�t,w�Σt
x�t := (ηO)s�t,w�Σt�

r

x�nr
r . (6.5)

Here, t : J → W is any multisource and the multi-index n is given by nr = �t−1(r) for r ∈ W ,
and x = (xr) is a finite family of generating cofibrations in C. (We use the convention that only
the finitely many terms with nr �= 0 appear, unless J = ∅, in which case we interpret the above
expression as (ηO)s,w.)

In particular, for any cofibrant O-algebra A, the map ∅ → U(A) ∈ CW is contained in

cof(CC ∪ {(ηO)t,w�Σt
x�t, (t, w) ∈ (s)SeqW }).

Proof. We prove this by cellular induction on A, using the properties of the enveloping
operad established in Proposition 4.4. We will write ϕ : GC → C for any functor that forgets
the action of some finite group G, for example, G = Σs. For A = O ◦ ∅ = O0, O = Env(O,O0)
is an isomorphism, so the claim is clear by assumption. For a pushout of O-algebras as in (5.8),
where A is cofibrant and x is a cofibration, there is a pushout of operads

(6.6)

We now use Proposition 5.2, including the notation. We need to show

Σs ·AutT ε(T ) ∈ (YO)s.

By induction on the tree T , one sees that

ϕ(ε(T )) =�
r∈T

ϕ(ε(r)),

where the pushout product runs over all vertices r of T . Recall that f � g is an isomorphism
for all maps g whenever f is an isomorphism. Hence, it is enough to prove our claim for those
trees T such that none of the morphisms ε(r) is an isomorphism.

If a vertex r ∈ T is marked, then ε(r) = uval(r), where u : U(Env(O,A)) → U(Env(O,A)) X

X ′ is the pushout of x along the map X → U(Env(O,A)) adjoint to the top horizontal map
in (6.6). If r is marked and has positive valency, that is, (s, w) := val(r) with a multisource
s : I → W of arity �I > 0, then us,w, which is a pushout of xs,w = id∅, is an isomorphism. Thus,
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we may assume that the marked vertices have valency 0, that is, no incoming edges. On the
other hand, by definition of marked trees, any edge contains at most one nonmarked vertex.
Therefore, the only trees we need to consider are as follows.

(1) The tree denoted by w+ consisting of a single marked vertex with no incoming edge and
the outgoing root edge colored by w.

(2) The trees denoted by w−t+
s consisting of a single nonmarked vertex that has a root edge

of color w, some noninput edges whose other end is marked, and some input edges. The valency
of the input and noninput edges is denoted by s and t respectively.

Here is a picture of w+ and of w−t+
s . The different dashing styles indicate different colors, the

two rightmost lower arrows are input edges, the top arrows are the root edges, •+ is a marked
vertex, •− is not marked.

For T = w+, we have Σs = AutT = 1 and ε(T ) = xw, which is in YO being a cofibration. For
T = w−t+

s , we have Aut(T ) = Σs × Σt, where Σs and Σt are defined in (3.2). In the example
above, Σt = Σ2 × Σ1 and Σs = Σ2. We group the noninput edges of •− according to their color,
say ni noninput edges of color ti. Then

Σs ·AutT ε(T ) = (ηEnv(O,A))s�t,w�∏
Σni�

i

x�ni
ti ,

which is in YO by the inductive hypothesis. This finishes the pushout step.
The handling of retracts and transfinite compositions of cofibrant O-algebras is clear, noting

that the functor AlgO → (s)CollW , A 
→ U(Env(O,A)) preserves filtered colimits and retracts.
The claim concerning U(A) is the restriction of the statement about the levels of Env(O,A)

to degree 0. �

Theorem 6.7. Suppose that C is a symmetric monoidal model category and O is an
admissible (symmetric) W -colored operad in C.

In the nonsymmetric case, suppose that (ηO)s,w � − : Ar(C) → Ar(C) preserves (acyclic)
cofibrations.

In the symmetric case, suppose that C is symmetroidal (Definition 2.1) with respect to the
class YO = ((YO)n) consisting of

(YO)n :=
⋃

(s,w)

(YO)s,

where, as above, s is such that nr = �s−1(r) (for r ∈ W ), w ∈ W is arbitrary, and (YO)s is the
class of morphisms in ΣsC defined in Lemma 6.4.

Then O is strongly admissible.
For example, if C is symmetroidal (that is, symmetroidal with respect to the injective

cofibrations in ΣnC) and O is weakly well-pointed (that is, Os,w is cofibrant in C for all nonunit
degrees (s, w) and 1 → Ow,w is a cofibration in C), then O is strongly admissible.

Proof. It is enough to show that the maps in (5.9) are cofibrations in CW for any cofibrant
O-algebra A and any cofibration x in CW .
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To show this in the symmetric case, by the symmetroidality condition on C and
[45, Lemma 4.3.1], which allows to weakly saturate the symmetroidality class, we have to
show that the map

(ηEnv(O,A)s,w : 1[1]s,w =
{

1, unit degrees;
∅, nonunit degrees. −−→ Env(O,A)s,w

lies (levelwise) in (YO)s. For unit degrees (s, w) = (w,w), this guarantees that Env(O,A)w,w ⊗
x is a cofibration by Lemma 8.4(i). This is exactly the content of Lemma 6.4.

In the nonsymmetric case, the argument is similar, but considerably easier since Σs is trivial:
if the pushout product with (ηO)s,w preserves (acyclic) cofibrations, then so does the pushout
product with the maps in (6.5) and therefore also the pushout product with (ηEnv(O,A))s,w.
Again, this implies that the maps in (5.9) are cofibrations in CW .

The last statement is a special case: let C be symmetroidal, that is, symmetroidal with respect
to Yn := cofibΣin

n C . Then Yn ⊇ (YO)n: indeed, the maps in (6.5) are injective cofibrations by
the symmetroidality of C. �

The following corollary illustrates how to transfer the strong admissibility of operads.
Note that the symmetroidality of C does not imply the symmetroidality of D, that is, the
symmetroidality with respect to cofibΣin

n D, but only the symmetroidality with respect to
F (cofibΣin

n C) (see [45, Theorem 5.8(iii) and Remark 5.9]).

Corollary 6.8. Let F : C � D : G be a Quillen adjunction of symmetric monoidal model
categories such that the model structure on D is transferred from C and such that F is strong
symmetric monoidal. Suppose C is symmetroidal (only required in the symmetric case) and let
O be a weakly well-pointed (symmetric) operad in C. We assume that the operad P in D given
by Ps,w = F (Os,w) is admissible. Then P is strongly admissible.

Proof. The strong monoidality of F gives the strong monoidality of the left adjoint in the
adjunction F : ((s)CollW (C), ◦) � ((s)CollW (D), ◦) : G. The resulting adjunction of monoids,
that is, W -colored operads (see also (8.11))

F (s)Oper : (s)OperW (C) � (s)OperW (D) : G

is therefore such that UDF (s)Oper = FUC , where U? : sCollW (?) →? are the forgetful functors.
Therefore, P as defined above, is indeed an operad.

As in the proof of Theorem 6.7, we have to show that D is YP -symmetroidal. The generating
cofibrations y of D are of the form y = F (x), x ∈ CC . The (levels of) U(ηP ) are of the form
FU(ηO). Finally, using the notation of (6.5),

F ((ηO)t,w�Σt�x�t) = (ηP )t,w�Σt�y�t

by the strong monoidality of F . Consequently, YP is contained in F (YO). By [45, Theo-
rem 5.8(iii)], D is F (YO)-symmetroidal, so we are done. �

7. Rectification of algebras over operads

In this section, we use the model structures on modules and algebras over colored operads
constructed in the previous section to prove a general operadic rectification result. Rectification
theorems address the following question: given a weak equivalence P → Q of admissible
(symmetric) operads, when are their model categories of algebras Quillen equivalent?

An early rectification for symmetric operads is due to Hinich [26] in the category Ch(ModR),
where R is a commutative ring containing Q. In the same vein, Harper [23, Theorem 1.4] showed
rectification under the assumption that every symmetric sequence is projectively cofibrant.
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Lurie [37, Theorem 4.5.4.7] showed rectification of E∞-algebras to commutative algebras (using
the language of ∞-operads). All three results have in common that the model category is
required to be freely powered [37, Definition 4.5.4.2].

Another class of rectification results applies to symmetric spectra with values in some model
category C. For individual model categories, such as C = Top, C = sSet and motivic spaces,
rectification is due to Elmendorf and Mandell [17, Theorem 1.3], Harper [22, Theorem 1.4],
and Hornbostel [29], respectively. For spectra in an abstract model category C, Gorchinskiy
and Guletskĭı [20, Theorem 11] have shown an important special case of symmetric flatness. We
show in [44, § 3.5] that the stable positive model structure on symmetric spectra in (essentially)
any model category C is symmetric flat and give several applications of this fact.

For nonsymmetric operads, Muro [40, Theorem 1.3] has shown a rectification result for a
weak equivalence between levelwise cofibrant operads, under similar assumptions to the ones
of Theorem 7.5.

Our rectification result, Theorem 7.5, identifies (symmetric) flatness as a necessary and
sufficient condition for the rectification of algebras over (symmetric) colored operads. It extends
the first group of the above-mentioned results since being freely powered is a much stronger
condition than being symmetric flat. It also covers the second group of results since the
assumptions of 7.5 are satisfied for C = Top, etc. (see [45, § 7]).

We finish this section with Theorem 7.11, a rectification result relating operadic algebras in
the strict sense and in the ∞-categorical sense introduced by Lurie.

Theorem 7.1. Assume that C is (symmetric) h-monoidal, symmetric monoidal model
category that is (a) strongly admissibly generated, or (b) whose weak equivalences are stable
under filtered colimits. Let g be a weak equivalence in (s)CollW .

(i) If g is (symmetric) flat in C (Definition 2.1), then g is pseudoflat on the (s)CollW -module
CW , meaning g � gb is a weak equivalence for any cofibration with cofibrant domain b : X → Y
in CW , where � denotes the pushout product of morphisms in (s)CollW (C).

(ii) If g ◦X is a weak equivalence for any cofibrant object X in CW , then g is (symmetric)
flat in C, provided that the coproduct functor reflects weak equivalences and that C is tractable.

Proof. Recall the multi-index conventions explained in § 2. By definition,

(g � b)w =
∐

s∈π0((s)Seq×
W )

gs,w�Σs

⊗
r∈W

b⊗s−1(r)
r︸ ︷︷ ︸

=:λs

. (7.2)

(sic, not �r∈W
b
�s−1(r)
r ). The coproduct is taken in the category Ar(C) of morphisms in C and

runs over all isomorphism classes in (s)Seq×
W and Σs is the group of automorphisms of some

representative of this isomorphism class. Recall that Σs is trivial in the nonsymmetric case. In
the symmetric case, an isomorphism class amounts to specifying the number of occurrences of
each color r ∈ W , and Σs is as in (3.2).

We define a multi-index n by nr := �s−1(r) and set mk := Σn ·Σn−k×Σk
X⊗n−k ⊗ b�k for

0 � k � n. By [45, Lemma 4.3.5], applied to the composition ∅ −→X
b−→ Y , the map b⊗n

is the (finite) composition of pushouts of the maps mk, where 1 � k < n and mn (which is
not pushed out). By [45, Proposition 3.1.6, Lemma 3.1.7], λs is therefore the composition of
pushouts of

gs,w�Σs
mk. (7.3)

(i) We claim that λs appearing in (7.2) is a weak equivalence with h-cofibrant (co)domains.
Recall that an h-cofibrant object X is such that ∅ → X is an h-cofibration. Weak equivalences
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with h-cofibrant (co)domains are stable under finite coproducts [5, Lemma 1.4(a)]. Presenting
(7.2) as the filtered colimit over all finite subsets of the indexing set and using assumption
(b), the claim implies (i). For assumption (a), we use that the transition maps in the filtered
diagram are cobase changes of morphisms of the form ∅ → λs, which in their own turn can be
presented as a composition of maps of the form (2.2).

To show the claim, we focus on the symmetric case and briefly explain the simpler argument
in the nonsymmetric case. By [45, Lemma 3.2.5] (more precisely, replace � by �Σs

there), for
λs to be a weak equivalence it is enough to show that the maps in (7.3) are weak equivalences
and that (co)dom(gs,w) ⊗Σs

mk is an h-cofibration. The former holds by symmetric flatness, the
latter holds by symmetric h-monoidality, using in both cases the cofibrancy of the (co)domains
of br.

We now show that (co)dom(λs) is an h-cofibrant object. Writing gs,w : A → B, this is
clear for codom(λs) = B ⊗Σs

Y ⊗n, which is h-cofibrant by symmetric h-monoidality, using
the cofibrancy of Yr. For the domain of λs, we first observe that B ⊗Σs

X⊗n is h-cofibrant.
The map from this object to dom(λs) is a cobase change of the map A⊗Σs

b⊗n. Again using
the above filtration, this map is a composition of pushouts of the maps A⊗Σs

mk, which are
h-cofibrations by symmetric h-monoidality, using the cofibrancy of X. Since h-cofibrations are
stable under pushout and composition [5, Lemma 1.3], this shows the claim.

(ii) First, observe that g � b is a weak equivalence for any cofibration with cofibrant
source b : X → Y in CW . Indeed, it suffices to show that A ◦ b is an h-cofibration, where
A = dom(g), which follows from symmetric h-monoidality and stability of h-cofibrations under
colimits of chains [45, Lemma 2.5(iv)]. Indeed, in this case the pushout of A ◦ b along g ◦X
is a homotopy pushout since C is left proper, so that g � b is a weak equivalence by the
2-out-of-3 axiom. The coproduct in (7.2) is a weak equivalence, hence so are the λs because
the coproduct functor reflects weak equivalences. Now we use the filtration (7.3) and show by
induction on n that the map gs,w�Σm×Σs

(X⊗m ⊗ b�n) in the definition of symmetric flatness
is a weak equivalence for any cofibration b with cofibrant source X and any m � 0. The case
m = 0 then gives the symmetric flatness of g relative to b.

The case n = 0 is true by assumption (recall that X is assumed to be cofibrant). For n �= 0
consider the filtration (7.3) (tensored with X⊗m) of the map gs,w�Σm×Σs

X⊗m ⊗ b⊗n, which
is a weak equivalence by assumption (extended to morphisms as explained in the previous
paragraph). For k �= n the term gs,w�Σm×Σs

X⊗m ⊗mk = gs,w�Σm×Σn−k×Σk
X⊗m+(n−k) ⊗

b⊗k is a weak equivalence by the inductive assumption, and the argument in the previous
part shows that its cobase change is a weak equivalence. Thus, the remaining map in the
filtration, gs,w�Σm×Σs

X⊗m ⊗ b�n (we set k = n), is also a weak equivalence, as desired.
We have established the symmetric flatness relative to the class of cofibrations with

cofibrant source. Tractability and the weak saturation property for symmetric flatness [45,
Theorem 4.3.8(i)] imply the full symmetric flatness property. �

Remark 7.4. In the situation of Theorem 7.1, similar arguments show that for any
weak equivalence f in sCollW (C) and any cofibrant object B ∈ sCollW (C), f ◦B is a
weak equivalence. For simplicity of notation, we only consider the uncolored case: then
B =

∐
n�0 Gn(An), where Gn places An in degree n. Using the fact that ◦ preserves filtered

colimits in its second variable and the stability of weak equivalences in C, hence sCollW (C),
under filtered colimits, we may assume that B is concentrated in finitely many degrees.

So, let B =
∐k

i=1 Gni
(Ai) (finite coproduct), where Ai ∈ Σni

C is a projectively cofibrant
object. The standard formula for multinomial coefficients takes the following form, where
Ai ∈ Σni

C, i = 1, . . . , k, k � 0:

Gm(f) ◦
(∐

i

Gni
(Ai)

)
=

∐
Gnm

(
Σnm ·Σm�Σm

n
f ⊗A⊗m

)
.
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The coproduct runs over all partitions m =
∑k

i=1 mi. The multi-index (m1, . . . ,mk) will also
be denoted by m and likewise for n. In line with the notation in § 2, we write mn =

∑
mini,

and Σm
n :=

∏
Σ×mi

ni
. The notation mn, Σm and Σm

n is understood as in [45, Definition 4.2.1].
Moreover, A⊗m stands for

⊗
i A

⊗mi
i . By [45, Lemma 4.1.2], there is an isomorphism of objects

in C (that is, disregarding the action of Σnm),

Σnm ·Σm�Σm
n
f ⊗A⊗m ∼= (f ⊗Σm′ A

⊗m′
) ⊗

(
Σnm′′∏

Σm′′ � Σm′′
n

·A⊗m′′
)
.

Here, m′ is the subindex of m consisting of the indices mi for which ni = 0, whereas m′′

denotes the subindex of m consisting of the remaining indices. As above, Σnm′′ :=
∏

Σnjm′′
j

etc.
The right factor involving the Aj is cofibrant in C by the pushout product axiom. The left
factor is a weak equivalence by the symmetric flatness of C. Our claim now follows from the
(nonsymmetric) flatness.

The following theorem addresses the question of Quillen invariance [49, Definition 3.11], also
referred to as rectification, rigidification, or strictification, that is, when a weak equivalence of
(admissible) operads induces a Quillen equivalence of algebras.

Theorem 7.5. Suppose that C is a tractable symmetric monoidal model category such
that (a) weak equivalences are stable under filtered colimits or (b) C is strongly admissibly
generated. Given a map f : O → P of admissible (symmetric) W -colored operads in C, the
induced Quillen adjunction

f∗ : AlgO � AlgP : f∗

of the corresponding categories of algebras is a Quillen equivalence if and only if f ◦A is a weak
equivalence for any cofibrant object A in CW . This condition is satisfied if f is (symmetric)
flat in C (a sufficient condition is given by Lemma 7.6) and C is (symmetric) h-monoidal
(Theorem 7.1). If the coproduct functor reflects weak equivalences (for example, the model
category is pointed, or we work with simplicial sets or topological spaces), then the opposite
is true: if the above adjunction is a Quillen equivalence, then f (more precisely, its individual
levels) is symmetric flat in C.

Proof. The adjunction exists by Theorem 3.8(v). It is a Quillen adjunction since f∗ preserves
(acyclic) fibrations. By [28, Definition 8.5.20], we have to show that a morphism f∗A

a−→B is

a weak equivalence if and only if its adjoint, that is, the composition A
η−→ f∗f∗A

f∗a−−−→ f∗B,
is a weak equivalence for any cofibrant object A in AlgO and any fibrant object B in AlgP .
The functor f∗ preserves weak equivalences because both model structures are transferred
from CW , thus it remains to prove that η is a weak equivalence or, equivalently, that the
canonical morphism U(A) → U(f∗A) is a weak equivalence in CW .

As usual, we perform a cofibration induction for A. Cofibrant objects in AlgO are retracts of
cellular objects and the latter are obtained as codomains of transfinite compositions of cobase
changes of generating cofibrations, starting with the initial O-algebra.

Given a transfinite composition S = colimSi in AlgO, the map U(S) → U(f∗S) is a weak
equivalence if all maps U(Si) → U(f∗Si) are weak equivalences because U creates filtered
colimits and weak equivalences in CW are stable under filtered colimits by assumption (a).
In case (b), we additionally use that the transition maps U(Si) → U(Si+1) and similarly with
f∗Si are transfinite compositions of cobase changes of maps of the form in (2.2), as witnessed
by the filtration (5.9).

To prove the induction step, we consider a cocartesian square of O-algebras as in (5.8),
where X → X ′ is a cofibration between cofibrant (by tractability) objects in CW . The vertical
maps in (5.8) are cofibrations in AlgO. Applying the left Quillen functor f∗ to this square
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gives a cocartesian square of P -algebras whose vertical maps are again cofibrations and all
three objects are cofibrant. Thus, both cocartesian squares are also homotopy cocartesian
[36, Proposition A.2.4.4]. Furthermore, applying the functor U we obtain a natural trans-
formation between the images of these squares, whose component U(A) → U(f∗A) is a weak
equivalence by induction and the other two components are the maps O ◦X → P ◦X and
O ◦X ′ → P ◦X ′, which are weak equivalences by assumption. Hence, the three components
of the original natural transformation are also weak equivalences because U creates weak
equivalences. Thus, the map A′ → f∗(A′) is also a weak equivalence because homotopy pushouts
preserve weak equivalences.

Finally, the flatness condition is necessary because the map f ◦A is the map U(X) → U(f∗X)
for the cofibrant object X = O ◦A. The latter map is the underlying map of the (derived) unit
map of X, which must be a weak equivalence for any Quillen equivalence. �

Lemma 7.6. In a tractable symmetric monoidal model category C, any weak equivalence
f : O → P between projectively cofibrant symmetric sequences is symmetric flat.

Proof. We have to show that g := f�Σn
s�n is a weak equivalence for any finite family

of cofibrations s. The morphism fits into a commutative triangle with f ⊗Σn
codom(s�n)

and a cobase change of f ⊗Σn
dom(s�n) as the other two sides. One checks that Σpro

n C ×
Σin

n C −⊗Σn−−−−−−−−→ C is a left Quillen bifunctor, where pro and in refers to the projective and
injective model structure, respectively. By tractability, the (co)domain X of s�n is injectively
cofibrant, which implies that f ⊗Σn

X is a weak equivalence. It remains to observe that the
above cobase change is also a homotopy cobase change. Indeed, O ⊗Σn

− preserves the injective
cofibration s�n with injectively cofibrant source. The third vertex in the pushout diagram,
O ⊗Σn

codoms�n, is also cofibrant, so we have a homotopy pushout. �

Remark 7.7. Theorem 7.5 is also true for modules (as opposed to algebras) over weakly
equivalent operads. This follows from Remark 7.4.

Remark 7.8. Rectification also holds in a slightly more general context (cf. Remark 5.13):
C is a symmetric monoidal model category, C′ is a tractable model category whose weak
equivalences are stable under filtered colimits and that is a C-algebra (in the symmetric case,
a commutative C-algebra). Finally, suppose C′ is (symmetric) flat as an algebra (respectively,
commutative algebra) over C (again using an obvious extension of Definition 2.1). Then any
weak equivalence of W -colored admissible operads O → P in C yields a Quillen equivalence of
their algebras in C′.

We finish this section by establishing a quasicategorical rectification result, which gener-
alizes [37, Theorem 4.5.4.7] to the case of arbitrary symmetric quasicategorical operads (as
opposed to just the commutative operad) and uses conditions that are significantly weaker
than freely poweredness. The following proposition and theorem, as well as the fact that the
former is relevant for the latter, were suggested to the first author by Thomas Nikolaus. Our
proofs are quite similar to that of Lurie in [37], the most noticeable difference being the usage
of notions of strong admissibility and symmetric flatness. In particular, strong admissibility
allows us to give a rather concise proof of the preservation of cofibrant objects in the following
proposition.

Proposition 7.9. Suppose that C is a V-enriched cofibrantly generated symmetric monoidal
model category and O is a symmetric colored operad in V that is admissible in C. If the unit
map ηO : 1[1] → O is a cofibration in (s)CollW (C) then the forgetful functor U : AlgO(C) → C
creates (that is, preserves and reflects) homotopy sifted colimits.
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Remark 7.10. We remind the reader that the notion of a sifted homotopy colimit is stronger
than that of a sifted colimit. For example, the reflexive coequalizer diagram is sifted but not
homotopy sifted [48, Remark 4.5.(e)]. This is unlike the filtered case, where both notions
coincide for ordinary categories.

Proof. The proof is similar to the proof of [37, Lemma 4.5.4.12]. The functor U creates weak
equivalences, so the reflection property is implied by the preservation property. Denote by I an
arbitrary homotopy sifted small category, such as Δop. We have a (strictly) commuting diagram

where V is also a forgetful functor. Preservation of homotopy colimits means that the diagram
commutes up to a weak equivalence after we derive it. Both U and V are automatically derived
because they preserve weak equivalences. We endow Fun(I,AlgO(C)) with the projective model
structure (with respect to I) and the transferred model structure on AlgO(C), which exists
by assumption. This model structure is the same as the model structure transferred from the
projective model structure on Fun(I, C), if we regard O as an I-constant operad in Fun(I, C).
Indeed, both model structures are transferred twice: once for the functor category, and the
other time for operadic algebras, and it does not matter in which order to transfer.

The top colim (hence, also U ◦ colim) can be derived by performing a cofibrant replacement
in the source category. If V preserves cofibrant objects, then it can also be derived in this way,
which proves the desired commutativity. To show that V preserves cofibrant objects, we observe
that V can be rewritten as the forgetful functor AlgO(Fun(I, C)) → Fun(I, C). It preserves
cofibrant objects since O is strongly admissible in Fun(I, C) by Proposition 6.3. �

We are now ready to state the conditions under which every quasicategorical algebra
over a quasicategorical operad corresponding to a strict colored symmetric operad can be
rectified to a strict algebra over the strict operad. We state the theorem for the simplicial
case, because a detailed write-up of quasicategorical operads is only available in this setting,
however, the proof holds more generally as indicated in the remark below. This extends
results of Lurie [37, Theorems 4.1.4.4, 4.5.4.7] for the associative operad and commutative
operad, Haugseng [25, Theorem 2.16] for arbitrary nonsymmetric operads, and Hinich
[27, Theorem 4.1.1] for symmetric operads in the case C = Ch(ModR).

Theorem 7.11. Suppose that C is a simplicial symmetric monoidal model category and
O is a C-admissible simplicial symmetric colored operad. Denote by COC and COAlgO(C) the
full subcategories spanned by the corresponding classes of cofibrant objects. The canonical
comparison functor

N(COAlgO(C))[W−1
AlgO(C)] → HAlgN⊗O(N(COC)[W−1

C ])

is an equivalence of quasicategories if and only if the map QO → O (the levelwise projective
cofibrant replacement of the underlying symmetric sequence of O) is symmetric flat in C
(Definition 2.1). Here, HAlg is used in the sense of Definition 2.1.3.1 (denoted by Alg there) in
Lurie [37] and N⊗O denote the operadic nerve of O, as explained in Definition 2.1.1.23 there.

Remark 7.12. If O is nonsymmetric, projective cofibrancy can be replaced by injective
cofibrancy (tautologically true for simplicial sets) because we do not have to mod out
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symmetric group actions. Thus, the condition of symmetric flatness can be dropped and every
nonsymmetric simplicial colored operad admits quasicategorical rectification.

Proof. The symmetric sequence QO can be constructed by taking the levelwise product of
the Barratt–Eccles operad E∞ and O, which in fact gives us an operad and not just a symmetric
sequence. The individual levels have a free action of the symmetric group and therefore are
projectively cofibrant. (The levels of O are injectively cofibrant, since any simplicial set is
cofibrant.) They are weakly equivalent to those of O because simplicial sets are flat and every
simplicial set is cofibrant.

The morphism QO → O induces an equivalence of the quasicategories of algebras over
N⊗QO and N⊗O, and below we will prove that the comparison functor is an equivalence
of quasicategories for QO, so by the 2-out-of-3 property for equivalences of quasicategories the
main statement is equivalent to QO → O inducing a Quillen equivalence, which by Theorem 7.5
is equivalent to symmetric flatness of QO → O. It remains to show that the comparison map
is an equivalence of quasicategories when O is levelwise projectively cofibrant.

The rest of the proof coincides with the proof of [37, Theorem 4.5.4.7] (modified in the
obvious fashion for colored operads instead of the commutative operad), with the following
modifications: for the part (d) (preservation of homotopy colimits of simplicial diagrams)
we use Proposition 7.9, whereas for part (e) we have to establish that the free (strict) O-
algebra on a cofibrant object C ∈ CW is also the free quasicategorical O-algebra in the sense of
[37, Definition 3.1.3.1]. Using Proposition 3.1.3.13 there this reduces to proving that the free
O-algebra O ◦ C =

∐
n�0 On ⊗Σn

C⊗n is also the derived free O-algebra. By assumption O is
levelwise projectively cofibrant, so the individual terms in the coproduct are cofibrant in CW

and compute the corresponding derived tensor product. Coproducts of cofibrant objects are
also homotopy coproducts, which concludes the proof. �

Remark 7.13. The same proof works (and therefore the theorem holds) for enriched
quasicategorical operads as soon as one has the obvious analog of [37, Proposition 3.1.3.13].
We refer the reader to the upcoming work of Hongyi Chu and Rune Haugseng on
enriched quasicategorical operads for the case of an arbitrary enriching symmetric monoidal
quasicategory.

8. Transport of operads and operadic algebras

This section gives an answer to the following important question: When does a Quillen
equivalence C � D of symmetric monoidal model categories induce a Quillen equivalence of
(symmetric) operads and their algebras? The first result in this direction, for monoids and
modules over monoids, is due to Schwede and Shipley [49, Theorem 3.12]. This was generalized
to nonsymmetric operads and their algebras by Muro [41, Theorem 1.1, 1.5; 43]. In both
statements, the monoidal unit was assumed to be cofibrant. This assumption, however, is
not satisfied in the very interesting stable positive model structure on symmetric spectra
[44, Theorem 3.2.1], so we pay special attention to not assuming the cofibrancy of the monoidal
unit 1. For example, Lemma 8.5, which governs certain cofibrant replacements, is trivial if 1 is
cofibrant.

Definition 8.1 [49, Definition 3.6]. An adjunction between symmetric monoidal categories

F : C � D : G (8.2)

is a (symmetric) oplax-lax adjunction if G is symmetric lax monoidal (see, for example,
[13, Definition 6.4.1]). It is a weak symmetric monoidal Quillen adjunction if in addition the



ADMISSIBILITY AND RECTIFICATION OF COLORED SYMMETRIC OPERADS 585

oplax structure maps of F induced from the lax structure of G,

F (Q1C) → 1D,

F (C ⊗ C ′) → F (C) ⊗ F (C ′)

are weak equivalences for all cofibrant objects C,C ′ ∈ C.

In analogy to Definition 6.1, we introduce the following notion.

Definition 8.3. An object A in a monoidal model category is well-pointed if there is a
cofibration 1 → A.

As far as their monoidal properties are concerned, well-pointed objects behave like cofibrant
objects, as is illustrated by the following lemmas:

Lemma 8.4. Let C be a monoidal model category.

(i) If B is well-pointed, then −⊗B : C → C is a left Quillen functor. (Thus, well-pointed
objects are pseudocofibrant in the sense of Muro [41, Appendix A].)

(ii) If a : A → A′ and b : B → B′ are two cofibrations with well-pointed source, then so is
a � b. If either A or B is cofibrant, then a� b is also cofibrant.

Proof. (i) Pick a cofibration η : 1 → B. For any (acyclic) cofibration a, the map a⊗B is
the composition of a pushout of a = a⊗ 1 and a � η. Both are (acyclic) cofibrations.

(ii) By (i), A⊗B is well-pointed and a⊗B and A⊗ b are cofibrations. Hence, a� b :=
dom(a � b) is well-pointed as well. If, say, A is cofibrant, then ∅ → A

A⊗η−−−−→A⊗B → a� b is
a composition of cofibrations. �

Lemma 8.5. Let A and B be two cofibrant or well-pointed objects in a tractable monoidal
model category satisfying the unit axiom, that is, Q(1) ⊗ C ∼ C for all cofibrant objects C.
Also assume that (a) weak equivalences are stable under filtered colimits or (b) C is strongly
admissibly generated. Then the following map is a weak equivalence:

Q(A) ⊗ Q(B) → A⊗B.

Proof. If A and B are cofibrant, the claim is clear. We now show the statement if B is
cofibrant and A is well-pointed.

The cofibration 1 → A is a retract of a transfinite composition of maps A0 = 1 → · · · →
A∞ = A, where each an : An → An+1 is the pushout of a generating cofibration s : S → S′.
We write En : s → an for the pushout square. The functor −⊗B is a left Quillen functor
by Lemma 8.4(i). In particular, it preserves cofibrations, so that En ⊗B is a pushout of a
cofibration between cofibrant objects along a map with cofibrant target An ⊗B (which holds
by induction, starting with A0 ⊗B = B). Hence, it is a homotopy pushout square. Similarly,
Q(En) is a pushout one of whose legs is a cofibration, and all objects in the square are cofibrant.
Hence, Q(En) ⊗ Q(B) is also a homotopy pushout square. In the natural transformation of
homotopy pushout squares

Q(En) ⊗ Q(B) −→ En ⊗B,

the two left maps in the depth direction are

Q(S) ⊗ Q(B) ∼−→ S ⊗B, (8.6)
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since Q(S) → S is a weak equivalence between cofibrant objects and similarly for B. (This is
the only point where we are using the cofibrancy of B.) The same works for S′. The third map
is

Q(An) ⊗ Q(B) → An ⊗B, (8.7)

which by induction on n is a weak equivalence, starting for n = 0 with the weak equivalence

Q(1) ⊗ Q(B) ∼ 1 ⊗ Q(B) = Q(B) ∼ B

given by the unit axiom. Thus, the fourth map in the cube, Q(An+1) ⊗ Q(B) → An+1 ⊗B, is
a weak equivalence. Thus, for all n < ∞, (8.7) is a weak equivalence. In other words, Q(An) ⊗
Q(B) is a cofibrant replacement of An ⊗B. Then Q(A∞) ⊗ Q(B) ∼ colim Q(An) ⊗ Q(B) ∼
colimAn ⊗B = A∞ ⊗B, using that weak equivalences are stable under filtered colimits by
assumption and the preservation of filtered colimits by ⊗. In case (b), we additionally use that
the transition maps are cobase changes of generating cofibrations tensored with a fixed object,
hence in the class (2.2). We have shown the claim if B is cofibrant.

If B is merely well-pointed, we run the same argument again, noting that for a cofibrant
object S, the weak equivalence Q(S) ⊗ Q(B) ∼ S ⊗B used in (8.6) is a weak equivalence by
the previous step. �

The following variant can be proved using the same technique as Lemma 8.5. The left
properness is used to ensure that the pushouts appearing in the cellular induction are homotopy
pushouts. The details are left to the reader.

Lemma 8.8. Let A be a cofibrant or well-pointed object in a flat left proper tractable
monoidal model category C whose weak equivalences are stable under filtered colimits. Then
A⊗− preserves weak equivalences.

The following lemma of Berger and Moerdijk may be called an equivariant pushout product
axiom.

Lemma 8.9 [7, Lemma 2.5.3]. Let 1 → Γ1 → Γ → Γ2 → 1 be a short exact sequence of finite
groups. Then, for a monoidal model category C,

⊗ : Γpro
2 C × Γpro′C → ΓproC

is a left Quillen bifunctor. Here, Γpro′C denotes the model structure on ΓC whose cofibrations
are Γ1-projective cofibrations.

Theorem 8.10. Suppose F : C � D : G is a weak symmetric monoidal Quillen adjunction
(Definition 8.1) between tractable symmetric monoidal model categories such that (a) weak
equivalences are stable under filtered colimits or (b) C is strongly admissibly generated. Also
suppose that both C and D are either left proper or their monoidal unit is cofibrant.

(i) Suppose that the transferred model structures on the categories (s)OperW (C) and
(s)OperW (D) exist. (See Corollary 9.4.1 for a sufficient condition.) Then there is a Quillen
adjunction of the categories of (symmetric) operads

F (s)Oper : (s)OperW (C) � (s)OperW (D) : G. (8.11)

It is a Quillen equivalence if (F,G) is a Quillen equivalence.
(ii) For any admissible (symmetric) operad O in C, there is a Quillen adjunction

FAlg : AlgO(C) � AlgF (s)Oper(O)(D) : G. (8.12)

It is a Quillen equivalence if (F,G) is a Quillen equivalence and O is a cofibrant operad.
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(iii) If P is an admissible (symmetric) operad in D such that G(P ) is also admissible, there
is a Quillen adjunction

FAlg : AlgC
G(P ) � AlgD

P : G. (8.13)

It is a Quillen equivalence if (F,G) is a Quillen equivalence, P is fibrant, and C and D admit
rectification of (symmetric) operads.

Proof. Since G is symmetric lax monoidal, it induces a lax monoidal adjunction

F : ((s)CollWD, ◦) → ((s)CollW C, ◦) : G. (8.14)

In particular, G preserves monoids, that is, (symmetric) operads. This defines the right adjoint
in (8.11). The right adjoint in (8.12) sends an F (s)Oper(O)-algebra B to G(B), which is an
O-algebra via

O ◦G(B) → GF (s)Oper(O) ◦G(B) → G(F (s)Oper(O) ◦B) → G(B).

The left adjoints exist by [13, Theorem 4.5.6]. Moreover, the right adjoints are Quillen right
adjoints since (acyclic) fibrations are again created by the forgetful functors.

We now establish the advertised Quillen equivalences.
(i) We have to show that for any cofibrant operad O, the natural map

φO : F (Q(U(O))) → U(F (s)Oper(O))

is a weak equivalence. In this case, we have the following chain of equivalent statements for any
cofibrant operad O ∈ (s)OperW (C) and any fibrant operad P ∈ (s)OperW (D), which implies
the Quillen equivalence (8.11):

F (s)Oper(O) ∼ P ⇔ UF (s)Oper(O) ∼ U(P )

⇔ F (Q(U(O)) ∼ U(P )

⇔ Q(U(O)) ∼ G(U(P )) = U(G(P ))

⇔ U(O) ∼ U(G(P ))

⇔ O ∼ G(P ).

The cellular induction starts with the initial operad O = 1C [1], for which F (s)Oper(O) =
1D[1]. Thus, φ1[1] is a weak equivalence by the weak monoidality of F .

Using the notation of Proposition 5.2, we now consider a pushout of operads along a map
Free(x), where x is a cofibration in sCollW (C). We will show that φO′ is a weak equivalence
provided that φO is one.

Applying FQ to the filtration (see Proposition 5.2)

U(o) : O(0) := U(O) → · · · → O(∞) := U(O′)

gives the front face of the following commutative cube in ΣsD. The back face is part of the
filtration

U(õ) : Õ(0) := UF (s)Oper(O) → · · · → Õ(∞) := UF (s)Oper(O′)

associated to the pushout of operads in D that is obtained by applying the left adjoint F (s)Oper

to (5.3):
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Here and below, the notation ?̃ indicates the object or morphism that is obtained by considering
the data in the filtration of õ := F (s)Oper(o). For example, X̃ := F (X) and similarly for X ′,
x. The coproduct runs over all isomorphism classes of marked trees T in (s)Tree(k+1)

s,w .

At this point (and only here), we use the assumption that D is either left proper or its monoidal
unit is cofibrant: in the former case, any pushout along a cofibration is a homotopy pushout.
In the latter case, Õs,w = Õ

(0)
s,w is cofibrant for all (s, w) by Lemma 6.2(i3) and therefore by

induction the same is true for Õ
(k)
s,w. Hence, the pushout above is again a homotopy pushout.

Likewise, the front square is a homotopy pushout, since FQ(−) preserves those. Thus, r(k+1) is
a weak equivalence if r(k), ∗, and ∗∗ are ones. The map r(k) is a weak equivalence by induction
on k, starting with

r(0) : FQ(O(0)
s,w) = FQ(U(O)s,w) → Õ(0)

s,w = UF (s)Oper(O)s,w,

which is the (s, w)-level of φO, which is a weak equivalence by the cellular induction on O. It
remains to show that the maps ∗ and ∗∗ are weak equivalences.

Let T ∈ (s)Trees,w be any tree. By induction on the height of T , we prove the following
claims:

(A) The map ε(T ) is a cofibration in (AutT )proC with cofibrant or well-pointed domain
(Definition 8.3). The domain is cofibrant for all trees except (possibly) for the tree T−

w :=

(
w→−• w→) ∈ (s)Tree(0)

w,w, which consists of a single nonmarked vertex with input edge and
root edge colored by w. In particular, ε(T ) is a cofibration with cofibrant domain for all
T ∈ (s)Tree(k+1)

s,w with k � 0. (These are the trees appearing in the cubical diagram above.

In order to perform the induction, we also need to consider T ∈ (s)Tree(0)
s,w.)

(B) There are weak equivalences in Ar(C) (that is, both source and target of the morphisms
are weakly equivalent)

FQ(ε(T )) → ε̃(T ).

Let (t, w) := val(r(T )) be the valency of the root r(T ) of T . If T consists of a single vertex
r(T ) (with an outgoing root edge and finitely many input edges), then t = s and

ε(T ) = ε(r(T )) =
{

(ηO)(t,w), if the root r(T ) is not marked;
x(t,w), if the root r(T ) is marked.

Both are cofibrations in Σt(C)(= Aut(T )C), the former by Lemma 6.2(i). Since X = dom(x)
is cofibrant by quasitractability, the source of ε(T ) is well-pointed for (T =)r(T ) = T−

w and
cofibrant else. This shows claim (A).
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For claim (B), we note that FQ(U(ηO)) is weakly equivalent to ηÕ by the unit part of the
weak monoidality of F and the cellular induction on O. To show FQ(u) ∼ ũ, we consider the
pushout square in (s)CollW (C), denoted by E:

It is a homotopy pushout square in all degrees: for unit degrees, the left vertical map is id∅ and
for nonunit degrees Os,w is (Σs-projectively) cofibrant (and xs,w is a cofibration). Applying FQ
to E gives a homotopy pushout square in (s)CollW (D). The square Ẽ in sCollW (D) obtained
by replacing X, X ′, and O by their ?̃-counterparts is also a homotopy pushout square. By
cellular induction FQU(O) ∼ UÕ. Of course FQ(X) ∼ X̃(= F (X)) by the cofibrancy of X
(using the quasitractability of C) and similarly for X ′. We obtain the desired weak equivalence

F (Q(U(O) X X ′)) ∼ U(Õ) X̃ X̃ ′

and hence claim (B) for the tree T consisting of a single (marked or unmarked) vertex.
We now perform the induction step. We may assume that T has at least two vertices. By

definition,

ε(T ) = ε(r(T )) � �
i

ε(Ti)�ti

︸ ︷︷ ︸
=:ε′(T )

.

Recall that a map f in a model category C is a cofibration with cofibrant source if and only
if it is a cofibrant object in Ar(C), that is, id∅ → f is a cofibration. Likewise, f is a cofibration
with well-pointed source if and only if there is a cofibration id1 → f in Ar(C).

We write ε(r(T )) : V → W and ε′(T ) : e∗(T ) → e(T ). Let val(r(T )) = (s, w). As was noted
above, ε(r(T )) is a cofibration in sCollW (C). Its domain Vs,w := dom(ε(r(T ))s,w) is well-

pointed in ΣsC if T is of the form (T1
w→−• w→), where T1 is the subtree of the root vertex. In this

case, we abusively write r(T ) = Tw. In all other cases, Vs,w is cofibrant. Hence, id1 → ε(r(T ))
(respectively, id∅ → ε(r(T ))) is a cofibration in Ar(ΣsC) = ΣsAr(C). By induction on T , ε(Ti)
is an Aut(Ti)-projective cofibration whose source is well-pointed (if Ti = Tw) and cofibrant
(otherwise). Again, we reinterpret this in terms of cofibrations in Ar(Aut(Ti)C).

We now consider four cases:

(1) r(T ) �= T−
w , at least one Ti �= T−

w : By Lemma 8.9, applied to Ar(C) (with the pushout
product), the map

(id∅ → ε(r(T ))) � (id∅ → ε′(T )) = (id∅ → ε(r(T )) � ε′(T )) = (id∅ → ε(T ))

is a cofibration in Ar(Aut(T )C) in this case, that is, ε(T ) is a cofibration with cofibrant source.
(2) r(T ) �= T−

w , all Ti = T−
w : Then

(id∅ → ε(r(T ))) � (id1 → ε′(T )) = (id∅ → ε(r(T )) � ε′(T )) = (id∅ → ε(T ))

is a cofibration in Ar(Aut(T )C).
(3) Similarly for r(T ) = T−

w , T1 �= T−
w .

(4) r(T ) = T−
w , T1 = T−

w : By definition of the trees in (s)Trees,w, any internal edge contains
at least one marked vertex. Thus, this tree does not lie in (s)Trees,w unless T1 is empty, in
which case we have shown the claim above.

This shows claim (A).
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We now show (B). We may assume that T consists of at least two vertices. Consider the
diagram E whose left square is by definition cocartesian,

(8.15)

We claim that the left pushout square is a homotopy pushout. By Lemma 8.4(i), both the
left vertical and the top horizontal maps are cofibrations (in C, say), hence the claim is clear
if Vt,w ⊗ e∗(T ) is cofibrant, because in this case the above pushout diagram is cofibrant as
a diagram. By the above, Vt,w and e∗(T ) are either cofibrant or well-pointed. Again using
Lemma 8.4, the only way that Vt,w ⊗ e∗(T ) is only well-pointed is that both Vt,w and e∗(T )
are well-pointed. By the above, the first only happens for r(T ) = T−

w and the second happens

only if all Ti = T−
w . As was noted in Case (4), this means T = (

w→−• w→−• w→), which is excluded.
We have weak equivalences

FQ(Vt,w ⊗ e∗(T )) ∼ F (QVt,w ⊗ Qe∗(T ))

∼ FQ(Vt,w) ⊗ FQ(e∗(T ))

∼ Q(Ṽt,w) ⊗ Q(ẽ∗(T ))

∼ Ṽt,w ⊗ ẽ∗(T ).

The first equivalence holds by Lemma 8.5, which gives a weak equivalence between cofibrant
objects

Q(Vt,w ⊗ e∗(T )) ∼ Q(Vt,w) ⊗ Q(e∗(T ))

since both Vt,w and e∗(T ) are cofibrant or well-pointed. The second equivalence holds by weak
monoidality of F . The third equivalence follows from Brown’s lemma and the equivalences
FQ(Vt,w) ∼ Ṽt,w and FQ(e∗(T )) ∼ ẽ∗(T ). The last weak equivalence holds by Lemma 8.5,
again using the (monoidal) cofibrancy of Ṽt,w and ẽ∗(T ). The same is also true for Wt,w and/or
e(T ) instead.

We now apply FQ to the diagram E in (8.15). On the other hand, we consider the diagram
Ẽ obtained by replacing Vt,w by Ṽt,w, etc. There is a map of diagrams FQ(E) → Ẽ. By
the above, all individual maps in this morphisms of diagrams are weak equivalences, except
(a priori) for

FQ (P ) → P̃ .

However, since the left squares of FQ(E) and Ẽ are homotopy pushout squares, this remaining
map is also a weak equivalence. Therefore, FQ(E) ∼ Ẽ. In particular, we get the requested
weak equivalence in Ar(C)

FQ(ε(T )) ∼ ε̃(T ).

This finishes the induction step (with respect to the tree T ). We have shown that the individual
summands in the maps ∗ and ∗∗ are weak equivalences.

The coproducts appearing in the left face of the cube above are homotopy coproducts,
since for all T ∈ (s)Tree(k+1)

s,w (k � 0), the terms Σt ·AutT x∗(T ) and similarly for x(T ) are
Σt-projectively cofibrant by Claim (A). This implies that the maps ∗ and ∗∗ themselves are
weak equivalences and therefore finishes the induction step with respect to the cellular induction
by O.
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For a cellular filtration of O∞ by operads Oi such that φOi
is a weak equivalence for all

i < ∞, the same is true for i = ∞ using that U preserves filtered colimits and assumption (a).
In case (b), we also use that the transition maps (co)dom(φOi

) → (co)dom(φOi+1) lie in (2.2),
by (5.4).

(ii) For any cofibrant O-algebra A, we have the following chain of canonical isomorphisms
and weak equivalences, which as above shows the requested Quillen equivalence:

U(FAlg(A)) = Env(F (s)Oper(O), FAlg(A))0

= F (s)Oper(Env(O,A))0

∼ F (Q(Env(O,A))0)

∼ F (Env(O,A)0)

= F (U(A))

∼ FQ(U(A)). (8.16)

The last (and similarly the first) canonical isomorphism is Proposition 4.4(i). The second
isomorphism comes from a natural isomorphism of functors

Env(F (s)Oper(−), FAlg(∗)) = F (s)Oper(Env(−, ∗))
since both expressions are the left adjoint to (s)OperW (D) → Pairs(sCollW (C)), P 
→
(G(P ), G(P )0). The first weak equivalence was shown in Part (i), which is applicable since
Env(O,A) is a cofibrant operad by Lemma 6.2(ii). The second weak equivalence is given by
Lemma 6.2(i). The last weak equivalence follows from Proposition 6.3.

(iii) Let O ∈ (s)OperW (C) be a cofibrant replacement of G(P ). Equivalently, by Part (i),
P ∼ F (s)Oper(O). By rectification of operads for D, (ii), and rectification of operads for C, we
have the following chain of Quillen equivalences

AlgD
P ∼ AlgD

F (s)Oper(O) ∼ AlgC
O ∼ AlgC

G(P ). �

Remark 8.17. The condition in Theorem 8.10 that C and D have the property that they
are either left proper or their monoidal unit is cofibrant is only used to show that pushouts
of certain cofibrations with cofibrant domain are homotopy pushouts. Since being a homotopy
pushout only depends on the class of weak equivalences, this also holds, for example, if C has
another model structure with more cofibrations, and the same weak equivalences.

If the left adjoint F is in addition symmetric monoidal, we can relax the condition on O in
Theorem 8.10(ii).

Corollary 8.18. In the situation of Theorem 8.10, suppose in addition that the left adjoint
F is strong symmetric oplax monoidal (that is, the symmetric oplax structural maps F (C ⊗
C ′) → F (C) ⊗ F (C ′) are isomorphisms, so that F is also symmetric lax monoidal). Let O be
any (symmetric) operad in C such that U(ηO) is a cofibration in (s)CollW (C).

Then there is a Quillen adjunction

F : AlgO(C) � AlgF (O)(D) : G,

which is a Quillen equivalence if (F,G) is a Quillen equivalence.

Proof. Since F is symmetric monoidal, U ◦ FAlg = F ◦ U (see, for example, [1, Proposition
3.91]). Therefore, only the last weak equivalence in (8.16) requires proof. By Proposition 6.3, the
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operad O is strongly admissible, that is, U(A) is cofibrant in C, so that F (U(A)) ∼ F (Q(U(A))
by Brown’s lemma. �

9. Applications

This last section contains a few applications to the homotopy theory of enriched categories,
ordinary categories, operads, and (monoidal) diagrams. The strategy is similar for all these
applications: enriched categories, say, are algebras over a certain nonsymmetric operad.
Therefore, the admissibility and rectification results of § 5–7 can be applied.

The list presented here is by no means exhaustive, other potential applications include
monads in model categories, internal categories (and higher internal categories), (higher) spans,
etc. Symmetric operads in symmetric spectra and some applications are studied in [44].

In § 9, let V be a symmetric monoidal model category and C be a V-enriched model category
whose weak equivalences are stable under filtered colimits. Moreover, assume that C is tractable
and either combinatorial or V-admissibly generated.

9.1. Rectification of A∞- and E∞-monoids

In this section, we discuss rectification of homotopy coherent versions of monoids and
commutative monoids. We start by giving explicit constructions of two important operads,
A∞ and E∞.

The Barratt–Eccles operad E∞ can be constructed by taking the associative symmetric
operad in sets, applying the functor E to it (E sends a set to a groupoid with the same set
of objects and a single morphism between any pair of objects), obtaining a symmetric operad
in groupoids, and then applying the nerve functor, which gives a simplicial operad. See the
paragraph after Corollary 3.5 in Elmendorf and Mandell [17].

An identical construction (apply E and then take the nerve) produces a model for the
operad A∞, but the original operad in sets is now the free operad on a single binary operation
and a single nullary operation, so that On consists of planar rooted trees with n leaves (see, for
example, [6, § 5.8]). Alternatively, one can take the free operad generated by a single operation
in each arity (which corresponds to the so-called unbiased monoids).

In what follows, we actually do not need to apply the nerve functor, because an operad in
groupoids is sufficient for our purposes. We also note that any category enriched in simplicial
sets is automatically enriched in groupoids by applying the nerve functor. The following
propositions are mere specializations of the general theorems on admissibility and rectifiability.
We give explicit statements here due to the importance of these examples.

Proposition 9.1.1. If C is a symmetric h-monoidal and groupoid-enriched then the
category of E∞-algebras in C admits a transferred model structure. Furthermore, if the
morphism E∞ → Comm is symmetric flat in C (in particular, if C is symmetric flat), then the
Quillen adjunction between commutative monoids and E∞-monoids is a Quillen equivalence.

A similar statement for A∞ and As holds if C is merely h-monoidal and flat.

9.2. Model structures on enriched categories

For a small set W , Berger and Moerdijk [8, 1.5.4] have introduced a nonsymmetric
W ×W -colored operad in V given by

CatAs
W (((v1, v

′
1), . . . , (vn, v

′
n)), (v′0, v

′
n+1)) =

{
1V , v′i = vi+1 for all 0 � i � n;
∅, otherwise.
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This defines a nonsymmetric operad in V. Its algebras in CW×W are precisely C-enriched
categories with W as objects. More generally, given a nonsymmetric operad O in V, one
can also consider the nonsymmetric operad CatOW , which is given by replacing 1V = Asn in
the previous formula by On. Algebras over this operad can be called V-enriched O-twisted
categories. Typically, O is taken to be A∞. In this case we speak of V-enriched A∞-categories,
that is, composition is not strictly associative, but rather associative up to coherent higher
homotopies.

The following lemma is an immediate application of the results on admissibility and
rectification. Up to a minor expository difference (see Remark 5.13), the admissibility statement
is the same as Muro’s [40, Corollaries 10.4, 10.5]. The rectification result there uses in addition
the left properness of C.

Corollary 9.2.1. If C is h-monoidal, then all (nonsymmetric) operads in V are admissible.
In particular, the operad CatOW is admissible, so O-twisted C-enriched categories with W as
the set of objects and functors that induce identity on objects carry a model structure whose
weak equivalences and fibrations are those C-enriched functors F : D → E that induce weak
equivalences, respectively, fibrations in C:

HomD(D,D′) → HomE(C,C ′),

for all objects D = F (D) and D′ = F (D′) in Ob(D) = Ob(E) = W .
If C is in addition flat over the levels ϕn (n � 0) of some weak equivalence ϕ : O → P of

nonsymmetric operads in V, there is a Quillen equivalence of O- and P -twisted C-enriched
categories (both with W as objects):

ϕ∗ : CatOW (C) � CatPW (C) : ϕ∗.

For example, if 1V is cofibrant, then this condition is satisfied for any weak equivalence A∞ →
As, where A∞ is a cofibrant replacement of As. It is satisfied for any weak equivalence if C is
flat (Definition 2.1).

Proof. Admissibility follows from Theorem 5.11 and Remark 5.13 and rectification follows
from Theorem 7.5. If 1V is cofibrant, then C is flat over the levels of A∞ → As: Asn = 1V is
cofibrant. Moreover, A∞ is a cofibrant operad, so that its levels are cofibrant by Lemma 6.2.
Any monoidal model category is flat over a weak equivalence between cofibrant objects by
Brown’s lemma. �

These individual model structures on CatW (C) can be assembled into a single model
structure on Cat(C). The following result is due to Muro [42, Theorem 1.1], for C combinatorial.
Muro’s work relaxes the assumptions of a similar result of Berger and Moerdijk [10, Theo-
rem 1.9], which in turn generalizes results of Amrani (V = Top) [2], Bergner (for V = sSet)
[11, Theorem 1.1], Lurie (every object of V is cofibrant) [36, Proposition A.3.2.4], and Tabuada
(V = Ch(ModR) for some ring R and V being symmetric spectra) [53, Théorème 3.1; 54; 55,
Theorem 5.10].

Given some property of objects or morphisms in C, we say that a C-enriched category or a
C-enriched functor has this property locally if it is true for the enriched objects of morphisms
between each pair of objects. Given a C-enriched category, its derived π0 is an ordinary
1-category that is constructed by applying the derived internal hom from the monoidal unit
of C to each object of morphisms.

Proposition 9.2.2 (Muro). Suppose again that C is h-monoidal, and moreover combina-
torial. Then Cat(C) carries the Dwyer–Kan model structure whose weak equivalences are the
Dwyer–Kan equivalences (that is, local weak equivalences and their derived π0 is an essentially
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surjective functor or, equivalently, an equivalence of categories) and whose acyclic fibrations
are local acyclic fibrations that are surjective on objects.

Remark 9.2.3. We expect that the preceding result can be extended to the case when C is
not combinatorial, but just admissibly generated and tractable using Theorem 5.11(b). More
generally, we expect that the Dwyer–Kan model structure on CatO(C) exists for any operad
O. The reader is encouraged to upgrade Muro’s result 9.2.2 to this generality, which will give
a model structure on topological categories.

Proposition 9.2.4. Fix V and C as in Corollary 9.2.1 and a weak equivalence ϕ : O → P
of nonsymmetric operads in V. Assume that the Dwyer–Kan model structure on CatO(C) and
CatP (C) exists, as in Proposition 9.2.2. If C is flat over a weak equivalence ϕ : O → P (more
precisely, flat over the levels ϕn for all n � 0), then we have a Quillen equivalence

ϕ∗ : CatO(C) � CatP (C) : ϕ∗.

For example, this holds for all weak equivalences ϕ if C is flat. It also holds for the weak
equivalence ϕ : A∞ → As if the monoidal unit 1V is cofibrant.

Proof. For some cofibrant object X ∈ CatO(C) and a fibrant object Y ∈ CatP (C), the
(co)unit morphism of the adjunction for X and Y can be computed in the corresponding slices
CatOObj(X)(C) and CatPObj(Y )(C). Moreover, the (co)fibrancy of X and Y is equivalent to the
one in the corresponding slice category. Now the Quillen equivalence immediately follows from
the rectification of category structures with a fixed set of objects (Corollary 9.2.1). �

An interesting question that arises in relation to these results is whether it is possible to
define a monoidal structure on the category of enriched categories in such a way that the
resulting model category is monoidal. The naive choice (take the product of sets of objects
and the tensor product of enriched morphisms) already fails to satisfy the pushout product
axiom in the case when C is the model category of small categories, as shown by Lack.
The Gray tensor product does turn enriched categories in small categories (that is, strict
2-categories) into a monoidal model category, however, it is unclear how one should generalize
it to enriched categories. If such a monoidal product could be constructed, then one could
iterate the construction of enriched categories and consider higher enriched categories (that
is, enriched categories in enriched categories, etc.). Such a construction could explain how the
traditional definitions of bicategories, tricategories, and tetracategories could be generalized in
a systematic way to higher dimensions. Furthermore, for certain choices of the operad O (for
example, the categorical A∞-operad) one would expect to get a model category that is Quillen
equivalent to any of the usual model categories of (∞, n)-categories. (We cannot expect this
for O = As because it is well known that tricategories cannot in general be strictified to strict
3-categories.)

9.3. Applications to category theory

In this section, we apply the results of § 9.2 to some concrete examples of (low-dimensional)
category theory.

Consider the category of sets equipped with the model structure whose weak equivalences
are bijections and fibrations and cofibrations are arbitrary maps. Equip this model category
with the monoidal structure given by the cartesian product. This model structure is tractable,
proper, its weak equivalences are stable under filtered colimits (it is pretty small in the
sense of [45, Definition 2.1] for the maps ∅ → {0}, {0, 1} → {0} generate the cofibrations,
then use [45, Lemma 2.2]), symmetric h-monoidal and symmetroidal, and symmetric flat.
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By Proposition 9.2.2, the category Cat of categories admits a model structure whose weak
equivalences are equivalences of categories and fibrations are the so-called isofibrations, that is,
functors F : C → D such that any isomorphism in D, F (C) ∼= D (for C ∈ C, D ∈ D) has a lift to
an isomorphism in C. This is precisely the canonical (folk) model structure on categories (see,
for example, Rezk [46]). The canonical model structure is tractable, pretty small, cartesian
(that is, monoidal with respect to the categorical product), simplicial, and all objects are
fibrant and cofibrant (see Rezk [46] for details). Furthermore, it is symmetric h-monoidal and
symmetroidal because cofibrations are precisely those functors that are injective on objects, and
the latter property survives pushout products and coinvariants under Σn, the argument being
similar to the one for simplicial sets (see [45, § 7.1]). Finally, the canonical model structure
is flat, which follows immediately from the definition of equivalences of categories, which are
stable under products. However, symmetric flatness fails: the Σn-equivariant functor from the
groupoid EΣn (objects are Σn and morphisms are Σn × Σn) to the terminal groupoid is a
weak equivalence, yet its Σn-coinvariants is the map BΣn → 1 (BΣn has one object whose
endomorphisms are Σn), which is not an equivalence.

The results of § 5–§ 7 yield model structures on various types of monoidal categories and a
strong form of Mac Lane’s coherence theorem.

Proposition 9.3.1. There is a model structure on strict monoidal categories, monoidal
categories, strict symmetric monoidal categories, and symmetric monoidal categories whose
weak equivalences and fibrations are the ones of the underlying categories.

Every monoidal category is equivalent (via a strong monoidal functor) to a strict monoidal
category. This strict monoidal category is unique up to strict monoidal equivalence. Similarly,
every monoidal functor is equivalent (via a strong monoidal natural transformation) to a strict
monoidal functor, which is again unique up to a strict monoidal natural transformation.

Proof. The above-mentioned categories are algebras (in Cat) over the associative operad As,
operad A∞, commutative operad Comm, and operad E∞, respectively. Hence, the existence of
the model structure follows from Theorem 5.11, whose assumptions have been verified above.

Furthermore, the nonsymmetric rectification theorem (Theorem 7.5) tells us that the
canonical morphism from A∞ to the associative operad induces a Quillen equivalence between
As-algebras and A∞-algebras. �

Example 9.3.2. The morphism from E∞ to the commutative operad is not symmetric
flat, as explained above, which tells us that symmetric monoidal categories cannot always
be strictified to strict symmetric monoidal categories. This is well known because symmetric
monoidal categories can have a nontrivial k-invariant whereas strict symmetric monoidal
categories always have a trivial k-invariant.

Similarly, Mac Lane’s coherence theorem for bicategories follows from the above, since strict
2-categories are CatAs-algebras and bicategories are CatA∞ -algebras in Cat, respectively.

Proposition 9.3.3. There is a Quillen equivalence between the model categories of strict
2-categories and bicategories.

We conjecture that other strictification results of category theory, such as strictification of
tricategories to Gray categories (Gordon, Power, and Street), partial strictification of symmetric
monoidal bicategories, etc., can also be shown using the methods of this paper. However,
considerations of volume prevent us from developing this topic further. Simpson’s conjecture
might also be amenable to the techniques explained above.
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9.4. The colored operad of colored operads

Given a set W , there is a (symmetric) colored operad OperW whose category of algebras is
equivalent to the category of (symmetric) W -colored operads in C. It is due to Berger and
Moerdijk [8, § 1.5.6 and § 1.5.7]. See also [21, § 3] for a detailed description of the multicolored
case.

This operad is first constructed for C = Sets as follows: the set of colors of (s)OperW is
the set of objects of (s)SeqW,W , which we call valencies. Recall from § 3 that the objects of
(s)SeqW,W are pairs c = (s, w), where s : I → W is a map from a finite set I and w ∈ W . The
operations

(s)OperW (a1, . . . , ak; b)

from a given sequence of valencies (a1, . . . , ak) to a valency b are given by isomorphism classes
of triples (T, σ, τ) consisting of a W -colored (symmetric) tree T equipped with a bijection σ
from {1, . . . , k} to the set of internal vertices of T such that the valency of σ(i) equals ai and
a color-preserving bijection τ from {1, . . . ,m}, where m is the arity of b, to the input edges
of T . Isomorphisms of such triples are isomorphisms of colored trees that are compatible with σ
and τ . In the symmetric case, the symmetric group Σk acts on such classes by precomposition
with σ. The operadic unit sends each valency c to the corresponding corolla, interpreted as an
operation from c to c. The operadic composition is given by inserting trees into each other (see
[8, § 1.5.6] in the uncolored case). One checks that this gives a (symmetric) operad, denoted
by (s)OperW , in Sets.

The functor

Sets → C, X 
→
∐
x∈X

1C

is symmetric monoidal and therefore extends to a functor

(s)Oper(s)SeqW
(Sets) → (s)Oper(s)SeqW

(C).

The image of (s)OperW under this functor is again denoted by (s)OperW .
The following admissibility statement unifies a few earlier results: the semimodel structure

for symmetric operads established by Spitzweck [52, Theorem 3.2], the model structure for non-
symmetric operads by Muro [40, Theorem 1.1], and the model structure on uncolored operads
in orthogonal spectra with the positive stable model structure by Kro [33, Theorem 1.1].

Corollary 9.4.1. Let C be (symmetric) h-monoidal. Then the operad (s)OperW of
(symmetric) W -colored operads is admissible, that is to say, the category (s)OperW (C) of
(symmetric) W -colored operads in C has a model structure that is transferred along the
adjunction

Free : C(s)SeqW,W � AlgOperW
(C) = (s)OperW (C) : U.

If 1C is cofibrant, then (s)OperW is strongly admissible, that is, the forgetful functor U
preserves cofibrations with cofibrant domain.

Proof. The admissibility follows from Theorem 5.11. The strong admissibility follows from
Proposition 6.3 since (s)Oper is levelwise projectively cofibrant. �

Enriched operads are generalized to enriched A∞-operads in the same fashion as enriched cat-
egories are generalized to enriched A∞-categories. Fix a (symmetric) operad O. In practice, O
is an A∞-operad, that is, we have a weak equivalence of operads O → As, where As denotes the
associative operad. We define the colored (symmetric) operad OperOW of O-twisted W -colored
(symmetric) operads by the same construction as above, starting from a colored operads P
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in sets, except that we pass to a C-valued operad in a modified fashion: instead of tensoring
operations in degree k with 1C , we tensor them with Ok. The intuitive idea behind this is that
the composition of operadic operations is no longer strictly associative, but is rather governed
by the operad O. An O-twisted W -colored operad is an O-algebra in the monoidal category of
W -colored (symmetric) sequences equipped with the substitution product, the latter being a
left C-module in the obvious way. Then Corollary 9.4.1 has an immediate generalization for the
operad (s)OperO. For the strong admissibility, the requirement on 1C is replaced by the condi-
tion that the levels Ok be cofibrant as objects in C. Moreover, Theorem 7.5 admits the following
corollary.

Corollary 9.4.2. If C is flat over a weak equivalence O → P of operads, then we have
a Quillen equivalence sOperOW (C) � sOperPW (C) of O-twisted and P -twisted (symmetric)
W -colored operads in C. For example, if 1C is cofibrant, then A∞-twisted colored symmetric
operads can be rectified to ordinary colored symmetric operads.

Proof. This follows from Theorem 7.5 once we show the symmetric flatness of C with respect
to sOperOW → sOperPW . Every component of sOperOW is a coproduct of the corresponding
components of O, and the relevant symmetric group acts freely on the components. Thus, the
symmetric flatness follows from the flatness of C over O → P . �

Remark 9.4.3. In fact, if C is a V-enriched model category that is symmetric h-monoidal
with respect to V only (and not necessarily with respect to itself), then the colored operad of
colored operads can be defined with values in V and its algebras in C will still be W -colored
operads in C, so the above corollary holds in this more general setting. Gutiérrez and Vogt
used such a setup (with a different set of conditions on V) to construct a model structure on
W -colored operads in symmetric spectra (see [21, Corollary 4.1]).

Starting from this point, further work is required to assemble the model structures
on sOperW (C) into one on the category (s)Oper(C) of (symmetric) operads with an arbitrary
set of colors. This has been done for C = sSet by Cisinski and Moerdijk [15, Theorem 1.14]
and independently by Robertson [47, Theorem 6] and was extended by Caviglia [14] to more
general model categories using similar arguments. We expect that the assumptions can be
further relaxed to the ones stated in the above corollary.

9.5. Diagrams

In this section, we construct a model structure on the category of enriched diagrams of some
fixed shape and prove a rectification result. In particular, we recover the classical result of Vogt
and its generalization by Cordier and Porter on homotopy coherent diagrams.

Proposition 9.5.1. Assume that C is, in addition to the standing assumptions in this
section, h-monoidal. For any V-enriched, small category D, the category of V-enriched
functors D → C admits a transferred model structure. Its weak equivalences and fibrations
are those natural transformations of V-enriched functors F → G such that for all objects
X ∈ D,

F (X) → G(X)

is a weak equivalence, respectively, a fibration. Furthermore, if V has a model structure
and C is flat over V, then a componentwise weak equivalence of diagrams D → D′ whose
object map is the identity induces a Quillen equivalence of the two model categories of
diagrams.
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Remark 9.5.2. A more general version of the rectification result allows for a Dwyer–Kan
equivalence D → D′.

Proof. Following Berger and Moerdijk [8, § 1.5.5], we consider the nonsymmetric colored
operad DiagD that encodes diagrams in C indexed by a fixed V-enriched category D, that
is, V-enriched functors D → C. The operad DiagD is colored by the set of objects of D. Its
operations are defined as

DiagD(X1, . . . , Xn, Y ) =
{∅, n �= 1;

MapD(X,Y ), n = 1.

Here, MapD denotes the enriched hom object. The operadic composition and unit are induced
by the composition and unit of D. (The construction just described embeds enriched categories
into nonsymmetric colored operads.)

A DiagD-algebra in C consists of a collection of objects DX in C, for all X ∈ D together
with morphisms Mor(X,Y ) ⊗DX → DY that satisfy the obvious associativity and unitality
conditions. This is precisely the data of a V-enriched functor D → C.

Theorem 5.11 now implies that the category of D-diagrams admits a transferred model
structure. At this point, we remark that Theorem 6.7 likewise implies that cofibrations with
cofibrant source are preserved by the forgetful functor if taking the pushout product with
1C → MapD(X,X) and ∅ → MapD(X,Y ) preserves (acyclic) cofibrations, which is true, for
example, if individual hom objects are cofibrant and the unit maps are cofibrations.

Theorem 7.5 implies the desired rectification statement if C is flat. �

9.6. Monoidal diagrams

Extending the results of the previous section, there is also a (symmetric) colored operad that
encodes lax (symmetric) monoidal diagrams, that is, lax (symmetric) monoidal V-enriched
functors D → C, where C is now an algebra over the monoidal category V and D is a monoidal V-
enriched category. We therefore obtain a model structure on lax (symmetric) monoidal functors.

Proposition 9.6.1. Assume that C is (symmetric) h-monoidal. For any V-enriched
symmetric monoidal small category D, the category of lax (symmetric) monoidal V-enriched
functors D → C admits a transferred model structure. Furthermore, if C is (symmetric) flat
over V, then a weak equivalence D → D′ induces a Quillen equivalence of the induced model
categories.

Proof. We consider the (symmetric) operad whose operations from a multisource (s1, . . . , sk)
to a target t are given by the enriched morphism object from s1 ⊗ · · · ⊗ sk to t. The operadic
composition and unit are induced by the monoidal category structure of D.

An algebra in C over this operad consists of a collection of objects DX in C, for any X ∈ D,
together with morphisms Mor(X1 ⊗ · · · ⊗Xk, Y ) ⊗DX1 ⊗ · · · ⊗DXk

→ DY that satisfy the
corresponding associativity and unitality conditions. This is precisely the data of a (symmetric)
lax monoidal V-enriched functor D → C.

As before, Theorems 5.11 and 7.5 now imply the admissibility and rectification criteria as
stated. �

One could also ask for a model structure on lax functors whose fibrant objects are ‘weakly
strong’ monoidal functors, meaning that the canonical maps A(X) ⊗A(Y ) → A(X  Y ) and
1 → A(∅) are weak equivalences. This would be useful for factorization algebras, for example
(see the next section). Such a model structure could be obtained by a monoidal left Bousfield



ADMISSIBILITY AND RECTIFICATION OF COLORED SYMMETRIC OPERADS 599

localization with respect to the local objects defined above, however, it is not clear why such
a left Bousfield localization should exist in this case.

9.7. Prefactorization algebras

As an application of the previous section, we construct a model structure on prefactorization
algebras. See Costello and Gwilliam’s book [16, § 7.3] for the relevant background. A
prefactorization algebra on a V-enriched monoidal site (S,, ∅) (it is useful to think of the
monoidal structure as the disjoint union) is a symmetric lax monoidal V-enriched functor
from S to C, where C is V-enriched. A typical example of S is the category of smooth manifolds
and their embeddings equipped with the Weiss topology, where morphism objects are either
discrete or have the natural space structure. The previous section now immediately implies the
following statement.

Proposition 9.7.1. If C is symmetric h-monoidal, V-enriched, and S is a V-enriched site,
then the category of prefactorization algebras over S with values in C admits a transferred model
structure. Furthermore, if C is symmetric flat, then a functor of sites S → S′ that induces the
identity morphism on objects and is a componentwise weak equivalence on morphism gives a
Quillen equivalence of the corresponding model categories.

This raises the question whether the above model structure can be upgraded to factorization
algebras. Fibrant objects in the resulting structure would be ‘weakly lax’ functors defined in
the previous section that satisfy the codescent condition with respect to the Grothendieck
topology on S. As usual, one could try to enforce the codescent property using the obvious
monoidal left Bousfield localization. However, the model category of prefactorization algebras
constructed above is not left proper, so a special argument is needed to ensure that cobase
changes of local acyclic cofibrations are local weak equivalences.
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