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Chapter 0

Preface

These are notes for a lecture on algebraic topology, more specifically
basic notions around homology and cohomology, offered in Spring
2022 and Spring 2023 at the University of Padova.

The exclamation mark (!)indicates that you should repeat some@
aspects of a definition etc. in order to make sure you are following
the lecture.
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Chapter 1

Introduction

Homology and Cohomology are fundamental techniques in algebraic
topology. By its nature, topology is a very flexible subject — think
of continuously deforming a cup into a doughnut. The reason for
this flexibility is that there is often an abundance of continuous maps
between two topological spaces. This holds even for very “standard”
spaces. Therefore, questions such as the following are not altogether
trivial to answer:

Question 1.1. Suppose n,m € N with n < m. Is there a continu-
ous surjective map

R" - R™?
Is there a homeomorphism
R" - R™?

The answer to the first question is yes (cf. Exercise 1.2), which
shows how limited our intuition about topological spaces really is.
Second, it will take us some time to prove (see below) that the
answer to the second question is no.

By comparison, other mathematical areas offer less freedom, so
the following lemma from linear algebra is by comparison decidely
easier than the above:

Lemma 1.2. Again for n,m € N with n < m there is no R-linear
surjective map

Rn N Rm
and, in particular, no R-linear isomorphism.

7
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The overall workflow of algebraic topology is this:

e Take a question about topological or geometrical objects, e.g.:
“are two topological spaces X and Y homeomorphic?”

e Convert this hard question into a much easier question about
objects in linear algebra, such as “are two vector spaces V' and
W isomorphic”?

e Transfer information from the linear algebraic objects to the
topological objects.

This workflow can be implemented in different ways. In this
course, we will focus on homology and cohomology, which are the
easiest ways of converting topological information into linear alge-
braic information.

1.1 The Eilenberg—Steenrod axioms

Homology has the following properties, known as Filenberg—Steenrod
arioms. At this point, we state them in a slightly simplified form.
Proving this theorem will keep us busy for a good while.

Theorem 1.3. (1) (Functoriality) Homology is a functor
H, : Top — Ab, n > 0.
That is, for each topological space X, there is an abelian group
H, (X).

In addition, for each continuous map f : X — Y there is a group
homomorphism

H,(f): H,(X) — H,(Y).

Functoriality means that these group homomorphisms have the
following key property: for another continuous map g: Y — Z,

the map H,(X) Half) H,(Y) Halg) H,(Z) agrees with the map
H,(X) Hnlgof) H,(Z). More succinctly:

Hn(gof) = Hn(g)oHn(f) (14)
In addition,

H,(idx) = idg, (x) : Ha (X) — H,(X). (1.5)
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(2) (Dimension aziom, cf. Proposition 4.3) The homology of a point
is this:

n=>0
otherwise

o) - { §

(3) (Additivity, cf. Proposition 4.4) Homology of a disjoint union
of spaces is the direct sum of the homologies of the individual

spaces:
H, <|_| Xi) = @ H.(X)).

iel iel

(4) (Homotopy invariance, cf. Proposition 4.8) If two continuous
maps f,g : X — Y are homotopic (i.e., there is a continuous
family of maps h; : X — Y for t € [0,1] such that hy = f,
hy = g), then the induced maps on homology

H,(f), Ha(g) : Hp(X) — Ho(Y)
are the same maps.

(5) (Excision or Mayer—Vietoris sequence, Corollary 4.20) If U,V <
X are two subspaces such that X is covered by the interiors of
U,V,

X=U°uV°,

then there is a long exact sequence

> Ha(UnV) = Hy (U)®H, (V) — Ho(X) - H, 1 (UnV) — ...

All the terms mentioned in this theorem will be explained during
the course. At this point, let us just weigh the nature of these
statements:

e The definition of the homology functors is a sequence of func-
tors _
Top e sSet “5 sab & ch s Ab,
where sSet is the category of simplicial sets, which provide a
means to control the combinatorics in a space equipped with a
triangulation.

For S' € Top, the first three functors together do roughly the
following: we pretend that S* can be replaced by the following
“Space” caSlw
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This “space” “S'” has 3-zero dimensional points z, v, 2, as well
as 3 1-dimensional edges a,b,c. Each edge has two endpoints,
denoted by dy and d;, namely

do dy
al|y X
blz vy
cl| X z

We associate to this combinatorial datum two rank-3 abelian
groups, and a map between them

Za®Zb®Zc > Zx ® Ly ® Zz.

The so-called differential ¢ sends an edge e to dy(e) — di(e),
e.g., a — y — x etc. Thus, ¢ is described by the matrix

The homology groups
H()(“Sl”), H1(4¢5177)

are defined to be the cokernel, resp. the kernel of 0. As it is, the
cokernel is(!)a free abelian group of rank one, i.e., isomorphic
to Z, e.g., generated by [z](= [y] = [z]). The kernel is also a
free abelian group of rank one, generated by a + b + c.

We obtain the result

Zx n=>0
H,(“S")=<{ Z(a+b+c) n=1
0 otherwise
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The “space” “S1” will be an example of a simplicial set. The
functor Sing sends S! to a simplicial set whose points (a.k.a. 0-
simplices) are just the points in S*, and whose edges (a.k.a. 1-
simplicse) are continuous maps [0,1] — S!. Thus, Sing(S!) is
much larger than “S'”. It will turn out, however, that

HH(SI) — HTL(“SI”)7

i.e., the difference between Sing(S') and “S'” is, however, neg-
ligible as far as the end result of the computation, the homology
groups, are concerned.

The proof of the dimension axiom and additivity is elementary:.

Homotopy invariance allows us to compute, say, the homology
of any convex set @ # X < R". Indeed, homotopy invariance
quickly implies

H, (X) = H.({+}). (1.6)

The proof of the homotopy invariance is less immediate than
the previous ones, but is a beautiful showcase for the appeal of
structure-based mathematics. We will show that homotopies
in Top are mapped to a closely related notion of homotopies in
the category sSet of simplicial sets, which in turn are mapped
to chain homotopies of chain complexes. Finally, taking ho-
mology then produces identical maps. Neither of these steps is
particularly difficult.

The excision axiom or Mayer—Vietoris sequence is the key tool
for computing homology of non-trivial spaces such as S™. For
example, for the covering

St=5t U st

as depicted
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g \
we have, by homotopy invariance
H"(SL) = H*({+}) = Z for n = 0,0 otherwise.
Also, again by homotopy invariance and additivity,
H,(S1nSY) = H,({+})®H,({*}) = ZZ for n = 0,0 otherwise Jj
Thus, the above-mentioned long exact sequence becomes
0—H(SY) >ZBDZ >ZDZ — Hy(S) — 0.

As we will see, the map in the middle is given by f : (z,y) —
(x +y,x + y), whose kernel is

Hy(S') = ker f =~ Z,
Hy(S") = coker f =~ Z.
The end result of this computation is
Z n=>0
H,(SY) =< Z n=1
0 otherwise

Using similar arguments, we will prove in Proposition 4.21, for
k> 0:
Z n=>0
H,(S") =% Z n==k
0 otherwise

The intuition behind homology is that the n-th homology countsj
the number of n-dimensional holes. For S™, there is precisely
one such hole, in line with H, (S") = Z*.
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1.2 First Applications

Let
D" :={(x1,...,xn) eR" Y 27 <1}

be the n-dimensional ball with radius 1. Its boundary
St ={(z1,..., ) eRY D af = 1}
is the n — 1-dimensional sphere.

Theorem 1.7. (Brouwer fized point theorem) Let n = 0 and f :
D"t — D" be a continuous map. Then f has a fixed point, i.e.,
there is some z € D" with

f(@) =

Proof. Suppose f has no fixed point. Then the ray starting at f(x)
and passing through x intersects S™ in exactly one point, denoted
r(z). One shows that the function

ro D gn

1S continuous.

A

_— —

<1
X( (%)

For x € S™ we clearly have r(z) = x. In other words, writing
i:S" — D" for the inclusion, we have

roi =idgn.

With these preliminaries, we can make use of the above Eilenberg—{}
Steenrod axioms (which we prove later). By functoriality, the in-
duced map on the n-th homology groups read

Z = H,(s") "™ 0 = 1, (D) "8 1, (5.



14 CHAPTER 1. INTRODUCTION

Thus, the composite must be the zero map. On the other hand, by
the functoriality of homology, we have

Hn(r) ) Hn(z) = Hn(r o Z) = Hn(ldsn) = 1dHn(S”) = ldz

We obtain a contradiction, since certainly the identity map of Z is
not the same as the zero map. O

Theorem 1.8. (Topological invariance of dimension) There is a
homeomorphism

St — S

R" - R™
(if and) only if n = m.
Proof. It f : S™ — 8™ is a homeomorphism with (continuous) in-
verse ¢, then

fog=id,gof=id

Again using (1.4) and (1.5), this implies

H,.(f) o H,(g) = id

and similarly the other way round. That is, H,(f) is an isomor-
phism. If n = 0, S° consists of two points and is not even bijective
to S™ for m > 0. We may thus assume n > 1. For n # m, however,
H,(S™) = 0 is not isomorphic to H,(S") = Z. Note how much
easier it is to decide whether

1~

0xZ

than to decide ,

R" ~ R™.
Here, it is simple: 0 is finite, while Z is not. Alternatively, one
may compare the ranks of these two groups, which are 0 and 1,

respectively, so the groups are not isomorphic.
If f:R"™ — R™ is a homeomorphism, then there is also a home-

omorphism
[ RM{0} = R™{F(0)}-

We may assume n > 1 since a homeomorphism R? — R™ is in
particular a bijection, so that m = 0. For n > 1, the inclusion
@ S*' < R™\{0} is such that there is (!)a map (called retraction)

i RM{0) - 57
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such that r o¢ = id and i o r is homotopic to (but not the same
as) idgn\foy- The homotopy invariance axiom and functoriality of
H,, thus imply that H,(7) is an isomorphism (with H,(r) being its
inverse). Thus

H(R™\{0}) = Hy(S"71).
Similarly (use translation by f(0)) for R™\{f(0)}. Then the same
argument as before applies. [

A more refined study of the homology of spheres yields further
applications:

e The map S* — S'(:= {2z € C,|z| = 1}), z — 2" induces a map
Hl(Sl) - Hl(Sl)
Using the above computation, this tranlates into a map
Z—7

which we will show to be the multiplication by n. This insight,
together with homotopy invariance, can be used to prove the
fundamental theorem of algebra (every nonconstant complex
polynomial has a root), cf. Corollary 4.41.

e The hedgehog theorem (Corollary 4.40) states that there is no
non-zero tangent vector field at even-dimensional spheres.

Beyond these classical applications within geometry, homology
and cohomology are also omnipresent in other areas. A rather new
development, known as persistent homology, aims to use homology
in order to exhibit patterns in high-dimensional datasets, such as
those occurring in analysis of medical images.

The ideas and methods encountered in this lecture also inform
other areas such as algebraic geometry, which often draws inspira-
tion from the intuition gained by results such as the ones presented
in this course.

1.3 Exercises

Exercise 1.1. Define a slight modification of the “space” “S”, to
be denoted “D?”, and consider three abelian groups

ZB3720070DZc B Za®Zy® Lz
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What map 0Jy reflects the geometric intuition that the boundary of
the interior of a triangle consists of the edges a, b, and ¢? Compute
Hy(“D*") := ker 0,
H,(“D*") := ker 01 /im 0y
Hy(“D*") := coker 0.
If you have chosen the right map 0y, the groups H,(“D?”) you obtain

will be the same as the groups H,,(D?), which are Z for n = 0 and
0 for n > 0 (cf. (1.6)).

Exercise 1.2. In a textbook of your choice, read about the Peano
curve, a continuous surjective map

[0,1] — [0, 1] x [0, 1].

Exercise 1.3. Let X be a topological space. Consider the following
relation ~ on X:
T~y

if and only if there is a continuous map h : [0,1] — X with A(0) =
z,h(1) = y. Prove:

e ~ is an equivalence relation. (Hint: for one property you will
need to use a lemma from elementary topology.)

e We define the set of path components mo(X) := X/ ~.

e Compute m0([0, 1]) and mo(Z) (here Z < R has its usual discrete
topology).
e We call X path-connected if my(X) has at most one element.

Let f: X — Y be a continuous surjective map. Show that YV
is path-connected if X is so.



Chapter 2

Simplicial sets

Simplicial sets form the technical backbone of algebraic topology,
and are also of paramount importance in contemporary higher cat-
egorical structures such as oco-categories. In this section, we develop
the basics of this concept. References for the material in this section
include [May92; GJ09; Fri08; Lur].

2.1 Definitions

Simplicial sets are supposed to provide a combinatorial model for
topological spaces equipped with a triangulation. We begin with the
(quite abstract) definition, and will gradually gain a more geometric
understanding of this notion.

Definition 2.1. Let C' be a category, e.g. C = Set. A semi-
simplicial object in C' is a sequence of objects X,, € C (n = 0),
together with maps

dkan—>Xn,1,0< kgn,
called face maps, such that
di o) dj = djfl @) dz (22)

for i < j (for any n, note both composites are maps X,, - X,,_).
(Strictly speaking, dj is an abuse of notation, a more complete no-
tation would be d} : X, — X, _;, but we stick to that reduced
notation.)

17
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A simplicial object in C' is a sequence of object X,, € C, face
maps dj as above, and in addition degeneracy maps

Sk:)(n_’)(n-i-lao< k<n>
such that the following simplicial identities hold

didj = djfldi, for all i < j,
5i8; = 8js;_1, for all ¢ > j,

ijldi 1 <] (23)
dis; = id i=jori=j5+1
deifl 1> j +1

For C' = Set, the elements of X, are called n-simplices of X.
O-simplices are also called wvertices, 1-simplices are edges. An n-
simplex is called degenerate if it is in the image of some degeneracy
map ;.

Example 2.4. We define a simplicial set A” to be such that (A%),, =}
{+} and such that all face and degeneracy maps are the identity.
More generally, for any set X, there is a simplicial set disc (X) (or
just also denoted by X again), the discrete simplicial set associated
to X, given by

disc (X), =X

and all maps dj, and s are idx. Thus A° = disc ({*}).

Example 2.5. Moving up in dimension 1, we define a semi-simplicialll
set Al by ) )
(Al)l = {01}7 (Al)O = {07 1}

Here 01 is just a symbol that serves as a mnemonic for a line going
from 0 to 1. In line with this, we let

do(01) := 1,d,(01) := 0. (2.6)

The purpose of dj is to remember that the endpoints of the line
01 are 0 and 1, respectively, with the idea that 1 is the endpoint
opposite_to 0 (so that dy(01) = 1, as opposed to 0). We finally
define (A'), := & for n > 2. This defines a semi-simplicial set.
This semi-simplicial set Al is not a simplicial set: the only way
we could define sq : (Al)y — (Al); is to send 0 and 1 to 01, which
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would violate the simplicial identity d;s¢(0) Z 0. The way out of
this is to enlarge A! as follows: we define

(A1), :={00,01,11} — (A% := {0, 1}.

Again, 00 etc. are just formal symbols, with the idea that the symbol
17 represents a line from ¢ to 7, so that 00 is a “constant” line at 0.
Extending the above, we define

dk : (Al)l — (Al)o,do(ioil) = il,dl(ioil) = io.
So - (Al)o — (Al)l,sk(io) = ioio.

(To memorize the definition of dj: d removes the k-th entry.) We
also need to specify 2-simplices. Unlike for A!, we cannot define Al
to be empty, since we need to supply sg,s; : Al — Al We will
shortly complete the definition of Al

Example 2.7. We define a semi-simplicial set S* (resp. a simplicial
set S1) in low degrees by

(S o= {5 (S o= {3}

Again, to define a simplicial set, one needs to enlarge the set {01}
slightly, so that we put

(1)1 = {7, %} 5 (SY), = {+}

with so(*) = =. The maps dy and d; encode the idea that ~ is a
closed loop, i.e., a path whose two endpoints are the same.

In order to conveniently complete the definition of A! (and later
also S1), including all the higher-dimensional simplices, we use the
following category.

Definition 2.8. The simplex category A has objects
[n] ={0,1,...,n}
for n = 0, and morphisms are order-preserving maps:
Homa ([m], [n]) = {a : [m] — [n],a(i) < a(j) for all i < j}.
In this category, there are the following important morphisms:

O :[n—=1] = [n],0<k<n
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is the unique injective map that misses k € [n]. Somewhat dually,
o [n+1] - [n],0<k<n

is the unique surjective map that repeats k (i.e., maps 0, 1,...,n,n+
1to0,1,...,k k,...n). We also consider the category A;,; < A
having the same objects, but only those morphisms that are injective
(equivalently, strictly increasing).

Definition and Lemma 2.9. For e > 0, we define
(A%)n := Homa([n], [e]).
We define the face maps to be
dy, - (A%)y, = Homa([n], [e]) = (A%)n—y = Homa([n — 1], [¢])

to be the precomposition with &, i.e., f : [n] — [e] is mapped to
the composition

[ =11 7% ] = [e].
We also define the face maps similarly:
Sk - (Ae)n = HOIHA([TL], [6]) - (Ae)n-i-l = HomA([n + 1]7 [6])

by
Sk<f) = f O 0.

This defines a simplicial set A€, called the e-simplex.
Example 2.10. We have

(Ao = Homa([0], [1]) = {0, 1},
(A'); = Homa([1], [1]) = {00,01, 11},

where ij is a shorthand for the map 0 — 4, 1 — j. This recovers
Example 2.5:
so : {0,1} — {00,01, 11}

sends i(= 0, 1) to the map
[1] = [0] = [1],

which is just 4i. Similarly dj, (for & = 0,1) sends ij to the composite
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Since 0y misses k, 6o(0) = 1, so that dy(ij) = j, while dy(ij) = 1.
This recovers (2.6). We then have, using similar notation,

(AY)5 = Homa([2], [1]) = {000,001,011,111}.

Each of these has at least one repetition, which means that each of
these simplices is degenerate.

Example 2.11. For A?, we can picture the 0-, 1-, and 2-simplices
in a similar way:

Proof. (of Definition and Lemma 2.9) We need to verify the simpli-
cial identities. These follow from similar identities for the maps J;,
and oy, called cosimplicial identities. Specifically,

(5]‘(52' = 5i5j—17 for all 7 < j,

oj0; = 0,105, for all i > j,

(51'0'3‘_1 Z<j (212)
O-jéi: id Z:jOFZ:j+1
5i—10-j ’L>]+1

These follow directly from the definitions: for example, we check
0;0; = 0;0;_1 for i < j. The image of J; (in this order) is 0,1,...,7 —
1,2+ 1,...,n. Here i + 1 is in the i-th spot. For j > 4, the
composite 0;0; therefore has the image (in this order) 0,1,...,7 —
l,e +1,...,5 — 1,7 +1,...n. On the other hand, d;_; has im-
age 0,1,...,7 —2,7,...,n. Here j — 2 is at the j-th spot, which
comes after the i-th spot (for ¢ < j). Thus, J;0;_; has image
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0,...,i—1,e+1,...,7—2+1,7+1,...,n, which is the same as the
first map.

Next, o; repeats i, and o;0; repeats (for j < 4) j and ¢. On the
other hand, o; repeats j and 0;,_;0; also repeats ¢ and j (note the
shift because of i — 1 = 7).

The remaining identities can be checked in a similar manner(!).

Now, these cosimplicial identites transform into the simplicial
identities: for example, in order to show the simplicial identity

didj = dj_ldz'

for i < j, we take f € (A°),, = Homa([n], [e]). By definition of the
face maps, we have d;d;(f) = d;(f 0 d;) = f 0 d; 0 ;. (Note how the
order of i and j changed.) By the cosimplicial identity, this equals
fod;od;_q, which is dj_1(f 0 d;) = d;—1d;(f). The same argument
works for the other identities, always using that o corresponds to
sk and J; to di, and that the order of composition is reversed when
passing from the cosimplicial to the simplicial identities. O

2.2 From topological spaces to simplicial sets

Simplicial sets are important in algebraic topology because they
mediate between topological spaces and (eventually) abelian groups.
For a given topological space X, we want to define a simplicial set
Sing(X) whose 0O-simplices are the points of X, whose 1-simplices
are continuous paths in X etc.

Definition 2.13. The (topological) n-simplez A™ is defined as

Top

A= Al = {(to, . 1) € R 4,2 0,3 1y = 1},
k

Remark 2.14. Note that A is just a point, and A' = {(¢,1—¢),t €
[0,1]} is homeomorphic to the closed unit interval [0,1] < R. The
above definition of A!, however, is more symmetric. The condition
that x; > 0 can be dropped without ultimately changing anything in
the results in this course. The condition is there mainly to simplify
drawing pictures.

Remark 2.15. The symbol A has now been used in relation to
three different entities:
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e the simplex category A (Definition 2.8),
e the topological n-simplex A" := A% € Top (Definition 2.13),

e and the simplicial set A" := A% (Definition and Lemma 2.9).

simp

The simplex category plays on a completely different floor than the
other two, but the two A™ are closely related, as we will see. We
trust there is no confusion which meaning is intended.

We define (continuous) maps, called face maps
Sp A" - A" (B =0,...,n+1) (2.16)

by 0k((to, ... tn)) := (to, ..., tg—1,0,tk, ..., t,), i.e., insert a 0 into
the k-th spot. Thus, §; inserts A™ into A"™! opposite to the k-th
vertex. We define so-called degeneracy maps

op A" S AT 0<k<n

by
ok(to, - tnr1) = (to, -tttk + trgns - oo tng)-
Thus, o contracts the k-th boundary.

Lemma 2.17. These maps satisfy the same relations as in (2.12),
for example 0;6; = 6;0,_1 for 7 < j.

Proof. This is(!)a routine check. For example, we check the one ()
highlighted above: 0;(zq,...,z,) = (zo,...,%i_1,0,2;,...,2,) and
O'j(si(l’o, e ,ZL’n) = (l’o, R 7 I O,I‘i, ce ,J?j_1+17j,l‘j+1, ce ,J}n). Ol’ll
the other hand o;_;(zo,...,z,) = (20,...,2j_1 + 2}, Tj11,...), and
d; inserts a zero in some spot at or before the z;_; + x;, so we get
the same expression as before. [
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Example 2.18. Let X be a topological space. Define a simplicial
set Sing(X), called the singular simplicial set or singular simplicial
complex of X, by

Sing,,(X) := Homrp, (A", X)

(continuous maps from the topological n-simplex, Definition and
Lemma 2.9, to X). The face and degeneracy maps are all induced
from similar maps for the A". E.g., for f: A" - X,

di(f) € Sing,,_;(X)

is the map
EEINESY

More concretely,

(de(f))(tos- -y tn—1) = fto, s ti1,0, 8k, .. ),
(sk(fN)(tos- -5 tn) = f(to, - s tot, te + thprs o oo s tn)

Our eventual goal is to extract crucial information from topolog-
ical spaces using these simplicial sets. For the moment, note only
that Sing, (X) is a huge set, making it nearly impossible to do any
computations with this directly: the simplicial set Sslimp sketched
in Example 2.7 is much smaller, and thus much more useful than
Sing(St,,) (here St = {z =z + iy € C,|z|* = 2% + y* = 1} is the
circle, a topological space). We do have a map

SL  — Sing(Sk

simp op)
mapping = to (1,0) and 7 to the loop
A" — Sty (t,1— ) — exp(2mit).

A key insight is that, nonetheless, these two simplicial sets are not
so different: we will eventually show that the homology of these two
simplicial sets is the same.

The only case we can handle at this point is a point:
Example 2.19. Sing({+}) = A°. Indeed, any map A% — {}
is just constant. What can you say about Sing(X), where X is a
discrete topological space (all subsets U < X are open)?
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Remark 2.20. A slightly more high-level formulation of the Sing-
functor is to observe that the topological spaces A" assemble into a
cosimplicial topological space, i.e., a functor

A L5 Top, [n] — A™.

The functor Sing(X) is then the composite
A B roper 1R g,

Similar cosimplicial objects appear in other mathematical domains.
For example the cosimplicial object in schemes,

A — Sch, [n] — Aglg := Spec(Z[to, . .. ’t"]/zti =1).

plays a vital role in so-called Al-homotopy theory, a branch of al-
gebraic geometry.

2.3 Simplicial sets as functors

Since Definition 2.1 is quite verbose, it is helpful to recast the defi-
nition using a functorial definition.

Definition and Lemma 2.21. Let C be a category. A simplicial
object in C' is the same as a functor

X A% - (C,
while a semi-simplicial object in C' is the same as a functor

X A® (.

inj

Given such a functor, we often write

X, = X([n]),a* = X(a) : X, » X,

for a: [m] — [n]. We also write d; = 6F, s; = o
Proof. Any functor X : A°? — ( gives rise to a simplicial object as
in Definition 2.1, because of the identities satisfied by the maps J;,

and oy, in (2.12).
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We sketch the converse, referring to [Mac98, §VIL.5] for a detailed
exposition. One proves (without much trouble) that any map « :
[m] — [n] in A factors uniquely as

a =09, 0---00;, 00j 00, (2.22)
—_—
=Qinj =Qsurj

withm+k=n+handn>i>--->>0and0< 5 <--- <
Jn < m — 1. In fact, & = ainj © Qg is the standard factorization of
a map into a an injective after a surjective map. For example, for
¢ < j the map 0;0; can be put into this form, namely d,,19;, by the
cosimplicial identities (2.12). Thus, given a simplicial object X as
defined in Definition 2.1, one defines X («) : X,, — X, to be the
composite
Xn d_Ll) n—1""" %) n—k Sil) Xn—k—l to Sih) n—k—h — Xm

Hereafter, we will only use the presentation of simplicial sets as
in Definition and Lemma 2.21. As with other mathematical notions,
it is useful to consider simplicial sets not just in isolation, but rather
as objects in some category.

Definition 2.23. Given a category C', the category of simplicial
objects in C'is defined as

sC := Fun(A°?, (),

the functor category of functors from A°P to C. Thus an object in sC
is just a simplicial object as defined before. A morphism f: X — Y
of simplicial objects is a collection of maps f, : X,, — Y,, such that
for each a: [m] — [n], the diagram

X, 2 x,

b

Y, —2-Y,,

commutes.

We will apply this in particular to C' = Set and C' = Ab, which
gives us the categories sSet of simplicial sets and sAb of simplicial
abelian groups.

Dually, a cosimplicial object is a functor A — C.
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By Definition and Lemma 2.21, specifically (2.22), it suffices to
check this commutativity condition for a being either some ¢ or
some oy,.

Definition 2.24. Given two simplicial sets X, Y, the product X xY
is the simplicial set defined as

(X xY), =X, xY,,
with a%,, being the product of a% and o3.

Example 2.25. The simplicial set A! x Al looks as follows :

(9,4 L)

(0‘7A 04)

00 © = (a,0)

More formally, we list the simplices, where we use a notation (..., ...)J
to denote a pair of simplices in A':

(Al x AI)O :{(07 0)7 (07 1)7 (17 O)? (17 1)}

(A' x A1), ={(00,00)*, (01,00), (11,00)*, (11,01), (11,11)*,(00,01), (00, 11)*, (01,11)},
(A' x A')y 3(011,001), (001,011),

(1-simplices with a * are degenerate; there are many more degere-

nate 2-simplices; note that (011, 001) is non-degenerate, even though

both components are individually degenerate 2-simplices in A!. See

also Exercise 2.8.) In particular, A’ x Al is not isomorphic to A%
the latter has exactly one non-degenerate 2-simplex, see above.

Definition 2.26. Given two simplicial sets X, Y, the coproduct X L
Y is the simplicial set defined as

(XuY),=X,uY,,

with a% - being the coproduct (i.e., disjoint union) of the maps a’%
and o).
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We will use these definitions in slightly greater generality, where
instead of two simplicial sets, we allow a family (X;);c; of simplicial
sets. The above definitions carry over verbatim.

Definition 2.27. Given three simplicial sets X, Y, Z and simplicial
maps f, g as depicted

Xty
Js
Z,
the pushout Y Lix Z is the simplicial set with
Y ux 2), =Y, ux, Zn.

L.e., the n-simplices of Y iy Z are the n-simplices y € Y,,, z € Z,,
where two such simplices are identified if there is an n-simplex in X,
r € X,, that maps to y and z, respectively. Again, the maps af , ,
are induced from the ones on X, Y, and Z.

Example 2.28. We can now complete the definition of the simpli-
cial circle begun in Example 2.7. We define S! to be the pushout of
the diagram

AP AL L Al
|»
A0
Here the map p is the obvious projection map and ¢ is the inclusion
of the two endpoints of A': more formally,

(A" A%, = {s} o s} = A,

sends the first point to the map [n] — [1] mapping everything to 0,
and to 1, respectively. In degrees 0 and 1, we thus have

S = {#} U (0,1} = {+},
St = {#} UL {00,01, 11},
which means we identify 00 and 11. This reproduces Example 2.7.

Remark 2.29. The general paradigm at work in the above defini-
tion is the following: suppose C' is a category that has all (small)
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limits or colimits, such as C' = Set. Then, for any small category D,
the functor category Fun(D, ') has all limits or colimits, and the
evaluation functors

Fun(D,C) %S C, f — f(d)

preserve these limits or colimits. Applied to D = A°? and C' = Set,
this gives the above notion of products and coproducts.

Lemma 2.30. The functor Sing : Top — sSet preserves products
and coproducts.

That is, for a family (X;) € Top, the following natural maps (of
simplicial sets) are isomorphisms:

Sing(H X;) > H Sing(X;),
|—.| Sing(X;) iSing(u X;).

Remark 2.31. e These maps are given on n-simplices as follows:
an n-simplex in [ [ X; is a continuous map A™ — [[X,. For
each j € I, the composite with the (continuous) projection
map [ [ X; — X, gives an element in Sing,(X;), which in total
is an n-simplex in the right hand side. A similar description
holds (!)for the second map, using the (continuous) injections
X; — |, X; instead.

e We will use the product part later in the proof of the homotopy
axiom, see Proposition 2.39, while the coproduct part will be
instrumental in proving the additivity axiom (Proposition 4.4).

Proof. We use that for any topological space T,

Homrop (T, H X;) = H Homrop (T, X;).

Indeed, a map f : 7" — [ [, X; is tantamount to a family of maps
fi : T — X;. By the characterization of the product topology [Hat,
§1] f is continuous iff all the f; are continuous. We apply this to
T = A™ and get the required bijection.

As for the second map, we immediately see that it is injective. Let
f: A" - | | X; = X be a continuous map. We need to show there
is some j € I such that f(A") is contained in X; < X. Otherwise,
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there is j and j' € I such that f~'(X;) and f~'(X;/) are both non-
empty. Then X = X, <|_|i€[’#j

of two nonempty open subsets (by definition of the topology on the
disjoint union). Then

A" = fHXG) LX)

Xi> =: X; 1 X' is a disjoint union

is a disjoint union of two open subsets. This contradicts the fact that
A" is path-connected and therefore, see e.g. [Hat, §2], connected.[]

Remark 2.32. Note the first part of the proof is very formal. It
uses only that Homro,(A”, —) turns products into products. (More
generally, it is true that it preserves limits. Thus, Sing preserves
limits.) By contrast, the second statement has a peculiar proof,
which also does not extend much further: for a topological space
X =U vV (for two subspaces U and V'), we have

Sing(X) # Sing(U) u Sing(V)!

Indeed, an n-simplex in Sing(X) need not lie in either Sing(U) or
Sing(V'): a map A%, — X need not factor over U or V. The bulk
of our later work on the excision property will be to salvage this

problem.

In addition to understanding simplicial sets properly, we also need
to understand maps between them properly. To this end, we use a
general lemma from category theory, called the Yoneda lemma, see
Lemma A.1. Specialized to our situation, it says the following:

Lemma 2.33. Let X be a simplicial set. Then there is a bijection
Homgget (A", X) — X,,(:= X([n])

which takes a map f : A" — X, takes its evaluation at n, f, :
(A™),, = Homa([n],[n]) — X,, and takes the image of the identity
map idp,], which gives an element in X,.

Proof. This is just Lemma A.1, applied to C' = A (so that sSet =
Fun(C°P, Set), and using that, by definition, A" is the representing
functor associated to [n] € A. ]

Corollary 2.34. There is a bijection
Homgger (A", A™) — Homa ([n], [m]).
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Both in the form of Lemma 2.33 and Corollary 2.34, the Yoneda
lemma is a highly useful device to construct maps between simplicial
sets. We illustrate this by constructing the (simplicial) Mébius strip.

Example 2.35. Our goal is to construct a simplicial set M such
that My = {x,y}, while M; contains 4 non-degenerate edges a, b, ¢, d,
and M, contains 2 non-degenerate simplices o and 3 such that the
face maps d; have the behaviour as depicted:

y 7 C X
Y
aQ (/N
Y
* A

It is of course possible to “manually” specify the n-simplices of M for
all n, and define face and degeneracy maps by hand etc. However,
this is tedious and geometrically unenligthening. We will therefore
instead construct M in two steps; both steps will be a pushout of
simplicial sets we already know.

e We begin the construction by glueing two copies of A? along an
edge. To this end, consider the following diagram of simplicial
sets:

Al 12 A2
02 o
AL M
Here, the subscripts at the A?’s just serve as a label. The maps
ij : A1 — A? are the maps that correspond to the element ij €

Homa ([1], [2])(= {ij,0 < ¢ < j < 2}. We define a simplicial
set M’ to be the pushout of this diagram, i.e.,

/. 2 2
M = A I_|127A1’02A,

where the subscripts in the u indicate that the pushout is
formed along these maps A' — A2, The maps i, and i are
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the canonical maps into the pushout (the labels just serve to
remember which copy of A? is which).

The simplicial set M’ can be pictured as follows:

s~

Lo
Ao

A« 1\ - %/ /j;
| .

l
v L
R e

e By construction, M’ has 4 vertices, and 5 non-degenerate edges.
We intend to further identify 2 edges (and, therefore, certain
vertices). To this end, define M to be the pushout of the dia-
gram

Al L Al((OI)a»OQ)B) M/

Jiduid J
Al — 0 M,
or, in more compact notation

/ 1
M =M L (01,172/),AT LA iduid A

8 &) — | b JT M
— Ale
04-————\"?—‘0
3 ] —ﬁ——— ®
bn . o —) && 5 \V\
g
078

The horizontal map above is composed of two maps Al — M.
We define these maps as

A B A
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AV B A5
In other words, we identify the edge 01 in the “a”-copy of A2
with the edge 12 in the “B”-copy of A2

Alternatively, to specify these maps, it is possible to use the
Yoneda lemma once again:

Homgges (A, M) = M,
= (Ai)l L12 (A1)1,02 (A%’)l-

2.4 Continuous and simplicial homotopies

Recall the product of simplicial sets from Definition 2.24. We will
use Corollary 2.34, so that the maps d; : [0] — [1] (k = 0,1) give
rise to a map A — Al again denoted by 6.

Definition 2.36. Let f,g: X — Y be two maps between simplicial
sets. A simplicial homotopy between f and ¢ is a map

h:A'x X -Y
such that the following diagram commutes:

A"x X =X : (2.37)

1N

Alx X —" Ly

i

AP x X =X

A simplicial map f : X — Y is called a simplicial homotopy
equivalence, if there is a map ¢ : Y — X and simplicial homotopies
between idx and g o f as well as between idy and f o g.

Remark 2.38. e Definition 2.36 looks conspicuously similar to
the standard definition of continuous homotopies between con-
tinuous maps. Indeed, given two continuous maps f,g : X —
Y between two topological spaces, a homotopy is a continu-
ous map h as above, but where now A! is the standard 1-
simplex. (In many textbooks, homotopies are defined as maps
[0,1] x X — Y, but [0, 1] is homeomorphic to A, so there is
no difference.)
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e A difference between homotopies in sSet and Top is that the
relation “f is homotopic to ¢g” fails to be transitive (and is
therefore not an equivalence relation) for simplicial homotopies.
For example, let Y = Al Lixo Al and X = AY. There are three
0-simplices (equivalently, maps A — Y') a, b and c as pictured,
and a is homotopic to b, and b homotopic to c. Yet, there is no
1-simplex whose boundaries would be a and c.

o .C

QD

(On the positive side, if Y is a so-called Kan complez, then
the homotopy relation is an equivalence relation, see [GJ09,
Corollary 1-6.2]. The Y above fails that additional condition.)

In contrast, the glueing lemma in topology quickly implies that
homotopy is an equivalence relation [Rot88, Theorem 1.2].

Proposition 2.39. The Sing-functor preserves homotopies. More
formally: any continuous homotopy h : X x Al — Y between two
continuous maps f,g: X — Y gives rise to a (simplicial) homotopy
between

Sing(f) and Sing(g) : Sing(X) — Sing(Y).

Proof. Suppose we have a diagram as in (2.37), where all objects
are topological spaces and all maps continuous. The functor Sing
preserves products (Lemma 2.30), so that

Sing(Al,, x X) = Sing(Af,,) x Sing(X).

Top

Here we write AlTop for the topological 1-simplex. The identity

Ay = Ap,, is a 1-simplex in Sing(Ap,,), or equivalently, by the
Yoneda lemma (Lemma 2.33), a map of simplicial sets

A' — Sing(Ar,,)-
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Thus, applying Sing to (2.37), and composing with this map gives
a diagram

A" x Sing(X) =——=SingX

LSO Lso %

A x Sing(X) —— Sing(Ar,, X )ﬁn& SingY’

1 1
‘ST ‘ﬁ %

A? x X =————— SingX.

Thus, Singf is (simplicially) homotopic to Singg. O

2.5 From simplicial sets to topological spaces:
the geometric realization

In this section, we are going to construct a functor
| — | : sSet — Top,

which gives a precise meaning to the idea that to each simplicial set
corresponds some “picture,” i.e., a topological space.

Definition 2.40. For a set T, we regard T" as a topological space
with the discrete topology, and T' x A% (for some n) carries the
product topology. The geometric realization |X| is the following
topological space:

|_| Xn x A%op/ ~

n=0
where ~ is the equivalence relation generated by the following rela-
tion: a pair (z,, (to,...,t,)) € Xn x A%, is identified with a pair
(Ym, (g, - - ., up)) if there is a map « : [m] — [n] such that

a*(z,) = xpy,

and
(g, - -y um)) = (to, .o, tn)-

Recall that o* : X,, — X,, is the map given by evaluating X :
A°P — Set at . Similarly, o, : AR, — Af, ) is given by evaluating
the functor A — Top mentioned in Remark 2.20. We equip | X| with
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the quotient topology (i.e., a subset U < | X]| is open iff its preimage
in all the X,, x A% is open. Equivalently, a map |X| — T' to any
other topological space T is continuous iff its restriction to all the

0 .
X x A, is continuous. )

Remark 2.41. e Since every morphism « is the composite of
maps d; and oy (cf. the proof of Definition and Lemma 2.21),
it is enough to consider the relation as above in which either
a =10 :[n—1] - [n]ora = oy : [n] = [n—1] (for appropriate
n, k). Thus, writing u = (ug, . .., u,) € AL

Top>
X x Ay 3 (7, guo, ey U1, 0, Uy, - UNZ) ~(di (), u) € X1 % Aaﬂ;pl‘
—5(w)
Xp1 X ATTLOP 3 (Tn-1, EU(), cey Uk—1, U + Ukg, - - ,Unp ~(sk(Tn-1),u) € X, X A%op-
g
=0y (u)

e In particular, for a degenerate simplex si(z,) € X,i1, the
subspace {sg(z,)} % A%(fpl is identified with {x,} x A", since

op t AL AR

Top Top 18 surjective.

Remark 2.42. The geometric realization functor has the following
properties. For proofs, one can consult [FP90, §4.3].

e For X = Al ,, we have a homeomorphism [A'] = A} . In-

deed, the subspace {ii} x Ag,, (i = 0,1) corresponding to the

two degenerate 1-simplices is identified with {i} x Aj . On

the other hand, 0 = d;(01) so that {0} x A% is identified

with {01} x (1,0) € {01} x A, and similarly {1} x A ~
{01} x (0,1).

e More generally, there is a homeomorphism

|A"| >~ A}

Top*

e For a coproduct of simplicial sets X;, || | X;| = | || Xi].

e For any map of simplicial sets f : X — Y, we have a continuous
map |f|: |X]| — |Y] that sends (the equivalence class of) (z,,t)
to (f(xy),t). This is well-defined since f is functorial, i.e.,
dp(f(z)) = f(dr(x)) and likewise with sy.
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e For a pushout, we have a natural homeomorphism
Y] o 2] = Y ux 2.

For example, for the simplicial n-sphere (cf. Exercise 2.7)

Seimp = OA™ Lino A"

s1mp

we have

’ 51mp| = aATop

n
Uag,, Ao,

so that there is a homeomorphism to the (topological) n-sphere:

’ Slmp’ = Top

Another example: the geometric realization of the (simplicial)
Mébius strip (Example 2.35) is obtained by glueing two copies
of A%, along an edge (exactly the same way as above), and
then by identifying two edges with another. Thus, the geomet-

ric realization is homeomorphic to the usual Mobius strip:
|M| = [07 1] X [07 1]/(t70> ~ (1 -1, 1)

e By the last two properties, X — |X]| is a colimit-preserving
functor. By general category theory there is, up to a unique
isomorphism, only one colimit-preserving functor sSet — Top
with the property that its restriction to the full subcategory
A c sSet = Fun(A°P, Set) (via the Yoneda embedding) agrees
with the functor [n] — A}

Top.
[n]—At,
A —p> TOp
Yoneda . | ‘
sSet.

Outlook 2.43. The two functors
| — | : sSet = Top : Sing. (2.44)
are adjoint functors, i.e.,

Homro, (| X, Y) = Homgget (X, Sing(Y))
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functorial in X € sSet and Y € Top. This can be shown by reducing
the claim to X = A", where it holds by

Homgop (|A"], Y) = Homepep (A%, ¥) =: Sing(Y),, *"™ ** Homse, (A", V) ]

These two functors are very far from being an equivalence. In-
deed,
Sing(|A'|) = Sing(Ar,,)

is not at all isomorphic to A! (already for cardinality reasons). Con-
versely, it can be shown that | X| is always a CW-complex, and not
every space is homeomorphic to a CW-complex. A foundational re-
sult in homotopy theory states, however, that the adjunction (2.44)
becomes an equivalence after inverting maps that induce isomor-
phisms on all homotopy groups 7,. See [GJ09, Theorem 1.11.4] for
the precise statement and proof.

2.6 Exercises

Exercise 2.1. Spell out the relation between the face and degen-
eracy maps between (topological) simplices. Use this to verify the
remaining condition in Definition 2.1 in order to verify that Sing(X)
is indeed a simplicial set.

Exercise 2.2. Using appropriate pushouts, define a simplicial set
which corresponds to the following picture. (Hint: do the construc-
tion step by step.)

Exercise 2.3. Let C' be a category and ¢ € C' an object. The
discrete simplicial object, momentarily denoted by ¢ (but later just
denoted by ¢) such that (¢),, = ¢, and face and degeneracy maps are
just the identity.

e What is the geometric realization of a discrete simplicial set?

e Redefine this using the functorial language (you will not need
to use the words face or degeneracy maps).
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Exercise 2.4. This exercise is the first € towards the definition of
oo-categories. Let C be a small category (i.e., it has a set of objects,
as opposed to a class). The nerve of C' is the simplicial set

N(C) : A® — Set, [n] — Homgg([n], C),

where [n] is regarded as a category in the natural way (objects given
by k, 0 < k < n and there is precisely one morphism from £ to [ if
k < [ and no morphism otherwise). Thus vertices of N(C) are the
objects, edges are morphisms.

e Consider the ordered set [n] with its usual ordering, and thus
as a category (in which Homp,(4,7) = {#} if ¢ < j and the
Hom-set is empty otherwise). Show that

A" = N([n)).

e Turn the following statement into a precise assertion “2-simplicesf]
of N(C) are pairs of composable morphisms.”

e Show that C'— N(C) is a functor Cat — sSet.
e Show this functor is fully faithful.
e (Optional) Describe the essential image of N.

Exercise 2.5. Prove Corollary 2.34 yourself for n = 0, m = 1 by
directly inspecting the two sets in question.

Exercise 2.6. Describe the non-degenerate simplices of the simpli-
cial cylinder S* x A, including a description of the face maps. Draw
these simplices!

Exercise 2.7. We define the boundary of an n-simplex, A" to be
the sub-simplicial set of A™ such that

(0A™),, = {f : [m] — [n], order-preserving,im f < [n]}.

Verify that this is indeed a simplicial set. (0A? has three vertices
and three non-degenerate edges). Define the simplicial n-sphere to
be the pushout

S™ = A" Ligan A,
i.e., the boundary of A" is contracted to a point. Show that S™ has
precisely two non-degenerate simplices, one in dimension 0 and one
in dimension n.
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Exercise 2.8. Let X = A! x Al.
(1) How many 2-simplices does X have? Show that, as stated in
Example 2.25, all except two of them are degenerate.

(2) Show (by a combinatorial consideration) that all 3-simplices of
X are degenerate.

(3) Deduce (from (2) and the simplicial identities) that all k-simplices]|
of X are degenerate for k > 4.

Exercise 2.9. Consider the (simplicial) circle S and the (simpli-
cial) Mébius strip M, which is the following simplicial set (cf. Ex-
ample 2.35 for a formal construction):

\// 7 C X
&
aQ (/N
Y
* A

e Show that there is precisely one map
i: St M

such that the unique non-degenerate 1-simplex in S* gets mapped|]
to a non-degenerate 1-simplex.

e Show that this map is a simplicial homotopy equivalence.



Chapter 3

Chain complexes

In this section, we introduce chain complexes and collect the per-
tinent basic insights from homological algebra. In depth-reference
for this material include [Wei94; GMO03]. In the overall architecture
of (co)homology in algebraic topology, we consider a sequence of
functors

Top S sSet gN sAb 2 Ch 3 Ab.

In this chapter, we will introduce the category Ch of chain com-
plexes, the normalized chain complex functor N, as well as the ho-
mology functors H,,.

3.1 Definitions

Definition 3.1. A chain complex is a sequence C,, (n € Z) of
abelian groups, together with maps (called differentials

On : Cp — Chyq
such that the composition vanishes:
8n_1 o 8n = 0.

This condition is also referred to by saying that ¢ = 0. It is cus-
tomary to drop ¢ from the notation and just say that C' is a chain
complex, leaving ¢ implicit.

A chain map between two chain complexes (C,0) and (D, o)
is a sequence of homomorphisms of abelian groups f, : C,, — D,

41
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such that the following diagram commutes for all n:

aC

Cn ? Cn—l (32)

J/fﬂ lfnl
o7

Dn E— Dn—l-

Together with the obvious identity maps and the obvious com-
position, these form a category denoted by Ch.

For any ring R, chain complexes of R-modules are defined sim-
ilarly with C),, being R-modules, and 0, and f, being R-module
maps. In the same vein, and yet more generally, there is a notion
of chain complexes taking values in an abelian category A. These
categories are denoted by Ch(Modg) and Ch(A), respectively.

Definition 3.3. A cochain complex is a sequence (C™), n € Z of
abelian groups and with differentials

o O,
such that again 0% = 0, i.e., "' 0 0" = 0 for all n.

Thus, the only difference to a chain complex is that the differen-
tials have degree +1. Any chain complex (C,,) gives rise to a cochain
complex defined by

C":=C_,,0" :=0_,,
i.e., just relabeling the components.

Example 3.4. e The sequence
S Z/ADS TS T/

(multiplication by 2 in each degree) is a chain complex, while
the sequence

728 z87. ..
is not a chain complex, since id o id # 0.

e We can regard any abelian group M as a chain complex which
is M in degree 0, and 0 otherwise (and all differentials are
necessarily 0). We refer to this by saying that the complex is
concentrated in degree 0.
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e Given a chain complex C', the shift of C' is defined as

C[p]n = Un+p,

with differential o5 ! := (—1)Po¢ +p- The relevance of the sign
will become clear later in relation with the tensor product of

chain complexes, Example 3.31.

e The name “differential” comes from analysis, where one shows
that the process of taking the exterior derivative yields a cochainj
complex on, say, an open subset M < R™ (more generally, a
differentiable manifold):

O (M) : QUM) 5 QY M) S Q*(M) — ... (3.5)

Here Q°(M) denotes the vector space of smooth functions M —
R and QF(M) denotes the vector space of (smooth) k-forms.
This cochain complex is called the de Rham complex. The
fact that d*> = 0 ultimately relies on the fact that for a (twice
differentiable) function f: M — R

cf *f
8%695]» B ﬁxjéxz

A similar point arises in establishing the singular chain com-
plexes, cf. the use of the simplicial identities in Definition and
Lemma 3.8. This cochain complex is very closely related to
the singular simplicial set Sing(M) (and the chain complexes
that we will construct out of it in the next section). In fact,
Stokes’ theorem asserts that for an n-form w € Q"(M) and an
n — l-simplex o : A%:pl — M, there holds

J wzfdw.
do o

3.2 From simplicial sets to chain complexes

In this section, we describe two functors
sSet 5l sab & ch

These are necessary ingredients to define singular homology of topo-
logical spaces.
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We use the free abelian group functor

Z[] : Set —Ab,
S —Z[S]={n:S — Z,n(s) =0 for all but finitely many s € S}.

We denote such an element in Z[S] as the finite formal linear com-
bination > ngs with ny(= n(s)) € Z. For a map of sets f : S —> T,
the induced map Z[S| — Z[T'] is given by > o nss — D o nsf(S).
Thus, it is the unique Z-linear map sending 1-s to 1 - f(s).

Remark 3.6. The functor Z[—] is left adjoint to the forgetful func-
tor Ab — Set, i.e., there is a natural bijection (for any set S and
any abelian group A)

Homap(Z[S], A) = Homge (S, A).

In this bijection, a map f : S — A corresponds to the group ho-
momorphism ¢ : Z[S] — A satisfying g(D,cgnsS) = Dleg s f(S).
Conversely, a group homomorphism ¢ : Z[S] — A corresponds to
the map (of sets) S "= Z[S] 5 A.

Recall that for a category C, sC := Fun(A°P, (') denotes the cat-
egory of simplicial objects in C'. The formation C' — sC'is functorial
in C, in the following sense: given a functor F' : C' — D, we get a
functor

F:sC —sD,

given by postcomposing with F. In particular, we get a functor
Z[—] : sSet — sAb,

which concretely sends a simplicial set (X,,) to a simplicial abelian
group whose n-simplices are (Z[X,]) and whose simplicial maps are
given by functoriality of Z[—]. That is, for a : [m] — [n] and
a* : X, — X, the map (Z[ X)), = Z|X,| = Z[X,] = (Z[X])nm is
given by >, v ngs+— >, n,a*(s). In particular, for o = §, the
face maps of Z[ X | are the maps

Z[X]o — Z[X]uo1, Y nes = Y nadi(s).

seX, seXn
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Example 3.7. In low degrees, the simplicial abelian group Z[A!]
is the following:

S0

ZooPZLnPZy —4h—=70DZ4

Here the subscripts indicate which element of (A'), the copy of Z
belongs to. The maps dy etc. are induced from the corresponding
maps on Al. If we write e;; for the element 1 in the copy Z;; (which
is a basis vector), we have that dj is the unique Z-linear map sending
€ij to €5, i.e.,

do(nooeoo + no1€or + n1ie11) = ngoeo + (o1 + nar)er

and similarly for dy, so and also the maps in higher dimension.

Definition and Lemma 3.8. Let X € sAb be a simplicial abelian
group. Then the groups X, for n > 0 and X,, := 0 for n < 0 and
the following maps constitute a chain complex, denoted C(X):

On s Xp = Xyop, x> Y (= 1)Fdi ().
k=0

The datum X — C'(X) is a functor, called the chain complex functor

C :sAb — Ch.

Proof. We have to check X, LA X1 o, X,—o vanishes. Let z €
X,. For notational simplicity, we write z; := d;(z) € X,_; and
xyy = dpdi(z) € X,—o, for appropriate k,l. Below, we will use the
simplicial identity

dedy = di—ydy,
for k <[, as in (2.2). This gives

Tkl = T1-1k-
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With this in hand, we have

(—1)'m)

[vj:

00z = 0(

2

0

T

—1)'0x; (0 is a group homomorphism )

n
2 (D=1

[y

k=0 1=0

= Z (—1) gy + Z g (group the terms)
I<k<n—1 k<l<n

= Z (—1) k+l$kl+ Z — k”:vl_Lk (simplicial identity)
I<ksn—1 k<l<n

= (=1 + Z D2y 1, (vewrite)
I<k<n I<k<n

=0.

Definition and Lemma 3.9. Let again X € sAb be a simplicial
abelian group. Let X3¢ < X, = (,(X) be the subgroup gener-
ated by degenerate simplices. Then the differentials 0, : C,,(X) —
Ch—1(X) respect this subgroup, so that the groups

N(X)n = Cn(X)/chzleg;

and differentials induced from C(X), constitute a chain complex
N(X) called the normalized chain complez.
This gives a functor, called the normalized chain complex functor

N :sAb — Ch

such that N(X), = C,(X)/Xd¢ and with differentials induced
from C(X).

Proof. Indeed, by the simplicial identities (2.3), modulo degenerate
simplices, we have

Z(—l)kdij = (—1)jdj8j + (—1)j+1dj+18j = 0

The purpose of introducing N (X) is that it is smaller, and there-
fore more easily useable for concrete computations, than C(X).
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However, according to Exercise 4.6, as far as the homology is con-
cerned (which is all that matters here), there is no essential difference
between these two complexes.

Example 3.10. o C,(Z[A"]) = Z, and
CZA)=[..2%5282%57Z 50— ...].

Since the only-non degenerate simplex in AY is in dimension
0, the normalized complex is just given by N(Z[A’]) = Z,
concentrated in degree 0.

e For any simplicial set X, N,(Z[X]) is the free abelian group
generated by the non-degenerate n-simplices in X. (Indeed,
X, = Xdes |, xnon—degenerate which gives C(Z[X]), = Z[X,] =
Z[ X de8|@Z | X non—degenerate] - The degenerate simplices in C(Z[X]),j]
are exactly the ones in the first summand.)

o N(Z[AY)) = [Zn b Zy @ Z,] (in degrees 1 and 0, the sub-

scripts indicate the basis vectors corresponding to the copies of
Z).

[ ]
[ 1 -1
1 -1
2 (1,-1,1) 1
N(Z[A%)) = | Zowo = Zon ®Zoo D Zy> — Zo®Z D Zs
e For the simplicial sphere (Exercise 2.7) we get
N(Z[S"])=[Z—-0... 50— Z] (3.11)

with Z in degrees n and 0, and all differentials are zero (also
forn =1).
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3.3 From chain complexes to abelian groups: ho-}
mology

Definition 3.12. Let C' be a chain complex. We define the cycle
groups, boundary groups and homology groups of C' to be

Za(C) = ker(C,, 3 C,_1),

B,(C) = im (Cpyy ™5 C),
Note here that B, (C) < Z,(C) by definition of a chain complex: for
ce B,(0), ie., ¢ = dc for some ¢’ € C,, 41 we have dc = ddc’ = 0, so

that ¢ € Z,,(C). Thus, the homology group is well-defined.
C' is called ezact or acyclic if all H,(C) = 0.

Example 3.13. For a complex C' of the form

HoﬁclgCOHOH,

we have H; (C') = ker ¢; and Hy(C') = coker 0y, and all other homolo-

gies vanish. This applies, for example, to the complex considered in

§1

Za®ZbDZc — 7xDZydZz.
In fact, this complex is N(Z[0A?]), as one can quickly check(!).

Remark 3.14. The same concepts also apply to cochain complexes,
except that the differentials go up in degree. Thus, for a cochain

complex C, the cocycles, coboundaries and the all-important coho-
mology groups are defined as

Z"(C) = ker(C" % crthy,
B"(C) = im (O™ 75 oMy,
H™(C) := 2"(C)/B"(C).

We will later study cohomology of topological spaces in some depth.
Another important example of cohomology arises in analysis when
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studying the de Rham complex, (3.5). The equation d*> = 0 means
that any differential form w € QF(M) that is exact (w = da, for
some k — 1-form «) is also closed (dw = 0). This raises the question
whether the converse holds: is any closed form also exact? The
answer to this question depends on M. For example, one shows
that for M = R", this does hold, which leads to a computation

nrosmnyy ) R n=>0
H* (" (R ))_{ 0 otherwise

By contrast, for M = R?\{0}, there is the closed 1-form %Zﬁdy =
L (for z = x+iy, dz = dx+1idy) which fails to be exact. One shows

that the de Rham cohomology is

_ R—ydm + zdy

HY Q" (R*\{0})) e

i.e., up to multiplication with a scalar A € R, this form is the only
closed, but non-exact 1-form. Later on in this course, we will com-
pute the singular cohomology, which is solely based on topological,
not analytical methods:

Z n=>0
H*(R\{0})) =< Z n=1
0 otherwise

The so-called de Rham theorem asserts that for any (real differen-
tiable) manifold M, there is a canonical isomorphism

H"(M,R) = H"(Q*(M)).

This displays a substantial link between the topology of some space
and the solvability of differential equations. See, for example, [War83]|]
for all of this.

Lemma 3.15. The cycle, boundary and homology groups are func-
tors

Z,, B, H, : Ch — Ab.

Proof. Left as an exercise (!)(you will need to use the commutativity @
of (3.2) at some point). O
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3.4 Homology of simplicial sets: definition and
examples

Definition 3.16. We define the homology groups of a simplicial set
X as
H, (X) := Hp(N(Z[X])).

The homology functor is the composition
sSet 251 sab X cn s A,
More generally, for any commutative ring A, we define
Hn(_a A)

similarly, by replacing Z[—] above by A[—], i.e., we take the free
A-module generated by the n-simplices of X. We refer to this as
homology with A-coefficients. Thus H,(X) = H,(X,Z). The role of
A is the following: we will eventually prove the universal coefficient

theorem ([todo: refftodo]ref) which states that

e H,(X,Q) = H,(X)®zQ, so homology with rational coefficients
just forgets about the torsion part in the groups H,,(X), which
makes it sometimes easier to compute.

e As far as torsion is concerned, H, (X,Z/¢) will be a mixture
of H,(X)/¢ and {a € H,_1(X),fla = 0}, i.e., the (-torsion in
the n — 1-st homology group. Thus, homology with torsion
coefficients can, in some cases, detect finer phenomena than
H,(X,Z). See Exercise 4.5 for a precise statement. An inter-
esting example for homology with torsion coefficients appears
in Example 3.20.

Example 3.17. From Example 3.10, we get the following compu-
tations:

e For the k-simplex, we get

Z n=0
ky _
Ha(A%) = { 0 otherwise

For k = 0 this is immediate, and for £ = 1, 2, it follows by
inspection of the normalized chain complexes (Exercise 3.6).
For k > 2, we will use a more convenient method, homotopies,
below in Exercise 3.7.
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e For the simplicial k-sphere S*, the complex in (3.11) immedi-

ately gives
Z n=0n=%k
k\ _ )
Ha(5%) = { 0 otherwise

Note that the right hand side agrees exactly with the claim
made for the homology of the topological k-sphere Sfop (cf. also
the comments made after Example 2.18). This agreement is not
a coincidence: as a consequence of excision, we will eventually
compute the homology of Sfop by showing that it agrees with
the one of the simplicial k-sphere S*.

Example 3.18. We consider the Mobius strip M:

\// ] C X
Y
[ o
Y
* 8

According to Exercise 2.9, the inclusion
Sth M

is a homotopy equivalence. We will show in Corollary 3.42 that this
implies that
iw t Hi(S') — Hy (M)

is an isomorphism. Thus

Z n=0
Hy(M) = Z n=1

0 otherwise

A generator of Hy (M) is given by (the class of) the edge d. To see
Hy (M) = 0, note that n,a + ngf is mapped under the differential
to

na(d—c+a)+ngla—d+b) = (ng +ng)a+ngb—nyc+ (ng —ng)d,
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which is zero only for n, = ng = 0, so that the cycle group Z?
vanishes, and a fortiori Hy(M).

Example 3.19. Let g > 1. We define a simplicial set X, to be
glued from 4g copies of A?, with boundaries identified as shown for
g = 2 and g = 3, respectively:

a.

s
%‘\\0



3.4. HOMOLOGY OF SIMPLICIAL SETS: DEFINITION AND EXAMPLES531

This simplicial set is called the (simplicial) orientable surface with
genus g, since its geometric realization |X,| has (up to homeomor-
phism) precisely that property. The genus is, roughly speaking, the
number of handles attached to S%,,. We will shortly see how the
genus arises from the computation of the homology of X,. An an-
imation that shows the construction in case g = 2 is found here:
https://youtu.be/GlyyfPShgqw.

Then, we have

Z n=>0

7 n=1
Hi(Xy) = Z n=2

0 otherwise

A basis of Hy(X,) is given by the outer edges (e.g., a,b,c,d,e, f in
case g = 3). The fact that the ranks of these groups are symmetric
(rkHy = rkHs_4) is no coincidence, but rather an example of so-
called Poincaré duality, which asserts that this symmetry holds for
any compact orientable manifold.

Example 3.20. We compute the homology of the (simplicial) pro-
jective plane P2?, which is the simplicial set pictured as follows:

v L x

-
/
A )

Unlike for the examples before, it becomes interesting to not only
consider homology with Z-coefficients, but general rings A. P? has

X


https://youtu.be/G1yyfPShgqw
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the following non-degenerate simplices: «, 3 (in dimension 2), the
edges a, b, d and the vertices z,y. We then get the following chain

complex
-1 1
1 -1 -1 -1 0
1 1 11 0

Aa®Ag——— A @A BN —— N, DA,

(The first column of the left hand matrix reflects the fact that o(«) =
do(a) — di(a) + do(a) = b — a + d, for the right hand matrix note
that d(a) = y — x etc.) (The first column of the left hand matrix
reflects the fact that d(a) = do(a) — di(a) + da(a) = b—a + d, for
the right hand matrix note that d(a) = y — z etc.)

e For degree 0, we have By = {(z, —z),z € A}, so that
Ho(P? A) = A.
e For degree 1, we have Z; = {(z4, Ty, 4), o + 2 = 0}, while B;

is the image of the 2-by-3 matrix displayed above, which is the
same as the image of the 2-by-3 matrix

0 1
0 —1
2 1

We have an isomorphism

H,(P? A)(:= Z,/B,) —\/2,

(T, Ty Tg) —Tg — Tq.

Indeed, this map is clearly surjective. It is also injective: for
Tg—T, € 2\, say xg—1x, = 2x for some x € A (and z,+x;, = 0),
we have (x4, 2y, q) = (T4, —Za, T + 22) € By = im 0s.

e For degree 2, we have

Ho(P?) = Zy = {(24, 7p), Tat1s = 0, 76—75 = 0} = {x € A, 22 = 0} ]

e Of course, in higher degrees, Hy(P?) = 0.
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We therefore see that the homology depends in an interesting way
on A:

(Z n=0

7/2 n=1

He(P*,Z) = | O/ n=2
[ 0 otherwise,

(Z/2 n=0

/2 n=1

B2 = 3 gl
0 otherwise.

\

3.5 Chain homotopies

In §2.4 we introduced the notion of continuous and simplicial homo-
topies, which are special relations between two maps

f,g: X ->Y

in Top, and in sSet, respectively. In this section, we are going to de-
fine the corresponding notion of homotopies between maps of chain
complexes. We will show that

e if r,s: C — D are two maps of chain complexes that are chain
homotopic, then they induce the same map

H,,(r) = Hu(s)
on homology groups,

e if f,g: X — Y are (simplicially) homotopic maps in sSet, then
the maps N(f),N(g) : N(X) — N(Y) are chain homotopic.
Here and in the sequel, we will sometimes abbreviate

N(X) := N(Z[X]),N(f) := N(Z[f]).
These facts are the key ingredients in the homotopy invariance of
homology (Proposition 4.8).

Definition 3.21. e Let f,g : C — D be two chain maps. A
chain homotopy between f and g is a collection of group ho-
momorphisms h,, : C,, — D,,,1 such that

@IL)H o hn + hnfl o ag = Ggn — fn (322)
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This condition is often written as
oh+ho=g-—f.

More pictorially, the sum of the two composites in the lozenge
must equal the vertical maps:

o5
Ch Cpoy—— ...

hn
In—
" hn—1

Dn-‘,—l oD Dn
n+1

e We say that f: C' — D is (chain) homotopic to g : C' — D if
there is such a chain homotopy.

e A chain map f: C — D is called a chain homotopy equivalence
if there is a chain map g : D — C such that f o g is homotopic
to idp, and g o f is chain homotopic to id¢.

Remark 3.23. Note that the h,, do not assemble to a chain map
C' — DJ[1]! Instead, we will soon see that a homotopy is the same
thing as a chain map

Nz[A)eC =2z 5 zez2)9C > D.

Lemma 3.24. Le t f,g : C — D be two homotopic chain maps.
Then H,(f) = H,,(g) for all n € Z.

Proof. Let c € Z,(C) be a cycle. We have to show that g(c) — f(c)
is a boundary (in D), so that [g(c)] — [f(c)] = 0 € H, (D). Indeed:

g(c) — f(c) = 0h(c) + h d(c) € B,(D).
——

=0

Definition 3.25. A chainmap f : C' — D is called a quasi-isomorphismj

if the induced maps
H,(f) : H,(C) — Ha(D)

is an isomorphism for each n € Z.
We say a complex C'is quasi-isomorphic to a complex D if there
is a quasi-isomorphism f : C' — D.
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Lemma 3.26. Any chain homotopy equivalence f : C' — D is a
quasi-isomorphism.

Proof. Indeed, for g : D — C' as above, the following maps H,,(D) —
H, (D) agree:

Hn(f) © Hn(g) = Hn(f © g) = Hn(ldD) = ldHn(D)

by Lemma 3.15 and Lemma 3.24. Similarly with go f, so that H,,(f)
is an isomorphism. O

Synopsis 3.27. Given a chain map f: C' — D, we can list a num-
ber of conditions, where each one implies the one below:
(1) fis an isomorphism

(2) f is a chain homotopy equivalence

(3) f is a quasi-isomorphism
Remark 3.28. In general, none of these implications is reversible.

e (3) = (2): for example, the map of chain complexes
C=[0>Z5Z—0...]5 D:=7/e[0]

(given in degree 0 by the canonical projection) is a quasi-
isomorphism: the homology groups H,, of both complexes van-
ish for n # 0. We have Zy(C) = Z, By(C) = eZ, so that
Ho(C) = Z/eZ. The induced map Hy(C') — Ho(D) is the iden-
tity, so f is a quasi-isomorphism. However, there is no nonzero
group homomorphism Z/e — Z, so any g : D — C' must be
zero. However, f o (0 = 0 is not homotopic to idp: this would
imply that the 0O-map and the identity of Ho(D) agree, which
is false.

e However, it can be shown that if C' and D are complexes of
modules over a ring A such that C, = D, = 0 for n « 0,
and all C),, and D, are projective A-modules, then a quasi-
isomorphism f is necessarily a chain homotopy equivalence.
See, e.g., [Wei%4, Theorem 2.2.6] and related statements there.

e If one has two chain complexes C' and D such that for all n,
there are (group) isomorphisms e, : H,(C') > H,(D), C need
not be quasi-isomorphic to D: there need not be a chain map
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f : C — D such that the induced maps H,(f) agree with e,.
(However, if such a map f does exist, then it is of course a
quasi-isomorphism).

The relation “C' is quasi-isomorphic to D” is not symmetric:
given a quasi-isomorphism f : C' — D, there need not be a
quasi-isomorphism D — C cf. Exercise 3.3.

3.6 From simplicial homotopies to chain homo-
topies

To establish a connection between simplicial homotopies and chain

homotopies, we introduce the tensor product of chain complexes,

and show that the normalized chain complex functor N behaves

well in this regard (Proposition 3.41). The tensor product of chain

complexes will also play a key role in the Kiinneth formula that
computes the cohomology of a product of two topological spaces

((todo: linkftodo]link).
3.6.1 Tensor products of chain complexes

Definition and Lemma 3.29. The tensor product of two chain
complexes C, D € Ch is defined to be the complex with (C® D), =
@Dyinek Cm ® Dy, The differential

(9,?®D . (C@D)k - (C@D)k_l
is defined by the formula
(c®d):=(0c) ®d+ (—1)"c® (0d), (3.30)

where ce C,,, d € D,,.
This is indeed a chain complex, which gives a functor

® : Ch x Ch — Ch.
Proof. Using 0% = 0% = 0, we compute

0(0(c®d)) =0 ((0c)®d+ (—1)"c® (0d))

— 0(0c) ®d + (—1)™(8¢) ® (8d) + (—1)™(c) ® (2d) + (=1)™(—1)"c® (.
——

=0

= 0.

~—
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Example 3.31. e For any complex C' and any abelian group A,
the complex C'® (A[0]) is given in degree n by C, ® A, with
differential dc ® id. In particular, for a simplicial set X,

N(Z[X]) ® A = N(A[X])).
e For C € Ch, the shifted complex (Example 3.4) is given by
Cln] = (Z|n]) ® C.

Indeed, Z[n]x = Z for k = —n and 0 otherwise, so that (Z[n]|®
() = Cpyk. The differential is given by

Oziniec (s ® ¢) = Ozpm)(s) ®c + (=1)"s ® dec = (—1)"s0cc.
-0

Here s € Z[n]|_,, = Z, and c € C,, ;. By contrast, C ® Z[n] has
again C,,; in degree k, and no sign in the differential:

Ocazm)(c®s) = 0c® s + (—1)"*c®ds = dc® s.
Thus, the maps
fri=(=D)"d : (C®Z[n])k = Cpsk = Coyr = (Z[n] @ CO)y,

constitute an isomorphism of chain complexes (which is not the
identity!).

Lemma 3.32. Let f,g : C'" — D be two chain maps. A chain
homotopy h between f and g (Definition 3.21) is the same thing as
a chain map h fitting into a commutative diagram like so:

NAYY®C=——=C
60®idl \

NAY®C—2— D

01 ®id1\ /

NA) @ C=—=C.

Proof. By Example 3.10, N(A') = [Z LV 7 @ Z|, where the left
hand Z is in degree 1. Thus,

(NA'®C), =Z®C,t1Q@(ZDZ)®C, = Crmy ®C, @ C.
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The restriction along d; : A — A! being f and g, respectively,
only leaves free the maps C,,_; — D,,, which we call h,,. Unwinding
the definition of the differential on the tensor product, one checks
(Dthat h is a chain map iff the above diagram commutes holds. [

3.6.2 The Eilenberg—Zilber map

In this section we show that the functor
N(Z[-]) : sSet — Ch

interacts well with the monoidal structures, i.e., relates products in
sSet with tensor products in Ch. This is then used in order to show
that simplicial homotopies give rise to chain homotopies under that
functor.

Following up on Example 2.25, we begin with a closer look at the
product of simplicial sets A™ x A™.

Lemma 3.33. Let m,n > 0. Then the following holds:
(1) A p-simplex of A™ x A" corresponds to a pair of morphisms (in
the category A)
(012 [p] = [m], 02 : [p] — [n])

or, equivalently, to an order-preserving map

o : [p] = [m] x [n],
(where at the right hand we declare (i,7) < (¢, ') iff i < i’ and
J<i).
(2) A p-simplex is non-degenerate iff the map o is injective. The
highest possible p with that property is p = m + n.

(3) Any non-degenerate simplex of A™ x A™ is a face of (i.e., arises
by applying appropriate face maps to) a non-degenerate (m+mn)-
simplex.

(4) There is a bijection between

(A™ x AM)2Md o~ (7 (1 m+n),|J|=m). (3.34)

m+n

At the right, we have the subsets of [m + n]| with cardinality m.



3.6. FROM SIMPLICIAL HOMOTOPIES TO CHAIN HOMOTOPIES 61

Proof. The first statement holds by Lemma 2.33. For the second,
observe that o is injective iff it does not factor over some map oy, :
[p] — [p — 1] iff it is non-degenerate. (3) is left as an exercise.

Finally, take an injective order-preserving map
0 = (01,02) : [m +n] — [m] x [n]
and assign to it the subset
Ji={l<j<min,01(j—-1) = o1()}(= {1 <j <m+n,05(j—1) < 02(j)})

Since o is injective and order-preserving, |.JJ| = m, and one checks
it defines a bijection. O]

Definition 3.35. A subset J < {1,...,m +n}, |J| = m is called a
shuffle, with the idea that an (ordered) deck of m cards is shuffled
into an (ordered) deck of n cards, without changing the order within
the two decks.

More formally, J gives rise to a unique permutation of the set
{1,...,m + n} such that 1,...,m map to the elements in J in the
order-preserving way, and the elements m + 1,...,n to [n + m]|\J,
again in the order-preserving way.

The signature of a shuffle sgn(.J) is defined as the signature of
that permutation.

Example 3.36. To the displayed map o : [5] — [3] x [2] corre-
sponds the shuffle J = {2,5}, which gives rise to the permutation
31452, whose signature is sgn(J) = (—=1)* = +1.



62 CHAPTER 3. CHAIN COMPLEXES

Let X,Y € sSet. In order to define a chain map
N(Z[X]) @ N(Z[Y]) = N(Z[X x Y]),
recall that the k-simplices are the free abelian groups

(NZIXD@NZY]), = D NEZX])m @ N(Z[Y])n

m+n=~k
_ Z[errllonfdeg] ® Z[Ynnonfdeg]
_ Z[Xyr;lon—deg % Y;lon—deg]’

so to specify such a map, we need to send any pair (o, ) of non-
degenerate simplices (in X and Y, respectively), to an element in

N(Z[X x Y]),

i.e., a formal linear combination of non-degenerate simplices in X x

Y.
Recall also from Lemma 2.33, that X, =~ Homgge (A™, X). Using
this, we can further constrain the way how to construct such maps:

AR T AT AT (3.37)

Jaxﬁ

X xY.

Le., given a and [, we can use a shuffle ¢ (i.e., a non-degenerate
top-dimensional simplex of A™ x A™), and get an (m + n)-simplex
of X xY.
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Definition 3.38. The Eilenberg—Zilber map is the map
V:N(Z[X])® N(Z]Y]) —» N(Z[X x Y]),
that assigns to a pair of non-degenerate simplices («, ) as above

the sum
S sgn()((a x B) o os),

J shuffle
where o corresponds to J under the bijection in (3.34).

Example 3.39. Let us illustrate the definition of V with the ex-
ample X =Y = Al Recall that

—1,1
N(AY) = [Zon 5 2y @ 24),
so that (as usual, subscripts serve to remember the generators and
Zsg. stands for Z» ® Z,):
1
N(AHRN(AY = [Zoigor — Zoigo®Zoign DZogn DZigo1 — @ Zi®j]-|
i,j=0

By comparison, Al x Al has the following simplices (cf. Exam-
ple 2.25)

W ()

(00‘04)

(0/08 (04 00) (2,0)

so that

1
N(A'xAl) = [Z001,011DZ011.001 — Z00,01DZ01,11DZ01,01DZ01 00DZ11,01 — @ Z;;].

e In degree 0, V is composed of the identity maps Z;g; — Z; ;.
Indeed, in (3.37), there is exactly one shuffle to be considered,
which is J = & < ({1,...,0} = &, which corresponds under
the bijection in (3.34) to the identity map o = id : [0] —
[0] x [0] and therefore the identity permutation (of ¢¥), so that
the sign is +1.

1,7=0
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e In degree 1, V is composed by identity maps Zigo1 — Zi; 01
and Zoig; — Zo1,;- Indeed, focus on the first case (the other is
similar, also with sign +1): in (3.37) (with m = 0 and n = 1),
there is exactly one shuffle to be considered, namely J = &§ <
{1}, which corresponds again to the identity map o = id : [1] —
[0] x [1], whose signature is again +1. Thus,

A0+1 g AO % Al

\ Jix(}l
41,01

Al x AL

e In degree 2, things get more interesting:
Jc{1,2} | o |sgn(o) | [2] = [1] x [1] | 2-simplex in A x A!

{1} 12 | +1 ( ) ( ) (1, ) (011,001)
Thus, in degree 2, V is the map
Zoigor — Lh) Z001,011 D Zo11,001

Lemma 3.40. The Eilenberg-Zilber map V is indeed a chain map.
Proof. We have to check
oV =Vo,

which we only do in the above example X =Y = Al. The proof in

general uses the same idea, but slightly more tedious combinatorical

arguments. See, e.g., [Lur, Tag 00RR]. The point is that the signs

of the shuffles are such that the diagonal edge 01,01, which arises

as a face of both non-degenerate 2-simplices in A! x A!, cancel each

other: Indeed,

0V (01 ®01) = 0((011,001) — (001,011))
= ((11,01) — (01,01) + (01,00)) — ((01,11) — (01,01) + (00,01))
= (11,01) — (01,01) + (01,00) — (01, 11) + (01,01) — (00, 01)
= (11,01) + (01,00) — (01,11) — (00, 01).

On the other hand, using the signs in the tensor product in (3.30),

we have

Vo(01®01) = V(3(01) ® 01 — 01 ® 0(01))
—V(1®01-0®01)— (01®1—01®0))
~11®01 —00® 01 — 01 ® 11 + 01 ® 00.


https://kerodon.net/tag/00RR
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Here comes the reward:

Proposition 3.41. Let f,g : X — Y be (simplicially) homotopic
maps between simplicial sets. Then the induced maps

N(Z[f]), N(Zlg]) : N(Z[X]) — N(Z[Y])
are chain homotopic. Thus, by Lemma 3.24,
H,.(f), Ha(g) : Ho(X) — Ha(Y)
are the same maps.

Proof. This is an immediate consequence of the existence of the
Eilenberg—Zilber map V. We again write N(X) := N(Z[X]) etc.
Let h : A' x X — Y be a homotopy between f and g. Then we
have a commutative diagram:

N(A%) ® N(X) —— N(A” x X) —— N(X)

st“ F N(f)

NAHY@N(X) Y s N(A! x x) Y

51T 51[ N(g)

N(A) @ N(X) == N(A? x X)=——=N(X).

Indeed, N(Z[AY]) = [Z ze Z], so that for any chain complex
C,

(N(Z[A)RC), = Croy@Z[X;" B |@Z[X} "] — Z[(A'x X)) ]

Thus,
N(h)oV:N(AH®N(X) — N(Y)

is a chain homotopy between N(f) and N(g). O

The next corollary will be used to compute the homology of some
topological spaces:

Corollary 3.42. Any simplicial homotopy equivalence f : X — Y
gives rise to a quasi-isomorphism

N(f)(:= N(Z[f]) : N(X) = N(Y),
and thus to isomorphisms

H,(f) : H,(X) — H,(Y).
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3.7 Exercises

Exercise 3.1. Prove Lemma 3.15.
For the cycles (but not the others) one may argue by exhibiting
a (very small) chain complex Z,, such that for each chain complex
C,
Zn(C) = HOIIlCh(Zn, C)

Exercise 3.2. Let HoCh be the category of chain complexes up to
homotopy: its objects are chain complexes, and

Hompyocn(C, D) := Homey (C, D)/ ~,
where f ~ g iff the two maps are chain homotopic.

e Verify this is indeed a well-defined category and that there is a
functor
Ch — HoCh

given on objects by C'— C.
e Show that H, (C') = Hompecn(Z[n], C).
Exercise 3.3. Is there a quasi-isomorphism
Z/n — [Z 5 7],

(where the left complex is concentrated in degree 0, the right one in
degrees 1 and 0)?

Exercise 3.4. Let f : X — Y be the following map of simplicial
sets

b /

i

/ ) £ /

\
) [
I

ofr 7 Ca

1
~a
\ \
A

ie, a,b—c, a,f— 7.

e Compute the normalized chain complex of X, of Y and show
that the homologies are given by

Hy(X) =Hy(Y)=Z
for k=0and k£ = 1.
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e Show that, under the isomorphisms above, the map
Hy,(f) : Hp(X) — He(Y)
is the identity for £ = 0 and multiplication by 2 for k = 1.

e Let reZ, r > 2. Describe a map of simplicial sets
M. x0 Sy,

(for an appropriate X € sSet) such that H;, (X)) = H,(Y) =
Z for k = 0,1 and such that (under these isomorphisms)

Ho(f™) = idg, Hi(f™) = ridg,
i.e., multiplication by 7 in the first homology group.

Exercise 3.5. Let C' be an exact complex. Show that the following
are equivalent:

(1) 0, : Cp, — Cyq 18 0,

(2) Opy1 is surjective,

(3) 0On—1 is injective.

Exercise 3.6. Show by direct computation that

2\ Z n = O
Ha(A%) = { 0 otherwise

“Draw” some elements in Z;(N(Z[A?])) and B;(N(Z[A?%])).

Exercise 3.7. Show that the unique map A¥ — A is a simplicial
homotopy equivalence. (A simplicial set with this property is called
contractible.) Use this to confirm the claim made in Example 3.17.

Hint: there is a conceptual proof, which relies on expressing A*
as a nerve (cf. Exercise 2.4): A*¥ = N([k]). Now show that for a cat-
egory C' with an initial object, N(C') is contractible. Alternatively,
there is also a hands-on proof by writing down simplices of A! x AF,

Exercise 3.8. Using the product of simplicial sets from Definition 2.24 11
we define the simplicial torus

T:=5'"x St

e Draw the non-degenerate simplices of 7.
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e Compute the complex N(Z[T]).

e Show
Z n=0
7> n=1
Ha(T) = Z n=2

0 otherwise

e (If you feel adventurous:) What do the ranks of the groups
H,,(T) look like? Make a guess for H, (S x S x S1) and prove
it!

Exercise 3.9. Let
S0 A%BY0 0. ..

be an exact complex of abelian groups. (This is called a short ezact
sequence.) Show that for any abelian group T, there are complexes,
with appropriate natural maps

0 — Homap (T, A) % Homay(T, B) % Homay,(T, C) — 0.

Show that this complex is exact except possibly at the spot Hom(T, C) J]
i.e., by need not be surjective. Show that for a free abelian group T’
(T = Z[S] for some set S), the complex is exact.

Also show that
0->AQRQT - BRXT —-CRT —0

is a complex. Show that it is exact except that possibly the map
A®T — B®T need not be injective. Show that the complex is
exact for a free abelian group 7.

Exercise 3.10. The (simplicial) Klein bottle K is the one corre-
sponding to the following picture (note that in comparison to the
projective plane, the direction of the right vertical edge has changed,
and there is only one vertex):
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e Define this simplicial set formally. Hint: start with A% 1 A2,
corresponding to a and (3, and define a number of intermediate
simplicial sets by glueing certain simplices step by step.

e Spell out the normalized chain complex N(Z[K]).
e Compute the homologies Hy(K).

e (Optional, bonus) Compute Hi (K, A) for an arbitrary ring A.
Relate your computations to the explanation of the universal
coefficient theorem made after Definition 3.16.

Exercise 3.11. Let X := S* Lig,y ST be two copies of the simplicial
sphere, glued together at the unique 0-simplex.

Show
Z n=0
H,(Z[X]) = Z: n=1
0  otherwise

Exercise 3.12. Compute the homology of the (simplicial) lasso,
cf. Exercise 2.2.
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Exercise 3.13. The set of path components of a simplicial set X is
defined as
7T0<X) = X()/ ~,

where ~ is the equivalence relation generated by the following rela-
tion ~' (for xg,z1 € Xg): x9 ~' oy iff there is an edge e € X; such
that di(e) =y, for k =0, 1.

e Show that zg ~'  iff the two maps AY — X given by z¢, 7,
(via the Yoneda lemma, cf. Lemma 2.33) are homotopic.

e Given an example of a simplicial set X where the relation ~'

is not an equivalence relation.

e Show that for X = Sing(Y’), for a topological space Y, the
relation ~’ is, however, an equivalence relation (so that ~=~'
in this case). Prove

mo(Sing(Y)) = mo(Y),

where the right hand side is the set of path components (cf. Ex-
ercise 1.3).

e Show that Ho(X) is isomorphic to Z[my(X)] for any simplicial
set X.

e (Optional, bonus): Show that the assignment X — mq(X) gives
rise to a functor sSet — Set. Show that this functor is left
adjoint to the discrete-simplicial-set functor disc : Set — sSet
(Example 2.4).



Chapter 4

Singular homology

In this chapter, we finally introduce homology of topological spaces.
We also prove the Eilenberg-Steenrod axioms: the dimension axiom,
the additivity for homology, as well as the homotopy invariance, the
Mayer—Vietoris sequence and the (essentially equivalent)excision.
We use these to compute homology groups of various spaces includ-
ing spheres and projective spaces. These computations are used
to prove the Brouwer fixed point theorem (cf. §1.2), as well as the
Borsuk-Ulam theorem and the fundamental theorem of algebra.

4.1 Definition

Definition 4.1. The n-th singular homology (or just homology) of
a topological space X is defined to be

H,(X) := H,(Sing(X))(:= H,(N(Z[SingX]))).

More diagrammatically, H, (X) is the image of X under the following
composition of functors:

Top e SSet Blsap X Ch %3 Ab.
Being a composite of functors, H,, is itself a functor:
H,, : Top — Ab.

Again, slightly more generally, for a commutative ring A, we define
homology with A-coefficients as

H,(X,A) := H,(N(A[SingX]))(e Mod,).

71
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Remark 4.2. By Exercise 4.6, the maps
H,.(C(Z[SingX])) — H,(N(Z[SingX]))

are isomorphisms, so that we can interchange the chain complexes
C and its normalized variant N at will.

4.2 Dimension axiom and additivity

Proposition 4.3. (Dimension ariom) We have

Z n=90
Ha({+}) = { 0 otherwise

Proof. Indeed, since any continuous map AP

top — 1} factors over
AP, Sing({+}) is the discrete simplicial set associated to a point,
i.e., A°. Then N(Z[A]) = Z (in degree 0), which has the homology

stated above. O

Proposition 4.4. (Additivity) Homology of a disjoint union of spacesf]
can be computed as

H, <|_| XZ) = @ H.(X)).

iel el

In the proof we use the direct sum of two complexes C' and D,
which is simply given by

s (C®D), = Cr®D, " ®Dy - ...

Proof. Indeed, each of the functors in the diagram below preserves
coproducts (which are disjoint unions in Top, and direct sums in the
three right hand categories):

Top S SSet Llsap S Ch %3 Ab.

(Alternatively, N can also be used in place of C'.) For Sing, this
was shown in Lemma 2.30 (this used that A™(e Top) is connected).
For the free abelian group functor Z[—| : Set — Ab, this is clear
from the definition (or from the fact that it is a left adjoint). By
definition, both C' and N also preserves direct sums, i.e.,

C(DA) =D C(A)
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for a family of simplicial abelian groups A; € sAb, and likewise for
the normalized chain complex N.

Next, the cycle and boundary complex functors preserve direct
sums, i.e., for a family of chain complexes C; the direct sum @, C;
is given in degrees n and n — 1 by

DC)n L DC) .

) %

Thus, being a cycle, resp. a boundary in this complex means that
each component (for all 7) is a cycle, resp. a boundary:

Zn(@ Oz’) = @Zn(oi)>Bn(@ Ci) = @Bn(cz)

Using finally that direct sums (of abelian groups) commute with quo-
tients (i.e., for a family of subgroups V; < W;, we have (@ W;/ P V; =}}
@(W;/V;)), we are done since H,, = Z,,/B,,. O

Homology in degree 0 is easy to compute. Recall that the set
7o(X) of path components is defined as

mo(X) = X/ ~,

where  ~ y iff there is a continuous map A! — X whose endpoints
are r and y, respectively.

Lemma 4.5. For a topological space X,
Ho(X) = Z[mo(X)]
is the free abelian group on the set of path-components of X.
Proof. This follows from Exercise 3.13:
Ho(X) = Ho(Sing(X)) = Z[mo(SingX)] = Z[ro(X)].
Remark 4.6. Let X be a topological space, and x € X. There is a

canonical map from the fundamental group (with base-point z) to
the first homology group:

m (X, z) - Hy(X)
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defined by sending a loop, i.e., a continuous map o : Al — X
with ¢((0,1)) = o((1,0)) = z), to 0. Note that o € Sing(X); <
Z[Sing(X )] is a cycle, since

d(o) = do(o) — di(0) = 0((0,1)) —o((1,0)) =z —x = 0.

Thus, [o] is indeed an element in H; (X). One checks (!)that for an-
other loop 7 that is homotopic to o (where the homotopy is relative
to the base point z) o — 7 is a boundary in C(Z[SingX]), so the
map above is well-defined. One also checks that it is in fact a group
homomorphism.

The so-called Hurewicz theorem asserts that the above map, for
X being connected, the above map induces an isomorphism

(M1 (X, 2))ab = Hi(X)

between the abelianization of m; and the homology group. See, e.g.,
[Rot88, Theorem 4.29] or [GJ09, Corollary II1.3.6] for an exposition
on the level of appropriate simplicial sets, called Kan complexes.

For example, the fundamental group of R*\{py,...,p,} can be
shown (using the Seifert—van Kampen theorem) to be the free group
on n generators (namely, loops winding around the points p; once,
but not around the others), while

Hi(R\{p1,...,pn}) = Z".

(That computation requires the Mayer—Vietoris sequence below. See
also Outlook 4.29 for further allusions to the similarity between the
Seifert—van Kampen theorem and the Mayer—Vietoris sequence.)

Outlook 4.7. Lemma 4.5 indicates that singular homology is well-
adapted to topological spaces which have enough (continuous) maps
A! — X. Not all spaces are of this form, such as

e the topologists’ sine curve, T := {(z,sin(z™!))|z € (0,1]} U
{(0,0)}(= R?) which is a connected, but not path-connected
topological space (see, e.g., [Hat, §2]),

e the spectrum Spec R of a commutative ring (for example R =
Z), equipped with its Zariski topology.

For such more general spaces, it is still possible to glean meaningful
(co)homological information using so-called sheaf cohomology.
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4.3 Homotopy

After the dimension axiom and the behavior of homology with re-
spect to disjoint unions, the next easiest property of homology is
the homotopy axiom.

Proposition 4.8. (Homotopy axiom or Homotopy invariance of ho-j
mology) Homotopic maps induce the same maps on homology. More
formally, let f, g : X — Y be continuous maps that are homotopic.
Then the induced (chain) maps

N(f),N(g) : N(X) = N(Y)
are homotopic, so that
H(f), Hn(g) - Hn(X) — Ho(Y)
are the same maps.

Corollary 4.9. If a continuous map f : X — Y is a continuous
homotopy equivalence, then

Hy(f) : Ho(X) — Hp(Y)
is an isomorphism.

Proof. (of Proposition 4.8) The point is that every functor in
Top 2% sSet NEED (o By Ab,

plays well with homotopies. Let h be a (continuous) homotopy
between f and g. Then:

e Sing(h) gives rise to a simplicial homotopy A’ between f’ :=
Sing(f) and ¢’ := Sing(g) (Proposition 2.39),

e N (1) gives rise, via the Eilenberg—Zilber map V, to a homo-
topy between N(f’) and N(¢') (Proposition 3.41),

e chain homotopic maps give rise to the same maps after applying
H,, (Lemma 3.24). O
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Example 4.10. Let X < R" be a non-empty convex subset (with
the subspace topology). Then the inclusion i : {zq} — X of any
point is a (continuous) homotopy equivalence, for p : X — {xo}
satisfies p o7 = id and 7 o p is homotopic to idx via

h: AL

Top x X — X, ((to,tﬁ,l’) = tol’ + tlfL‘O.

(This map is well-defined since X is convex.)

Thus, the maps
Hn,

—

D)

(2

1"

Hyn

—~
=

are isomorphisms, so that Proposition 4.3 gives

Z n=0
Ha(X) = { 0 otherwise

Example 4.11. Recall that a subspace A < X of a topological
space X is a deformation retract, if there isamap h : X x[0,1] - X
such that hg := h|xxo is the identity, h; takes values in A(c X) and
h| Ax[0,] = id4. For example, the inclusion of S into a Mobius strip
is a deformation retract.

Then the inclusion 7 : A € X induces isomorphisms

H,() : H,(A) — H,(X).

Indeed, the (continuous!) map h; : X — A is such that hy oi = id4,
while i o hy is homotopic (via h) to i o hg = id4.

The homotopy axiom can also be recast using a categorical lan-
guage, by using the category HoTop (called topological spaces up to
homotopy) whose objects are topological spaces and

Homporop(X,Y) := Homrpep (X, Y)/ ~,

where ~ is the homotopy (equivalence!) relation, cf. Remark 2.38.
One checks that this is indeed a category (the point being that if
f,g: X —> Y satisfy f ~¢gthen foe~goeandeo f ~eog for
appropriate continuous maps e). Similar definitions yield categories
HosSet and HoCh (cf. Exercise 3.2) for the latter. The homotopy
axiom (and its proof!) can then be restated using the following
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diagram

Sing sSet N(z[-]) Hn,

Ch Ab

Top

N

HoTop 2.39>HosSet 3.41>HoCh 550 Ab.

4.4 Mayer—Vietoris sequences

So far, we have been able to compute the homology of topologi-
cal spaces X such that X is isomorphic in HoTop to a point. The
remaining key property of homology will allow us to drop that re-
striction. The basic idea of Mayer—Vietoris sequences and excision
is to break the computation of homology of some space X into the
homology of smaller, hopefully more easily understood, subspaces
of X.

4.4.1 Preliminaries from homological algebra

Definition 4.12. A short exact sequence of abelian groups is an
exact complex

s0-ALBSCc 0.,
which we will abbreviate as
0—->A—-B—->C-—0.

(Concretely, g o f = 0, f is injective, kerg = im f and g is surjec-
tive.) More generally, the same definition applies to general abelian
categories such as Mod, or Ch(Mod,) for any ring A, instead of
abelian groups. In particular, a short exact sequence of chain com-
plexes is a sequence of chain maps

AL B¢

whose evaluation in each degree n € Z gives an exact sequence in
the above sense.

The following lemma is immensely useful in practice. We will use
it to obtain the highly useful Mayer—Vietoris sequence.
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Lemma 4.13. (Snake lemma or “Short exact sequences of chain
complexes give rise to long exact sequences of homology groups.”)
Let

0-AlBicoo

be a short exact sequence of chain complexes. Then there is a long
exact sequence of homology groups

oo Ha(A) Y 1, (B) Y B (0) S H,(A)

where the so-called connecting homomorphism is a group homomor-
phism whose idea is the following “definition”:

d(c) = “f'opg~" (o).

Proof. We only make precise the definition of d, referring to [Wei94,
Theorem 1.3.1] for a complete proof.

0 AT g " o 0
[ R ¢
00— A, IYp Lo | 0
—n 0

We define a map d : Z,(C) — H,(A): let ¢ € Z,(C). We can
choose some b € B,, with ¢g(b) = ¢. Then ¢(db) = dg(b) = dc = 0, so
that there is a unique (by exactness of the bottom sequence) a € A,
with f(a,) = 0b. Define d(c) := a, € A,. We have d0b = 0, so
that d(c¢) € Z,(A). The element d(c) so defined depends on the
choice of b, but as an element in H,(A) = Z,(A)/B,(A), this is
independent of the choice: any other ' with this property satisfies
b—U € A,, so that db — ot/ € B,(A) (more precisely, there is an
element in A, ; whose image under f,,1 is db — db'). The map d
factors over H,(C): if ¢ = dc € B,(C), we can choose V' — ¢ and
then b := o' — ¢ = d¢. Then d(c) = db = ddb' = 0. O
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Example 4.14. Let C' be a complex of free (or just torsion-free)
abelian groups and ¢ € Z an integer. Write C/¢ for the complex

Oy o, Cr—1/L.... Then there is a short exact sequence
0-CcL5Cc—>c
and hence a long exact sequence
.. —> H,C 5 H,C - H,(C/t) > H,_,(C) > ....

This long exact sequence can be broken up (Exercise 4.9) into short
exact sequences

0 — H,(C)/¢ = Hu(C/t) = (Hna(C))e — 0,

where the right hand term denotes the ¢-torsion part of the group
(M := {m e M,¢m = 0}).

4.4.2 Construction of Mayer—Vietoris sequences

In this section, let
U= {Ui}iel

be a collection of (not necessarily open) subspaces U; < X of some
topological space X.

We define a sub-simplicial set Sing”(X) < Sing(X) to consist of
those n-simplices f : Af, ) — X such that f(Af,)) < U; for some i.

This is(!)indeed a simplicial set. O)

Example 4.15. If X = U u V is the union of two subspaces, then
we have a commutative diagram of simplicial sets

Sing(U n V') —— Sing(U) (4.16)

| |

Sing(V) — Sing"(X).

e It is a pullback square: a continuous map A" - U and another
A" 5% V whose composition to X is the same map A" — X is
the same as a continuous map A" - U nV.

e Very importantly, it is also a pushout, by the very definition of
Sing”(X).
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e Unless U n'V = ¢, Sing(X) is not the pushout of the above
diagram: a map A" — X need not factor over U or V, so that

Sing(U),, u Sing(V),, — Sing(X),,

is not surjective. See, however, Outlook 4.29, for more positive
remarks.

Lemma 4.17. Let
Unv2 U

ol

V—L X

be some subspaces of a topological space X. There is a short exact
sequence of complexes

0 CU V) S oy @) *F cH(x) - o.

Here we abbreviate C(U) := C(Z[Sing(U)]), C¥(X) := C(Z[Sing" (X))l
etc.

Notation 4.18. Above, and also in the sequel, we write

[

for the evaluation of some functor (which is often implicit) Top — C
on f. For example, fori: U — X, i, :==C(i) : C(U) — C(X), and
likewise we would write i, := H (i) : Hx(U) — Hy(X).

Proof. In each simplicial degree, the diagram (4.16) gives a diagram
of sets, that is again both a pullback and pushout:

Sing,, (U n' V) —— Sing,,(U)

J J

Sing(V), — Sing"(X).

By Exercise 4.4, taking the free abelian groups on these sets gives
an exact sequence which is the n-the degree of the claimed exact
sequence. O]
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A priori, the simplicial set Sing"(X) looks unwieldy, but the
following key theorem relates it back to something we know (and
care about!). It is sometimes referred to as locality, with the idea
that it says that the homology of X is completely determined by
how X looks locally.

Theorem 4.19. Suppose
X = U UZ‘O,

i.e., X is covered by the interiors of the U;. (Recall the interior of
A < X is the largest open subset U < X that is still contained in
A. Thus, if the U; are open, the condition just means X = | J, U;.)
Then the inclusion

i : Sing”(X) — Sing(X)
induces a chain homotopy equivalence
i CH(X) = C(Z[Sing (X)]) > C(X) = C(Z[Sing(X)]).
Therefore, the homologies of these two complexes are isomorphic.

Corollary 4.20. (Mayer—Vietoris sequence) Let

UnVi U

[

V—L X

be some subspaces of a topological space X such that
X=U"0uV"
Then there is a long exact sequence of homology groups
S H(UAV) 5% H, (1)@, (V) 5 H,y(X) S Hy 3 (UAV) — ... ]
Proof. This follows from Lemma 4.17, Theorem 4.19, and Lemma 4.13.C}

4.4.3 Homology of spheres
Proposition 4.21. The homology of the (topological) k-sphere

Sk — {(xo,...,mk),Zm? =1}

7
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is given for k # 0 by

Z n=>0
Hn(Sk) = Z n==%
0 otherwise

and
o [ Z®Z n=0
Ha(57) = { 0 otherwise

Proof. Let 0 < e < % We consider the covering
Sk = 8%y sk

where S* consists of the points with z; > —e and S* of those with
T < €.

(V4 “\

Both Si are homeomorphic to the k-dimensional disk D¥, so that
H,(S%) = Z in degree n = 0 and 0 else. The intersection S* n S*
is homeomorphic to S*~! x (—¢,€). By the homotopy axiom, its
homology is therefore isomorphic to the one of S¥~1. The Mayer—

Vietoris sequence then reads

o Hy (S5 (DY) @ B (DY) "5 H(5) 4 Hua (5571) = Byt (D) @ Hy

J

' Y
=0 for n#0 =0 for n#1

This shows that
d:H,(S*) — H,_1(S* )
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is an isomorphism unless n = 0 or 1. For n = 0, we already know
Ho(S™) =Z for n > 0 and Z@®Z for n = 0 (Lemma 4.5). Forn = 1,
we get a sequence

0 — H,(S*) — Hy(S*1) 8% Hy(S7) @ Ho(Sh).

For k = 1, the right hand map identifies with

(11>
11
707 — 707,

with kernel Hy (S') = {(x, —x)} =~ Z. For k > 1, the right hand map
identifies with
1
(1)

Z - 17®7Z,
which is injective, so that H;(S*) = 0. O

Pending the proof of the excision property, we at this point have
proved the Brouwer fixed point theorem, as well as the topological
invariance of dimension in §1.2.

4.4.4 Proof

We now prove Theorem 4.19. The proof is a combination of two

ideas:

(1) We devise a way to break simplices into smaller pieces (in a way
that is a chain homotopy equivalence), by using the barycentric
subdivision (Lemma 4.24). For technical purposes, we do this
construction just on A™.

(2) Using the Lebesgue covering lemma, we iterate the construction
(now performed on our space X) for each simplex individually,
so that the resulting simplices are small enough to fit into one

of the Uj;.
This will suffice to construct a map S that exhibits the inclusion
7 to be a chain homotopy equivalence:
g.
CH(X )Cﬁ C(X).
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For a convex subspace Y < R™ (such as Y = AF), we define a
subcomplex C'(Y) < C(Y) given in degree n by the affine-linear
maps 0 : A" — Y. Recall that this means that the map o is given

by
U(t07 s 7tn) = Z tkg(ek)a
k=0

with e, € R""! being the k-th standard basis vector.

Then C'(Y) is indeed a subcomplex, since the faces of such an
affine-linear simplex are again affine-linear. There is a group iso-
morphism

Z[Y" S O'(Y), (4.22)

that maps a tuple (yo, ..., ¥y,) to the unique affine-linear map A™ —
Y sending the standard basis vector e; — 1;. We denote that simplex

inY by [y07 s 7yn]
A point y € Y gives rise to a homomorphism

by : C/(Y)n — C/(Y)n+1, [yz] = [y7 Yo, - - - >yn]

The map b, can be thought of replacing an n-simplex by a cone
whose tipping point is y and whose base is that simplex. The map
is not a chain morphism, but instead we have

ob, = id — b,0. (4.23)
Lemma 4.24. There is a subdivision chain map
S:C'(Y)—C'(Y),

defined inductively as the identity in chain degree 0, and for A :
A" - Y as

S(A) :=by(SN),
where by is the map b associated to the point A\(3;_ %) € Y.
This chain map is homotopic to the identity.

Example 4.25. We unwind this definition for Y = A2 and 0, 1,
and 2-simplices. For a 0-simplex y, we have S(y) = y. Now, we
compute S()\), where A\ := §y : Al — A? is the map defined in
(216), i.e., 50(t0,t1) = (O,to,tl). We have

aAZdQ(A)—dl(A):)\Odo—)\Oal



4.4. MAYER-VIETORIS SEQUENCES 85

where now & : A® — Al are the maps dy : t(= 1) — (0,t), 0y :
t — (t,0). We have to consider the barycentric subdivision map
by = b1y = b1 1) It sends the point do(A) = (0, 0,1) to the
1-simplex [(0, %, %), (0,0,1)] ete., so that

11 11

S(&)) = [(07 5’ 5)7 (0707 1)] - [(07 57 5)7 (07 170)]'

Note that the first summand is a 1-simplex whose endpoint (i.e.,
applying dp) is (0,0, 1) and whose beginning point (i.e., d; of it) is
(0, %, %) and S(idaz) is a formal linear combination of six triangles
inside A%, with signs as shown:

€ <0y Z 4 (0.1)= 5, L)

( (0N 0
h,0,0)
l \

Proof. We have to prove S0 = 0S. This is clear in degree 0. In
higher degrees, we argue inductively

OSA = 0 (by(SON))

= SOX — b\(0SON) (by (4.23))
= SO\ — by(S*N) (by induction)
= S0\ (C'(Y) is a chain complex).

In order to define a homotopy between S and idcr(y), it is no-
tationally convenient to enlarge this complex by replacing the low
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degrees by

LSO =@ O = T

yeyY

The isomorphism (4.22) persists also for n = —1 then. We also put
S :=1id in degree —1.
We define a homotopy between .S and id¢r(yy:

O s oY) s YY) — L (Y) —— 0

hy . ho . R
s - s 0 S=id - S=id
K K K

s OYY) L (Y L (V) S (V) —— 0.
We define h_; := 0 and in degrees > 0 as
hA := by(A — hoA).

The claim is now

oh + ho=id — S.
This is clear in degree —1. In higher degrees:

OhA = d(by(A — hoN))

= X — hoA — by(O(A — hoN)) by (4.23)
= X\ — hoX — by (SOX + hd?)) by induction
=A—hoX— S\ by definition of S.

At this point we can discard the (—1)-st degree of C'(Y); we still
have a homotopy S as stated, since h_; = 0. O

Lemma 4.26. The subdivision maps S constructed above give rise
to a chain map 3
S:C(X) - CY(X)

such that the two composites with the inclusion i : C%(X) = C(X)
are homotopic to the identities.

Proof. The proof is based on the idea that subdividing a simplex o :
A"™ — X often enough, say m times, it will be a linear combination
of simplices that each lies in some U;. The proof is more tricky
though since the number m will depend on the simplex o.
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We first transport the idea of taking barycentric subdivisions on
(the convex space) A™ to X: the maps S : C'(A") — C'(A") give
rise to a map

S:C(X) - C(X),0 — 0.(Sidan).
This is a chain map:

0So := 0(0,Sid)

= 0,0S5id
= 0,50id
= 0,5 (Z(—l)k5k) , with 8 : A"7F > A"
k=0
= > (=1)*S(0 0 6))
k
= S(00).

By a similar computation, this chain map S is homotopic to the
identity via h,(0) = o.h(idan).

The m-fold iterate S™ is chain homotopic to S™! via h o S™71,
so that h(™ := 22:01 hS* is a chain homotopy between id = S° and
Sm.

For any simplex ¢ in Sing(X), there is some m(o) » 0 such that
S™9)(g) e C¥(X). Indeed,

A" = o (X) = o)

is an open covering of a compact metric space, so by the Lebesgue
covering lemma (see, e.g., [Mun00, Lemma 27.5]) there is some € > 0
such that for each 2 € A™, the open ball B(x,¢€) is contained in one
of the o7 1(1;), i.e., f(B(x,¢)) < U;.

Let r := diam(A™) be the diameter of A". The diameter of the
simplices appearing in the barycentric subdivision, i.e., in S(idax),
is bounded by —f5r < 7. To see this, it suffices to see that for

b:= b(vo,...,vn) we have d(b,v;) < ;257 Indeed, if ' denotes the
barycenter of [vg,...,0;,...,v,], then b = %Hvi + 250, so that
d(b,v;) = F5d(V,v;) < Agdiam(A™).

Therefore for m » 0, the chain S™(idan) consists of simplices
which have diameter < €, and therefore each lie in some U;. There-
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fore, again for m » 0 the chain S™ (o) (which consists of the sim-
plices in the m-fold iteration of the barycentric subdivision) lies in
CU(X),.

Let us pick, for each ¢ individually, the smallest such index, which
we denote by m(o). We contend that the maps

h:C(X), — C(X)p1,0 — ™ (q)

form the required homotopy between id and a chain map S that we
we define below.
Indeed, starting from the homotopy relation

S P GO R T
we get, using 0% = 0:

oho + héo = 0 — | S™ g + h™)(90) — h(d0)

/

-~

=:5(0)
Taking this as the definition of S, we get an equation
oh+ho=1id — S. (4.27)

We now check S(o) € C¥(X). This is clear for ST (g). As for
(K@) — h)(80), we note do is the alternating sum of the faces
of 0. Let 7 be one of these faces. Then m(7) < m(c). Thus
hm@) (1) — h(1) = ZZ;(ZE(T)H hS*(7) arises by applying h to a some
chain each of whose summands lies in some Uj, i.e., in total it lies in
CY(X),. Since h preserves the property of simplices being contained
in some U;, this shows S(0) € CY(X).
We thus get a map

S:Ch(X) - CH(X).
It is in fact a chain map since, by (4.27) (and 0% = 0):
05 = 0— 0hd = So.

Thus, ioS is homotopic to the identity on C'(X). Conversely, Soi =
id, since for o € CY(X), we have m(c) = 0, so that h(c) =0. O

This marks the end of the proof of Theorem 4.19.
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Remark 4.28. The proofs of Proposition 4.8 and Theorem 4.19
(and therefore all their corollaries) hold without any changes for
arbitrary coefficient rings A. This can be seen either by inspecting
the proofs or by noting that these proofs eventually rest on certain
homotopies, and using that a chain homotopy h between two chain
maps f,g: C' — D gives rise to a chain homotopy h®id, : N(AYH®
(C®A) > D®A between f®idy,g®idy : CR®A - D® A.

Outlook 4.29. In the course of the proof, we have made extensive
use of the barycentric subdivision and the ability to add and subtract
elements in the chain complexes C¥(X). With more homotopy-
theoretic prerequisites, one can prove that for X = U° u V° the
square

Sing(U n V') —— Sing(U)

J J

Sing(V) — Sing(X).

is a so-called homotopy pushout square of simplicial sets [Lur, Tag
012C], which in the present case means that the inclusion

Sing"(X) < Sing(X)

is a so-called weak equivalence, i.e., it is a map of simplicial sets
which induces an isomorphism on all homotopy groups

7, (Sing" (X)) = 7, (Sing(X)).

This statement can be shown to imply the parallel statement that
CH(X) — C(X) is a quasi-isomorphism of chain complexes. How-
ever, the former is in fact a finer statement: it can be used to prove
the Seifert—van Kampen theorem [Lur, Tag 012M] which expresses
the fundamental group(oid) of X in terms of the ones of U, V and
U nV. These (possibly) non-abelian group(oids) are not accessible
with homological methods.

4.5 Excision

The Mayer—Vietoris sequences proved above can be equivalently re-
cast in a form that relates the homology of a space X, a subspace
A < X and, in good cases, the quotient X /A.


https://kerodon.net/tag/012C
https://kerodon.net/tag/012C
https://kerodon.net/tag/012M
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Definition 4.30. Let A € X be a subspace of a topological space.
Then the relative homology of X with respect to A is defined to be

H,(X,A) := H,(C(X)/C(A)).

The following is a simplex o € Sing,(X) that is not a cycle in
C(X), but is a cycle in C(X)/C(A):

From the definition and the snake lemma (Lemma 4.13), we get
long exact sequences

. — H, (X, A) - Hy(A) - Hy(X) - Hy (X, A) - H, o1 (A),
(4.31)
so that the relative homology measures the difference (in homology)
between X and A. For example, if (for some n), the relative ho-
mology groups H, (X, A) = H,,.1(X,A) = 0, i.e., there is an exact
sequence
..—>0->H,(A) > H,(X)—>0— ...

which means that the map in the middle is an isomorphism.

Example 4.32. Let X = B(R,z) < R" be an open (non-empty)
ball, with n > 0. Then the so-called local homology groups are
isomorphic to:

Z k=n
Hi (X, X\{z}) = { 0 otherwise.

Here, the group Z stems from the group H*7'(S™"~1), where S~ is
a little (n — 1)-sphere around z.

Indeed, X, being convex, has Hy(X) = 0 for £ > 0. Also, X\{z}
is homeomorphic to S"~! x R and therefore homotopy equivalent
to 5"t (We say two spaces X, Y € Top are homotopy equiva-
lent if there is a (continuous) homotopy equivalence f : X — Y.)
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Therefore, the above long exact sequences reads

L H(5"71) 5 Hy(X) — H(X, X\{a}) % Hyy (5771 ™ Hkl(X)I
~— "
=0(k>0) =0(k>1)

so the connecting homomorphism d is an isomorphism except for
k > 1. For k = 0, the map iy identifies with the identity map
Z — 7, so that d is injective, and hence the local homology group
vanishes. For k& = 1, the group Hy(X) = 0, so that our group is
kerig = O.

Here is another bread-and-butter result from homological alge-
bra.

Lemma 4.33. (Five lemma) Let

05 C 4 C! 3 02 Cl

NN

Ds Dy Dj D, Dy

be a map between two ezact chain complexes (of abelian groups or,
more generally, objects in any abelian category). Suppose that f,
and f4 are isomorphisms, f; is injective, and f5 is surjective. Then
f3 is an isomorphism.

Proof. The proof is a typical case of diagram-chasing, see [Stacks,
Tag 05QB]. (To show f3 is surjective, one only needs fo and f4
surjective and f; injective.) ]

Theorem 4.34. (Excision) Let Z, A < X be two subspaces such
that B
Z c A°

(closure and interior, respectively). Then there is a natural isomor-
phism
H,(X\Z,A\Z) 5 H,(X, A).

Proof. Putting B := X\Z we have X\Z = B°. Thus, by assump-
tion, we get a covering

A°u B° = X.


http://stacks.math.columbia.edu/tag/05QB
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Let us write C'(A + B) := CY(X) for this covering. We are getting
short exact sequences of chain complexes

0——C(An B) C(B) C(B)/C(An B) ——0

| | y

0——C(A)——C(A+B)——C(A+ B)/C(A) ——0

5 L

0——C(A) —C(X) — C(X)/C(A) ——0.

The maps labelled “~” are quasi-isomorphisms: for the middle map
this is Theorem 4.19, and for the right hand map this then follows
from the five lemma above, applied to the long exact homology
sequences provided by the snake lemma.

In each chain degree, the top left square is a pushout square of
abelian groups (cf. the proof of Lemma 4.17), so that the right hand
vertical map is an isomorphism (in each chain degree, and therefore,
since it is a chain map, also a chain isomorphism). O

Example 4.35. Recall that a topological manifold of dimension n
is a topological space X such that every point x € X has an open
neighborhood that is homeomorphic to an open ball in R™. For such
a manifold, we can now strengthen the above computation of local
homology: for any x € X and any such open neighborhood U > x
we have isomorphisms

H (X, X\{z}) = Hp(U, U\{z}) = { (? ]c{):t;e?wise.

Indeed the first isomorphism follows by taking Z := X\U and A =
X\{z} in Theorem 4.34.

Outlook 4.36. While the excision isomorphism above is canonical
(i.e., functorial with respect to inclusions U < X), this is not the
case for the right hand isomorphism. It is therefore not in general
possible to choose these isomorphisms in a way that is compatible for
all U. A manifold is called orientable if this is in fact possible. We
will study this matter more in depth using cohomological methods,
and for the moment just state that RP" is not orientable, while S™
and CP"™ and more generally, all complex manifolds, are orientable.
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4.6 The mapping degree

We will leverage our understanding of how continuous maps act on
H;(S") in order to prove the hedgehog theorem and the fundamental
theorem of algebra. Before that, we systematize our considerations
above a bit.

Definition and Lemma 4.37. Let £ > 1 and f : S¥ — S* a con-
tinuous map. Then deg f is the unique integer such that the map

fi  Hy(S%) — Hy(S9)

is multiplication by deg(f).
This map has the following properties:
(1) The assignment f — deg f can be organized into a map

EndHoTop (Sk> d_9§ )

i.e., homotopic maps have the same degree.

(2) deg is a monoid homomorphism, i.e., deg(idgr) = 1 and
deg(g o f) = deg(g) - deg deg(f).

(3) The degree of a constant map is 0.

(4) The degree of a reflection r (along a hyperplane through the
origin) is degr = —1.

(5) The degree of i : 2z +— —z is degi = (—1)*1.

(6) For k = 1, the degree of z + 2¢ (for z € S' = C) is d, for any
deZ.

Proof. Any group homomorphism Z — Z is multiplication by a
unique integer d. The existence and unicity of deg f then follows
from the isomorphism

Z — H,(S%).

The remaining statements hold by functoriality of Hy and the ho-
motopy axiom. The third statement holds since f factors as S¥ —
{+} — S* and thus Hy(f) : Hp(S*) — Hy(S°) = 0 — H(S*) must
vanish.

Sketch of (4): Any reflection is homotopic to the map ¢ : (o, ..., z,) —|
(=20, 21, ..,T,). Tracing down the isomorphisms Hy(S*) =~ Hy_;(S* 1) ]
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one reduces the computation degt = —1 to the case k = 1, which is
part of Example 4.63.

(5) then follows since i is the composition of k£ + 1 reflections.
(6) is proven in Example 4.63. (Alternatively, instead of using Ex-
ample 4.63, one can also prove that the map (S, *) — H;(S)
mentioned in Remark 4.6 is a group homomorphism. In 7 (S?), the
loop winding around n times is the n-fold sum of loops winding
around once.) O

Outlook 4.38. For categorical thinkers, the map deg is just the
evaluation of the functor Hy : HoTop — Ab:

EndHOTOp(Sk) — EHdAb(Hk(Sk)) = EndAb(Z) =7

The right-most isomorphism maps an n € Z to the map Z > Z
(multiplication by n).

The role of S* is not that special in the definition of the mapping
degree. Poincaré duality asserts (among other things), that for a
compact connected orientable manifold M of dimension k, Hi (M) =~
(Ho(M))Y = Z¥ = Z, and then the definition above carries over
verbatim.

Our knowledge about the mapping degree has various conse-
quences such as the hedgehog theorem and the fundamental theorem
of algebra.

Definition 4.39. The tangent bundle of S™ is
TS := {(x,v) e S" x R"™[(z,v) = 0}.

Here the equation (x,v) = 0 signifies that v is a tangent vector at
S™ at the point . The tangent bundle comes with a natural map

7:T8" — 5" (x,v) — x.

A wector field is a (continuous) section of this map, i.e., a map of
the form = — (z,v(z)).
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DY

Corollary 4.40. (Hedgehog theorem or hairy ball theorem) For n >
1 there is a non-vanishing (continuous!) vector field on S™ if and
only if n is odd.

Proof. 1f n is odd, then
U(ZE) = (1‘2, X1, L4y =3y - Ty, _xn)

provides a non-vanishing vector field. Suppose, conversely, that v is
a non-vanishing vector field on S™. Let h : S™ x [0,1] — S™ be the
geodesic from x to —z in the direction of v(x).

In a formula,

v(z)
[lv(@)]
Then h is a homotopy between idg» and —idg». Thus, the mapping
degrees

h(z,t) := cos(mt)x + sin(mt)

1 = deg(idgn) = deg(—idgn) = (=1)""
so that n is odd. O]
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Corollary 4.41. (Fundamental theorem of algebra) Let f(z) = Y1_, axz"}
be a non-constant complex polynomial (i.e., a; € C, and a,, # 0 for
n > 0). Then there is some z5 € C such that

f(20> = O

Proof. We may assume a,, = 1, for notational simplicity. We assume
f has no zeros, and hence is a continuous map

f:C—C*:=C\{0}.

The overall idea of the proof is to construct maps that have mapping
degree n, but, if f has no zeros, deform this map into one that has
degree 0.

For R > 0, we consider the polynomial

n-1 ag
2):=R"f(z/R Zzn+n—zn1+...+__
Falz) = B (=/B) - o
Since f has no zeros, nor does fr have any zeros, so we can set

 fr(2)
98(2) = TR T

(1) For R » 0, this is getting close to the polynomial z” in the sense
that for R » 0

lfr(z) — 2" <1 (4.42)

for all z € S'. This implies that fr : S — C* is homotopic to
the map z — z". Indeed,

h(z,t) :==tfr(z) + (1 —1)2"
is a continuous map S' x [0,1] — C. It is in fact taking values
in C*: if h(z,t) = 0, then ¢ # 0 and fgr(z) = 712", and hence
|fr(z) — 2"| = 1 = 1, contradicting (4.42).
(2) For R » 0, the homotopy fr ~ 2" gives rise to a homotopy of
gr to the map z — 2". The degree of the latter map is n.

(3) On the other hand, the map f = f; is homotopic to fr (both are
regarded as maps S — C*) and therefore g := g; is homotopic
to gr (both are maps S* — S') so that

deg g = deg gr.
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The map g so-defined admits an extension to the closed ball EQ,

namely % Here we use critically that f has no zeros.

Thus,
gv  HY(S") > H'(B") = 0 — H'(S"),
so that degg = 0.

(4) We obtain n = deggr = degg = 0, contradicting the assump-
tion that f is non-constant. O]

Points (5) and (6) in Definition and Lemma 4.37 suggest that the
degree of a map f : S¥ — S¥ is related to the number of preimages
of a given point. This is indeed so, provided we count the preim-
ages in the right way, i.e., with appropriate multiplicities. These
multiplicities are the local degrees of f:

Definition 4.43. Let f : S* — S* be a map, y € S* in the
codomain, and suppose that f~' = {zy,...,2,}. Then we can
choose neighborhoods V' 5 y and U; 3 z; such that f(U\{z;}) <
V\{y}. For clarity, write f; := f|u,. The local degree of f at z;, de-
noted by deg,. f is the integer such that the bottom horizontal map,
which is defined to be the one making the diagram commutative, is
multiplication by deg,. f:

Hy (Us, U\ {i}) ~225 Hy (V, V\ ()

E E

Hy (5%, S*\{ai}) Hy(S*, SM\{y})

E E

Hy (S*) ——————— Hy(S*).

Here the two upper vertical maps are excision isomorphisms, while
the lower ones come from the long exact sequence (4.31).

In the above diagram, the bottom horizontal map is not in general
the map induced by f, as the following lemma shows. (The problem
is that f does not induce a map Si\{x;} — Se\{y}, if f~1(y) 2 {z;},
so that in the above diagram one can not insert a natural map f,
in the middle row.)
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Lemma 4.44. In the above situation, one has
deg f = Z deg,. f.
i=1

Proof. Pick disjoint neighborhoods U; > x; that are mapped by f
into a neighborhood V' 3 y. [

4.7 Cellular homology

We have defined the homology of simplicial sets and have computed,
without much ado, the homology of the simplicial k-sphere

noy_ ) Z k=n
Hk’(Ssimp) = { 0 otherwise.

Using the Mayer—Vietoris sequence, we have been able to compute

Hy,(S%,,), and it turns out that

Hi(Stp) = He(S™).

Top

The topological sphere arises as the pushout

AN\ n
0 ATOp > ATOp

L]

A —— St
which is very much the same as the correpsonding diagram for the
simplicial n-sphere. (In fact, |SZ,,, | is homeomorphic to Sft,,.) The
process of glueing in “cells” of higher dimension (in this case, glueing
in an n-simplex A") along its boundary into an already existing
space (in this case A®) is quite wide-spread. In this section we
study the homology of such spaces systematically.

Definition 4.45. A cell compler or CW complex is a topological
space X = | ;o X such that

e X, is a finite discrete topological space,

e X is obtained from Xj_; by attaching finitely many k-cells,
i.e., there is a pushout diagram (for a finite, possibly empty,



4.7. CELLULAR HOMOLOGY 99

set Ji)
—k
ey, 7B" — X4

L]

—k
|_|jeJk B —— Xj.

Here B" denotes a closed (non-empty) ball in R* and the left
vertical maps are the inclusions of the boundary.

e The topology on X is the weak topology: a U < X is open iff
all the U n D¥ are open. (Equivalently, X is the colimit of the
diagram Xy — X; — ... in the category Top.)

Example 4.46. e The pushout

0B" —— Xy = {+}

I

JZ

shows that S* is a CW complex. (Note the similarity to the
simplicial sphere, cf. Exercise 2.7!)

e 5" x 8™ is a CW complex with one cell in dimensions 0, n, m
and n + m. For example, the torus 7? = S* x S! has cells in
dimension 0 (one), 1 (two), 2 (one).

e Recall that the real projective space is defined as
RP" := (R"\{0}) /o ~ Az for A € R\{0}
= 5"/(x ~ —x)

and is equipped with the quotient topology. The inclusions
St < S™ at the equator (xg,...,Tn_1) — (To,...,Tp_1,0)
are compatible with these identifications and show that RP"
is a cell complex with exactly one cell in dimensions 0, ..., n.

o Complex projective space is defined as

CP" := (C"™\{0}) /z ~ Az for X € C\{0}
=S¥t /x ~ \x for || = 1}.
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There is a homeomorphism

S fp ~ Ax = {(w, /1 — |w|?) e C" |w|] < 1}/(w,0) ~ A(w,0) for |w| =1
= §2n/w ~ \w for we dB " |

Since 0B~ = S2"~!, this shows that we have a pushout diagram

0B —— cp!

L

2n

B ——CP".

Therefore, CP" is a cell complex with one cell in dimensions
0,2,...,2n. In (complex) dimension 1, CP' = S? is also called
the Riemann sphere.

e Infinite real and complex projective spaces are defined as
RP® := U RP", CP” := U CP".
n=0 n=0

They are cell complexes with one cell in each dimension, resp. in
each even dimension.

Definition 4.47. For a topological space Y, the reduced chain com-
plex C(Y') is defined by

~ ' Cn(Y) n >0
C)n 1= { ker Co(Y) - Co({+}) =Z n i 0

(The map in degree 0 is applying Cy to the map Y — {x}, i.e,

Znyy =2 ny.)

@ This is (!)indeed a chain complex (the idea of appending a Z at
the end already appeared in the proof of Theorem 4.19). We define
the reduced homology

~ ~ H,(Y n >0
H,(Y) :=H,(C(Y)) = { ker(Ho)(Y) —Ho({+})=Z n=0

For example, if Y is connected, the group ﬁo(Y) = 0.
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Let y € Y be a point, and write i : {y} — Y for the inclusion.
There is an exact sequence

0 — Ho({y}) 5 Ho(Y) — Ho(Y,y) — 0.

Except for the zero at the left, this is a consequence of the defini-
tion of relative homology. The left hand map i, (:= Hg(4)) is injective
since the map p : Y — {y} (sending everything to that point) sat-
isfies p o7 = id, so that p, o7, = id. Thus, the sequence splits, i.e.,
there is an isomorphism

Ho(Y) = Z@®Hy(Y,y).
For the same reason, the exact sequence
0 — Ho(Y) — Ho(Y) % Hy({y}) — 0
splits, and we obtain an isomorphism
Ho(Y) =~ Hy(Y, y). (4.48)

Definition 4.49. A good subspace A < X of a topological space
X is such that A is closed and that there is a neighborhood V' of
A in X such that the inclusion A < V is a deformation retract
(Example 4.11).

Proposition 4.50. If A < X is a good subspace, the quotient map
q:(X,A) = (X/A AJA)

induces is an isomorphism

g s Ho(X, A) =~ H, (X /A).
Proof. Let V5 A be a neighborhood as in Definition 4.49: then the
inclusion A = V includes isomorphisms H,(A) > H,(V) and thus
the five lemma yields long exact sequence for relative homology gives
the isomorphisms marked =. Again using the deformation retract
A c V, V/A is homotopy equivalent to A/A = {x}, so that we get
the isomorphisms marked sx:

~

Hi (X, A) ———— H,(X,V)

>~

= H(X - AV - A)

| | I

Ha (X /A, {+}) =25 Ho(X /A, V/A) —— Ho (X /A = AJA,V /A = A/A).
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The two horizontal isomorphism at the right are excision isomor-
phisms. The vertical maps arise via g,. Since that map ¢ is a
homeomorphism on the complement X\ A, it gives the right hand
vertical isomorphism. Thus the left hand vertical map is also an iso-
morphism. We conclude using H(X /A, {+}) = H(X/A), cf. (4.48).00

In order to compute the homology of cell complexes, we need a
little preparation:

Definition 4.51. If XY € Top are topological spaces with base
points z,y, the wedge sum is defined by

XvY:=XuY/z~y.

The same definition applies for possibly infinitely many pointed

spaces (X, z;):

iel
Lemma 4.53. In the situation of (4.52), suppose that the {z;} < X;
are good subspaces. Then there are isomorphisms

PH.(X;) > ﬁ*(\/ X;).

el

Proof. We have isomorphisms
DL (%) = DX fai}) = Ha(|| 60| Jfeh) = B\ X0,

by Proposition 4.50, the additivity axiom (extended to relative ho-
mology), and again Proposition 4.50, where we use that the inclusion
| {z;} = | ] X is a good subspace, as well. O

Proposition 4.54. Let X = |, Xi be a cell complex. Let n; be
the number of disks of dimension k& being attached (i.e., ng = | Xy
and ny = |Ji| in Definition 4.45). There holds:



4.7. CELLULAR HOMOLOGY 103

7" n =k

Ho (X, Xip-1) = { 0 otherwise (4.55)

e The homology groups of X in low degree are controlled by the
low-dimensional pieces of a cell complex. More formally, the
inclusion X; — X induces an isomorphism

H,(X;) > H,(X) for n < k. (4.56)

e We also have H,,(X}) = 0 for n > k.

Proof. The inclusion X;_; < X} is a good subspace, so that

H. (X, Xp 1) = Ha(Xp/Xp1) = Ha(\/ SY)
Nk

which by Definition 4.51 (and the computation of H,(S*)!) takes
the value stated above.

The idea of the second point is to use that the (homological) dif-
ference between X and Xj_; just lives in degree k. More formally,
for the very last assertion, we use the long exact sequence

> Hp1 (X, X)) = Hp(Xp1) = Hop(Xx) = Hp (X, Xomq) — -+

e The outer groups are zero for n > k, giving an isomorphism in
the middle. Thus, H, (X)) = H,(Xo) = 0 for n > k£ > 0.

e The outer groups are also zero for n < k — 1. If X = Xy for
N >» 0 this immediately shows the second assertion.

e We now prove that, in general, the isomorphisms H,(X}_1) =
H, (X}) yield the isomorphism (4.56). We have that

C(X) = Jo(Xy).
k=0
(Note that C'(Xy) < C(X) is a subcomplex since X < X is
a subspace.) le., every element f = Y n,0 € C(X), comes
from some X}, for large enough k (depending on f). To see
this, it suffices to consider some ¢ : A” — X = [JX;. The
inclusions X, < X are closed subspaces and A" is compact.

Thus, we can find a finite subcovering of the open covering
A" = o, X\Xp), L.e., 0(A") = X, for large k.
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With this topological preparation, let f be a n-cycle in X. It
is an n-cycle in Xy for k » 0. Thus, [f] lies in the image
of H,(Xy) — H,(X), which by the previous step (applied to
X, instead of X) is the same as the image of H, (X,1). For
the injectivity, suppose an n-cycle f in X} is a boundary on
X. This boundary comes from some Xg for K » k, so that
f is zero in the homology of X. Again applying the finite-
dimensional case (to Xg), f = 0 as well. O

Definition and Lemma 4.57. Let X = [ J X}, be a cell complex.
The cellular chain compler C*"(X) is defined by
CNX)g 1= Hyp( Xy, Xp1)
and differential
Op s Hi (X, Xpom1) = Hypm1 (Xpm1) — Hpmy (Ko, Xaa),

i.e., the composite of the indicated maps in the long exact sequences

(4.31). This is indeed a complex, i.e., M odf?l, = 0, so we can define

the cellular homology of X as
H‘jf’u(X) = H* (CceH(X))'

Proof. This holds since the two maps going down-right compose to
Zero:

Hi(Xk)

T acx ocell

Hi 1 (Xeg1, Xp) ——s H(Xp, Xpo1) —= He o (X1, Xp2)

T ]

Hy—1(Xg-1)
Example 4.58. For X = 5" with the above cell structure (X, =
{(+}=X1 ==X, 1 c X, =5, we have
CNS)=[Z—-0—...>0—1Z].

The differentials are all zero. For n > 1 this is clear and for n = 1 we
note that the map H; (S, {+}) — Hy({*}) (and therefore also o5°!!)
is zero since it lies in the exact sequence

= Hi (ST, {#}) — Ho({=}) = Z * Hy(S")

Z.
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Thus, the above complex is the same complex as N(Z[SZ,])-

simp

In order to compute more general examples, we need the following
formula for the cellular differential. Recall from Definition 4.45 that
Ji. denotes the set of k-cells glued in by passing from X;_; to Xj.
For i € Ji, we denote the corresponding generator of

Hy,( Xy, Xeo1) = P Z

ieJy,
by e;.
Lemma 4.59. The cellular differential is given by
°U(e;) Z d;jer,

J€Jk—1

where d;; is the mapping degree of the following map

SELS X — X/ X o = \/ Gh-1 4, gk-1

J€Jk—1

The map a; is the map SF' = 0B" - X1 that is part of the
definition of a cell complex. The right map collapses all copies of
Sk=1 different from j to a point. (The sum is finite since the copy

of B" corresponding to ¢ has compact image and therefore only
intersects finitely many (k — 1)-cells.)

Proof. This basically follows from the definitions. The cell differen-
tial is the diagonal map in the following commutative diagram

Hy(B;,éB,) —2— ;4 (7B)) = 1 (S5
Jai Jai fbﬁ
Hy (X, Xi—1) a—>ﬁk—1(Xk—1) 1 ﬁk—l(Xk:—l/Xk:—2>

I F

Hi 1 (X1, Xioo) —— 1 (Xpo1 /X2, Xioo/Xp2).

The two maps labelled “a;” arise from glueing in the k-cell corre-
sponding to ¢, i.e., the map a; : 0B - Xi_1. Under the above

computations, the left vertical map is the inclusion Z — @, 5. L
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into the i-th copy of Z. The two maps labelled “0” are boundary
maps of the long exact sequence of relative homology. The map ¢
arises from the quotient map, g; is as in the claim, so that A is the
pushforward along g;qa; . O

Example 4.60. We compute the cellular homology of X = RP",
using the above cell structure (Example 4.46). We have one cell
in each dimension k£ < n and the attaching map is the standard
quotient map S¥' — X,_; := RP* 1. The cell differential is the
composite
H,(RP* RP*!) = Hy(RP*/RP* ) = H,(S%)
_ Hkil(skfl)
2 Hy (RPM)
% Hy_1 (RP* ! /RP* )
= Hy1 (SF7h),
where
Sk*l ﬂ) RPk—l _q) RPk—l/RPk—Q _ Sk*l

are the degree 2 covering and the projection onto the quotient, re-
spectively. The composite gp is a homeomorphism on each of the
two components of S*¥~1\S*72. These two homeomorphisms are ob-
tained from each other as antipodes. The degree of the antipode
map is (—1)¥. By Lemma 4.44, we can compute the degree as the
sum of local degrees, i.e.,

deggp =1+ (=1~
Thus the cell complex is concentrated in degrees n,...,0 and reads
0-2°%'2— .. . 25223257 -0.

We obtain

Z k=0
Z/2 0<k<n,kodd
Z k = n for n odd

0 otherwise

Hiell (RPn> _

Note that the groups C*"(X), depend on the way X is presented
as a cell complex, i.e., the choice of the X. However, its homology
does not, as we now see.
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Theorem 4.61. Cellular homology agrees with singular homology.
More formally, for a cell complex X = [ J, X}, there is an isomor-
phism

H.(X) 5 He(X).

Proof. We consider the commutative diagram of (relative) homology

groups
/0: Hk(XkH_l’ Xk)
0 = Hi(Xg-1) }(X’“ﬂ) = Hy(X)
Xk)
/ » \ -
Hir1(Xps1, Xi) Hy (X, Xi—1) Hy1(Xpo1, Xy
Hi1(Xgk-1)

0 =Hy—1(Xg_2)

The diagonal exact sequences are the ones from (4.31), the diagram
commutes by definition of the cellular complex, and the vanishings
hold by Proposition 4.54. Thus, we have isomorphisms

Hi(X) = He(Xp4a)
= cokerd
= im p/im &} by the injectivity of ¢
= ker e /im (9,2‘1111 by the exactness of the down-right diagonal
= ker 0f" /im 0§, by the injectivity of i

= Hi?''(X).

Remark 4.62. Suppose
fx=Jx-v=Jn
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is a continuous map of cell complexes respecting the cell structure,
i.e., f restricts to a (continuous) map fy : X; < Yi. Then the f;
give rise to a map of chain complexes f&l! : C°(X) — C*!(Y') and
the resulting morphism on cellular homology is compatible with the
one on singular homology:

H(X) — HM(X)

Jf* Jf;f“

H,(Y) — HeY(Y).
This is true since all maps in the proof above are functorial.
Example 4.63. For n € Z, consider the map
f: X =585y =8 22"
(in complex number notation). We will show that the induced map
fe=Hi(f) s Hi(X) — Hy(Y)

is multiplication by n. In other words, the mapping degree of f is
n. This is clear for n = 0.

Next, we consider the case n > 0. We equip X and Y with
different cell structures, namely X, has n points and Yy = {«}.
Likewise, X, arises by glueing in n copies of A!, while Y; only glues
in one:

_
X — )cv;
The map f is then compatible with the cell structure.
In order to show that f, is multiplication by n, it suffices to see

this for the map H{(X) = H, (S, Xo) — H; (S, ;). Suppose first
that n > 0. We have an exact sequence

0 - Hl(Sl) g H1<Sl,X0) - Ho(Xo) - Ho(Sl> - O
~— ~—

——
=7 —zn =7
Writing ey, . . ., e, for the 1-simplices in S* as shown, these are gener-

ators of Hy (S, Xp). Under f, they map to the loop in S* denoted e,
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which is in turn a generator of Hy (S, Yy). In Hy(S), e1 4+ +e, is
a generator. By the above considerations, it maps to e+---+¢e = ne.

If n < 0, the same argument still works, except that e, maps
to the loop e with its direction reversed. This reversed loop is, in
H,(S'), the same as —e.

4.8 Homology with Z/2-coefficients

In this section, we will consider homology with coefficients in A =
Z/2 in order to prove the following theorem, which can be stated
colloquially by saying that at any moment in time there is a place x
on earth such that wind and temperature at  and at its antipode
—x agree.

Theorem 4.64. (Borsuk—Ulam theorem) Let f : S* — R" be a
continuous map. Then there exists some z € S™ such that f(x) =

f(=x).
This theorem rests on the computation of homology of RP"
with Z/2-coefficients: According to the computation of H,(RP")

in Example 4.60 (and Theorem 4.61) and the short exact sequences
(cf. Example 4.14)

0 — Hi(RP")/2 — H(RP", Z/2) — (Hp1(RP™)); — 0,

we get
Z/2 0<k<n

0 otherwise (4.65)

Hy(RP", Z/2) = {
and
Hy(RP™,Z/2) = Z/2 for all k = 0.

(By comparison, Hy(CP®) = Z for all even k£ > 0, and 0 otherwise.)
Recall that a continuous map

p:E—B

is called a fiber bundle if each point b € B admits an open neigh-
borhood U 3 b such that there is a homeomorphism fitting into a
commutative diagram (for some topological space F):

p ' (U)—=UxF

S

U
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For simplicity, we will only apply this concept when B is connected,
in which case all fibers (for all b € B) are homeomorphic to one
another. Then it makes sense to refer to F' as “the” fiber (as opposed
to “a” fiber; note that F' is homeomorphic to p~*(b).) The space B
is called the base and E the total space. If the fiber F is a discrete
topological space, then p is called a covering.

Example 4.66. e R — S' ¢ — exp(2mit) is a covering (with
fiber Z).

e The canonical map S™ — RP" is a covering (with fiber Z/2).
We also refer to it as a double covering.

In order to compute the homology of covering spaces, we use the
following fact from homotopy theory (for a proof see, e.g., [May99,

§3.2)).

Proposition 4.67. Let p : E — B be a covering. For any n-
simplex in Sing(B), i.e., o : A" — B, there is a lift of o to F, i.e.,
a continuous map ¢ making the diagram commutative:

E
~ ».v"‘(
s

A" T> B.

If the fiber F' has n elements, then there are exactly n such maps &.

Proposition 4.68. Let p : £ — B be a double covering (i.e.,
p~1(b) = {x,y}). Then there is a short exact sequence of chain
complexes

0—C(B,Z/2) 5> C(E,Z/2) ™ C(B,Z/2) — 0,

where 7(0) := 1 + &2 and p4(0) := poo. Thus, the snake lemma
(Lemma 4.13) gives long exact sequences

.—H,(B,Z/2) > H,(FE,Z/2) > H,(B,Z/2) - H,,_1(B,Z/2) — ...

Proof. First of all, we have p, o 7 = 0, since p,o; + ps62 = 20,
which vanishes in C'(B,Z/2)! It is then a routine check to show the
exactness of the sequence. O

Corollary 4.69. Let n > 1 and let f : S" — S™ be a continuous
map such that f(xz) = —f(—z). Then f has odd mapping degree.
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Proof. This proof is based on computations of homology with Z/2-

coefficients so we abbreviate C(—) := C(—,Z/2) and H,(—) =

H.(—,Z/2). We have to show that f, is an isomorphism on H,,(S™).
By assumption on f, it induces a (continuous) map

f:RP" — RP".

Since the two lifts 6; and &5 of a chain o on S™ are antipodal, the
following is a commutative diagram of short exact sequences:

0— C(RP") ~— C(S") % C(RP") —— 0

% 2 |7

0—— C(RP") —~— C(S") - C(RP") —— 0.

This yields a commutative diagram of long exact sequences (all ho-
mologies with Z/2-coefficients), where we write f, for f, acting on
the n-th homology etc.:

Hy. 1 (RP") —— H,(RP") ——— H,(5") —2* H;,(RP")

Jf,m lfk lfk Jfk

H.,1(RP") —2— H,(RP") —— Hj,(5") —2* H,(RP").

By the five lemma and Exercise 4.9, it therefore suffices to show that
the maps f, are isomorphisms for all k. This holds for k > n + 1,
since then Hi(RP™) = 0 by the computation in (4.65). This van-
ishing also implies that 7 : H,,(RP") — H,,(S™) is an injective map
of finite-dimensional Z/2-vector spaces (of the same dimension), so
it is an isomorphism. Thus, in high degrees, the sequences read

0 — H,(RP") % H,_(RP") - H,_,(S") = 0,

and f, is (up to isomorphism) the same map as f, , etc. until we
reach the end of the sequence where

.. — H)(RP") - Ho(RP") 5 Ho(S™) % Ho(RP™) — 0.

Since both S™ and RP" are connected, their Hy with integral co-
efficients is Z, hence Ho(—,Z/2) = Z/2. Moreover, the map p, is
(isomorphic to) idzs. Thus 7 = 0 and we again get f, = f,. That
last map f, is, again, (isomorphic to) idz/,. Hence all £, are iso-
morphisms, and hence f,, is an isomorphism as well. O]
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Proof. (of Theorem 4.64) We assume the contrary. Then our map
f 8™ — R" yields a continuous odd map

@) - f(a)

|f(z) = f(=2)]
The composite with the canonical inclusion i : S""! — S™ has
deg(i o g) = 0, since H,(S" ') = 0. On the other hand g o i, like
g itself, is an odd map, so that deg(g o 7) is odd by Corollary 4.69.
However, its effect on homology is zero:

g: 5" — S”_l,x

Z =H, 1(S") 5 H,_1(S") = 0% H,_,(S™),

giving the required contradiction. ]

4.9 Outlook: the Eilenberg—Steenrod axioms

We finish this chapter with an axiomatic point of view on singular
homology. Let Pairs be the category whose objects are pairs (X, A)
consisting of a topological space X and a subspace A < X, and
whose morphisms are continuous maps X — X’ such that A is
mapped to A’.

In the sequel we consider (abstract) functors

h, : Pairs — Ab,

i.e., an assignment (X, A) — h, (X, A) € Ab. Given such a functor,
we write h,(X) = h,(X, ). We have an obvious functor R :
Pairs — Pairs, (X, A) — (A, ).

Definition 4.70. A generalized homology theory is a collection of
functors
h, : Pairs - Ab,n > 0

together with natural transformations (sometimes called connecting
homomorphisms)
dyp:hy, — h,10R

such that the following conditions are satisfied:
(1) The functoriality of h,, and the natural transformation d,,, ap-
plied to the pair (X, A) constitute long exact sequences
dn(X,A)

o h(A) = b (X) = ha(X, A) ™Y b (A) -
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(2) (Additivity) There are (functorial) isomorphisms

P ha(Xi) S ha(| ] X0).

el

(3) (Homotopy invariance) If f,g : (X, A) — (Y, B) are homotopic
relative to A (i.e., the homotopy h : A x X — Y maps A x A
to B) then

ha(f) = hu(g) = ha(X, A) = ho(Y, B).

(4) (Excision) If Z < A° then the inclusions yield isomorphisms
he(X\Z, A\Z) = h.(X, A).

Example 4.71. The contents of everything up to §4.5, except for
the pretty obvious dimension axiom, can be summarized in on sen-
tence: singular homology is a generalized homology theory.

Proposition 4.72. Suppose h, and k, are generalized homology
theories, and
F:h,—k,

is a natural transformation between them, i.e., the maps F/(X, A) :
hn(X, A) — k,(X, A) are functorial in the pair (X, A), and likewise
the connecting homomorphisms:

F(X,A)

ho(X, A) —=k, (X, A)

J |

F(A,
Bt (A) A2 (A).

Suppose further that for a point pt := {+}, we get an isomorphism

F(pt) : ha(pt) = Eu(pt).
Then, F is an isomorphism for all pair (X, A) consisting of a cell
complex X and a sub-complex A.

The motivation of stating this proposition is the fact that singular
homology is, up to functorial isomorphisms, the only generalized
homology theory that satisfies the dimension axiom

Z n=90
Ha(pt) = { 0 otherwise
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Outlook 4.73. Generalized homology theories not satisfying the
dimension axiom are harder to construct, but highly interesting.
The stable homotopy groups defined by

hin(X) =7 (X) 1= colim, o0 Tpi0 (X" X)

give rise to another generalized homology theory. Here ¥ := St A —
is the suspension functor and 7, ., denotes the (n + r)-th homotopy
group. The transition maps

7o (X) = Ty 1 (ST A X) = mn(SPAX) — .
are given by using that m,.(X) consists of homotopy classes of maps
R X, and then f maps to

R S BN R N ¢

The Freudenthal suspension theorem states that the maps
7Tr+n(ST) - 7Tr+n+1(ZST) = 7TT+n+1(Sn+1)

are isomorphisms for r > n + 1, see, for example, [Swi02, Theo-
rem 6.26]. This motivates the name stable homotopy groups:

75 (8%) := 7,40 (S7) for 7 > n.

n

For example, non-trivial computations show:

(5% =0 — my(ST) =0 — m3(S?) = Z — mu(S?) = Z/2 5 75(SY) S ...

so that m§(S°) = Z/2. Understanding the stable homotopy groups
of spheres is a matter of ongoing research. The Wikipedia article
https://en.wikipedia.org/wiki/Homotopy_groups_of_spheres]
surveys the richness of this topic.

Proof. (of Proposition 4.72) We only sketch the main ideas, see

[Swi02, Theorem 7.55] for complete details. By the five lemma, it

suffices that the natural transformation induces isomorphisms when

applied to cell complexes (as opposed to pairs consisting of such).
As in Exercise 4.11, one shows that the maps

h(X {20}) < b1 (CX, X) = hasa (CX /X, {}) = hasa (BX, {})


https://en.wikipedia.org/wiki/Homotopy_groups_of_spheres
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are isomorphisms, where C'X is the cone and ¥ X the suspension of
X. Since S™ = %(%(...5?) (n-fold suspension), we obtain isomor-
phisms h,(S™) = k.(S™). The proof of Lemma 4.53 was based solely
on the Eilenberg—Steenrod axioms, hence one has isomorphisms

B k(5" {4} S k*(\/ 5™ {+}).

If X = J"_, is a finite cell complex, then in order to show h.(X,,) =
k.«(X,), we proceed inductively, using that both for h, and for ki,
we can compute the relative groups

h*(Xannfﬁ = h*(\/ Sn)

Jj€Jn

which by the above agrees with the value for k, instead of h,.

For an infinite cell complex X = colim X,,, one argues further,
using the additivity again that colim h.(X,) = h.(X), see [Swi02,
Proposition 7.53]. O

4.10 Exercises

Exercise 4.1. Using the stereographic projection, compute the ho-
mology groups of S™\{(1,0,...,0)}.

Exercise 4.2. Verify that HoTop is indeed a category and that
there is an “obvious” functor

Top — HoTop.

Exercise 4.3. Using Proposition 4.3 and Example 4.11, show that
the homology of the following figure is isomorphic to the one of
R3\(R x (0,0) u R x (0,1)). We will eventually show that these
homology groups are given by Z in degrees 0 and 2, and Z@® Z in
degree 1.

Exercise 4.4. Let A, B — Z be subsets of some set Z. Consider
the obvious maps:

A~nB-I B

Ll

A——— AU B.
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Show that there is a short exact sequence of abelian groups
0 Z[An B Z[Bl@z[A] = Z[A L B] — 0.

Exercise 4.5. Let X be a simplicial set and ¢ € Z. Using Exam-
ple 4.14, prove that there is an exact sequence

0 — Hy(X)/f — Ho(X, Z/f) — (Hp 1 (X)) — 0

where again (—), denotes the (-torsion part of the group.
Tabulate these exact sequences for the simplicial spheres X = S*
and for the projective plane X = P2

Exercise 4.6. Let A be a simplicial abelian group. The goal of
this exercise is to prove the following fact: the natural map of chain
complexes

p:C:=C(A) —> N:=N(A)
is a quasi-isomorphism.
(1) Let D := D(A) < C(A) be the subcomplex which is in degree
n given by A% (cf. Definition and Lemma 3.9). Show that the

above claim is equivalent to the assertion that the complex D is
exact.

Hint: show that 0 - D — C — N — 0 is an exact sequence of
complexes.

(2) Let C be a chain complex and C’ < C' a subcomplex (i.e., C! <
C, and 0o = 0¢). Show: if C” and the quotient complex C'/C’
are exact, then C is exact.

(3) For p = 0, let D® = D be defined by

(D®)),, = D, n<sp
00(Cn-1) + -+ 0,(Crm1) n>p

Show this defines a sequence of subcomplexes
e DY) = p) ...~ D(c O).
(4) Show that the quotients D®/D®=1) are null-homotopic, i.e.,

there is a homotopy between the identity map of this complex
and the zero map.

(5) Conclude that D is exact.
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Exercise 4.7. Let X := B(R,z) € R" be a closed ball with radius
R > 0. Let y € X be an arbitrary point. Compute H, (X, X\{y}).
(Hint: the result depends on whether y is a point on the boundary
of X or not).

Exercise 4.8. Let X and Y be two topological manifolds. Show
that X and Y have the same dimension if they are homeomorphic.
The converse is false: prove that there exist connected surfaces (i.e.,
manifolds of dimension two) which are not homeomorphic.

Exercise 4.9. “Long exact sequences can be broken into short ex-
act sequences.” More formally, let

On+2 On+1 On On—1 On—2
---C’nJr2_>C’nJr1_>Cfn_> n71_>0n72_)--'

be a long exact sequence. Construct a short exact sequence
0 — coker(0p42) — C,, — ker(d,-1) — 0.

Exercise 4.10. The Fuler characteristic of a topological space X
is defined as

X(X) = Y (=) rk He(X) = Y (= 1)" dimg He (X, Q),

k=0 k

provided that only finitely many Hy(X') have non-zero rank and that
all these ranks are finite. The rank rk Hy(X) is called the k-th Betti
number.

(1) In the situation of Corollary 4.20 suppose that x(U), x(V') and
X(U n' V) are defined. Show that x(X) is defined and that

X(X) = x(U) + x(V) =x(U n V).

Hint: use Exercise 4.9 and find out what the rank-nullity the-
orem tells you about the ranks of the groups in a short exact
sequence ) > A > B —- C — 0.

(2) Prove that for a cell complex X = [ J, X,

X(X) = Z(—l)knm

where ny, is the number of cells glued in (where we suppose
ng = 0 for £ » 0 and all ny, are finite).



118 CHAPTER 4. SINGULAR HOMOLOGY

(3) Compute the Euler characteristics of S, S x S, §? x S2, and
St x ST x 81 x S and CP?.
Hint: both (1) or (2) can be used for such computations.

(4) Just using the Euler characteristic, which of these five spaces
can you prove to be not homeomorphic?

(5) (Optional, bonus) Compute the Betti numbers of these spaces
and conclude that, in fact, none of these spaces are pairwise
homeomorphic.

Exercise 4.11. The cone C'X of a topological space X is defined

as
CX = X x[0,1] uxx{o {0},

while the suspension is defined as
XX = X x [0,1] uxxoy {0, 1}(= CX/X x {1}).
e Show that S™ is homeomorphic to £.5"! (including for n = 0
if we put S™1 = ).

e Construct a natural isomorphism

H,(2X) =~ H, 1(X).
Hint: inspect the Mayer—Vietoris sequence for an appropriate
covering of XX

e Reprove the computation of the homology of S™.

Exercise 4.12. [Hat02, §2, Exercise 7] Let f : R" — R" be an
invertible linear map. Show that the induced map on the local
homology group

fi : Ha(R", R™\{0}) — Ho(R", R"\{0})

equals multiplication by sgndet(f)(e {+1,—1}).

Hint: Use Gaussian elimination to show that the matrix of f can
be joined by a path of invertible matrices to a diagonal matrix with
+1’s on the diagonal.



Chapter 5

Singular cohomology

Singular cohomology is another invariant of simplicial sets and topo-
logical spaces. The cohomology groups are denoted by

H"(X).

On the face of it, it just arises by essentially reversing (or, rather,
dualizing) the arrows in the normalized chain complexes. Therefore
it is closely related to and, in several cases, even agrees with, homol-
ogy. The advantage of cohomology is that there are maps, called
cup products

H™(X) x H™(X) — H""™(X),

which is a feature that homology groups do not have. These cup
products can be used to equip the direct sum @, H"(X) with the
structure of a commutative ring. For example, for X = CP?, we
already know H, (CP?) = Z for n = 0,2,4. We will prove below
(Theorem 5.33) that the multiplication is such that the generator
w € H?(CP?) generates the ring, so that there is a ring isomorphism:

P H"(CP?) = Z[w]/w’.

5.1 Definition and examples

Cohomology arises by homology by dualizing. For an abelian group
M, we write

MY := Hom(M, Z)

119
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for the dual abelian group. We will mostly apply this to M being a
free abelian group, in which case we have

<i@3z>vzgz.

(For countably infinite I, this is known to be a non-free abelian

group.)
Any group homomorphism f: M — N gives rise to a map

FYINY S MY (NDZ)— (M5 N3 7).
This constitutes a functor
—V 1 Ab°® — Ab.

This construction extends to a functor taking values in the category
of cochains

—Y : Ch®®» -CoCh,
\4 \2 a”(?? v \2 (ag )v \2
OOV = > ()Y (C)Y — ]
Indeed, the composite vanishes:

(05.1)Y 0 (9) = (65 0 0%,,)¥ = 0¥ = 0.

Here, we regard CY to be in cochain degree +n (so that the differ-
ential goes up by +1).

Definition 5.1. The n-th cohomology functor is the following com-
posite:

sSet 25 sAber X chP = CoCh 5 A,
More concretely, for a simplicial set X,
H"(X)
is the cohomology (at the spot N(X)Y) of the cochain complex
= (VX)) T (VX)) = (N (X)) = o
The singular cohomology of a topological space X is defined as

H"(X) := H"(Sing(X)).



5.1. DEFINITION AND EXAMPLES 121

Thus, cohomology is a functor
H" : Top®® — Ab.

Again, for a commutative ring A, we define cohomology with
coefficients in A by replacing the free abelian group functor Z[—] by
A[—]. We denote the result by

H" (X, A).
We first look at cohomologies of a few simplicial sets.

Example 5.2. For k& > 1, the dual of the chain complex N(S*) =

[Z 5 0... > 0 — Z] (with the left hand Z in degree k, the right
one in degree 0) is the cochain complex

NS =[Z& 0 — 0« 1Z].
Since all differentials are (still) zero, we have

Z n=0k
0 otherwise

1Y (51) = HL(V(5Y)) - |

Thus, H*(S*) =~ (H,(S*))¥. This example is somewhat proto-
typical. More precisely, one can show:

Proposition 5.3. Let X be a simplicial set or a topological space.
Then

Hn(X7 Q) = HomQ(Hn(Xv Q)7 Q)7

i.e., cohomology with rational coefficients is just the homology, du-
alized.

With torsion coefficients, however, a more subtle relationship
holds, as we see for the projective plane P?, cf. Example 3.20.

Example 5.4. Recall that the (simplicial) projective plane P? is
the simplicial set pictured as follows:
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X
Lo
We had computed the normalized chain complex as
-1 1
1 -1 -1 -1 0
1 1 11 0
A @ONg——— A DN DN ——— N, DA,

We now pass to duals, writing A* := (A,)Y. With respect the the
obvious dual bases, the dual then is the cochain complex

-1 1
-1 1 1 -1 1
1 -1 1 0 0
AP AP ANMPOANPAN +—— ATPAY.

For example, the basis vector e” maps to —e® — e etc. We write Z*,
B* for the cocycles and coboundaries of that complex. We see that

o HO(P? A)=2° = {(z,z),z € A} = A,
o B! = {(z,1,0),x € A},

o 7' = {(xa, Ty, 1q)| — Ta + Ty + Tqg = 0,04 — 1 + 14 = 0} =
{(zp + xq),Tp,xq,204 = 0} = A @D Ay, where Ay is again the
2-torsion subgroup of A.

e Thus the map
Zl/B1 — AQ, {(ZL’b + [Ed),l‘b, Td, 2Id = 0} = Tq
yields an isomorphism

H! (P, A) = As.
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Indeed, the map is clearly surjective and it is injective since for
xq = 0 the triple lies in Bj.

e Finally B = {(z, + 274, —%4), To, g € A} = Z2 = A D AP,
e The map
H? = Z%/B?, (14, 25) — [Ta + 25] € A/2

is an isomorphism: it is clearly surjective and also injective
since if x, + zg = 2x for some x € A, the pair is equal to
(22 — x5, x5) € B2

We sum up our findings, and notice a more subtle relationship
between homology and cohomology than in the case of the k-sphere:

A n=20 A n=0
Ay n=1 A2 n=1
n(p2\ _ 2 2\ _
H"(P?) = A2 n—2 compared to H,(P?) = Ay m=2
0 otherwise 0 otherwise

Remark 5.5. The observation that in the above computation Ag
gets exchanged by A/2 can be explained as follows: the complex (in
degrees 1 and 0 as labelled)

A S Ay

(2 stands for the map given by multiplication by 2) has homology
H; = ker2 = A, and Hg = coker2 = A/2. Passing to duals, we get
the cochain complex (A® := A} lives in cochain degree 1)

A0 2 AL

which now has H® = ker2 = A, and H! = coker2 = A/2.

Such an observation is at the heart of the so-called universal
coefficient theorem for cohomology which expresses H"(X) in terms
of Hom(H,,(X), Z) and a so-called Ext-group Ext(H,,—1(X), Z). See,
e.g., [Rot88, Theorem 12.11].

This second group vanishes whenever H,,_1(X) is a free Z-module.|]
Thus, in this case we get an isomorphism

H"(X) = Hom(H,(X), Z).
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5.2 The Eilenberg—Steenrod axioms for cohomol-}
ogy

Singular cohomology satisfies the following properties. This theorem
can be proven by redoing the proofs for homology.

Theorem 5.6. (1) (Functoriality) For each n > 0, there is a func-

tor
H" : Top®® — Ab.

(2) (Dimension axiom) The groups H"({}) are zero for n # 0, and
Hj is isomorphic to Z.

(3) (Additivity) For a family of topological spaces (X;), we have
HY(| | X5) = [ [H"(X0).

(4) (Homotopy) Homotopic maps f,g : X — Y induce the same
map on cohomology:

H"(f) = H"(g).
In particular, homotopy equivalences induce isomorphisms on
cohomology.

(5) (Mayer—Vietoris sequence) If X is a topological space, U,V < X
such that their interiors cover X: X = U° u V°, then there is a
long exact sequence

.— H"(X) - H"(U)®H" (V) - H*(UNV) - H"(X) — ... }

Example 5.7.
Z n=0%k
n/qky __ )
H*(5%) = { 0 otherwise
Z n=0,24...2k
n kN y Sy Ly )
H"(CP") = { 0 otherwise

Z/2 n=0,1,...,k
n k _ ) L )
H'(RP,Z/2) = { 0 otherwise
These computations can be confirmed by using the above axioms,
in particular the Mayer—Vietoris sequence. Alternatively they also

follow from Remark 5.5.
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5.3 The cup product

A key advantage of passing from homology to cohomology is the
existence of cup products on the latter. These maps, constructed
soon, are of the form

U HY(X) @ H™(X) — H"™ ™ (X).

This ring structure is a finer structure than the mere existence of
the abelian groups H,,(X) or H"(X).

Example 5.8. Let X = S2v Stv StandY =T = St x St be
the torus. These two spaces are both path-connected, so Ho(X) =
Ho(Y) = Z. For n > 1, by using additivity (of reduced homology,
Lemma 4.53), we have

Z n=2
H,(X)=H,(S?*)9H,(SHDH,(S") =X Z®Z n=1
0 n=3

These groups are isomorphic to
H,(T) = HT) =H,(Z > Z®Z > 7).

So, homology groups and therefore also the cohomology groups are
isomorphic.

However, it turns out that the cup product of the two generators
in H'(X) vanish (this is always the case for wedge sums of spaces).
By contrast, we will momentarily see that the two loops in 7" which
are the two generators of H'(T') have the property that

71 U Y € H3(T)

is non-zero, and instead in fact the generator of H?(T') =~ Z. Thus,
there can be no homotopy equivalence

f: X->Y

since out would have to induce (as we will see) an isomorphism of
TiNgs

H*(f) : P H'(X) > DH(Y).

n=0 n=0
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Notation 5.9. For some ¢ : A" — X and a subset J < [n], we
write A7 = A" for the subset consisting of those (z, ..., z,) where
x; = 0for j ¢ J. We also write 0| for the composite A7 < A" % X.

Definition 5.10. Let X be a topological space. The cup product is
the map
—u—:C*"X) x C*(X) - C*(X)

which, for a € C*(X) and b e C'(X) is given by
(aud)(o) = a(‘7|[0,k]) : b(0|[k,k+l]) .

—_—— ——
€Z €Z

Here o : AF*! — X. We extend this by bilinearity to a map
- X)) ®CH(X) - CH(X),

The same definition applies for cochains taking values in a com-
mutative ring A.

Example 5.11. Let X = T = S! x S be the torus. The only
interesting cup product is the map

v HYT) @ HY(T) — H*(T).

(We will see below cup product with n € H(T) = Z is just multi-
plication by n, and if the degrees add up to > 3, the cup product
must vanish since then H"(T") = 0.)

We consider the following vertices, 1-simplices and 2-simplices on

T:
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The dual cochains are denoted by a“ etc., i.e., a¥ € CY(T) is the
cochain satisfying

a”(a) =1,a"(b) =0,a"(d) = 0.
We compute the cochain a¥ U bY by applying the definition:
e (a¥ Ub¥)(@) = a* (alp.)b (@lnzy) = a(b) - b (a) = O,
o (@ b)) = @ (Bloa)b (Blna) = a¥(a) - b (b) = 1.
e Thus, by linearity
(@ ub)(f—a)=1

e The 2-chain v :=  — « is a generator of Hy(7T'). So that its
dual cochain 7" is a generator of H*(T') = Hom(Hy(T), Z).

e We obtain

a’ ub =~v".

e A similar computation (!)shows

e Again by the above computations, we have

a”va’ =0,b"ub’ =0.

The above computation suggests the following statement: there
is a ring isomorphism (where the right hand carries the cup product)

~

Z{s,t)/(st + ts,s*,t*) = éH"(T),

sending s — aY, t — bY and st — 7. Here at the left Z{s,t)
denotes the non-commutative polynomial ring (which has as a Z-
basis the 1,s,t, st,ts,s* t* ...), and we mod out the 2-sided ideal
generated by st +ts, s? and t2. In order to make this statement, we
need to exhibit how the cup product turns the sum @, H"(X) into
a ring. This ring structure comes in fact from a “ring” structure on
C*(X) which is “essentially commutative.”
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Definition 5.12. A differential graded algebra (dga for short) is a
cochain complex A together with a cochain map (called the multi-
plication)

1 A®A A

(denoted by juxtaposition) such that the usual conditions on a com-
mutative ring hold:

e (Unitality) There is an element 1 € Z°(A) = Homgocn(Z, A)
such that la = al = a.

e (Associativity) a(bc) = (ab)c.

A morphism of dga’s is a cochain map A — B compatible with
the multiplication maps in the obvious sense.

Lemma 5.13. The cup product turns C*(X) into a dga. For any
continuous map f : X — Y the induced map

F5OMY) — CF(X)

is compatible with the multiplications and the units. We refer to
this by saying that f* is a map of dga’s. We have therefore a functor
taking values in the category of dga’s:

C* . Top”® — DGA.

Proof. We first check that U is a chain map. By definition of ¢ on
tensor products of chain complexes, this means

d(a ub) = (0a) Ub+ (—1)*a U (Ob),

where again a € C*(X). Recall that the differential @ on cochains

is obtained by dualizing the differential on chains. Thus, for a o :
Ak+l+1 s X,

k+1+1 )
(@@ v b)(o) = (aub)( Y (~1)'7od)

=0
k+1+1 '

= (aub)( Z (=)ol 5. ksi1])
=0

- Z (_1)ia(‘7|[0 ..... 5rokr1) OOl hriny) + Z low) - DO,z

it 1 =k

= ((9a) U b)(0) + (—=1)*(a L ())(0).
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The unit element is the cocycle 1 such that 1(c) = 1 for each
0-simplex ¢ in X. The associativity is a routine check, as is the
compatibility of f* with unit and multiplication maps. O

Lemma 5.14. Let C' be a dga, and consider its cohomology
H*(C) := @H"(C)
neZ

The multiplication
a] - [0] := [ab]

turns this into a graded algebra, i.e., the same conditions as for a
dga above hold (except H*(C') carries no differential).

Proof. The multiplication p : C ® C' — C' is a cochain morphism so
that

A(rs) == op(r®s) = u(d(r®s)) = (or)s + (—1)%"r(0s).

Thus, if r and s are cocycles (i.e., map to 0 under @), the same is
true for rs. In order to check this induces a multiplication on H*(C'),
it suffices to check that (0r)s and r(ds) are coboundaries. Indeed,
again by the above formula

(0r)s = d(rs) — (—1)%"r(ds) = d(rs)
(for any cocycle s) is a coboundary. O
Combining the above, we see that cohomology is a functor
H : Top”® — GA

(taking values in the category of graded algebras). In fact, we can
do better:

Proposition 5.15. The cup product on @, H"(X) is in fact a
graded commutative ring, i.e., we have

ab = (_:Udegmdegnba
for a e H™(X), b e H*(X).

Proof. (Proof idea) This graded commutativity comes from the fol-
lowing idea: put ¢, := (—1)""*1/2 and define a map on the chain
complexes

p:C(X) = Cu(X), (0 : A" - X) ¢, - 0°P.
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Here
UOP:A"HA”iX,

where the first map is the unique affine-linear map sending the basis
vector e to e,_x. One checks that this map p is a chain map. One
also checks that there is a homotopy between p and the identity
map.

With these claims checked, a quick algebraic manipulation im-
plies that the multiplication on @, H"(X) is graded commutative
as stated. See, e.g., [Hat02, Theorem 3.14]. ]

Example 5.16. For X = S!xS! as in Example 5.11, a°® is the loop
a, but with its direction reversed. Thus p(a) = —a™v*=*d(e C,(X)).
The asserted homotopy between p and id reduces to the fact that
a + a*v°™* is homotopic to a constant loop.

5.4 Poincaré duality

In this section, we explore Poincaré duality, one of the foundational
results of algebraic topology. The idea is a certain symmetry be-
tween homology (or, cohomology) groups.

Example 5.17. Hi(S") = H*(S") = Z in degrees 0 and n. The
group vanishes otherwise. This can be recast as a symmetry
Hy(S™) = H,,_(S™)",
(At this point, the appearance of the dual is unmotivated; we

might as well write Hg(S™) = H,_x(S™), but see Theorem 5.30.)

Example 5.18. The space X = S x S? is a cell complex with one
cell in dimension 0, 1, 3 and 4, respectively. One can compute (for
example using Mayer—Vietoris)

H,(X) =HNX)=1Z

for £ = 0,1, 3,4, and the groups vanish in all other degrees. Thus,
again
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Example 5.19. For complex projective space
Hy(CP") = Hy,,_x(CP")"
and again likewise for cohomology.

Example 5.20. Consider X = S v S'. By additivity (for reduced
homology), we get

Ho(X)=Z,H(X)=ZDZ.
Thus, the symmetry encountered above breaks:
Ho(X) # Hy(X)".

It is suggestive to link this behaviour to the presence of the “sin-
gular” point. In order to rule out this kind of pathology, we con-
sider (topological) manifolds, i.e., topological spaces X such that
each x € X has a neighborhood that is homeomorphic to an open
ball in some R, where d is independent of z. All the spaces above,
except for S' v S! are manifolds, leading to the idea that for such
a manifold X we might expect a close relation between

Hk(X) and Hd_k(X)
H*(X) and H™*(X).

Example 5.21. Real projective space
RP" = S"/z ~ —x
is a manifold of dimension n. However, the homology groups
Ho(RP") = 0,

N N/ n odd
H, (RP )_{ Z/2 n even

fail to be symmetric (say, when considering their ranks) when n is
even.

Example 5.22. The Klein bottle X (cf. also Exercise 3.10) is the
geometric realization of the following simplicial set:
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It is a manifold of dimension 2. It is connected, so that Ho(X) =
0. However, one can show Hy(X) = 0. This can be done either
using Mayer—Vietoris sequences or also using cellular homology. As
a plausibility check, let us note that there are no 2-cycles for the
above simplicial set:

O(nqa+ngB) = ne(b—a+d)+ngla—d+b) = a(ng—nqs)+b(na+ng)+d(n,—ng) = Of
only if n, = ng = 0. Thus, the above symmetry fails again.

To rule out this problem, we need to impose an extra condition
on the manifolds we consider. We call a subset B < X a (finite)
open ball if there is a neighborhood U > B that is homeomorphic
to R, under which B is homeomorphic to B(0,1) < R®.

For a subspace A < X, let us abbreviate

H,(X|A) == H,(X, X\A).

For any manifold X and any open ball B ¢ X, we have (compare
with Example 4.35)

Hy(X|B) = Hy(U|B) = Hg(R¥B(0,1)) = Hyg(S%) = Z.

“w_»

The isomorphisms are canonical. The left hand “~” depends
on the choice of a homeomorphism U =~ RY, and the right hand
isomorphism can not be made canonical at all. Nonetheless, this
tells us that the local homology group is a free abelian group of
rank one. A choice of a generator eg € Hy(X|B) is called a local

orientation. (L.e., there is always precisely two local orientations for
each such B).
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Remark 5.23. The above applies verbatim to B = {x} as well, in
which case we recover exactly Example 4.35.
Multiplication with a matrix A € GL4(R) is a homeomorphism

f:R!— R
respecting the subspace R4\ {0}. It therefore induces a map
fe : Hy(R?0) — Hy(RY0).

By Exercise 4.12, this map is given by multiplication with sgn(det f) €}
{£1}. Thus, an orthogonal matrix A € SL,,(R) preserves the local
orientation, while a map of the form (z1,...,24) — (=21, 22,...,2q)
does not preserve it. This motivates the name “(local) orientation”.

Definition 5.24. Let X be a manifold of dimension d. We call
X orientable if one can choose local orientations compatibly for all
open balls B < X. l.e., if there is a collection of generators

(e € Hy(X, X\B)) B X open ball
such that for any inclusion of open balls C' < B,
e — ec
under the canonical map
Hu(X[B) — Ha(X|C).
Example 5.25. R is orientable. To see this, fix a homeomorphism
e: A= B(0,1).

For R > 0, let eg : A? 5 B(0, R) be the homeomorphism obtained
by scaling. Now, for a bounded ball B c RY, consider the d-simplex,
the d-simplex ey, is a generator of Hy(R¢|B) as soon as B < B(0, R).
Note that ep = er for R' > R. Thus, defining eg to be e for R
large enough, yields a compatible system of local orientations.

Definition 5.26. A complex analytic manifold X is a topological
space where each z € X has a neighborhood U 5 x that is homeo-
morphic to an open ball in C%:

fv:U S B(0,1) < C%,
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and where the transition maps

foofy!

are complez differentiable (also known as holomorphic), as opposed
to a mere homeomorphism.

Example 5.27. Complex projective space CP" is an example of a
complex projective manifold, with open charts given by (0 < i < n)

fi Ui :={(20,---,2n),2i # 0}/ ~5Cn,
20 51'

Z'—><Z‘,...,;,...),
i i

where the equivalence relation is as in Example 4.46. Thus the
transition functions are given by

00 A Ay A F
(zi"“’zz-""’zi)H(zj"“’zj""’zj)'

This is essentially given by multiplication with 2, which is a com-
J

plex differentiable function. (In fact, since this is a quotient of
polynomials, CP" is an example of a complex algebraic variety).

Lemma 5.28. Any complex analytic manifold is orientable.

Proof. Proving this requires unwinding the definition of a complex
manifold, but the basic point distinguishing real from complex man-
ifolds is that a matrix A € GL4(C) has, when regarded as a matrix
A € GLyy(R), positive determinant:

det A = |det A]* > 0.

This implies that the transition maps fiy o fy, ! will always preserve
orientation. [

Example 5.29. Non-orientable manifolds include:
e RP? (and all other even-dimensional real projective spaces),
e the Klein bottle,

e the Mobius strip.
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It requires further means (such as proving Theorem 5.30) to rigor-
ously show that these are non-orientable

Theorem 5.30. Let X be a compact, orientable manifold of dimen-
sion d. Then there is an isomorphism

H(X)

lle

Z
and the cup product

H*(X)®@ H"(X) 5 HY(X)

lle
N

is a perfect pairing, i.e., the induced map
H"(X) — (H"(X))

is an isomorphism. In particular, the ranks of these groups, and
therefore also of the corresponding homology groups agree:

rk H*(X) = rk H"(X), tk H,(X) = tk Hy_,,(X).

Remark 5.31. The three assumptions: compactness, orientability,
and smoothness (i.e., being a manifold), can be removed at the
expense of a more involved statement.

Question 5.32. Why does one have to assume X is compact for
the above statement to be correct?

5.5 Cohomology of projective spaces

In this section, we compute the ring structure of cohomology on
complex projective space CP".

Theorem 5.33. There is a ring isomorphism

Z[z]/z""" S H(CP") := (P H"(CP"). (5.34)
keZ

Here the right hand side carries the cup product, and the element
x in the left hand side has degree 2, i.e., it maps to an element in
H?(CP").
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Remark 5.35. This computation is one of a family of similar re-
sults such as

Z|z] ~ H(CP®), (degz = 2)
Z/2[z])/z"* =~ H(RP",Z/2), (degx = 1)
Z/2[zx] = HRP*,Z/2), (degz =1).
See, e.g., [Mas91, §XV].
By the presentation of CP™ as a cell complex with one cell in

every even dimension, we have

H,(CP") = H(CP") = Z
whenever 0 < k£ < 2n is even, and the groups vanish otherwise. By
Remark 5.5, this gives us

H*(CP") = Hom(H,(CP"),Z) = Z.
Thus, the underlying abelian groups in (5.34) are isomorphic. If we
pick a generator w € H?(CP"), we have a ring homomorphism
Z|x] - H(CP"),z — w,

which factors over Z[x]/z""! since the (n + 1)-fold cup product
wu - uw e HMP2(CP") = 0. It suffices to see that w“" is a
generator of H2"(CP")(= Z). If this is the case then also w“* must
be a generator of H**(CP").

We will prove this result by a basic, if somewhat special argument
due to Lam [Lam70]. We will consider projective space as

CP" = {p(z) = apz" + ap_12""" + -+ + ag,p # 0}/C*,

i.e., the space of nonzero complex polynomials of degree < n, up to
multiplication by a non-zero complex number.
The proof is based on the map

h:M:=CP!'x ... x CP' - CP",

(n factors) given by taking products of polynomials as above. Note
that CP' =~ S? is a cell complex with a single cell in dimension 0
and 2. Then M is a cell complex having no cells in odd dimensions,
and one cell in dimension 0, and one cell in dimension 2n (but more
cells in the even intermediate dimensions, e.g. n cells of dimension
2n — 2 etc.) Therefore

Hy, (M) = HE (M) = 2.
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Lemma 5.36. The map

maps a generator to t£n! times a generator. (Both groups are iso-
morphic to Z.) Therefore, the dual map

r* : H*"(CP™) — H*"(M)
also maps a generator to +n! times a generator.

Proof. Let Dy, ..., D, be pairwise disjoint disks in CP" (i.e., parametriz-Jj
ing polynomials of the form z+ \; € D;, where C o {\;} n{\;} = &

for i # j.) By the fundamental theorem of algebra (Corollary 4.41

+ standard abstract algebra), every polynomial of degree n can be
factored as a product of linear ones, uniquely up to the order of the
factors. Therefore

~

hip: D 3 h(D).

is a homeomorphism and

K:=h"'(h(D)) = | | Do= | | Doty X .. X Doin-

Uezn JEEn

Here o ranges over the permutations of n letters.
The inclusions D, ¢ K induce an isomorphism

Ha (M|K) 3 @ Hap (M|D,).

Indeed, by Proposition 4.50 we can the left hand group as the 2n-th
homology group of the quotient M /(M\K), which space is homeo-
morphic to a wedge sum of n! copies of S?*. Each of these S*" is
homeomorphic to M /(M\D,).

The map h, fits into the following commutative diagram

Hop (M) —%— H,, (CP™)

| :

ha

Hy, (M| K) — H,,(CP"|h(D))

| =7

Hy, (M|D,).
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(This diagram is similar to the one in the discussion of the local de-
gree, Lemma 4.44). The right hand vertical map is an isomorphism
since H,(CP™\h(D)) = 0 (except for £ = 0). Indeed, by homotopy
invariance we may replace h(D), which is homeomorphic to a prod-
uct of disks, by a standard disk B(0,1) ¢ C* < CP", and then use
that the complement CP™\ B(0, 1) is contractible.

By the orientability of M (Lemma 5.28), the compositie Hy,, (M) —J
Hs, (M|Dy) — Ha, (CP"|A(D)) is the same map for all o € ¥,,. This
follows by choosing open balls By > Dy U Dy (r), for k < n and
o,0' € X,.

A generator of Hy,, (M) is mapped to a generator of each Hy,, (M |D,) J}
so that summing up all o gives the claim. O

Consider the standard inclusion
i: CP! - CP".

It induces an isomorphism on Hy by (4.27). Thus, passing to duals,
we see that
i* : H*(CP") — H*(CP")
maps a generator w to a generator, which we denote for clarity by
w.
In addition, we use the cell structure of M (n cells of dimension
2, no cells of odd dimension) which implies

Hy(M) = é@ Hy(CPH)®...®@ Hy(CPY) ®...® Hy(CP')

=1

= (P Hy(CP).
If we let (for 1 < k < n)
CP' 5 M % CP!

be the embedding (i) adding the base points in all other factors
than the k-th one, respectively (px) the projection onto the k-th
factor, then we have py o), = id, so that (pg)«(ix)s« = id. Since both
groups are isomorphic to Z, this means that (pg), is an inverse to
(i)«. Passing to duals, we have inverse isomorphisms

H?(M) % Qn-)HQ(CPl).

%
Y k=1
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Lemma 5.37. The map
h* . H*(CP") — H*(M)
satisfies

M) = Y pi.
k

Therefore
h*(w ™) =nlpiw v - U phw.

Proof. In order to show the first claim, it suffices to apply (ix)* to
both sides and show these agree:

(i) hW'w=1"w =:w.
Here we use that the composite
cp' s M b cpr
is the standard inclusion ¢ mentioned above. On the other hand,

(in)* D pi@ = D (prif)@ = piitw = .

Here we use that for r» # k, the map p, o1, is a constant map, which
induces the zero map on Hy(CP"'), and therefore also on H?(CP").

For the second statement, we use that f* : H(X) — H(Y) is a
ring homomorphism for any map f : Y — X. We apply this remark
to h, and to the py:

R (w™") = (h*(w))~"
We have
@) upr(@) =pi( TVE ).

ed4(CpPl)=0

By the commutativity of the cup product, we also have p}(@) U
pi(w) = pj(w) U pj(w). Using bilinearity of U and expanding the
sum, we therefore get

nlpi(@) U - U ph(@).
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Thus, if e (resp. f) is a generator of H2*(CP") (resp. of H**(M)),
and w“"™ = re for some r € Z then

h*(w™) = h*(re) = rnlf.

On the other hand @ is a generator of H2(CP'). One can show (this
is the so-called Kiinneth formula) that

H?*"(M) = H*(CPY) ® ... ® H*(CP"),

and that the element p¥(w)u- - -Up# (w) € H*"(M) above corresponds
to the tensor

UR®...00,
which is also a generator of the group. Therefore,
rnlf = +nl(w™ ™).

This implies » = +1, finishing the proof of Theorem 5.33.

5.6 The cohomology of SO(n)

In this section, we survey a computation of the cohomology H*(SO(n), Z/2) .}
following [Hat02, §3.D].
The set

O(n) = O,(R) = {A € Mat,,,.,(R) |[AAT =id}

can also be described as the isometries of R™ fixing the zero vector.

It is a subset of R"Q, and as such a topological group since the
multiplication and inverse (in this case given by A — AT) are con-
tinuous. The columns of some A € O(n) are vectors in S™~!, which
is compact. Therefore

O(n)c S" ' x...x g1
is a compact topological group.

Example 5.38. The low-dimensional cases of SO(n) can be de-
scribed as follows:

e SO(1) = {+1},
e SO(2) = S,
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e SO(3) = RP?. To see this, one uses that RP* = D3/z ~ —x
for x € 0D3. There is a map D — SO(3), sending a vector
x € D3 to the rotation by |z|m around the line spanned by
x € R? For z € 0D, |z| = 1, and so this gives a well-defined
map RP? — SO(3). This map is compact and RP? is compact,
while SO(3) is Hausdorff. Therefore it is a homeomorphism.

e One can show SO(4) = S? x SO(3).

e SO(8) = S” x SO(7). These latter two are shown using unit
vectors of quaternions, resp. octonions.

5.6.1 Basic topological properties

The determinant

det : O(n) — {1}
is a surjective group homomorphism, therefore its kernel
SO(n) := ker det

is a subgroup of index 2. We have SO(n) = O(n)\SO(n) (namely if
B is an element in the right hand side, then the bijections are given
by A+ AB, and inverse given by C — CB™!).

e The group SO(n) is path-connected. This can be shown using
linear algebra.

e We will later see that SO(n) is a CW complex with a single
0-cell. This gives another argument showing the connectedness

of SO(n).

e There is a unique top-dimensional cell, of dimension @
e SO(n) is orientable, this is a general fact about topological
groups.

The computation of (co)homology of SO(n) also gives the one
for O(n) = SO(n) L (O(n)\SO(n)), and also the one for GL(n) =
O(n) x R¥, with k = ") — dim GL(n) — dim O(n). The latter
isomorphism is given by Gram—Schmidt orthogonalization, or using

polar decomposition.
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5.6.2 Cell structure of SO(n)

Recall that a cell complex is inductively obtained by pushouts

|_| 6Dk 4>Xk_1

L

The resulting maps D*¥ — X are also called the characteristic maps.
For v € R™\{0} let r(v) be the reflection along (v)* € O(n)\SO(n).}]
Then we set

p(v) =r(v)r(e;) € SO(n).
This defines a map p : R" — SO(n). However, p(v) only depends
on the line spanned by v, so we have a map

p: Pt —S0(n).

This map is continuous and injective. This can be restricted to give
subspaces P/ < SO(n), for j <n — 1.

For a multi-index I = (i1,...,4,) (with all i; <n — 1), we have
a map

p:PL:=P"x .. xP™ - S0(n), (v,...,0) = p(vy) - (o).

Definition 5.39. We call such a multi-index admissible if / = (0)
orifn>i >iy>- >4, >0.

Recall that P* has a cell structure with one cell in each dimension
in [0, k]. In particular, there is a map ¢* : D¥ — P*. Their product
is a map

¢':D'=]]D" > P =] [PY.
J
The composition with p gives a map

p¢' : D! — SO(n).

Proposition 5.40. The maps p¢!, for all the admissible multi-
indices I, are the characteristic maps of a cell structure on SO(n).

Remark 5.41. The admissible I will contribute cells of dimension
> ;i In particular, there is a single O-cell. Also, the multi-index
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I = (ng,...,1) gives a single top-dimensional cell, of dimension
n(n—1)

2

In total, there are 2" ! = Z;:ol (";1) admissible sequences.

Example 5.42. For n = 3, there are the following multi-indices
and associated characteristic maps:

e (0) ~ D — SO(3).
e (1) ~ D' — SO(3).
e (2) ~ D? - SO(3).
e (2,1) ~ D? x D'(=~ D3) — SO(3).
These cells match the standard cell structure on RP?.

Proof. (Sketch:) The proof uses a general criterion for cell struc-

tures. One needs to check the following (for all admissible I):

(1) po¢! induces a homeomorphism (D) onto its image. Let e! be
the image thereof.

(2) All e! are disjoint and cover SO(n).
(3) po!(0D?) is contained in a union of lower-dimensional cells.
If we let p: SO(n) — S™ ', a — a(e,). Then
PP 5 g7 (e, )
We have a homeomorphism
h: (P 1\P"?) x SO(n — 1) 5 SO(n)\SO(n — 1),

given by (v,a) — p(v)a, with inverse 5 — (vg, ag), with vg cor-
responding to p(8) under the above homeomorphism, and az =
p(v,) " Blen).

Thus, for I = (n —1,...), we get a cell (induced by (D" 1)° x
((D2)° x ... x (D"™)°) inside SO(n)\SO(n — 1).

For the third point above, note that

OD' = 0D x D2 x ... x D' + D" x 0D x -+ + ...,

For I = (i1,...,im), the multi-index (iy — 1, 4o, ...,4,) need not be
admissible. But, one can show (where the juxtaposition denotes the
product of subsets of SO(n))

P'P'c PP
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Therefore, one can replace the possibly non-admissible multi-index
(21—1722,)by(11—1,22—17) O]

Corollary 5.43. The map
p: Pt x ... x P SO(n)

is surjective and cellular.

5.6.3 Z/2-homology and cohomology

According to computations above, the cellular complex for P! are
complexes with differential equal to 0, and in each degree k given by
(Z/2)*, with k being the number of k-dimensional cells in P{. The
surjectivity of p implies that likewise the differential in the cellular
complex for SO(n) is is zero.

We want to use an isomorphism

H,(SO(n),Z/2) = Hp(S" ' x ... x S* Z/2).
For this, we need to understand the homology of the right hand side.
We do this using the following

Theorem 5.44. If XY are cell complexes, R is principal ideal do-
main, then there is a short exact sequence

0—>@H X, R)®gH,_i(Y, R) 5 H,(X xY, R) @TorR (X, R),H,_;_1(Y, R) — 0.

In particular, if R is a field, such as Z/2, then h is an isomorphism.

Here is the description of the cup product:
Theorem 5.45.

H(S0(n).2/2) = @ H(S0(n).2/2) = @ Z/215)/61"

7 odd

Here |3;| = i, i.e., 3; € H'. This is the duall class of e;, which is the i-
dimensional cell of P"~! = SO(n). Moreover, p; = ming{2* such that 2*i >|]

Example 5.46. For n = 3, 81| = 1, so that p; = 4. |f3] = 3, then
ps = 1, so that Z/2[f3]/(83) = Z/2. Thus

H*(SO(3),2/2) = Zo[51]/51-
This agrees with H*(RP?,Z/2) = Z/2[a]/a*, as seen above.
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5.7 Exercises

Exercise 5.1. Let X be an orientable compact manifold of odd di-
mension. Show that its Fuler characteristic vanishes:

x(X) =0.
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Appendix A

Category theory

A.1 The Yoneda lemma

Given any category C', and any object X € C, there are functors
hx : C°" — Set, Y — Home (Y, X).

The functor hy is called the representing functor associated to X.
Let C be any small category, X € C' and F' : C°? — Set a functor.
There is a map (of sets)

F(X) - HomFun(C’,Set)(h’X> F)

that sends f € F(X) to the natural transformation hx — F that
is given on objects Y € C by hx(Y) = Home(Y, X) 3 o —
F(a)(f) € F(Y). (Note here F(a) : F(X) — F(Y) since F is
contravariant. Note also that given a morphism Y — Z in CP, i.e.,
a morphism y : Z — Y in C, the diagram

hx(Y) = Homg (Y, X) —— F(Y)

ly*—Homc(y,X) F(y)l

hx(Z) = Homg(Z, X) —— F(Z)

commutes since F is a functor. Thus we have indeed defined an

element in Hompyn(c set)(hx, F).)
Conversely, there is a map (of sets)

HOmFun(COP,Set)(h’X7 F) - F(X)

147
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that sends a natural transformation g : hx — F to g(idy) € F(X)
(note the evaluation of g at X gives a map hx(X) = Homg(X, X) 2

Lemma A.1. The above two maps are inverse to each other, so we
have an isomorphism.

The (completely formal) proof is left as an exercise.
We now specialize this assertion. There is a natural map

Homc(X, Y) — Hompun(copjset)(hx, hy) <A2)

It sends a morphism f : X — Y to the morphism hx — hy whose
evaluation on any 7' € C' is given by

hx(T) = Home(T, X) — hy(T) = Home(T,Y),t — fot

Lemma A.3. The above map (A.2) is a bijection.
In more high-level language: for any small category C', the func-

tor
C — Fun(C°?,Set), X — hx := Hom¢(—, X)

is fully faithful. It is called the Yoneda embedding.
Proof. This follows directly from Lemma A.1:
HOHlC (X, Y) = hy (X) = Hompun(cop,Set) (hx, hy)
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Homological algebra

B.1 The tensor product

The tensor product
A ® B := A ®Z B

of two abelian groups is characterized by the following universal
property: it is an abelian group together with a group homomor-
phism

AxB— AR B,

such that every bilinear map f : Ax B — C', where C'is an arbitrary
abelian group, factors uniquely like so:

AxB——ARXDB
\
C.

We will mostly apply the tensor product in the case where A and B
are free, i.e., there are isomorphisms

A=@PZ,B=PZ

el jedJ
for appropriate (possibly infinite) sets I, .J. In this case,

PzeoPz= P Z (B.1)

i€l jeJ (i,9)elxJ

More generally, let R be a commutative ring. Then there is the

tensor product
M ®r N,

149



150 APPENDIX B. HOMOLOGICAL ALGEBRA

which is again an R-module, and which satisfies the same universal
property as above:

HomR(M ®r N, K) = HOIIIR(M, HOIIIR(N, K)),

where Homp denotes the R-module consisting of R-linear maps.

B.1.1 Flatness

For a fixed R-module M, the tensor product functor N — M ®g N
is a right-exact functor, i.e., for any short exact sequence of the form

N1 - N2 - N3 4’0,
the sequence
M ®g N1 > M ®r N2 > M ®r N3 — 0

is again exact. (Indeed, — ®gr N is left adjoint to Hompg(N, —),
so the former preserves all colimits including the above one: N3 =
coker(N; — Ns). See, e.g., [Eis95, Appendix 5].)

M is called a flat R-module, if the functor M ®r — is exact
(equivalently: if N3 < Ny is a submodule, then M ® Ny ¢ M ® N,
is again a submodule). Every free R-module, and more generally
every projective R-module is flat. In general, these implications are
not reversible, but for R = Z the situation does simplify: an abelian
group is free abelian iff it is a projective Z-module iff it is a flat
Z-module.

A non-flat Z-module is Z/n for n > 0: the injective map Z > Z
becomes, after tensoring with Z/n, the map Z/n > Z/n, but in Z/n
multiplication by n is not injective.

Any localization of a flat module is again flat. For example Q =
Z(3,5,%.-.-] is a flat module (but is not projective).

For any ring R, a flat-module M is torsion-free (i.e., multiplica-
tion by r # 0 is injective on M). If R is a principal ideal domain,
then the converse holds as well.

B.1.2 Tor functors

Tor functors (the name comes from torsion, which is motivated by
the above example) provide a way to measure how “non-flat” mod-

ules are. For a proof of the following statement, see e.g., [Eis95,
§6.2].
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Proposition B.2. There are functors, for any i > 0,
Tor® : Modg x Modg — Modg

such that

(1) Torf(M,N) = M ®z N.

(2) If

is a projective resolution (i.e., an exact complex with Py being
projective modules) or, more generally a flat resolution (the Py
are flat R-modules), then

Torf(M, N) = H;(P, ®g N).
(3) In particular, if M is projective or flat, then Tor (M, N) = 0
for all # > 0 and N € Modp.

(4) For a short exact sequence
O—>N1—>N2—>N3—>0,
there is a long exact sequence

.. — Torf (M, N3) — Torf{(M, N;) — Torf (M, Ny) — Torf (M, N3) — M®zN3 — MQrN, —

The Tor functors also satisfy a symmetry
Torf (M, N) = Tor(N, M),
extending the isomorphisms M @z N =~ N Qg M.

One also refers to the collection of all the Tor functors as the left
derived functor of ®.

For a principal ideal domain R (e.g., R = Z), every submodule
of a free R-module is free, so that N admits a free resolution of the
form

This implies that all Tor;® vanish for i > 2.
Proposition B.5. (Kinneth formula) Let R be a principal ideal

domain (such as R = Z), C, D € Ch(Modg) be two complexes, with
each (), € Modpg being flat. Then there is a short exact sequence

0— @ H,(C)®H,(D) — H,(C®D) — @ TOI{%(HP(C),H(](D)) - 0-I

(B.6)
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Example B.7. For D = Z/{ (concentrated in degree 0), this gives
back the sequence

0 — H,(C)/t - H,(C/t) - (H,_1(C)), — 0,
of Example 4.14 (cf. also the remarks after Definition 3.16): indeed,
Tor?(Z/¢, M) = My,

zZ
by virtue of the resolution 0 — Z Lz / £ — 0, which gives after
tensoring with M:

0 = Tor%(Z/0,Z) — Tor%(Z/t, M) — M®zZ > M®,Z — M®zZ/¢ — 0]

By comparison D = Q (again in degree 0) is flat, so Tor?(—, Q) =
0, and we get isomorphisms

H.(C)®Q > Hh(C®Q).
Proof. We first do the special case where the differentials in C' are
zero. In this case C' = @, ., Ci[i] and H,(C) = C, is a free R-module
and therefore Tor[*(H,(C), H,(D)) = 0. Our claim now holds since

H, commutes with tensoring with a flat module, and also commutes
with direct sums:

@ Cp@Hq(D) = @HQ(CI’@D)

- @ Hy14(Cplp] ® D)

ptq=n

=H,(C®D,).
We now do the general case. Let B; < Z; < C; be the boundaries
and cycle submodules in C;. We use that R is a PID, so that “flat”
is equivalent to “torsion-free”. In particular, B; and Z; are also flat.

These groups form subcomplexes B < Z < C with the property
that their differentials are zero, and there is a short exact sequence

02 —C-3%B[1]—0.

Tensoring with D gives an exact sequence, since B; are flat (so that
Torf(B;, D,) = 0):

0->2ZQ®D—>C®D-%B[1]®D — 0.
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We have long exact sequences of homology groups (the @ run over
p + q = n), where the vertical isomorphisms come from the special
case above:

0 —— @Tor, (H,C, H,D) —— ®B, ® Hy(D) —— ®Z, @ H,(D) — ®H,C @ HyD ——0

J; J;

e SV Hp(B®D)——HA(Z® D) — ' H,(C ® D) ®%H,,,, (B

There is a unique dotted map as indicated. It is injective by a
diagram-chase. The dotted map has the same image as the one
labelled 7, so that their cokernels agree as well. By the 0 at the very
top left (which holds because of 0 = Tor(Z,, H,D), using that Z,
is flat), we have cokeri = @ Torf(H,C, H,D). O

p+q=n—1

Remark B.8. If the (), are in fact projective modules, then one
can choose non-canonical isomorphisms C,, ~ Z,, ® B,,, which gives
the added information that (B.6) is in fact a split exact sequence,
i.e., there are isomorphisms

P (H,(C)®H,(D)® Tori(H, 1C,H,D)) ~ H,(C ® D).

p+q=n

However, this depends on the above choices and is therefore not
functorial in C. See, for example, [Rot88, Corollary 10.82].

B.2 Exercises

Exercise B.1. Let
5 0->ASBYC 0.

be an exact complex of abelian groups. (This is called a short ezact
sequence.) Show that for any abelian group T, there are complexes,
with appropriate natural maps

0 — Homap (T, A) %5 Homay(T, B) % Homay(T, C) — 0.

Show that this complex is exact except possibly at the spot Hom (T, C) J]
i.e., by need not be surjective. Show that for a free abelian group T’
(T = Z[S5] for some set S), the complex is exact.
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Also show that
0 ART - BRXT—-CRT -0

is a complex. Show that it is exact except that possibly the map
A®T — B®T need not be injective. Show that the complex is
exact for a free abelian group 7'
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