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Chapter 0

Preface

These are notes for a lecture on algebraic topology, more specifically
basic notions around homology and cohomology, offered in Spring
2022 and Spring 2023 at the University of Padova.

The exclamation mark (!)indicates that you should repeat some
aspects of a definition etc. in order to make sure you are following
the lecture.
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Chapter 1

Introduction

Homology and Cohomology are fundamental techniques in algebraic
topology. By its nature, topology is a very flexible subject – think
of continuously deforming a cup into a doughnut. The reason for
this flexibility is that there is often an abundance of continuous maps
between two topological spaces. This holds even for very “standard”
spaces. Therefore, questions such as the following are not altogether
trivial to answer:

Question 1.1. Suppose n,m P N with n ă m. Is there a continu-
ous surjective map

Rn
Ñ Rm?

Is there a homeomorphism

Rn
Ñ Rm?

The answer to the first question is yes (cf. Exercise 1.2), which
shows how limited our intuition about topological spaces really is.
Second, it will take us some time to prove (see below) that the
answer to the second question is no.

By comparison, other mathematical areas offer less freedom, so
the following lemma from linear algebra is by comparison decidely
easier than the above:

Lemma 1.2. Again for n,m P N with n ă m there is no R-linear
surjective map

Rn
Ñ Rm

and, in particular, no R-linear isomorphism.

7
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The overall workflow of algebraic topology is this:

• Take a question about topological or geometrical objects, e.g.:
“are two topological spaces X and Y homeomorphic?”

• Convert this hard question into a much easier question about
objects in linear algebra, such as “are two vector spaces V and
W isomorphic”?

• Transfer information from the linear algebraic objects to the
topological objects.

This workflow can be implemented in different ways. In this
course, we will focus on homology and cohomology, which are the
easiest ways of converting topological information into linear alge-
braic information.

1.1 The Eilenberg–Steenrod axioms

Homology has the following properties, known as Eilenberg–Steenrod
axioms . At this point, we state them in a slightly simplified form.
Proving this theorem will keep us busy for a good while.

Theorem 1.3. (1) (Functoriality) Homology is a functor

Hn : Top Ñ Ab, n ě 0.

That is, for each topological space X, there is an abelian group

HnpXq.

In addition, for each continuous map f : X Ñ Y there is a group
homomorphism

Hnpfq : HnpXq Ñ HnpY q.

Functoriality means that these group homomorphisms have the
following key property: for another continuous map g : Y Ñ Z,

the map HnpXq
Hnpfq
Ñ HnpY q

Hnpgq
Ñ HnpZq agrees with the map

HnpXq
Hnpg˝fq

Ñ HnpZq. More succinctly:

Hnpg ˝ fq “ Hnpgq ˝ Hnpfq (1.4).

In addition,

HnpidXq “ idHnpXq : HnpXq Ñ HnpXq. (1.5)
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(2) (Dimension axiom, cf. Proposition 4.3) The homology of a point
is this:

Hnpt˚uq “

"

Z n “ 0
0 otherwise

(3) (Additivity , cf. Proposition 4.4) Homology of a disjoint union
of spaces is the direct sum of the homologies of the individual
spaces:

Hn

˜

ğ

iPI

Xi

¸

“
à

iPI

HnpXiq.

(4) (Homotopy invariance, cf. Proposition 4.8) If two continuous
maps f, g : X Ñ Y are homotopic (i.e., there is a continuous
family of maps ht : X Ñ Y for t P r0, 1s such that h0 “ f ,
h1 “ g), then the induced maps on homology

Hnpfq,Hnpgq : HnpXq Ñ HnpY q

are the same maps.

(5) (Excision or Mayer–Vietoris sequence, Corollary 4.20) If U, V Ă

X are two subspaces such that X is covered by the interiors of
U , V ,

X “ U˝
Y V ˝,

then there is a long exact sequence

. . . Ñ HnpUXV q Ñ HnpUq‘HnpV q Ñ HnpXq Ñ Hn´1pUXV q Ñ . . .

All the terms mentioned in this theorem will be explained during
the course. At this point, let us just weigh the nature of these
statements:

• The definition of the homology functors is a sequence of func-
tors

Top
Sing
Ñ sSet

Zr´s
Ñ sAb

N
Ñ Ch

Hn
Ñ Ab.

where sSet is the category of simplicial sets , which provide a
means to control the combinatorics in a space equipped with a
triangulation.

For S1 P Top, the first three functors together do roughly the
following: we pretend that S1 can be replaced by the following
“space” “S1”
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This “space” “S1” has 3-zero dimensional points x, y, z, as well
as 3 1-dimensional edges a, b, c. Each edge has two endpoints,
denoted by d0 and d1, namely

d0 d1
a y x
b z y
c x z.

We associate to this combinatorial datum two rank-3 abelian
groups, and a map between them

Za ‘ Zb ‘ Zc
B

Ñ Zx ‘ Zy ‘ Zz.

The so-called differential B sends an edge e to d0peq ´ d1peq,
e.g., a ÞÑ y ´ x etc. Thus, B is described by the matrix

¨

˝

´1 1
1 ´1

1 ´1

˛

‚.

The homology groups

H0p“S
1”q,H1p“S

1”q

are defined to be the cokernel, resp. the kernel of B. As it is, the
cokernel is(!)a free abelian group of rank one, i.e., isomorphic
to Z, e.g., generated by rxsp“ rys “ rzsq. The kernel is also a
free abelian group of rank one, generated by a ` b ` c.

We obtain the result

Hnp“S1”q “

$

&

%

Zx n “ 0
Zpa ` b ` cq n “ 1

0 otherwise
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The “space” “S1” will be an example of a simplicial set. The
functor Sing sends S1 to a simplicial set whose points (a.k.a. 0-
simplices) are just the points in S1, and whose edges (a.k.a. 1-
simplicse) are continuous maps r0, 1s Ñ S1. Thus, SingpS1q is
much larger than “S1”. It will turn out, however, that

HnpS1
q “ Hnp“S1”q,

i.e., the difference between SingpS1q and “S1” is, however, neg-
ligible as far as the end result of the computation, the homology
groups, are concerned.

• The proof of the dimension axiom and additivity is elementary.

• Homotopy invariance allows us to compute, say, the homology
of any convex set H ‰ X Ă Rn. Indeed, homotopy invariance
quickly implies

H˚pXq “ H˚pt˚uq. (1.6)

The proof of the homotopy invariance is less immediate than
the previous ones, but is a beautiful showcase for the appeal of
structure-based mathematics. We will show that homotopies
in Top are mapped to a closely related notion of homotopies in
the category sSet of simplicial sets, which in turn are mapped
to chain homotopies of chain complexes. Finally, taking ho-
mology then produces identical maps. Neither of these steps is
particularly difficult.

• The excision axiom or Mayer–Vietoris sequence is the key tool
for computing homology of non-trivial spaces such as Sn. For
example, for the covering

S1
“ S1

` Y S1
´

as depicted
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we have, by homotopy invariance

Hn
pS1

˘q “ Hn
pt˚uq “ Z for n “ 0, 0 otherwise.

Also, again by homotopy invariance and additivity,

HnpS1
`XS1

´q “ Hnpt˚uq‘Hnpt˚uq “ Z‘Z for n “ 0, 0 otherwise .

Thus, the above-mentioned long exact sequence becomes

0 Ñ H1pS1
q Ñ Z ‘ Z Ñ Z ‘ Z Ñ H0pS1

q Ñ 0.

As we will see, the map in the middle is given by f : px, yq ÞÑ

px ` y, x ` yq, whose kernel is

H1pS
1
q “ ker f – Z,

H0pS
1
q “ coker f – Z.

The end result of this computation is

HnpS1
q “

$

&

%

Z n “ 0
Z n “ 1
0 otherwise

Using similar arguments, we will prove in Proposition 4.21, for
k ą 0:

HnpSkq “

$

&

%

Z n “ 0
Z n “ k
0 otherwise

The intuition behind homology is that the n-th homology counts
the number of n-dimensional holes. For Sn, there is precisely
one such hole, in line with HnpSnq “ Z1.
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1.2 First Applications

Let
Dn :“ tpx1, . . . , xnq P Rn,

ÿ

x2k ď 1u

be the n-dimensional ball with radius 1. Its boundary

Sn´1
“ tpx1, . . . , xnq P Rn,

ÿ

x2k “ 1u

is the n ´ 1-dimensional sphere.

Theorem 1.7. (Brouwer fixed point theorem) Let n ě 0 and f :
Dn`1 Ñ Dn`1 be a continuous map. Then f has a fixed point, i.e.,
there is some x P Dn`1 with

fpxq “ x.

Proof. Suppose f has no fixed point. Then the ray starting at fpxq

and passing through x intersects Sn in exactly one point, denoted
rpxq. One shows that the function

r : Dn`1
Ñ Sn

is continuous.

For x P Sn we clearly have rpxq “ x. In other words, writing
i : Sn Ñ Dn`1 for the inclusion, we have

r ˝ i “ idSn .

With these preliminaries, we can make use of the above Eilenberg–
Steenrod axioms (which we prove later). By functoriality, the in-
duced map on the n-th homology groups read

Z “ HnpSnq
Hnpiq
Ñ 0 “ HnpDn`1

q
Hnprq
Ñ HnpSnq.
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Thus, the composite must be the zero map. On the other hand, by
the functoriality of homology, we have

Hnprq ˝ Hnpiq “ Hnpr ˝ iq “ HnpidSnq “ idHnpSnq “ idZ.

We obtain a contradiction, since certainly the identity map of Z is
not the same as the zero map.

Theorem 1.8. (Topological invariance of dimension) There is a
homeomorphism

Sn Ñ Sm,

Rn
Ñ Rm

(if and) only if n “ m.

Proof. If f : Sn Ñ Sm is a homeomorphism with (continuous) in-
verse g, then

f ˝ g “ id, g ˝ f “ id.

Again using (1.4) and (1.5), this implies

Hnpfq ˝ Hnpgq “ id

and similarly the other way round. That is, Hnpfq is an isomor-
phism. If n “ 0, S0 consists of two points and is not even bijective
to Sm for m ą 0. We may thus assume n ě 1. For n ‰ m, however,
HnpSmq “ 0 is not isomorphic to HnpSnq “ Z. Note how much
easier it is to decide whether

0
?
– Z

than to decide

Rn ?
– Rm.

Here, it is simple: 0 is finite, while Z is not. Alternatively, one
may compare the ranks of these two groups, which are 0 and 1,
respectively, so the groups are not isomorphic.

If f : Rn Ñ Rm is a homeomorphism, then there is also a home-
omorphism

f : Rn
zt0u Ñ Rm

ztfp0qu.

We may assume n ě 1 since a homeomorphism R0 Ñ Rm is in
particular a bijection, so that m “ 0. For n ě 1, the inclusion
Sn´1 Ă Rnzt0u is such that there is (!)a map (called retraction)

r : Rn
zt0u Ñ Sn´1
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such that r ˝ i “ id and i ˝ r is homotopic to (but not the same
as) idRnzt0u. The homotopy invariance axiom and functoriality of
Hn thus imply that Hnpiq is an isomorphism (with Hnprq being its
inverse). Thus

H˚pRn
zt0uq “ H˚pSn´1

q.

Similarly (use translation by fp0q) for Rmztfp0qu. Then the same
argument as before applies.

A more refined study of the homology of spheres yields further
applications:

• The map S1 Ñ S1p:“ tz P C, |z| “ 1uq, z ÞÑ zn induces a map

H1pS1
q Ñ H1pS

1
q.

Using the above computation, this tranlates into a map

Z Ñ Z

which we will show to be the multiplication by n. This insight,
together with homotopy invariance, can be used to prove the
fundamental theorem of algebra (every nonconstant complex
polynomial has a root), cf. Corollary 4.41.

• The hedgehog theorem (Corollary 4.40) states that there is no
non-zero tangent vector field at even-dimensional spheres.

Beyond these classical applications within geometry, homology
and cohomology are also omnipresent in other areas. A rather new
development, known as persistent homology , aims to use homology
in order to exhibit patterns in high-dimensional datasets, such as
those occurring in analysis of medical images.

The ideas and methods encountered in this lecture also inform
other areas such as algebraic geometry, which often draws inspira-
tion from the intuition gained by results such as the ones presented
in this course.

1.3 Exercises

Exercise 1.1. Define a slight modification of the “space” “S1”, to
be denoted “D2”, and consider three abelian groups

Z
B2
Ñ Za ‘ Zb ‘ Zc

B1
Ñ Zx ‘ Zy ‘ Zz.
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What map B2 reflects the geometric intuition that the boundary of
the interior of a triangle consists of the edges a, b, and c? Compute

H2p“D2”q :“ ker B2

H1p“D2”q :“ ker B1{im B2

H0p“D2”q :“ coker B1.

If you have chosen the right map B2, the groups Hnp“D2”q you obtain
will be the same as the groups HnpD2q, which are Z for n “ 0 and
0 for n ą 0 (cf. (1.6)).

Exercise 1.2. In a textbook of your choice, read about the Peano
curve, a continuous surjective map

r0, 1s Ñ r0, 1s ˆ r0, 1s.

Exercise 1.3. Let X be a topological space. Consider the following
relation „ on X:

x „ y

if and only if there is a continuous map h : r0, 1s Ñ X with hp0q “

x, hp1q “ y. Prove:

• „ is an equivalence relation. (Hint: for one property you will
need to use a lemma from elementary topology.)

• We define the set of path components π0pXq :“ X{ „.

• Compute π0pr0, 1sq and π0pZq (here Z Ă R has its usual discrete
topology).

• We call X path-connected if π0pXq has at most one element.
Let f : X Ñ Y be a continuous surjective map. Show that Y
is path-connected if X is so.



Chapter 2

Simplicial sets

Simplicial sets form the technical backbone of algebraic topology,
and are also of paramount importance in contemporary higher cat-
egorical structures such as 8-categories. In this section, we develop
the basics of this concept. References for the material in this section
include [May92; GJ09; Fri08; Lur].

2.1 Definitions

Simplicial sets are supposed to provide a combinatorial model for
topological spaces equipped with a triangulation. We begin with the
(quite abstract) definition, and will gradually gain a more geometric
understanding of this notion.

Definition 2.1. Let C be a category, e.g. C “ Set. A semi-
simplicial object in C is a sequence of objects Xn P C (n ě 0),
together with maps

dk : Xn Ñ Xn´1, 0 ď k ď n,

called face maps , such that

di ˝ dj “ dj´1 ˝ di (2.2)

for i ă j (for any n, note both composites are maps Xn Ñ Xn´2).
(Strictly speaking, dk is an abuse of notation, a more complete no-
tation would be dnk : Xn Ñ Xn´1, but we stick to that reduced
notation.)

17
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A simplicial object in C is a sequence of object Xn P C, face
maps dk as above, and in addition degeneracy maps

sk : Xn Ñ Xn`1, 0 ď k ď n,

such that the following simplicial identities hold

didj “ dj´1di, for all i ă j,

sisj “ sjsi´1, for all i ą j,

disj “

$

&

%

sj´1di i ă j
id i “ j or i “ j ` 1

sjdi´1 i ą j ` 1

(2.3)

For C “ Set, the elements of Xn are called n-simplices of X.
0-simplices are also called vertices , 1-simplices are edges . An n-
simplex is called degenerate if it is in the image of some degeneracy
map si.

Example 2.4. We define a simplicial set ∆0 to be such that p∆0qn “

t˚u and such that all face and degeneracy maps are the identity.
More generally, for any set X, there is a simplicial set disc pXq (or
just also denoted by X again), the discrete simplicial set associated
to X, given by

disc pXqn :“ X

and all maps dk and sk are idX . Thus ∆
0 “ disc pt˚uq.

Example 2.5. Moving up in dimension 1, we define a semi-simplicial
set ∆̃1 by

p∆̃1
q1 :“ t01u, p∆̃1

q0 :“ t0, 1u.

Here 01 is just a symbol that serves as a mnemonic for a line going
from 0 to 1. In line with this, we let

d0p01q :“ 1, d1p01q :“ 0. (2.6)

The purpose of dk is to remember that the endpoints of the line
01 are 0 and 1, respectively, with the idea that 1 is the endpoint
opposite to 0 (so that d0p01q “ 1, as opposed to 0). We finally
define p∆̃1qn :“ H for n ě 2. This defines a semi-simplicial set.

This semi-simplicial set ∆̃1 is not a simplicial set: the only way
we could define s0 : p∆̃1q0 Ñ p∆̃1q1 is to send 0 and 1 to 01, which
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would violate the simplicial identity d1s0p0q
!

“ 0. The way out of
this is to enlarge ∆̃1 as follows: we define

p∆1
q1 :“ t00, 01, 11u Ñ p∆0

q0 :“ t0, 1u.

Again, 00 etc. are just formal symbols, with the idea that the symbol
ij represents a line from i to j, so that 00 is a “constant” line at 0.
Extending the above, we define

dk : p∆1
q1 Ñ p∆1

q0, d0pi0i1q :“ i1, d1pi0i1q :“ i0.

s0 : p∆1
q0 Ñ p∆1

q1, skpi0q “ i0i0.

(To memorize the definition of dk: dk removes the k-th entry.) We
also need to specify 2-simplices. Unlike for ∆̃1, we cannot define ∆1

2

to be empty, since we need to supply s0, s1 : ∆1
1 Ñ ∆1

2. We will
shortly complete the definition of ∆1.

Example 2.7. We define a semi-simplicial set S̃1 (resp. a simplicial
set S1) in low degrees by

pS̃1
q1 :“ tγu

d0,d1
Ñ pS̃1

q1 :“ t˚u

Again, to define a simplicial set, one needs to enlarge the set t01u

slightly, so that we put

pS1
q1 :“ tγ, ˚u

d0,d1
Ñ pS1

q1 :“ t˚u

with s0p˚q “ ˚. The maps d0 and d1 encode the idea that γ is a
closed loop, i.e., a path whose two endpoints are the same.

In order to conveniently complete the definition of ∆1 (and later
also S1), including all the higher-dimensional simplices, we use the
following category.

Definition 2.8. The simplex category ∆ has objects

rns “ t0, 1, . . . , nu

for n ě 0, and morphisms are order-preserving maps :

Hom∆prms, rnsq “ tα : rms Ñ rns, αpiq ď αpjq for all i ď ju.

In this category, there are the following important morphisms:

δk : rn ´ 1s Ñ rns, 0 ď k ď n
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is the unique injective map that misses k P rns. Somewhat dually,

σk : rn ` 1s Ñ rns, 0 ď k ď n

is the unique surjective map that repeats k (i.e., maps 0, 1, . . . , n, n`

1 to 0, 1, . . . , k, k, . . . n). We also consider the category ∆inj Ă ∆
having the same objects, but only those morphisms that are injective
(equivalently, strictly increasing).

Definition and Lemma 2.9. For e ě 0, we define

p∆e
qn :“ Hom∆prns, resq.

We define the face maps to be

dk : p∆e
qn “ Hom∆prns, resq Ñ p∆e

qn´1 “ Hom∆prn ´ 1s, resq

to be the precomposition with δk, i.e., f : rns Ñ res is mapped to
the composition

rn ´ 1s
δk
Ñ rns

f
Ñ res.

We also define the face maps similarly:

sk : p∆e
qn “ Hom∆prns, resq Ñ p∆e

qn`1 “ Hom∆prn ` 1s, resq

by
skpfq :“ f ˝ σk.

This defines a simplicial set ∆e, called the e-simplex .

Example 2.10. We have

p∆1
q0 “ Hom∆pr0s, r1sq “ t0, 1u,

p∆1
q1 “ Hom∆pr1s, r1sq “ t00, 01, 11u,

where ij is a shorthand for the map 0 ÞÑ i, 1 ÞÑ j. This recovers
Example 2.5:

s0 : t0, 1u Ñ t00, 01, 11u

sends ip“ 0, 1q to the map

r1s
σ0
Ñ r0s

i
Ñ r1s,

which is just ii. Similarly dk (for k “ 0, 1) sends ij to the composite

r0s
δk
Ñ r1s

ij
Ñ r1s.
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Since δk misses k, δ0p0q “ 1, so that d0pijq “ j, while d1pijq “ i.
This recovers (2.6). We then have, using similar notation,

p∆1
q2 “ Hom∆pr2s, r1sq “ t000, 001, 011, 111u.

Each of these has at least one repetition, which means that each of
these simplices is degenerate.

Example 2.11. For ∆2, we can picture the 0-, 1-, and 2-simplices
in a similar way:

Proof. (of Definition and Lemma 2.9) We need to verify the simpli-
cial identities. These follow from similar identities for the maps δk
and σk, called cosimplicial identities . Specifically,

δjδi “ δiδj´1, for all i ă j,

σjσi “ σi´1σj, for all i ą j,

σjδi “

$

&

%

δiσj´1 i ă j
id i “ j or i “ j ` 1

δi´1σj i ą j ` 1

(2.12)

These follow directly from the definitions: for example, we check
δjδi “ δiδj´1 for i ă j. The image of δi (in this order) is 0, 1, . . . , i´

1, i ` 1, . . . , n. Here i ` 1 is in the i-th spot. For j ą i, the
composite δjδi therefore has the image (in this order) 0, 1, . . . , i ´

1, i ` 1, . . . , j ´ 1, j ` 1, . . . n. On the other hand, δj´1 has im-
age 0, 1, . . . , j ´ 2, j, . . . , n. Here j ´ 2 is at the j-th spot, which
comes after the i-th spot (for i ă j). Thus, δiδj´1 has image
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0, . . . , i´ 1, i` 1, . . . , j´ 2` 1, j` 1, . . . , n, which is the same as the
first map.

Next, σi repeats i, and σjσi repeats (for j ă i) j and i. On the
other hand, σj repeats j and σi´1σj also repeats i and j (note the
shift because of i ´ 1 ě j).

The remaining identities can be checked in a similar manner(!).
Now, these cosimplicial identites transform into the simplicial

identities: for example, in order to show the simplicial identity

didj “ dj´1di

for i ă j, we take f P p∆eqn “ Hom∆prns, resq. By definition of the
face maps, we have didjpfq “ dipf ˝ δjq “ f ˝ δj ˝ δi. (Note how the
order of i and j changed.) By the cosimplicial identity, this equals
f ˝ δi ˝ δj´1, which is dj´1pf ˝ δiq “ dj´1dipfq. The same argument
works for the other identities, always using that σk corresponds to
sk and δk to dk, and that the order of composition is reversed when
passing from the cosimplicial to the simplicial identities.

2.2 From topological spaces to simplicial sets

Simplicial sets are important in algebraic topology because they
mediate between topological spaces and (eventually) abelian groups.
For a given topological space X, we want to define a simplicial set
SingpXq whose 0-simplices are the points of X, whose 1-simplices
are continuous paths in X etc.

Definition 2.13. The (topological) n-simplex ∆n is defined as

∆n :“ ∆n
Top :“ tpt0, . . . , tnq P Rn`1, tk ě 0,

ÿ

k

tk “ 1u.

Remark 2.14. Note that ∆0 is just a point, and ∆1 “ tpt, 1´tq, t P

r0, 1su is homeomorphic to the closed unit interval r0, 1s Ă R. The
above definition of ∆1, however, is more symmetric. The condition
that xk ě 0 can be dropped without ultimately changing anything in
the results in this course. The condition is there mainly to simplify
drawing pictures.

Remark 2.15. The symbol ∆ has now been used in relation to
three different entities:
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• the simplex category ∆ (Definition 2.8),

• the topological n-simplex ∆n :“ ∆n
Top P Top (Definition 2.13),

• and the simplicial set ∆n :“ ∆n
simp (Definition and Lemma 2.9).

The simplex category plays on a completely different floor than the
other two, but the two ∆n are closely related, as we will see. We
trust there is no confusion which meaning is intended.

We define (continuous) maps, called face maps

δk : ∆
n

Ñ ∆n`1, pk “ 0, . . . , n ` 1q (2.16)

by δkppt0, . . . , tnqq :“ pt0, . . . , tk´1, 0, tk, . . . , tnq, i.e., insert a 0 into
the k-th spot. Thus, δk inserts ∆n into ∆n`1 opposite to the k-th
vertex. We define so-called degeneracy maps

σk : ∆
n`1

Ñ ∆n, 0 ď k ď n

by
σkpt0, . . . , tn`1q “ pt0, . . . , tk´1, tk ` tk`1, . . . , tn`1q.

Thus, σk contracts the k-th boundary.

Lemma 2.17. These maps satisfy the same relations as in (2.12),
for example σjδi “ δiσj´1 for i ă j.

Proof. This is(!)a routine check. For example, we check the one
highlighted above: δipx0, . . . , xnq “ px0, . . . , xi´1, 0, xi, . . . , xnq and
σjδipx0, . . . , xnq “ px0, . . . , xi´1, 0, xi, . . . , xj´1`xj, xj`1, . . . , xnq. On
the other hand σj´1px0, . . . , xnq “ px0, . . . , xj´1 ` xj, xj`1, . . . q, and
δi inserts a zero in some spot at or before the xj´1 ` xj, so we get
the same expression as before.
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Example 2.18. Let X be a topological space. Define a simplicial
set SingpXq, called the singular simplicial set or singular simplicial
complex of X, by

SingnpXq :“ HomTopp∆n, Xq

(continuous maps from the topological n-simplex, Definition and
Lemma 2.9, to X). The face and degeneracy maps are all induced
from similar maps for the ∆n. E.g., for f : ∆n Ñ X,

dkpfq P Singn´1pXq

is the map

∆n´1 δk
Ñ ∆n f

Ñ X.

More concretely,

pdkpfqqpt0, . . . , tn´1q “ fpt0, . . . , tk´1, 0, tk, . . . q,

pskpfqqpt0, . . . , tnq “ fpt0, . . . , tk´1, tk ` tk`1, . . . , tnq.

Our eventual goal is to extract crucial information from topolog-
ical spaces using these simplicial sets. For the moment, note only
that SingnpXq is a huge set, making it nearly impossible to do any
computations with this directly: the simplicial set S1

simp sketched
in Example 2.7 is much smaller, and thus much more useful than
SingpS1

Topq (here S1
Top “ tz “ x ` iy P C, |z|2 “ x2 ` y2 “ 1u is the

circle, a topological space). We do have a map

S1
simp Ñ SingpS1

Topq

mapping ˚ to p1, 0q and γ to the loop

∆1
Ñ S1

Top, pt, 1 ´ tq ÞÑ expp2πitq.

A key insight is that, nonetheless, these two simplicial sets are not
so different: we will eventually show that the homology of these two
simplicial sets is the same.

The only case we can handle at this point is a point:

Example 2.19. Singpt˚uq “ ∆0. Indeed, any map ∆n
Top Ñ t˚u

is just constant. What can you say about SingpXq, where X is a
discrete topological space (all subsets U Ă X are open)?
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Remark 2.20. A slightly more high-level formulation of the Sing-
functor is to observe that the topological spaces ∆n assemble into a
cosimplicial topological space, i.e., a functor

∆
F
Ñ Top, rns ÞÑ ∆n.

The functor SingpXq is then the composite

∆op F
Ñ Topop HomTopp´,Xq

Ñ Set.

Similar cosimplicial objects appear in other mathematical domains.
For example the cosimplicial object in schemes,

∆ Ñ Sch, rns ÞÑ ∆n
alg :“ SpecpZrt0, . . . , tns{

ÿ

ti “ 1q.

plays a vital rôle in so-called A1-homotopy theory, a branch of al-
gebraic geometry.

2.3 Simplicial sets as functors

Since Definition 2.1 is quite verbose, it is helpful to recast the defi-
nition using a functorial definition.

Definition and Lemma 2.21. Let C be a category. A simplicial
object in C is the same as a functor

X : ∆op
Ñ C,

while a semi-simplicial object in C is the same as a functor

X : ∆op
inj Ñ C.

Given such a functor, we often write

Xn :“ Xprnsq, α˚ :“ Xpαq : Xn Ñ Xm

for α : rms Ñ rns. We also write di “ δ˚
i , si “ σ˚

i .

Proof. Any functor X : ∆op Ñ C gives rise to a simplicial object as
in Definition 2.1, because of the identities satisfied by the maps δk
and σk in (2.12).
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We sketch the converse, referring to [Mac98, §VII.5] for a detailed
exposition. One proves (without much trouble) that any map α :
rms Ñ rns in ∆ factors uniquely as

α “ δi1 ˝ ¨ ¨ ¨ ˝ δik
loooooomoooooon

“αinj

˝σj1 ˝ σjh
looomooon

“αsurj

(2.22)

with m ` k “ n ` h and n ą i1 ą ¨ ¨ ¨ ą ik ě 0 and 0 ď j1 ă ¨ ¨ ¨ ă

jh ă m ´ 1. In fact, α “ αinj ˝ αsurj is the standard factorization of
a map into a an injective after a surjective map. For example, for
i ď j the map δiδj can be put into this form, namely δj`1δi, by the
cosimplicial identities (2.12). Thus, given a simplicial object X as
defined in Definition 2.1, one defines Xpαq : Xn Ñ Xm to be the
composite

Xn

di1
Ñ Xn´1 ¨ ¨ ¨

dik
Ñ Xn´k

sj1
Ñ Xn´k´1 ¨ ¨ ¨

sjh
Ñ Xn´k´h “ Xm.

Hereafter, we will only use the presentation of simplicial sets as
in Definition and Lemma 2.21. As with other mathematical notions,
it is useful to consider simplicial sets not just in isolation, but rather
as objects in some category.

Definition 2.23. Given a category C, the category of simplicial
objects in C is defined as

sC :“ Funp∆op, Cq,

the functor category of functors from ∆op to C. Thus an object in sC
is just a simplicial object as defined before. A morphism f : X Ñ Y
of simplicial objects is a collection of maps fn : Xn Ñ Yn such that
for each α : rms Ñ rns, the diagram

Xn

fn
��

α˚
// Xm

fm
��

Yn
α˚
// Ym

commutes.
We will apply this in particular to C “ Set and C “ Ab, which

gives us the categories sSet of simplicial sets and sAb of simplicial
abelian groups .

Dually, a cosimplicial object is a functor ∆ Ñ C.
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By Definition and Lemma 2.21, specifically (2.22), it suffices to
check this commutativity condition for α being either some δk or
some σk.

Definition 2.24. Given two simplicial setsX, Y , the product XˆY
is the simplicial set defined as

pX ˆ Y qn “ Xn ˆ Yn,

with α˚
XˆY being the product of α˚

X and α˚
Y .

Example 2.25. The simplicial set ∆1 ˆ ∆1 looks as follows :

More formally, we list the simplices, where we use a notation p. . . , . . . q
to denote a pair of simplices in ∆1:

p∆1
ˆ ∆1

q0 “tp0, 0q, p0, 1q, p1, 0q, p1, 1qu

p∆1
ˆ ∆1

q1 “tp00, 00q
˚, p01, 00q, p11, 00q

˚, p11, 01q, p11, 11q
˚, p00, 01q, p00, 11q

˚, p01, 11qu,

p∆1
ˆ ∆1

q2 Qp011, 001q, p001, 011q,

(1-simplices with a * are degenerate; there are many more degere-
nate 2-simplices; note that p011, 001q is non-degenerate, even though
both components are individually degenerate 2-simplices in ∆1. See
also Exercise 2.8.) In particular, ∆1 ˆ ∆1 is not isomorphic to ∆2:
the latter has exactly one non-degenerate 2-simplex, see above.

Definition 2.26. Given two simplicial setsX, Y , the coproduct X\

Y is the simplicial set defined as

pX \ Y qn “ Xn \ Yn,

with α˚
X\Y being the coproduct (i.e., disjoint union) of the maps α˚

X

and α˚
Y .
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We will use these definitions in slightly greater generality, where
instead of two simplicial sets, we allow a family pXiqiPI of simplicial
sets. The above definitions carry over verbatim.

Definition 2.27. Given three simplicial sets X, Y, Z and simplicial
maps f, g as depicted

X
f
//

g

��

Y

Z,

the pushout Y \X Z is the simplicial set with

pY \X Zqn :“ Yn \Xn Zn.

I.e., the n-simplices of Y \X Z are the n-simplices y P Yn, z P Zn,
where two such simplices are identified if there is an n-simplex in X,
x P Xn that maps to y and z, respectively. Again, the maps α˚

Y \XZ

are induced from the ones on X, Y , and Z.

Example 2.28. We can now complete the definition of the simpli-
cial circle begun in Example 2.7. We define S1 to be the pushout of
the diagram

∆0 \ ∆0

p
��

i // ∆1

∆0

Here the map p is the obvious projection map and i is the inclusion
of the two endpoints of ∆1: more formally,

p∆0
\ ∆0

qn “ t˚u \ t˚u Ñ ∆1
n

sends the first point to the map rns Ñ r1s mapping everything to 0,
and to 1, respectively. In degrees 0 and 1, we thus have

S1
0 “ t˚u \t˚u\t˚u t0, 1u “ t˚u,

S1
1 “ t˚u \t˚u\t˚u t00, 01, 11u,

which means we identify 00 and 11. This reproduces Example 2.7.

Remark 2.29. The general paradigm at work in the above defini-
tion is the following: suppose C is a category that has all (small)
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limits or colimits, such as C “ Set. Then, for any small category D,
the functor category FunpD,Cq has all limits or colimits, and the
evaluation functors

FunpD,Cq
evd
Ñ C, f ÞÑ fpdq

preserve these limits or colimits. Applied to D “ ∆op and C “ Set,
this gives the above notion of products and coproducts.

Lemma 2.30. The functor Sing : Top Ñ sSet preserves products
and coproducts.

That is, for a family pXiq P Top, the following natural maps (of
simplicial sets) are isomorphisms:

Singp
ź

i

Xiq
–
Ñ

ź

i

SingpXiq,

ğ

i

SingpXiq
–
ÑSingp

ğ

Xiq.

Remark 2.31. • These maps are given on n-simplices as follows:
an n-simplex in

ś

Xi is a continuous map ∆n Ñ
ś

Xi. For
each j P I, the composite with the (continuous) projection
map

ś

Xi Ñ Xj gives an element in SingnpXjq, which in total
is an n-simplex in the right hand side. A similar description
holds (!)for the second map, using the (continuous) injections
Xj Ñ

Ů

iXi instead.

• We will use the product part later in the proof of the homotopy
axiom, see Proposition 2.39, while the coproduct part will be
instrumental in proving the additivity axiom (Proposition 4.4).

Proof. We use that for any topological space T ,

HomToppT,
ź

i

Xiq “
ź

i

HomToppT,Xiq.

Indeed, a map f : T Ñ
ś

iXi is tantamount to a family of maps
fi : T Ñ Xi. By the characterization of the product topology [Hat,
§1] f is continuous iff all the fi are continuous. We apply this to
T “ ∆n and get the required bijection.

As for the second map, we immediately see that it is injective. Let
f : ∆n Ñ

Ů

Xi “: X be a continuous map. We need to show there
is some j P I such that fp∆nq is contained in Xj Ă X. Otherwise,
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there is j and j1 P I such that f´1pXjq and f´1pXj1q are both non-

empty. Then X “ Xj \

´

Ů

iPI,i‰j Xi

¯

“: Xj \X 1 is a disjoint union

of two nonempty open subsets (by definition of the topology on the
disjoint union). Then

∆n
“ f´1

pXjq \ f´1
pX 1

q

is a disjoint union of two open subsets. This contradicts the fact that
∆n is path-connected and therefore, see e.g. [Hat, §2], connected.

Remark 2.32. Note the first part of the proof is very formal. It
uses only that HomTopp∆n,´q turns products into products. (More
generally, it is true that it preserves limits. Thus, Sing preserves
limits.) By contrast, the second statement has a peculiar proof,
which also does not extend much further: for a topological space
X “ U Y V (for two subspaces U and V ), we have

SingpXq ‰ SingpUq Y SingpV q!

Indeed, an n-simplex in SingpXq need not lie in either SingpUq or
SingpV q: a map ∆n

Top Ñ X need not factor over U or V . The bulk
of our later work on the excision property will be to salvage this
problem.

In addition to understanding simplicial sets properly, we also need
to understand maps between them properly. To this end, we use a
general lemma from category theory, called the Yoneda lemma, see
Lemma A.1. Specialized to our situation, it says the following:

Lemma 2.33. Let X be a simplicial set. Then there is a bijection

HomsSetp∆
n, Xq Ñ Xnp:“ Xprnsq

which takes a map f : ∆n Ñ X, takes its evaluation at n, fn :
p∆nqn “ Hom∆prns, rnsq Ñ Xn and takes the image of the identity
map idrns, which gives an element in Xn.

Proof. This is just Lemma A.1, applied to C “ ∆ (so that sSet “

FunpCop, Setq, and using that, by definition, ∆n is the representing
functor associated to rns P ∆.

Corollary 2.34. There is a bijection

HomsSetp∆
n,∆m

q Ñ Hom∆prns, rmsq.
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Both in the form of Lemma 2.33 and Corollary 2.34, the Yoneda
lemma is a highly useful device to construct maps between simplicial
sets. We illustrate this by constructing the (simplicial)Möbius strip.

Example 2.35. Our goal is to construct a simplicial set M such
thatM0 “ tx, yu, whileM1 contains 4 non-degenerate edges a, b, c, d,
and M2 contains 2 non-degenerate simplices α and β such that the
face maps dk have the behaviour as depicted:

It is of course possible to “manually” specify the n-simplices ofM for
all n, and define face and degeneracy maps by hand etc. However,
this is tedious and geometrically unenligthening. We will therefore
instead construct M in two steps; both steps will be a pushout of
simplicial sets we already know.

• We begin the construction by glueing two copies of ∆2 along an
edge. To this end, consider the following diagram of simplicial
sets:

∆1 12 //

02
��

∆2
α

iα
��

∆2
β

iβ
//M 1

Here, the subscripts at the ∆2’s just serve as a label. The maps
ij : ∆1 Ñ ∆2 are the maps that correspond to the element ij P

Hom∆pr1s, r2sqp“ tij, 0 ď i ď j ď 2u. We define a simplicial
set M 1 to be the pushout of this diagram, i.e.,

M 1 :“ ∆2
\12,∆1,02 ∆

2,

where the subscripts in the \ indicate that the pushout is
formed along these maps ∆1 Ñ ∆2. The maps iα and iβ are
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the canonical maps into the pushout (the labels just serve to
remember which copy of ∆2 is which).

The simplicial set M 1 can be pictured as follows:

• By construction,M 1 has 4 vertices, and 5 non-degenerate edges.
We intend to further identify 2 edges (and, therefore, certain
vertices). To this end, define M to be the pushout of the dia-
gram

∆1 \ ∆1

id\id
��

pp01qα,p12qβq
//M 1

��

∆1 //M,

or, in more compact notation

M “ M 1
\p01,1121q,∆1\∆1,id\id ∆

1.

The horizontal map above is composed of two maps ∆1 Ñ M 1.
We define these maps as

∆1 01
Ñ ∆2 iα

Ñ M 1,
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∆1 12
Ñ ∆2 iβ

Ñ M 1.

In other words, we identify the edge 01 in the “α”-copy of ∆2

with the edge 12 in the “β”-copy of ∆2.

Alternatively, to specify these maps, it is possible to use the
Yoneda lemma once again:

HomsSetp∆
1,M 1

q – M 1
1

“ p∆2
αq1 \12,p∆1q1,02 p∆2

βq1.

2.4 Continuous and simplicial homotopies

Recall the product of simplicial sets from Definition 2.24. We will
use Corollary 2.34, so that the maps δk : r0s Ñ r1s (k “ 0, 1) give
rise to a map ∆0 Ñ ∆1, again denoted by δk.

Definition 2.36. Let f, g : X Ñ Y be two maps between simplicial
sets. A simplicial homotopy between f and g is a map

h : ∆1
ˆ X Ñ Y

such that the following diagram commutes:

∆0 ˆ X

δ0

��

X
f

��

∆1 ˆ X h // Y

∆0 ˆ X

δ1

OO

X

g
??

. (2.37)

A simplicial map f : X Ñ Y is called a simplicial homotopy
equivalence, if there is a map g : Y Ñ X and simplicial homotopies
between idX and g ˝ f as well as between idY and f ˝ g.

Remark 2.38. • Definition 2.36 looks conspicuously similar to
the standard definition of continuous homotopies between con-
tinuous maps. Indeed, given two continuous maps f, g : X Ñ

Y between two topological spaces, a homotopy is a continu-
ous map h as above, but where now ∆1 is the standard 1-
simplex. (In many textbooks, homotopies are defined as maps
r0, 1s ˆ X Ñ Y , but r0, 1s is homeomorphic to ∆1, so there is
no difference.)
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• A difference between homotopies in sSet and Top is that the
relation “f is homotopic to g” fails to be transitive (and is
therefore not an equivalence relation) for simplicial homotopies.
For example, let Y “ ∆1 \∆0 ∆1 and X “ ∆0. There are three
0-simplices (equivalently, maps ∆0 Ñ Y ) a, b and c as pictured,
and a is homotopic to b, and b homotopic to c. Yet, there is no
1-simplex whose boundaries would be a and c.

(On the positive side, if Y is a so-called Kan complex , then
the homotopy relation is an equivalence relation, see [GJ09,
Corollary I-6.2]. The Y above fails that additional condition.)

In contrast, the glueing lemma in topology quickly implies that
homotopy is an equivalence relation [Rot88, Theorem 1.2].

Proposition 2.39. The Sing-functor preserves homotopies. More
formally: any continuous homotopy h : X ˆ ∆1 Ñ Y between two
continuous maps f, g : X Ñ Y gives rise to a (simplicial) homotopy
between

Singpfq and Singpgq : SingpXq Ñ SingpY q.

Proof. Suppose we have a diagram as in (2.37), where all objects
are topological spaces and all maps continuous. The functor Sing
preserves products (Lemma 2.30), so that

Singp∆1
Top ˆ Xq – Singp∆1

Topq ˆ SingpXq.

Here we write ∆1
Top for the topological 1-simplex. The identity

∆1
Top Ñ ∆1

Top is a 1-simplex in Singp∆1
Topq, or equivalently, by the

Yoneda lemma (Lemma 2.33), a map of simplicial sets

∆1
Ñ Singp∆1

Topq.
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Thus, applying Sing to (2.37), and composing with this map gives
a diagram

∆0 ˆ SingpXq

δ0

��

SingX

δ0

��

Singf

''

∆1 ˆ SingpXq // Singp∆1
Top ˆ Xq

Singh
// SingY

∆0 ˆ X

δ1

OO

SingX.

δ1

OO

Singg

77

Thus, Singf is (simplicially) homotopic to Singg.

2.5 From simplicial sets to topological spaces:
the geometric realization

In this section, we are going to construct a functor

| ´ | : sSet Ñ Top,

which gives a precise meaning to the idea that to each simplicial set
corresponds some “picture,” i.e., a topological space.

Definition 2.40. For a set T , we regard T as a topological space
with the discrete topology, and T ˆ ∆n

Top (for some n) carries the
product topology. The geometric realization |X| is the following
topological space:

ğ

ně0

Xn ˆ ∆n
Top{ „,

where „ is the equivalence relation generated by the following rela-
tion: a pair pxn, pt0, . . . , tnqq P Xn ˆ ∆n

Top is identified with a pair
pym, pu0, . . . , umqq if there is a map α : rms Ñ rns such that

α˚
pxnq “ xm

and
α˚ppu0, . . . , umqq “ pt0, . . . , tnq.

Recall that α˚ : Xn Ñ Xm is the map given by evaluating X :
∆op Ñ Set at α. Similarly, α˚ : ∆m

Top Ñ ∆n
Top is given by evaluating

the functor ∆ Ñ Top mentioned in Remark 2.20. We equip |X| with
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the quotient topology (i.e., a subset U Ă |X| is open iff its preimage
in all the Xn ˆ ∆n

Top is open. Equivalently, a map |X| Ñ T to any
other topological space T is continuous iff its restriction to all the
Xn ˆ ∆n

Top is continuous.)

Remark 2.41. • Since every morphism α is the composite of
maps δk and σk (cf. the proof of Definition and Lemma 2.21),
it is enough to consider the relation as above in which either
α “ δk : rn´1s Ñ rns or α “ σk : rns Ñ rn´1s (for appropriate
n, k). Thus, writing u “ pu0, . . . , unq P ∆n

Top,

Xn ˆ ∆n
Top Q pxn, pu0, . . . , uk´1, 0, uk, . . . unq

looooooooooooooomooooooooooooooon

“δkpuq

q „pdkpxnq, uq P Xn´1 ˆ ∆n´1
Top ,

Xn´1 ˆ ∆n
Top Q pxn´1, pu0, . . . , uk´1, uk ` uk`1, . . . , unq

loooooooooooooooooooomoooooooooooooooooooon

“σkpuq

q „pskpxn´1q, uq P Xn ˆ ∆n
Top.

• In particular, for a degenerate simplex skpxnq P Xn`1, the
subspace tskpxnqu ˆ ∆n`1

Top is identified with txnu ˆ ∆n, since

σk : ∆
n`1
Top Ñ ∆n

Top is surjective.

Remark 2.42. The geometric realization functor has the following
properties. For proofs, one can consult [FP90, §4.3].

• For X “ ∆1
simp, we have a homeomorphism |∆1| – ∆1

Top. In-

deed, the subspace tiiu ˆ ∆1
Top pi “ 0, 1q corresponding to the

two degenerate 1-simplices is identified with tiu ˆ ∆0
Top. On

the other hand, 0 “ d1p01q so that t0u ˆ ∆0
Top is identified

with t01u ˆ p1, 0q P t01u ˆ ∆1
Top and similarly t1u ˆ ∆0

Top „

t01u ˆ p0, 1q.

• More generally, there is a homeomorphism

|∆n
| – ∆n

Top.

• For a coproduct of simplicial sets Xi, |
Ů

Xi| “
Ů

|Xi|.

• For any map of simplicial sets f : X Ñ Y , we have a continuous
map |f | : |X| Ñ |Y | that sends (the equivalence class of) pxn, tq
to pfpxnq, tq. This is well-defined since f is functorial, i.e.,
dkpfpxqq “ fpdkpxqq and likewise with sk.
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• For a pushout, we have a natural homeomorphism

|Y | \|X| |Z|
–
Ñ |Y \X Z|.

For example, for the simplicial n-sphere (cf. Exercise 2.7)

Snsimp :“ B∆n
\∆0 ∆n,

we have
|Snsimp| “ B∆n

Top \∆0
Top

∆n
Top,

so that there is a homeomorphism to the (topological) n-sphere:

|Snsimp| – SnTop.

Another example: the geometric realization of the (simplicial)
Möbius strip (Example 2.35) is obtained by glueing two copies
of ∆2

Top along an edge (exactly the same way as above), and
then by identifying two edges with another. Thus, the geomet-
ric realization is homeomorphic to the usual Möbius strip:

|M | – r0, 1s ˆ r0, 1s{pt, 0q „ p1 ´ t, 1q.

• By the last two properties, X ÞÑ |X| is a colimit-preserving
functor. By general category theory there is, up to a unique
isomorphism, only one colimit-preserving functor sSet Ñ Top
with the property that its restriction to the full subcategory
∆ Ă sSet “ Funp∆op, Setq (via the Yoneda embedding) agrees
with the functor rns ÞÑ ∆n

Top:

∆� _

Yoneda
��

rnsÞÑ∆n
Top

// Top

sSet.
|´|

77

Outlook 2.43. The two functors

| ´ | : sSet Õ Top : Sing. (2.44)

are adjoint functors, i.e.,

HomTopp|X|, Y q “ HomsSetpX, SingpY qq
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functorial in X P sSet and Y P Top. This can be shown by reducing
the claim to X “ ∆n, where it holds by

HomTopp|∆n
|, Y q “ HomTopp∆n

Top, Y q “: SingpY qn
Lemma 2.33

“ HomsSetp∆
n, Y q.

These two functors are very far from being an equivalence. In-
deed,

Singp|∆1
|q “ Singp∆1

Topq

is not at all isomorphic to ∆1 (already for cardinality reasons). Con-
versely, it can be shown that |X| is always a CW-complex, and not
every space is homeomorphic to a CW-complex. A foundational re-
sult in homotopy theory states, however, that the adjunction (2.44)
becomes an equivalence after inverting maps that induce isomor-
phisms on all homotopy groups πn. See [GJ09, Theorem I.11.4] for
the precise statement and proof.

2.6 Exercises

Exercise 2.1. Spell out the relation between the face and degen-
eracy maps between (topological) simplices. Use this to verify the
remaining condition in Definition 2.1 in order to verify that SingpXq

is indeed a simplicial set.

Exercise 2.2. Using appropriate pushouts, define a simplicial set
which corresponds to the following picture. (Hint: do the construc-
tion step by step.)

Exercise 2.3. Let C be a category and c P C an object. The
discrete simplicial object, momentarily denoted by c̃ (but later just
denoted by c) such that pc̃qn “ c, and face and degeneracy maps are
just the identity.

• What is the geometric realization of a discrete simplicial set?

• Redefine this using the functorial language (you will not need
to use the words face or degeneracy maps).
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Exercise 2.4. This exercise is the first ϵ towards the definition of
8-categories. Let C be a small category (i.e., it has a set of objects,
as opposed to a class). The nerve of C is the simplicial set

NpCq : ∆op
Ñ Set, rns ÞÑ HomCatprns, Cq,

where rns is regarded as a category in the natural way (objects given
by k, 0 ď k ď n and there is precisely one morphism from k to l if
k ď l and no morphism otherwise). Thus vertices of NpCq are the
objects, edges are morphisms.

• Consider the ordered set rns with its usual ordering, and thus
as a category (in which Homrnspi, jq “ t˚u if i ď j and the
Hom-set is empty otherwise). Show that

∆n
“ Nprnsq.

• Turn the following statement into a precise assertion “2-simplices
of NpCq are pairs of composable morphisms.”

• Show that C ÞÑ NpCq is a functor Cat Ñ sSet.

• Show this functor is fully faithful.

• (Optional) Describe the essential image of N .

Exercise 2.5. Prove Corollary 2.34 yourself for n “ 0, m “ 1 by
directly inspecting the two sets in question.

Exercise 2.6. Describe the non-degenerate simplices of the simpli-
cial cylinder S1ˆ∆1, including a description of the face maps. Draw
these simplices!

Exercise 2.7. We define the boundary of an n-simplex, B∆n to be
the sub-simplicial set of ∆n such that

pB∆n
qm “ tf : rms Ñ rns, order-preserving, im f Ĺ rnsu.

Verify that this is indeed a simplicial set. (B∆2 has three vertices
and three non-degenerate edges). Define the simplicial n-sphere to
be the pushout

Sn :“ ∆n
\B∆n ∆0,

i.e., the boundary of ∆n is contracted to a point. Show that Sn has
precisely two non-degenerate simplices, one in dimension 0 and one
in dimension n.
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Exercise 2.8. Let X “ ∆1 ˆ ∆1.
(1) How many 2-simplices does X have? Show that, as stated in

Example 2.25, all except two of them are degenerate.

(2) Show (by a combinatorial consideration) that all 3-simplices of
X are degenerate.

(3) Deduce (from (2) and the simplicial identities) that all k-simplices
of X are degenerate for k ě 4.

Exercise 2.9. Consider the (simplicial) circle S1 and the (simpli-
cial) Möbius strip M , which is the following simplicial set (cf. Ex-
ample 2.35 for a formal construction):

• Show that there is precisely one map

i : S1
Ñ M

such that the unique non-degenerate 1-simplex in S1 gets mapped
to a non-degenerate 1-simplex.

• Show that this map is a simplicial homotopy equivalence.



Chapter 3

Chain complexes

In this section, we introduce chain complexes and collect the per-
tinent basic insights from homological algebra. In depth-reference
for this material include [Wei94; GM03]. In the overall architecture
of (co)homology in algebraic topology, we consider a sequence of
functors

Top
Sing
Ñ sSet

Zr´s
Ñ sAb

N
Ñ Ch

Hn
Ñ Ab.

In this chapter, we will introduce the category Ch of chain com-
plexes, the normalized chain complex functor N , as well as the ho-
mology functors Hn.

3.1 Definitions

Definition 3.1. A chain complex is a sequence Cn (n P Z) of
abelian groups, together with maps (called differentials

Bn : Cn Ñ Cn´1

such that the composition vanishes:

Bn´1 ˝ Bn “ 0.

This condition is also referred to by saying that B2 “ 0. It is cus-
tomary to drop B from the notation and just say that C is a chain
complex, leaving B implicit.

A chain map between two chain complexes pC, BCq and pD, BDq

is a sequence of homomorphisms of abelian groups fn : Cn Ñ Dn

41
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such that the following diagram commutes for all n:

Cn
BC
n //

fn
��

Cn´1

fn´1

��

Dn
BD
n // Dn´1.

(3.2)

Together with the obvious identity maps and the obvious com-
position, these form a category denoted by Ch.

For any ring R, chain complexes of R-modules are defined sim-
ilarly with Cn being R-modules, and Bn and fn being R-module
maps. In the same vein, and yet more generally, there is a notion
of chain complexes taking values in an abelian category A. These
categories are denoted by ChpModRq and ChpAq, respectively.

Definition 3.3. A cochain complex is a sequence pCnq, n P Z of
abelian groups and with differentials

B
n : Cn

Ñ Cn`1,

such that again B2 “ 0, i.e., Bn`1 ˝ Bn “ 0 for all n.

Thus, the only difference to a chain complex is that the differen-
tials have degree +1. Any chain complex pCnq gives rise to a cochain
complex defined by

Cn :“ C´n, B
n :“ B´n,

i.e., just relabeling the components.

Example 3.4. • The sequence

. . . Ñ Z{4
2

Ñ Z{4
2

Ñ Z{4 . . .

(multiplication by 2 in each degree) is a chain complex, while
the sequence

. . . Ñ Z
id
Ñ Z

id
Ñ Z . . .

is not a chain complex, since id ˝ id ‰ 0.

• We can regard any abelian group M as a chain complex which
is M in degree 0, and 0 otherwise (and all differentials are
necessarily 0). We refer to this by saying that the complex is
concentrated in degree 0.
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• Given a chain complex C, the shift of C is defined as

Crpsn :“ Cn`p,

with differential B
Crps
n :“ p´1qpBCn`p. The relevance of the sign

will become clear later in relation with the tensor product of
chain complexes, Example 3.31.

• The name “differential” comes from analysis, where one shows
that the process of taking the exterior derivative yields a cochain
complex on, say, an open subset M Ă Rn (more generally, a
differentiable manifold):

Ω˚
pMq : Ω0

pMq
d

Ñ Ω1
pMq

d
Ñ Ω2

pMq Ñ . . . . (3.5)

Here Ω0pMq denotes the vector space of smooth functionsM Ñ

R and ΩkpMq denotes the vector space of (smooth) k-forms.
This cochain complex is called the de Rham complex . The
fact that d2 “ 0 ultimately relies on the fact that for a (twice
differentiable) function f :M Ñ R

B2f

BxiBxj
“

B2f

BxjBxi

A similar point arises in establishing the singular chain com-
plexes, cf. the use of the simplicial identities in Definition and
Lemma 3.8. This cochain complex is very closely related to
the singular simplicial set SingpMq (and the chain complexes
that we will construct out of it in the next section). In fact,
Stokes’ theorem asserts that for an n-form ω P ΩnpMq and an
n ´ 1-simplex σ : ∆n`1

Top Ñ M , there holds
ż

δσ

ω “

ż

σ

dω.

3.2 From simplicial sets to chain complexes

In this section, we describe two functors

sSet
Zr´s
Ñ sAb

N
Ñ Ch

These are necessary ingredients to define singular homology of topo-
logical spaces.
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We use the free abelian group functor

Zr´s : Set ÑAb,

S ÞÑZrSs “ tn : S Ñ Z, npsq “ 0 for all but finitely many s P Su.

We denote such an element in ZrSs as the finite formal linear com-
bination

ř

nss with nsp“ npsqq P Z. For a map of sets f : S Ñ T ,
the induced map ZrSs Ñ ZrT s is given by

ř

sPS nss ÞÑ
ř

sPS nsfpsq.
Thus, it is the unique Z-linear map sending 1 ¨ s to 1 ¨ fpsq.

Remark 3.6. The functor Zr´s is left adjoint to the forgetful func-
tor Ab Ñ Set, i.e., there is a natural bijection (for any set S and
any abelian group A)

HomAbpZrSs, Aq “ HomSetpS,Aq.

In this bijection, a map f : S Ñ A corresponds to the group ho-
momorphism g : ZrSs Ñ A satisfying gp

ř

sPS nssq “
ř

sPS nsfpsq.
Conversely, a group homomorphism g : ZrSs Ñ A corresponds to

the map (of sets) S
s ÞÑ1¨s
Ñ ZrSs

g
Ñ A.

Recall that for a category C, sC :“ Funp∆op, Cq denotes the cat-
egory of simplicial objects in C. The formation C ÞÑ sC is functorial
in C, in the following sense: given a functor F : C Ñ D, we get a
functor

F : sC Ñ sD,

given by postcomposing with F . In particular, we get a functor

Zr´s : sSet Ñ sAb,

which concretely sends a simplicial set pXnq to a simplicial abelian
group whose n-simplices are pZrXnsq and whose simplicial maps are
given by functoriality of Zr´s. That is, for α : rms Ñ rns and
α˚ : Xn Ñ Xm, the map pZrXsqn “ ZrXns Ñ ZrXms “ pZrXsqm is
given by

ř

sPXn
nss ÞÑ

ř

sPXn
nsα

˚psq. In particular, for α “ δk, the
face maps of ZrXs are the maps

ZrXsn Ñ ZrXsn´1,
ÿ

sPXn

nss ÞÑ
ÿ

sPXn

nsδkpsq.
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Example 3.7. In low degrees, the simplicial abelian group Zr∆1s

is the following:

. . . Z00 ‘ Z01 ‘ Z11
d0 //
d1 // Z0 ‘ Z1

s0
yy

Here the subscripts indicate which element of p∆1qk the copy of Z
belongs to. The maps d0 etc. are induced from the corresponding
maps on ∆1. If we write eij for the element 1 in the copy Zij (which
is a basis vector), we have that d0 is the unique Z-linear map sending
eij to ej, i.e.,

d0pn00e00 ` n01e01 ` n11e11q “ n00e0 ` pn01 ` n11qe1

and similarly for d1, s0 and also the maps in higher dimension.

Definition and Lemma 3.8. Let X P sAb be a simplicial abelian
group. Then the groups Xn for n ě 0 and Xn :“ 0 for n ă 0 and
the following maps constitute a chain complex, denoted CpXq:

Bn : Xn Ñ Xn´1, x ÞÑ

n
ÿ

k“0

p´1q
kdkpxq.

The datumX ÞÑ CpXq is a functor, called the chain complex functor

C : sAb Ñ Ch.

Proof. We have to check Xn
B

Ñ Xn´1
B

Ñ Xn´2 vanishes. Let x P

Xn. For notational simplicity, we write xl :“ dlpxq P Xn´1 and
xk,l :“ dkdlpxq P Xn´2, for appropriate k, l. Below, we will use the
simplicial identity

dkdl “ dl´1dk

for k ă l, as in (2.2). This gives

xk,l “ xl´1,k.
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With this in hand, we have

BBx :“ Bp

n
ÿ

l“0

p´1q
lxlq

“
ÿ

l

p´1q
l
Bxl (B is a group homomorphism )

:“
n´1
ÿ

k“0

n
ÿ

l“0

p´1q
k
p´1q

lxk,l

“
ÿ

lďkďn´1

p´1q
k`lxk,l `

ÿ

kălďn

p´1q
k`lxk,l (group the terms)

“
ÿ

lďkďn´1

p´1q
k`lxk,l `

ÿ

kălďn

p´1q
k`lxl´1,k (simplicial identity)

“
ÿ

lăkďn

p´1q
k´1`lxk´1,l `

ÿ

lăkďn

p´1q
l`kxk´1,l (rewrite)

“ 0.

Definition and Lemma 3.9. Let again X P sAb be a simplicial
abelian group. Let Xdeg

n Ă Xn “ CnpXq be the subgroup gener-
ated by degenerate simplices. Then the differentials Bn : CnpXq Ñ

Cn´1pXq respect this subgroup, so that the groups

NpXqn :“ CnpXq{Xdeg
n ,

and differentials induced from CpXq, constitute a chain complex
NpXq called the normalized chain complex .

This gives a functor, called the normalized chain complex functor

N : sAb Ñ Ch

such that NpXqn “ CnpXq{Xdeg
n , and with differentials induced

from CpXq.

Proof. Indeed, by the simplicial identities (2.3), modulo degenerate
simplices, we have

ÿ

p´1q
kdksj “ p´1q

jdjsj ` p´1q
j`1dj`1sj “ 0.

The purpose of introducing NpXq is that it is smaller, and there-
fore more easily useable for concrete computations, than CpXq.
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However, according to Exercise 4.6, as far as the homology is con-
cerned (which is all that matters here), there is no essential difference
between these two complexes.

Example 3.10. • CnpZr∆0sq “ Z, and

CpZr∆0
sq “ r. . .Z

0
Ñ Z

id
Ñ Z

0
Ñ Z Ñ 0 Ñ . . . s.

Since the only-non degenerate simplex in ∆0 is in dimension
0, the normalized complex is just given by NpZr∆0sq “ Z,
concentrated in degree 0.

• For any simplicial set X, NnpZrXsq is the free abelian group
generated by the non-degenerate n-simplices in X. (Indeed,
Xn “ Xdeg

n \Xnon´degenerate
n , which gives CpZrXsqn “ ZrXns “

ZrXdeg
n s‘ZrXnon´degenerate

n s. The degenerate simplices in CpZrXsqn
are exactly the ones in the first summand.)

• NpZr∆1sq “ rZ01
p´1,1q

Ñ Z0 ‘ Z1s (in degrees 1 and 0, the sub-
scripts indicate the basis vectors corresponding to the copies of
Z).

•

NpZr∆2
sq “

»

—

—

—

—

—

—

—

–

Z012
p1,´1,1q

Ñ Z01 ‘ Z02 ‘ Z12

¨

˚

˚

˚

˝

´1 ´1
1 ´1

1 1

˛

‹

‹

‹

‚

ÝÑ Z0 ‘ Z1 ‘ Z2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

• For the simplicial sphere (Exercise 2.7) we get

NpZrSnsq “ rZ Ñ 0 . . . Ñ 0 Ñ Zs (3.11)

with Z in degrees n and 0, and all differentials are zero (also
for n “ 1).
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3.3 From chain complexes to abelian groups: ho-
mology

Definition 3.12. Let C be a chain complex. We define the cycle
groups , boundary groups and homology groups of C to be

ZnpCq :“ kerpCn
Bn
Ñ Cn´1q,

BnpCq :“ im pCn`1
Bn`1
Ñ Cnq,

HnpCq :“ ZnpCq{BnpCq.

Note here that BnpCq Ă ZnpCq by definition of a chain complex: for
c P BnpCq, i.e., c “ Bc1 for some c1 P Cn`1 we have Bc “ BBc1 “ 0, so
that c P ZnpCq. Thus, the homology group is well-defined.
C is called exact or acyclic if all HnpCq “ 0.

Example 3.13. For a complex C of the form

. . . Ñ 0 Ñ C1
B1
Ñ C0 Ñ 0 Ñ . . . ,

we have H1pCq “ ker B1 and H0pCq “ coker B1, and all other homolo-
gies vanish. This applies, for example, to the complex considered in
§1

Za ‘ Zb ‘ Zc

¨

˚

˚

˚

˝

´1 1
1 ´1

1 ´1

˛

‹

‹

‹

‚

ÝÑ Zx ‘ Zy ‘ Zz.

In fact, this complex is NpZrB∆2sq, as one can quickly check(!).

Remark 3.14. The same concepts also apply to cochain complexes,
except that the differentials go up in degree. Thus, for a cochain
complex C, the cocycles , coboundaries and the all-important coho-
mology groups are defined as

Zn
pCq :“ kerpCn Bn

Ñ Cn`1
q,

Bn
pCq :“ im pCn´1 Bn´1

Ñ Cn
q,

Hn
pCq :“ Zn

pCq{Bn
pCq.

We will later study cohomology of topological spaces in some depth.
Another important example of cohomology arises in analysis when
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studying the de Rham complex, (3.5). The equation d2 “ 0 means
that any differential form ω P ΩkpMq that is exact (ω “ dα, for
some k´ 1-form α) is also closed (dω “ 0). This raises the question
whether the converse holds: is any closed form also exact? The
answer to this question depends on M . For example, one shows
that for M “ Rn, this does hold, which leads to a computation

Hn
pΩ˚

pRn
qq “

"

R n “ 0
0 otherwise

By contrast, for M “ R2zt0u, there is the closed 1-form ´ydx`xdy
x2`y2

“

dz
z
(for z “ x` iy, dz “ dx` idy) which fails to be exact. One shows

that the de Rham cohomology is

H1
pΩ˚

pR2
zt0uqq “ R

´ydx ` xdy

x2 ` y2
,

i.e., up to multiplication with a scalar λ P R, this form is the only
closed, but non-exact 1-form. Later on in this course, we will com-
pute the singular cohomology, which is solely based on topological,
not analytical methods:

Hn
pR2

zt0uqq “

$

&

%

Z n “ 0
Z n “ 1
0 otherwise

The so-called de Rham theorem asserts that for any (real differen-
tiable) manifold M , there is a canonical isomorphism

Hn
pM,Rq “ Hn

pΩ˚
pMqq.

This displays a substantial link between the topology of some space
and the solvability of differential equations. See, for example, [War83]
for all of this.

Lemma 3.15. The cycle, boundary and homology groups are func-
tors

Zn, Bn,Hn : Ch Ñ Ab.

Proof. Left as an exercise (!)(you will need to use the commutativity
of (3.2) at some point).
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3.4 Homology of simplicial sets: definition and
examples

Definition 3.16. We define the homology groups of a simplicial set
X as

HnpXq :“ HnpNpZrXsqq.

The homology functor is the composition

sSet
Zr´s
Ñ sAb

N
Ñ Ch

Hn
Ñ Ab.

More generally, for any commutative ring Λ, we define

Hnp´,Λq

similarly, by replacing Zr´s above by Λr´s, i.e., we take the free
Λ-module generated by the n-simplices of X. We refer to this as
homology with Λ-coefficients . Thus HnpXq “ HnpX,Zq. The rôle of
Λ is the following: we will eventually prove the universal coefficient

theorem ( todo: ref todo]ref) which states that

• HnpX,Qq “ HnpXqbZQ, so homology with rational coefficients
just forgets about the torsion part in the groups HnpXq, which
makes it sometimes easier to compute.

• As far as torsion is concerned, HnpX,Z{ℓq will be a mixture
of HnpXq{ℓ and ta P Hn´1pXq, ℓa “ 0u, i.e., the ℓ-torsion in
the n ´ 1-st homology group. Thus, homology with torsion
coefficients can, in some cases, detect finer phenomena than
HnpX,Zq. See Exercise 4.5 for a precise statement. An inter-
esting example for homology with torsion coefficients appears
in Example 3.20.

Example 3.17. From Example 3.10, we get the following compu-
tations:

• For the k-simplex, we get

Hnp∆k
q “

"

Z n “ 0
0 otherwise

For k “ 0 this is immediate, and for k “ 1, 2, it follows by
inspection of the normalized chain complexes (Exercise 3.6).
For k ą 2, we will use a more convenient method, homotopies,
below in Exercise 3.7.
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• For the simplicial k-sphere Sk, the complex in (3.11) immedi-
ately gives

HnpSkq “

"

Z n “ 0, n “ k
0 otherwise

Note that the right hand side agrees exactly with the claim
made for the homology of the topological k-sphere Sktop (cf. also
the comments made after Example 2.18). This agreement is not
a coincidence: as a consequence of excision, we will eventually
compute the homology of Sktop by showing that it agrees with

the one of the simplicial k-sphere Sk.

Example 3.18. We consider the Möbius strip M :

According to Exercise 2.9, the inclusion

S1 i
Ñ M

is a homotopy equivalence. We will show in Corollary 3.42 that this
implies that

i˚ : HkpS1
q Ñ HkpMq

is an isomorphism. Thus

HkpMq “

$

&

%

Z n “ 0
Z n “ 1
0 otherwise

A generator of H1pMq is given by (the class of) the edge d. To see
H2pMq “ 0, note that nαα ` nββ is mapped under the differential
to

nαpd´ c` aq `nβpa´ d` bq “ pnα `nβqa`nβb´nαc` pnα ´nβqd,
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which is zero only for nα “ nβ “ 0, so that the cycle group Z2

vanishes, and a fortiori H2pMq.

Example 3.19. Let g ě 1. We define a simplicial set Xg to be
glued from 4g copies of ∆2, with boundaries identified as shown for
g “ 2 and g “ 3, respectively:
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This simplicial set is called the (simplicial) orientable surface with
genus g, since its geometric realization |Xg| has (up to homeomor-
phism) precisely that property. The genus is, roughly speaking, the
number of handles attached to S2

Top. We will shortly see how the
genus arises from the computation of the homology of Xg. An an-
imation that shows the construction in case g “ 2 is found here:
https://youtu.be/G1yyfPShgqw.

Then, we have

HkpXgq “

$

’

’

&

’

’

%

Z n “ 0
Z2g n “ 1
Z n “ 2
0 otherwise

A basis of H1pXgq is given by the outer edges (e.g., a, b, c, d, e, f in
case g “ 3). The fact that the ranks of these groups are symmetric
(rkHk “ rkH2´k) is no coincidence, but rather an example of so-
called Poincaré duality , which asserts that this symmetry holds for
any compact orientable manifold.

Example 3.20. We compute the homology of the (simplicial) pro-
jective plane P 2, which is the simplicial set pictured as follows:

Unlike for the examples before, it becomes interesting to not only
consider homology with Z-coefficients, but general rings Λ. P 2 has

https://youtu.be/G1yyfPShgqw
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the following non-degenerate simplices: α, β (in dimension 2), the
edges a, b, d and the vertices x, y. We then get the following chain
complex

Λα ‘ Λβ

¨

˚

˚

˝

´1 1
1 ´1
1 1

˛

‹

‹

‚

// Λa ‘ Λb ‘ Λd

¨

˝

´1 ´1 0
1 1 0

˛

‚

// Λx ‘ Λy.

(The first column of the left hand matrix reflects the fact that Bpαq “

d0pαq ´ d1pαq ` d2pαq “ b ´ a ` d, for the right hand matrix note
that Bpaq “ y ´ x etc.) (The first column of the left hand matrix
reflects the fact that Bpαq “ d0pαq ´ d1pαq ` d2pαq “ b ´ a ` d, for
the right hand matrix note that Bpaq “ y ´ x etc.)

• For degree 0, we have B0 “ tpx,´xq, x P Λu, so that

H0pP
2,Λq “ Λ.

• For degree 1, we have Z1 “ tpxa, xb, xdq, xa ` xb “ 0u, while B1

is the image of the 2-by-3 matrix displayed above, which is the
same as the image of the 2-by-3 matrix

¨

˝

0 1
0 ´1
2 1

˛

‚.

We have an isomorphism

H1pP
2,Λqp:“ Z1{B1q ÑΛ{2,

pxa, xb, xdq ÞÑxd ´ xa.

Indeed, this map is clearly surjective. It is also injective: for
xd´xa P 2Λ, say xd´xa “ 2x for some x P Λ (and xa`xb “ 0),
we have pxa, xb, xdq “ pxa,´xa, xa ` 2xq P B1 “ im B2.

• For degree 2, we have

H2pP 2
q “ Z2 “ tpxa, xbq, xα`xβ “ 0, xα´xβ “ 0u – tx P Λ, 2x “ 0u.

• Of course, in higher degrees, HkpP 2q “ 0.
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We therefore see that the homology depends in an interesting way
on Λ:

HkpP 2,Zq “

$

’

’

&

’

’

%

Z n “ 0
Z{2 n “ 1
0 n “ 2
0 otherwise,

HkpP 2,Z{2q “

$

’

’

&

’

’

%

Z/2 n “ 0
Z{2 n “ 1
Z{2 n “ 2
0 otherwise.

3.5 Chain homotopies

In §2.4 we introduced the notion of continuous and simplicial homo-
topies, which are special relations between two maps

f, g : X Ñ Y

in Top, and in sSet, respectively. In this section, we are going to de-
fine the corresponding notion of homotopies between maps of chain
complexes. We will show that

• if r, s : C Ñ D are two maps of chain complexes that are chain
homotopic, then they induce the same map

Hnprq “ Hnpsq

on homology groups,

• if f, g : X Ñ Y are (simplicially) homotopic maps in sSet, then
the maps Npfq, Npgq : NpXq Ñ NpY q are chain homotopic.
Here and in the sequel, we will sometimes abbreviate

NpXq :“ NpZrXsq, Npfq :“ NpZrf sq.

These facts are the key ingredients in the homotopy invariance of
homology (Proposition 4.8).

Definition 3.21. • Let f, g : C Ñ D be two chain maps. A
chain homotopy between f and g is a collection of group ho-
momorphisms hn : Cn Ñ Dn`1 such that

B
D
n`1 ˝ hn ` hn´1 ˝ B

C
n “ gn ´ fn. (3.22)



56 CHAPTER 3. CHAIN COMPLEXES

This condition is often written as

Bh ` hB “ g ´ f.

More pictorially, the sum of the two composites in the lozenge
must equal the vertical maps:

. . . // Cn

gn´fn
��

hn

||

BC
n // Cn´1

hn´1||

// . . .

. . . // Dn`1
BD
n`1

// Dn
// . . .

• We say that f : C Ñ D is (chain) homotopic to g : C Ñ D if
there is such a chain homotopy.

• A chain map f : C Ñ D is called a chain homotopy equivalence
if there is a chain map g : D Ñ C such that f ˝ g is homotopic
to idD, and g ˝ f is chain homotopic to idC .

Remark 3.23. Note that the hn do not assemble to a chain map
C Ñ Dr1s! Instead, we will soon see that a homotopy is the same
thing as a chain map

NpZr∆1
sq b C “ pZ

p´1,1q
Ñ Z ‘ Zq b C Ñ D.

Lemma 3.24. Let f, g : C Ñ D be two homotopic chain maps.
Then Hnpfq “ Hnpgq for all n P Z.

Proof. Let c P ZnpCq be a cycle. We have to show that gpcq ´ fpcq
is a boundary (in D), so that rgpcqs ´ rfpcqs “ 0 P HnpDq. Indeed:

gpcq ´ fpcq “ Bhpcq ` h Bpcq
loomoon

“0

P BnpDq.

Definition 3.25. A chain map f : C Ñ D is called a quasi-isomorphism
if the induced maps

Hnpfq : HnpCq Ñ HnpDq

is an isomorphism for each n P Z.
We say a complex C is quasi-isomorphic to a complex D if there

is a quasi-isomorphism f : C Ñ D.



3.5. CHAIN HOMOTOPIES 57

Lemma 3.26. Any chain homotopy equivalence f : C Ñ D is a
quasi-isomorphism.

Proof. Indeed, for g : D Ñ C as above, the following maps HnpDq Ñ

HnpDq agree:

Hnpfq ˝ Hnpgq “ Hnpf ˝ gq “ HnpidDq “ idHnpDq

by Lemma 3.15 and Lemma 3.24. Similarly with g˝f , so that Hnpfq

is an isomorphism.

Synopsis 3.27. Given a chain map f : C Ñ D, we can list a num-
ber of conditions, where each one implies the one below:
(1) f is an isomorphism

(2) f is a chain homotopy equivalence

(3) f is a quasi-isomorphism

Remark 3.28. In general, none of these implications is reversible.

• (3) œ (2): for example, the map of chain complexes

C :“ r0 Ñ Z
e

Ñ Z Ñ 0 . . . s
f

Ñ D :“ Z{er0s

(given in degree 0 by the canonical projection) is a quasi-
isomorphism: the homology groups Hn of both complexes van-
ish for n ‰ 0. We have Z0pCq “ Z, B0pCq “ eZ, so that
H0pCq “ Z{eZ. The induced map H0pCq Ñ H0pDq is the iden-
tity, so f is a quasi-isomorphism. However, there is no nonzero
group homomorphism Z{e Ñ Z, so any g : D Ñ C must be
zero. However, f ˝ 0 “ 0 is not homotopic to idD: this would
imply that the 0-map and the identity of H0pDq agree, which
is false.

• However, it can be shown that if C and D are complexes of
modules over a ring Λ such that Cn “ Dn “ 0 for n ! 0,
and all Cn and Dn are projective Λ-modules, then a quasi-
isomorphism f is necessarily a chain homotopy equivalence.
See, e.g., [Wei94, Theorem 2.2.6] and related statements there.

• If one has two chain complexes C and D such that for all n,

there are (group) isomorphisms en : HnpCq
–
Ñ HnpDq, C need

not be quasi-isomorphic to D: there need not be a chain map
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f : C Ñ D such that the induced maps Hnpfq agree with en.
(However, if such a map f does exist, then it is of course a
quasi-isomorphism).

The relation “C is quasi-isomorphic to D” is not symmetric:
given a quasi-isomorphism f : C Ñ D, there need not be a
quasi-isomorphism D Ñ C, cf. Exercise 3.3.

3.6 From simplicial homotopies to chain homo-
topies

To establish a connection between simplicial homotopies and chain
homotopies, we introduce the tensor product of chain complexes,
and show that the normalized chain complex functor N behaves
well in this regard (Proposition 3.41). The tensor product of chain
complexes will also play a key role in the Künneth formula that
computes the cohomology of a product of two topological spaces

( todo: link todo]link).

3.6.1 Tensor products of chain complexes

Definition and Lemma 3.29. The tensor product of two chain
complexes C,D P Ch is defined to be the complex with pC bDqk “
À

m`n“k Cm b Dn. The differential

B
CbD
k : pC b Dqk Ñ pC b Dqk´1

is defined by the formula

Bpc b dq :“ pBcq b d ` p´1q
mc b pBdq, (3.30)

where c P Cm, d P Dn.
This is indeed a chain complex, which gives a functor

b : Ch ˆ Ch Ñ Ch.

Proof. Using B2
C “ B2

D “ 0, we compute

BpBpc b dqq “ B ppBcq b d ` p´1q
mc b pBdqq

“ BpBcq
loomoon

“0

bd ` p´1q
m´1

pBcq b pBdq ` p´1q
m

pBcq b pBdq ` p´1q
m

p´1q
mc b BpBdq

loomoon

“0

“ 0.
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Example 3.31. • For any complex C and any abelian group Λ,
the complex C b pΛr0sq is given in degree n by Cn b Λ, with
differential BC b id. In particular, for a simplicial set X,

NpZrXsq b Λ “ NpΛrXsq.

• For C P Ch, the shifted complex (Example 3.4) is given by

Crns “ pZrnsq b C.

Indeed, Zrnsk “ Z for k “ ´n and 0 otherwise, so that pZrnsb

Cqk “ Cn`k. The differential is given by

BZrnsbCps b cq “ BZrnspsq
loomoon

“0

bc ` p´1q
´ns b BCc “ p´1q

nsBCc.

Here s P Zrns´n “ Z, and c P Cn`k. By contrast, C bZrns has
again Cn`k in degree k, and no sign in the differential:

BCbZrnspc b sq “ Bc b s ` p´1q
n`kc b Bs “ Bc b s.

Thus, the maps

fk :“ p´1q
nid : pC b Zrnsqk “ Cn`k Ñ Cn`k “ pZrns b Cqk

constitute an isomorphism of chain complexes (which is not the
identity!).

Lemma 3.32. Let f, g : C Ñ D be two chain maps. A chain
homotopy h between f and g (Definition 3.21) is the same thing as
a chain map h fitting into a commutative diagram like so:

Np∆0q b C

δ0bid
��

C
f

��

Np∆1q b C
h // D

Np∆0q b C

δ1bid

OO

C.

g

@@

Proof. By Example 3.10, Np∆1q “ rZ
p´1,1q

Ñ Z ‘ Zs, where the left
hand Z is in degree 1. Thus,

pN∆1
b Cqn “ Z b Cn´1 b pZ ‘ Zq b Cn “ Cn´1 ‘ Cn ‘ Cn.



60 CHAPTER 3. CHAIN COMPLEXES

The restriction along δk : ∆0 Ñ ∆1 being f and g, respectively,
only leaves free the maps Cn´1 Ñ Dn, which we call hn. Unwinding
the definition of the differential on the tensor product, one checks
(!)that h is a chain map iff the above diagram commutes holds.

3.6.2 The Eilenberg–Zilber map

In this section we show that the functor

NpZr´sq : sSet Ñ Ch

interacts well with the monoidal structures, i.e., relates products in
sSet with tensor products in Ch. This is then used in order to show
that simplicial homotopies give rise to chain homotopies under that
functor.

Following up on Example 2.25, we begin with a closer look at the
product of simplicial sets ∆n ˆ ∆m.

Lemma 3.33. Let m,n ě 0. Then the following holds:
(1) A p-simplex of ∆m ˆ∆n corresponds to a pair of morphisms (in

the category ∆)

pσ1 : rps Ñ rms, σ2 : rps Ñ rnsq

or, equivalently, to an order-preserving map

σ : rps Ñ rms ˆ rns,

(where at the right hand we declare pi, jq ď pi1, j1q iff i ď i1 and
j ď j1).

(2) A p-simplex is non-degenerate iff the map σ is injective. The
highest possible p with that property is p “ m ` n.

(3) Any non-degenerate simplex of ∆m ˆ∆n is a face of (i.e., arises
by applying appropriate face maps to) a non-degenerate pm`nq-
simplex.

(4) There is a bijection between

p∆m
ˆ ∆n

q
non´deg
m`n – tJ Ă t1, . . . ,m ` nu, |J | “ mu . (3.34)

At the right, we have the subsets of rm`ns with cardinality m.
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Proof. The first statement holds by Lemma 2.33. For the second,
observe that σ is injective iff it does not factor over some map σk :
rps Ñ rp ´ 1s iff it is non-degenerate. (3) is left as an exercise.

Finally, take an injective order-preserving map

σ “ pσ1, σ2q : rm ` ns Ñ rms ˆ rns

and assign to it the subset

J :“ t1 ď j ď m`n, σ1pj´1q “ σ1pjqup“ t1 ď j ď m`n, σ2pj´1q ă σ2pjquq.

Since σ is injective and order-preserving, |J | “ m, and one checks
it defines a bijection.

Definition 3.35. A subset J Ă t1, . . . ,m ` nu, |J | “ m is called a
shuffle, with the idea that an (ordered) deck of m cards is shuffled
into an (ordered) deck of n cards, without changing the order within
the two decks.

More formally, J gives rise to a unique permutation of the set
t1, . . . ,m ` nu such that 1, . . . ,m map to the elements in J in the
order-preserving way, and the elements m ` 1, . . . , n to rn ` mszJ ,
again in the order-preserving way.

The signature of a shuffle sgnpJq is defined as the signature of
that permutation.

Example 3.36. To the displayed map σ : r5s Ñ r3s ˆ r2s corre-
sponds the shuffle J “ t2, 5u, which gives rise to the permutation
31452, whose signature is sgnpJq “ p´1q4 “ `1.
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Let X, Y P sSet. In order to define a chain map

NpZrXsq b NpZrY sq Ñ NpZrX ˆ Y sq,

recall that the k-simplices are the free abelian groups

pNpZrXsq b NpZrY sqqk “
à

m`n“k

NpZrXsqm b NpZrY sqn

“ ZrXnon´deg
m s b ZrY non´deg

n s

“ ZrXnon´deg
m ˆ Y non´deg

n s,

so to specify such a map, we need to send any pair pα, βq of non-
degenerate simplices (in X and Y , respectively), to an element in

NpZrX ˆ Y sqk,

i.e., a formal linear combination of non-degenerate simplices in X ˆ

Y .
Recall also from Lemma 2.33, thatXm – HomsSetp∆

m, Xq. Using
this, we can further constrain the way how to construct such maps:

∆m`n σ // ∆m ˆ ∆n

αˆβ
��

X ˆ Y.

(3.37)

I.e., given α and β, we can use a shuffle σ (i.e., a non-degenerate
top-dimensional simplex of ∆m ˆ ∆n), and get an pm ` nq-simplex
of X ˆ Y .
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Definition 3.38. The Eilenberg–Zilber map is the map

∇ : NpZrXsq b NpZrY sq Ñ NpZrX ˆ Y sq,

that assigns to a pair of non-degenerate simplices pα, βq as above
the sum

ÿ

J shuffle

sgnpJqppα ˆ βq ˝ σJq,

where σJ corresponds to J under the bijection in (3.34).

Example 3.39. Let us illustrate the definition of ∇ with the ex-
ample X “ Y “ ∆1. Recall that

Np∆1
q “ rZ01

p´1,1q
Ñ Z0 ‘ Z1s,

so that (as usual, subscripts serve to remember the generators and
Z?b‚ stands for Z? b Z‚):

Np∆1
qbNp∆1

q “ rZ01b01 Ñ Z01b0‘Z01b1‘Z0b01‘Z1b01 Ñ

1
à

i,j“0

Zibjs.

By comparison, ∆1 ˆ ∆1 has the following simplices (cf. Exam-
ple 2.25)

so that

Np∆1
ˆ∆1

q “ rZ001,011‘Z011,001 Ñ Z00,01‘Z01,11‘Z01,01‘Z01,00‘Z11,01 Ñ

1
à

i,j“0

Zi,js.

• In degree 0, ∇ is composed of the identity maps Zibj Ñ Zi,j.
Indeed, in (3.37), there is exactly one shuffle to be considered,
which is J “ H Ă pt1, . . . , 0u “ H, which corresponds under
the bijection in (3.34) to the identity map σ “ id : r0s Ñ

r0s ˆ r0s and therefore the identity permutation (of H), so that
the sign is `1.



64 CHAPTER 3. CHAIN COMPLEXES

• In degree 1, ∇ is composed by identity maps Zib01 Ñ Zii,01
and Z01bi Ñ Z01,ii. Indeed, focus on the first case (the other is
similar, also with sign +1): in (3.37) (with m “ 0 and n “ 1),
there is exactly one shuffle to be considered, namely J “ H Ă

t1u, which corresponds again to the identity map σ “ id : r1s Ñ

r0s ˆ r1s, whose signature is again `1. Thus,

∆0`1

ii,01 %%

σ // ∆0 ˆ ∆1

iˆ01
��

∆1 ˆ ∆1.

• In degree 2, things get more interesting:

J Ă t1, 2u σ sgnpσq r2s Ñ r1s ˆ r1s 2-simplex in ∆1 ˆ ∆1

t1u 12 `1 p0, 0q, p1, 0q, p1, 1q p011, 001q

t2u 21 ´1 p0, 0q, p0, 1q, p1, 1q p001, 011q

Thus, in degree 2, ∇ is the map

Z01b01
p´1,`1q
ÝÑ Z001,011 ‘ Z011,001

Lemma 3.40. The Eilenberg–Zilber map ∇ is indeed a chain map.

Proof. We have to check

B∇ “ ∇B,

which we only do in the above example X “ Y “ ∆1. The proof in
general uses the same idea, but slightly more tedious combinatorical
arguments. See, e.g., [Lur, Tag 00RR]. The point is that the signs
of the shuffles are such that the diagonal edge 01, 01, which arises
as a face of both non-degenerate 2-simplices in ∆1 ˆ∆1, cancel each
other: Indeed,

B∇p01 b 01q “ Bpp011, 001q ´ p001, 011qq

“ pp11, 01q ´ p01, 01q ` p01, 00qq ´ pp01, 11q ´ p01, 01q ` p00, 01qq

“ p11, 01q ´ p01, 01q ` p01, 00q ´ p01, 11q ` p01, 01q ´ p00, 01q

“ p11, 01q ` p01, 00q ´ p01, 11q ´ p00, 01q.

On the other hand, using the signs in the tensor product in (3.30),
we have

∇Bp01 b 01q “ ∇ pBp01q b 01 ´ 01 b Bp01qq

“ ∇ pp1 b 01 ´ 0 b 01q ´ p01 b 1 ´ 01 b 0qq

“ 11 b 01 ´ 00 b 01 ´ 01 b 11 ` 01 b 00.

https://kerodon.net/tag/00RR
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Here comes the reward:

Proposition 3.41. Let f, g : X Ñ Y be (simplicially) homotopic
maps between simplicial sets. Then the induced maps

NpZrf sq, NpZrgsq : NpZrXsq Ñ NpZrY sq

are chain homotopic. Thus, by Lemma 3.24,

Hnpfq,Hnpgq : HnpXq Ñ HnpY q

are the same maps.

Proof. This is an immediate consequence of the existence of the
Eilenberg–Zilber map ∇. We again write NpXq :“ NpZrXsq etc.
Let h : ∆1 ˆ X Ñ Y be a homotopy between f and g. Then we
have a commutative diagram:

Np∆0q b NpXq

δ0

��

Np∆0 ˆ Xq

δ0

��

NpXq

Npfq

$$

Np∆1q b NpXq
∇ // Np∆1 ˆ Xq

Nphq
// NpY q

Np∆0q b NpXq

δ1

OO

Np∆0 ˆ Xq

δ1

OO

NpXq.

Npgq
::

Indeed, NpZr∆1sq “ rZ
p´1,1q
ÝÑ Z ‘ Zs, so that for any chain complex

C,

pNpZr∆1
sqbCqk “ Ck´1‘ZrXnon´deg

k s‘ZrXnon´deg
k s Ñ Zrp∆1

ˆXq
non´deg
k s.

Thus,
Nphq ˝ ∇ : Np∆1

q b NpXq Ñ NpY q

is a chain homotopy between Npfq and Npgq.

The next corollary will be used to compute the homology of some
topological spaces:

Corollary 3.42. Any simplicial homotopy equivalence f : X Ñ Y
gives rise to a quasi-isomorphism

Npfqp:“ NpZrf sq : NpXq Ñ NpY q,

and thus to isomorphisms

Hnpfq : HnpXq Ñ HnpY q.
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3.7 Exercises

Exercise 3.1. Prove Lemma 3.15.
For the cycles (but not the others) one may argue by exhibiting

a (very small) chain complex Zn, such that for each chain complex
C,

ZnpCq “ HomChpZn, Cq.

Exercise 3.2. Let HoCh be the category of chain complexes up to
homotopy : its objects are chain complexes, and

HomHoChpC,Dq :“ HomChpC,Dq{ „,

where f „ g iff the two maps are chain homotopic.

• Verify this is indeed a well-defined category and that there is a
functor

Ch Ñ HoCh

given on objects by C ÞÑ C.

• Show that HnpCq “ HomHoChpZrns, Cq.

Exercise 3.3. Is there a quasi-isomorphism

Z{n Ñ rZ
n

Ñ Zs,

(where the left complex is concentrated in degree 0, the right one in
degrees 1 and 0)?

Exercise 3.4. Let f : X Ñ Y be the following map of simplicial
sets

i.e., a, b ÞÑ c, α, β ÞÑ γ.

• Compute the normalized chain complex of X, of Y and show
that the homologies are given by

HkpXq “ HkpY q “ Z

for k “ 0 and k “ 1.
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• Show that, under the isomorphisms above, the map

Hkpfq : HkpXq Ñ HkpY q

is the identity for k “ 0 and multiplication by 2 for k “ 1.

• Let r P Z, r ě 2. Describe a map of simplicial sets

f prq : Xprq
Ñ Y,

(for an appropriate Xprq P sSet) such that HkpXprqq “ HkpY q “

Z for k “ 0, 1 and such that (under these isomorphisms)

H0pf prq
q “ idZ,H1pf

prq
q “ ridZ,

i.e., multiplication by r in the first homology group.

Exercise 3.5. Let C be an exact complex. Show that the following
are equivalent:
(1) Bn : Cn Ñ Cn´1 is 0,

(2) Bn`1 is surjective,

(3) Bn´1 is injective.

Exercise 3.6. Show by direct computation that

Hnp∆2
q “

"

Z n “ 0
0 otherwise

“Draw” some elements in Z1pNpZr∆2sqq and B1pNpZr∆2sqq.

Exercise 3.7. Show that the unique map ∆k Ñ ∆0 is a simplicial
homotopy equivalence. (A simplicial set with this property is called
contractible.) Use this to confirm the claim made in Example 3.17.

Hint: there is a conceptual proof, which relies on expressing ∆k

as a nerve (cf. Exercise 2.4): ∆k “ Nprksq. Now show that for a cat-
egory C with an initial object, NpCq is contractible. Alternatively,
there is also a hands-on proof by writing down simplices of ∆1 ˆ∆k.

Exercise 3.8. Using the product of simplicial sets from Definition 2.24,
we define the simplicial torus

T :“ S1
ˆ S1.

• Draw the non-degenerate simplices of T .
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• Compute the complex NpZrT sq.

• Show

HnpT q “

$

’

’

&

’

’

%

Z n “ 0
Z2 n “ 1
Z n “ 2
0 otherwise

• (If you feel adventurous:) What do the ranks of the groups
HnpT q look like? Make a guess for HnpS1 ˆS1 ˆS1q and prove
it!

Exercise 3.9. Let

. . . Ñ 0 Ñ A
a

Ñ B
b

Ñ C Ñ 0 . . .

be an exact complex of abelian groups. (This is called a short exact
sequence.) Show that for any abelian group T , there are complexes,
with appropriate natural maps

0 Ñ HomAbpT,Aq
a˚
Ñ HomAbpT,Bq

b˚
Ñ HomAbpT,Cq Ñ 0.

Show that this complex is exact except possibly at the spot HompT,Cq,
i.e., b˚ need not be surjective. Show that for a free abelian group T
(T “ ZrSs for some set S), the complex is exact.

Also show that

0 Ñ A b T Ñ B b T Ñ C b T Ñ 0

is a complex. Show that it is exact except that possibly the map
A b T Ñ B b T need not be injective. Show that the complex is
exact for a free abelian group T .

Exercise 3.10. The (simplicial) Klein bottle K is the one corre-
sponding to the following picture (note that in comparison to the
projective plane, the direction of the right vertical edge has changed,
and there is only one vertex):
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• Define this simplicial set formally. Hint: start with ∆2 \ ∆2,
corresponding to α and β, and define a number of intermediate
simplicial sets by glueing certain simplices step by step.

• Spell out the normalized chain complex NpZrKsq.

• Compute the homologies HkpKq.

• (Optional, bonus) Compute HkpK,Λq for an arbitrary ring Λ.
Relate your computations to the explanation of the universal
coefficient theorem made after Definition 3.16.

Exercise 3.11. Let X :“ S1 \t˚u S
1 be two copies of the simplicial

sphere, glued together at the unique 0-simplex.

Show

HnpZrXsq “

$

&

%

Z n “ 0
Z2 n “ 1
0 otherwise

Exercise 3.12. Compute the homology of the (simplicial) lasso,
cf. Exercise 2.2.
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Exercise 3.13. The set of path components of a simplicial set X is
defined as

π0pXq :“ X0{ „,

where „ is the equivalence relation generated by the following rela-
tion „1 (for x0, x1 P X0): x0 „1 x1 iff there is an edge e P X1 such
that dkpeq “ xk for k “ 0, 1.

• Show that x0 „1 x1 iff the two maps ∆0 Ñ X given by x0, x1
(via the Yoneda lemma, cf. Lemma 2.33) are homotopic.

• Given an example of a simplicial set X where the relation „1

is not an equivalence relation.

• Show that for X “ SingpY q, for a topological space Y , the
relation „1 is, however, an equivalence relation (so that „“„1

in this case). Prove

π0pSingpY qq “ π0pY q,

where the right hand side is the set of path components (cf. Ex-
ercise 1.3).

• Show that H0pXq is isomorphic to Zrπ0pXqs for any simplicial
set X.

• (Optional, bonus): Show that the assignmentX ÞÑ π0pXq gives
rise to a functor sSet Ñ Set. Show that this functor is left
adjoint to the discrete-simplicial-set functor disc : Set Ñ sSet
(Example 2.4).



Chapter 4

Singular homology

In this chapter, we finally introduce homology of topological spaces.
We also prove the Eilenberg–Steenrod axioms: the dimension axiom,
the additivity for homology, as well as the homotopy invariance, the
Mayer–Vietoris sequence and the (essentially equivalent)excision.
We use these to compute homology groups of various spaces includ-
ing spheres and projective spaces. These computations are used
to prove the Brouwer fixed point theorem (cf. §1.2), as well as the
Borsuk–Ulam theorem and the fundamental theorem of algebra.

4.1 Definition

Definition 4.1. The n-th singular homology (or just homology) of
a topological space X is defined to be

HnpXq :“ HnpSingpXqqp:“ HnpNpZrSingXsqqq.

More diagrammatically, HnpXq is the image ofX under the following
composition of functors:

Top
Sing
Ñ sSet

Zr´s
Ñ sAb

N
Ñ Ch

Hn
Ñ Ab.

Being a composite of functors, Hn is itself a functor:

Hn : Top Ñ Ab.

Again, slightly more generally, for a commutative ring Λ, we define
homology with Λ-coefficients as

HnpX,Λq :“ HnpNpΛrSingXsqqpP ModΛq.

71
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Remark 4.2. By Exercise 4.6, the maps

HnpCpZrSingXsqq Ñ HnpNpZrSingXsqq

are isomorphisms, so that we can interchange the chain complexes
C and its normalized variant N at will.

4.2 Dimension axiom and additivity

Proposition 4.3. (Dimension axiom) We have

Hnpt˚uq “

"

Z n “ 0
0 otherwise

Proof. Indeed, since any continuous map ∆n
top Ñ t˚u factors over

∆0
top, Singpt˚uq is the discrete simplicial set associated to a point,

i.e., ∆0. Then NpZr∆0sq “ Z (in degree 0), which has the homology
stated above.

Proposition 4.4. (Additivity) Homology of a disjoint union of spaces
can be computed as

Hn

˜

ğ

iPI

Xi

¸

“
à

iPI

HnpXiq.

In the proof we use the direct sum of two complexes C and D,
which is simply given by

. . . Ñ pC ‘ Dqn :“ Cn ‘ Dn
BC
n ‘BD

n
Ñ Cn´1 ‘ Dn´1 Ñ . . .

Proof. Indeed, each of the functors in the diagram below preserves
coproducts (which are disjoint unions in Top, and direct sums in the
three right hand categories):

Top
Sing
Ñ sSet

Zr´s
Ñ sAb

C
Ñ Ch

Hn
Ñ Ab.

(Alternatively, N can also be used in place of C.) For Sing, this
was shown in Lemma 2.30 (this used that ∆npP Topq is connected).
For the free abelian group functor Zr´s : Set Ñ Ab, this is clear
from the definition (or from the fact that it is a left adjoint). By
definition, both C and N also preserves direct sums, i.e.,

Cp
à

Aiq “
à

CpAiq



4.2. DIMENSION AXIOM AND ADDITIVITY 73

for a family of simplicial abelian groups Ai P sAb, and likewise for
the normalized chain complex N .

Next, the cycle and boundary complex functors preserve direct
sums, i.e., for a family of chain complexes Ci the direct sum

À

iCi
is given in degrees n and n ´ 1 by

à

i

pCiqn
B“

À

i BCi
ÝÑ

à

i

pCiqn´1.

Thus, being a cycle, resp. a boundary in this complex means that
each component (for all i) is a cycle, resp. a boundary:

Znp
à

i

Ciq “
à

i

ZnpCiq, Bnp
à

i

Ciq “
à

i

BnpCiq.

Using finally that direct sums (of abelian groups) commute with quo-
tients (i.e., for a family of subgroups Vi Ă Wi, we have

À

Wi{
À

Vi “
À

pWi{Viq), we are done since Hn “ Zn{Bn.

Homology in degree 0 is easy to compute. Recall that the set
π0pXq of path components is defined as

π0pXq :“ X{ „,

where x „ y iff there is a continuous map ∆1 Ñ X whose endpoints
are x and y, respectively.

Lemma 4.5. For a topological space X,

H0pXq “ Zrπ0pXqs

is the free abelian group on the set of path-components of X.

Proof. This follows from Exercise 3.13:

H0pXq “ H0pSingpXqq “ Zrπ0pSingXqs “ Zrπ0pXqs.

Remark 4.6. Let X be a topological space, and x P X. There is a
canonical map from the fundamental group (with base-point x) to
the first homology group:

π1pX, xq Ñ H1pXq
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defined by sending a loop, i.e., a continuous map σ : ∆1 Ñ X
with σpp0, 1qq “ σpp1, 0qq “ x), to σ. Note that σ P SingpXq1 Ă

ZrSingpXq1s is a cycle, since

dpσq “ d0pσq ´ d1pσq “ σpp0, 1qq ´ σpp1, 0qq “ x ´ x “ 0.

Thus, rσs is indeed an element in H1pXq. One checks (!)that for an-
other loop τ that is homotopic to σ (where the homotopy is relative
to the base point x) σ ´ τ is a boundary in CpZrSingXsq, so the
map above is well-defined. One also checks that it is in fact a group
homomorphism.

The so-called Hurewicz theorem asserts that the above map, for
X being connected, the above map induces an isomorphism

pπ1pX, xqqab
–
Ñ H1pXq

between the abelianization of π1 and the homology group. See, e.g.,
[Rot88, Theorem 4.29] or [GJ09, Corollary III.3.6] for an exposition
on the level of appropriate simplicial sets, called Kan complexes .

For example, the fundamental group of R2ztp1, . . . , pnu can be
shown (using the Seifert–van Kampen theorem) to be the free group
on n generators (namely, loops winding around the points pk once,
but not around the others), while

H1pR
2
ztp1, . . . , pnuq “ Zn.

(That computation requires the Mayer–Vietoris sequence below. See
also Outlook 4.29 for further allusions to the similarity between the
Seifert–van Kampen theorem and the Mayer–Vietoris sequence.)

Outlook 4.7. Lemma 4.5 indicates that singular homology is well-
adapted to topological spaces which have enough (continuous) maps
∆1 Ñ X. Not all spaces are of this form, such as

• the topologists’ sine curve, T :“ tpx, sinpx´1qq|x P p0, 1su Y

tp0, 0qupĂ R2q which is a connected, but not path-connected
topological space (see, e.g., [Hat, §2]),

• the spectrum SpecR of a commutative ring (for example R “

Z), equipped with its Zariski topology .

For such more general spaces, it is still possible to glean meaningful
(co)homological information using so-called sheaf cohomology .
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4.3 Homotopy

After the dimension axiom and the behavior of homology with re-
spect to disjoint unions, the next easiest property of homology is
the homotopy axiom.

Proposition 4.8. (Homotopy axiom orHomotopy invariance of ho-
mology) Homotopic maps induce the same maps on homology. More
formally, let f, g : X Ñ Y be continuous maps that are homotopic.
Then the induced (chain) maps

Npfq, Npgq : NpXq Ñ NpY q

are homotopic, so that

Hnpfq,Hnpgq : HnpXq Ñ HnpY q

are the same maps.

Corollary 4.9. If a continuous map f : X Ñ Y is a continuous
homotopy equivalence, then

Hnpfq : HnpXq Ñ HnpY q

is an isomorphism.

Proof. (of Proposition 4.8) The point is that every functor in

Top
Sing
Ñ sSet

NpZr´sq
Ñ Ch

Hn
Ñ Ab,

plays well with homotopies. Let h be a (continuous) homotopy
between f and g. Then:

• Singphq gives rise to a simplicial homotopy h1 between f 1 :“
Singpfq and g1 :“ Singpgq (Proposition 2.39),

• Nph1q gives rise, via the Eilenberg–Zilber map ∇, to a homo-
topy between Npf 1q and Npg1q (Proposition 3.41),

• chain homotopic maps give rise to the same maps after applying
Hn (Lemma 3.24).



76 CHAPTER 4. SINGULAR HOMOLOGY

Example 4.10. Let X Ă Rn be a non-empty convex subset (with
the subspace topology). Then the inclusion i : tx0u Ñ X of any
point is a (continuous) homotopy equivalence, for p : X Ñ tx0u
satisfies p ˝ i “ id and i ˝ p is homotopic to idX via

h : ∆1
Top ˆ X Ñ X, ppt0, t1q, xq ÞÑ t0x ` t1x0.

(This map is well-defined since X is convex.)
Thus, the maps

HnpXq
Hnppq

Õ
Hnpiq

Hnpt˚uq

are isomorphisms, so that Proposition 4.3 gives

HnpXq “

"

Z n “ 0
0 otherwise

Example 4.11. Recall that a subspace A Ă X of a topological
spaceX is a deformation retract , if there is a map h : Xˆr0, 1s Ñ X
such that h0 :“ h|Xˆ0 is the identity, h1 takes values in ApĂ Xq and
h|Aˆr0,1s “ idA. For example, the inclusion of S1 into a Möbius strip
is a deformation retract.

Then the inclusion i : A Ă X induces isomorphisms

Hnpiq : HnpAq Ñ HnpXq.

Indeed, the (continuous!) map h1 : X Ñ A is such that h1 ˝ i “ idA,
while i ˝ h1 is homotopic (via h) to i ˝ h0 “ idA.

The homotopy axiom can also be recast using a categorical lan-
guage, by using the category HoTop (called topological spaces up to
homotopy) whose objects are topological spaces and

HomHoToppX, Y q :“ HomToppX, Y q{ „,

where „ is the homotopy (equivalence!) relation, cf. Remark 2.38.
One checks that this is indeed a category (the point being that if
f, g : X Ñ Y satisfy f „ g then f ˝ e „ g ˝ e and e ˝ f „ e ˝ g for
appropriate continuous maps e). Similar definitions yield categories
HosSet and HoCh (cf. Exercise 3.2) for the latter. The homotopy
axiom (and its proof!) can then be restated using the following
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diagram

Top

��

Sing
// sSet

��

NpZr´sq
// Ch

Hn //

��

Ab

HoTop
2.39
// HosSet

3.41
// HoCh

3.24
Ab.

4.4 Mayer–Vietoris sequences

So far, we have been able to compute the homology of topologi-
cal spaces X such that X is isomorphic in HoTop to a point. The
remaining key property of homology will allow us to drop that re-
striction. The basic idea of Mayer–Vietoris sequences and excision
is to break the computation of homology of some space X into the
homology of smaller, hopefully more easily understood, subspaces
of X.

4.4.1 Preliminaries from homological algebra

Definition 4.12. A short exact sequence of abelian groups is an
exact complex

. . . Ñ 0 Ñ A
f

Ñ B
g

Ñ C Ñ 0 . . .

which we will abbreviate as

0 Ñ A Ñ B Ñ C Ñ 0.

(Concretely, g ˝ f “ 0, f is injective, ker g “ im f and g is surjec-
tive.) More generally, the same definition applies to general abelian
categories such as ModΛ or ChpModΛq for any ring Λ, instead of
abelian groups. In particular, a short exact sequence of chain com-
plexes is a sequence of chain maps

A
f

Ñ B
g

Ñ C

whose evaluation in each degree n P Z gives an exact sequence in
the above sense.

The following lemma is immensely useful in practice. We will use
it to obtain the highly useful Mayer–Vietoris sequence.
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Lemma 4.13. (Snake lemma or “Short exact sequences of chain
complexes give rise to long exact sequences of homology groups.”)
Let

0 Ñ A
f

Ñ B
g

Ñ C Ñ 0

be a short exact sequence of chain complexes. Then there is a long
exact sequence of homology groups

. . . Ñ HnpAq
Hnpfq
Ñ HnpBq

Hnpgq
Ñ HnpCq

d
Ñ Hn´1pAq Ñ . . .

where the so-called connecting homomorphism is a group homomor-
phism whose idea is the following “definition”:

dpcq “ “f´1
BBg

´1
pcq”.

Proof. We only make precise the definition of d, referring to [Wei94,
Theorem 1.3.1] for a complete proof.

0 // An
fn

//

B

��

Bn

B

��

gn
// Cn

B

��

// 0

0 // An´1
fn´1

// Bn´1
gn´1

// Cn´1
// 0.

b

B
��

� gn
// c_

B

��

// 0

a � fn´1
//

_

B

��

Bb_

B
��

gn´1
// 0

0 � fn´2
// BBb “ 0.

We define a map d̃ : ZnpCq Ñ HnpAq: let c P ZnpCq. We can
choose some b P Bn with gpbq “ c. Then gpBbq “ Bgpbq “ Bc “ 0, so
that there is a unique (by exactness of the bottom sequence) a P An
with fpanq “ Bb. Define d̃pcq :“ an P An. We have BBb “ 0, so

that d̃pcq P ZnpAq. The element d̃pcq so defined depends on the
choice of b, but as an element in HnpAq “ ZnpAq{BnpAq, this is
independent of the choice: any other b1 with this property satisfies
b ´ b1 P An, so that Bb ´ Bb1 P BnpAq (more precisely, there is an

element in An`1 whose image under fn`1 is Bb ´ Bb1). The map d̃
factors over HnpCq: if c “ Bc1 P BnpCq, we can choose b1 ÞÑ c1 and

then b :“ Bb1 ÞÑ c “ Bc1. Then d̃pcq “ Bb “ BBb1 “ 0.
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Example 4.14. Let C be a complex of free (or just torsion-free)
abelian groups and ℓ P Z an integer. Write C{ℓ for the complex

. . . Cn{ℓ
B

Ñ Cn´1{ℓ . . . . Then there is a short exact sequence

0 Ñ C
ℓ

Ñ C Ñ C{ℓ

and hence a long exact sequence

. . . Ñ HnC
ℓ

Ñ HnC Ñ HnpC{ℓq Ñ Hn´1pCq Ñ . . . .

This long exact sequence can be broken up (Exercise 4.9) into short
exact sequences

0 Ñ HnpCq{ℓ Ñ HnpC{ℓq Ñ pHn´1pCqqℓ Ñ 0,

where the right hand term denotes the ℓ-torsion part of the group
(Mℓ :“ tm P M, ℓm “ 0u).

4.4.2 Construction of Mayer–Vietoris sequences

In this section, let
U “ tUiuiPI

be a collection of (not necessarily open) subspaces Ui Ă X of some
topological space X.

We define a sub-simplicial set SingUpXq Ă SingpXq to consist of
those n-simplices f : ∆n

top Ñ X such that fp∆n
topq Ă Ui for some i.

This is(!)indeed a simplicial set.

Example 4.15. If X “ U Y V is the union of two subspaces, then
we have a commutative diagram of simplicial sets

SingpU X V q //

��

SingpUq

��

SingpV q // SingUpXq.

(4.16)

• It is a pullback square: a continuous map ∆n u
Ñ U and another

∆n v
Ñ V whose composition to X is the same map ∆n Ñ X is

the same as a continuous map ∆n Ñ U X V .

• Very importantly, it is also a pushout, by the very definition of
SingUpXq.
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• Unless U X V “ H, SingpXq is not the pushout of the above
diagram: a map ∆n Ñ X need not factor over U or V , so that

SingpUqn \ SingpV qn Ñ SingpXqn

is not surjective. See, however, Outlook 4.29, for more positive
remarks.

Lemma 4.17. Let

U X V
j1

//

i1

��

U

i
��

V
j
// X

be some subspaces of a topological space X. There is a short exact
sequence of complexes

0 Ñ CpU X V q
j1

˚`i1˚
Ñ CpUq ‘ CpV q

i˚´j˚
Ñ CU

pXq Ñ 0.

Here we abbreviate CpUq :“ CpZrSingpUqsq, CUpXq :“ CpZrSingUpXqsq

etc.

Notation 4.18. Above, and also in the sequel, we write

f˚

for the evaluation of some functor (which is often implicit) Top Ñ C
on f . For example, for i : U Ñ X, i˚ :“ Cpiq : CpUq Ñ CpXq, and
likewise we would write i˚ :“ Hkpiq : HkpUq Ñ HkpXq.

Proof. In each simplicial degree, the diagram (4.16) gives a diagram
of sets, that is again both a pullback and pushout:

SingnpU X V q //

��

SingnpUq

��

SingpV qn
// SingUn pXq.

By Exercise 4.4, taking the free abelian groups on these sets gives
an exact sequence which is the n-the degree of the claimed exact
sequence.
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A priori, the simplicial set SingUpXq looks unwieldy, but the
following key theorem relates it back to something we know (and
care about!). It is sometimes referred to as locality , with the idea
that it says that the homology of X is completely determined by
how X looks locally.

Theorem 4.19. Suppose

X “
ď

i

U˝
i ,

i.e., X is covered by the interiors of the Ui. (Recall the interior of
A Ă X is the largest open subset U Ă X that is still contained in
A. Thus, if the Ui are open, the condition just means X “

Ť

i Ui.)
Then the inclusion

i : SingUpXq Ñ SingpXq

induces a chain homotopy equivalence

i : CU
pXq :“ CpZrSingUpXqsq Ñ CpXq :“ CpZrSingpXqsq.

Therefore, the homologies of these two complexes are isomorphic.

Corollary 4.20. (Mayer–Vietoris sequence) Let

U X V
j1

//

i1

��

U

i
��

V
j
// X

be some subspaces of a topological space X such that

X “ U˝
Y V ˝.

Then there is a long exact sequence of homology groups

. . . Ñ HnpUXV q
j1

˚`i1˚
Ñ HnpUq‘HnpV q

i˚´j˚
Ñ HnpXq

d
Ñ Hn´1pUXV q Ñ . . . .

Proof. This follows from Lemma 4.17, Theorem 4.19, and Lemma 4.13.

4.4.3 Homology of spheres

Proposition 4.21. The homology of the (topological) k-sphere

Sk “ tpx0, . . . , xkq,
ÿ

i

x2i “ 1u
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is given for k ‰ 0 by

HnpSkq “

$

&

%

Z n “ 0
Z n “ k
0 otherwise

and

HnpS0
q “

"

Z ‘ Z n “ 0
0 otherwise

Proof. Let 0 ă ϵ ă 1
2
. We consider the covering

Sk “ Sk` Y Sk´

where Sk` consists of the points with xk ą ´ϵ and Sk´ of those with
xk ă ϵ.

Both Sk˘ are homeomorphic to the k-dimensional disk Dk, so that
HnpSk˘q “ Z in degree n “ 0 and 0 else. The intersection Sk` X Sk´
is homeomorphic to Sk´1 ˆ p´ϵ, ϵq. By the homotopy axiom, its
homology is therefore isomorphic to the one of Sk´1. The Mayer–
Vietoris sequence then reads

. . . Ñ HnpSk´1
q
j1

˚`i1˚
Ñ HnpDk

q ‘ HnpDk
q

loooooooooomoooooooooon

“0 for n‰0

i˚´j˚
Ñ HnpSkq

d
Ñ Hn´1pSk´1

q Ñ Hn´1pD
k
q ‘ Hn´1pD

k
q

looooooooooooomooooooooooooon

“0 for n‰1

. . . .

This shows that

d : HnpSkq Ñ Hn´1pS
k´1

q
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is an isomorphism unless n “ 0 or 1. For n “ 0, we already know
H0pS

nq “ Z for n ą 0 and Z‘Z for n “ 0 (Lemma 4.5). For n “ 1,
we get a sequence

0 Ñ H1pSkq Ñ H0pSk´1
q
j1

˚‘i1˚
Ñ H0pS`

k q ‘ H0pS
k
´q.

For k “ 1, the right hand map identifies with

Z ‘ Z

¨

˝

1 1
1 1

˛

‚

ÝÑ Z ‘ Z,

with kernel H1pS
1q “ tpx,´xqu – Z. For k ą 1, the right hand map

identifies with

Z

¨

˝

1
1

˛

‚

Ñ Z ‘ Z,

which is injective, so that H1pSkq “ 0.

Pending the proof of the excision property, we at this point have
proved the Brouwer fixed point theorem, as well as the topological
invariance of dimension in §1.2.

4.4.4 Proof

We now prove Theorem 4.19. The proof is a combination of two
ideas:
(1) We devise a way to break simplices into smaller pieces (in a way

that is a chain homotopy equivalence), by using the barycentric
subdivision (Lemma 4.24). For technical purposes, we do this
construction just on ∆n.

(2) Using the Lebesgue covering lemma, we iterate the construction
(now performed on our space X) for each simplex individually,
so that the resulting simplices are small enough to fit into one
of the Ui.

This will suffice to construct a map S̃ that exhibits the inclusion
i to be a chain homotopy equivalence:

CUpXq
� �

i
// CpXq.

S̃
tt
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For a convex subspace Y Ă Rn (such as Y “ ∆k), we define a
subcomplex C 1pY q Ă CpY q given in degree n by the affine-linear
maps σ : ∆n Ñ Y . Recall that this means that the map σ is given
by

σpt0, . . . , tnq “

n
ÿ

k“0

tkσpekq,

with ek P Rn`1 being the k-th standard basis vector.
Then C 1pY q is indeed a subcomplex, since the faces of such an

affine-linear simplex are again affine-linear. There is a group iso-
morphism

ZrY n`1
s

–
Ñ C 1

pY qn (4.22)

that maps a tuple py0, . . . , ynq to the unique affine-linear map ∆n Ñ

Y sending the standard basis vector ei ÞÑ yi. We denote that simplex
in Y by ry0, . . . , yns.

A point y P Y gives rise to a homomorphism

by : C
1
pY qn Ñ C 1

pY qn`1, ryis ÞÑ ry, y0, . . . , yns.

The map by can be thought of replacing an n-simplex by a cone
whose tipping point is y and whose base is that simplex. The map
is not a chain morphism, but instead we have

Bby “ id ´ byB. (4.23)

Lemma 4.24. There is a subdivision chain map

S : C 1
pY q Ñ C 1

pY q,

defined inductively as the identity in chain degree 0, and for λ :
∆n Ñ Y , as

Spλq :“ bλpSBλq,

where bλ is the map b associated to the point λp
řn
k“0

ek
n`1

q P Y .
This chain map is homotopic to the identity.

Example 4.25. We unwind this definition for Y “ ∆2, and 0, 1,
and 2-simplices. For a 0-simplex y, we have Spyq “ y. Now, we
compute Spλq, where λ :“ δ0 : ∆1 Ñ ∆2 is the map defined in
(2.16), i.e., δ0pt0, t1q “ p0, t0, t1q. We have

Bλ “ d0pλq ´ d1pλq “ λ ˝ δ0 ´ λ ˝ δ1
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where now δk : ∆0 Ñ ∆1 are the maps δ0 : tp“ 1q ÞÑ p0, tq, δ1 :
t ÞÑ pt, 0q. We have to consider the barycentric subdivision map
bλ “ bλp 1

2
, 1
2

q “ bp0, 1
2
, 1
2

q. It sends the point d0pλq “ p0, 0, 1q to the

1-simplex rp0, 1
2
, 1
2
q, p0, 0, 1qs etc., so that

Spδ0q “ rp0,
1

2
,
1

2
q, p0, 0, 1qs ´ rp0,

1

2
,
1

2
q, p0, 1, 0qs.

Note that the first summand is a 1-simplex whose endpoint (i.e.,
applying d0) is p0, 0, 1q and whose beginning point (i.e., d1 of it) is
p0, 1

2
, 1
2
q. and Spid∆2q is a formal linear combination of six triangles

inside ∆2, with signs as shown:

Proof. We have to prove SB “ BS. This is clear in degree 0. In
higher degrees, we argue inductively

BSλ “ B pbλpSBλqq

“ SBλ ´ bλpBSBλq pby p4.23qq

“ SBλ ´ bλpSB
2λq pby inductionq

“ SBλ pC 1
pY q is a chain complexq.

In order to define a homotopy between S and idC1pY q, it is no-
tationally convenient to enlarge this complex by replacing the low
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degrees by

. . . Ñ C 1
0pY q “

à

yPY

Z
ř

nyy ÞÑ
ř

ny
ÝÑ C 1

´1 :“ Z.

The isomorphism (4.22) persists also for n “ ´1 then. We also put
S :“ id in degree ´1.

We define a homotopy between S and idC1pY q:

. . . // C 1
2pY q

S
��

B // C 1
1pY q

S
��

B //

h1

zz

C 1
0pY q

S“id
��

B //

h0

zz

C 1
´1pY q

S“id
��

//

h´1

zz

0

. . . // C 1
2pY q

B // C 1
1pY q

B // C 1
0pY q

B // C 1
´1pY q // 0.

We define h´1 :“ 0 and in degrees ě 0 as

hλ :“ bλpλ ´ hBλq.

The claim is now
Bh ` hB “ id ´ S.

This is clear in degree ´1. In higher degrees:

Bhλ “ Bpbλpλ ´ hBλqq

“ λ ´ hBλ ´ bλpBpλ ´ hBλqq byp4.23q

“ λ ´ hBλ ´ bλpSBλ ` hB
2λq by induction

“ λ ´ hBλ ´ Sλ by definition of S.

At this point we can discard the p´1q-st degree of C 1pY q; we still
have a homotopy S as stated, since h´1 “ 0.

Lemma 4.26. The subdivision maps S constructed above give rise
to a chain map

S̃ : CpXq Ñ CU
pXq

such that the two composites with the inclusion i : CUpXq Ă CpXq

are homotopic to the identities.

Proof. The proof is based on the idea that subdividing a simplex σ :
∆n Ñ X often enough, say m times, it will be a linear combination
of simplices that each lies in some Ui. The proof is more tricky
though since the number m will depend on the simplex σ.
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We first transport the idea of taking barycentric subdivisions on
(the convex space) ∆n to X: the maps S : C 1p∆nq Ñ C 1p∆nq give
rise to a map

S : CpXq Ñ CpXq, σ ÞÑ σ˚pSid∆nq.

This is a chain map:

BSσ :“ Bpσ˚Sidq

“ σ˚BSid

“ σ˚SBid

“ σ˚S

˜

n
ÿ

k“0

p´1q
kδk

¸

, with δk : ∆
n´1

Ñ ∆n

“
ÿ

k

p´1q
kSpσ ˝ δkq

“ SpBσq.

By a similar computation, this chain map S is homotopic to the
identity via hnpσq “ σ˚hpid∆nq.

The m-fold iterate Sm is chain homotopic to Sm´1 via h ˝ Sm´1,
so that hpmq :“

řm´1
k“0 hS

k is a chain homotopy between id “ S0 and
Sm.

For any simplex σ in SingpXq, there is some mpσq " 0 such that
Smpσqpσq P CUpXq. Indeed,

∆n
“ σ´1

pXq “
ď

i

σ´1
pU˝

i q

is an open covering of a compact metric space, so by the Lebesgue
covering lemma (see, e.g., [Mun00, Lemma 27.5]) there is some ϵ ą 0
such that for each x P ∆n, the open ball Bpx, ϵq is contained in one
of the σ´1pUiq, i.e., fpBpx, ϵqq Ă Ui.

Let r :“ diamp∆nq be the diameter of ∆n. The diameter of the
simplices appearing in the barycentric subdivision, i.e., in Spid∆nq,
is bounded by n

n`1
r ă r. To see this, it suffices to see that for

b :“ bpv0, . . . , vnq we have dpb, viq ă n
n`1

r. Indeed, if b1 denotes the

barycenter of rv0, . . . , pvi, . . . , vns, then b “ 1
n`1

vi ` n
n`1

b1, so that

dpb, viq “ n
n`1

dpb1, viq ď n
n`1

diamp∆n´1q.
Therefore for m " 0, the chain Smpid∆nq consists of simplices

which have diameter ă ϵ, and therefore each lie in some Ui. There-
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fore, again for m " 0 the chain Smpσq (which consists of the sim-
plices in the m-fold iteration of the barycentric subdivision) lies in
CUpXqn.

Let us pick, for each σ individually, the smallest such index, which
we denote by mpσq. We contend that the maps

h̃ : CpXqn Ñ CpXqn`1, σ ÞÑ hpmpσqq
pσq

form the required homotopy between id and a chain map S̃ that we
we define below.

Indeed, starting from the homotopy relation

Bhpmσqσ ` hpmpσqq
Bσ “ σ ´ Smpσqσ,

we get, using B2 “ 0:

Bh̃σ ` h̃Bσ “ σ ´

¨

˚

˝

Smpσqσ ` hpmpσqq
pBσq ´ h̃pBσq

loooooooooooooooooomoooooooooooooooooon

“:S̃pσq

˛

‹

‚

.

Taking this as the definition of S̃, we get an equation

Bh̃ ` h̃B “ id ´ S̃. (4.27)

We now check S̃pσq P CU
n pXq. This is clear for Spmpσqpσq. As for

phpmpσq ´ h̃qpBσq, we note Bσ is the alternating sum of the faces
of σ. Let τ be one of these faces. Then mpτq ď mpσq. Thus

hpmpσqqpτq´ h̃pτq “
řmpσq

k“mpτq`1 hS
kpτq arises by applying h to a some

chain each of whose summands lies in some Ui, i.e., in total it lies in
CUpXqn. Since h preserves the property of simplices being contained
in some Ui, this shows S̃pσq P CU

n pXq.
We thus get a map

S̃ : CnpXq Ñ CU
n pXq.

It is in fact a chain map since, by (4.27) (and B2 “ 0q:

BS̃ “ B ´ Bh̃B “ S̃B.

Thus, i˝S̃ is homotopic to the identity on CpXq. Conversely, S̃˝i “

id, since for σ P CUpXq, we have mpσq “ 0, so that h̃pσq “ 0.

This marks the end of the proof of Theorem 4.19.
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Remark 4.28. The proofs of Proposition 4.8 and Theorem 4.19
(and therefore all their corollaries) hold without any changes for
arbitrary coefficient rings Λ. This can be seen either by inspecting
the proofs or by noting that these proofs eventually rest on certain
homotopies, and using that a chain homotopy h between two chain
maps f, g : C Ñ D gives rise to a chain homotopy hb idΛ : Np∆1qb

pC b Λq Ñ D b Λ between f b idΛ, g b idΛ : C b Λ Ñ D b Λ.

Outlook 4.29. In the course of the proof, we have made extensive
use of the barycentric subdivision and the ability to add and subtract
elements in the chain complexes CUpXq. With more homotopy-
theoretic prerequisites, one can prove that for X “ U˝ Y V ˝ the
square

SingpU X V q //

��

SingpUq

��

SingpV q // SingpXq.

is a so-called homotopy pushout square of simplicial sets [Lur, Tag
012C], which in the present case means that the inclusion

SingUpXq Ă SingpXq

is a so-called weak equivalence, i.e., it is a map of simplicial sets
which induces an isomorphism on all homotopy groups

πnpSingUpXqq – πnpSingpXqq.

This statement can be shown to imply the parallel statement that
CUpXq Ñ CpXq is a quasi-isomorphism of chain complexes. How-
ever, the former is in fact a finer statement: it can be used to prove
the Seifert–van Kampen theorem [Lur, Tag 012M] which expresses
the fundamental group(oid) of X in terms of the ones of U , V and
U X V . These (possibly) non-abelian group(oids) are not accessible
with homological methods.

4.5 Excision

The Mayer–Vietoris sequences proved above can be equivalently re-
cast in a form that relates the homology of a space X, a subspace
A Ă X and, in good cases, the quotient X{A.

https://kerodon.net/tag/012C
https://kerodon.net/tag/012C
https://kerodon.net/tag/012M


90 CHAPTER 4. SINGULAR HOMOLOGY

Definition 4.30. Let A Ă X be a subspace of a topological space.
Then the relative homology of X with respect to A is defined to be

HnpX,Aq :“ HnpCpXq{CpAqq.

The following is a simplex σ P Sing1pXq that is not a cycle in
CpXq, but is a cycle in CpXq{CpAq:

From the definition and the snake lemma (Lemma 4.13), we get
long exact sequences

. . . Ñ Hn`1pX,Aq Ñ HnpAq Ñ HnpXq Ñ HnpX,Aq Ñ Hn´1pAq,
(4.31)

so that the relative homology measures the difference (in homology)
between X and A. For example, if (for some n), the relative ho-
mology groups HnpX,Aq “ Hn`1pX,Aq “ 0, i.e., there is an exact
sequence

. . . Ñ 0 Ñ HnpAq Ñ HnpXq Ñ 0 Ñ . . .

which means that the map in the middle is an isomorphism.

Example 4.32. Let X “ BpR, xq Ă Rn be an open (non-empty)
ball, with n ą 0. Then the so-called local homology groups are
isomorphic to:

HkpX,Xztxuq –

"

Z k “ n
0 otherwise.

Here, the group Z stems from the group Hn´1pSn´1q, where Sn´1 is
a little (n ´ 1)-sphere around x.

Indeed, X, being convex, has HkpXq “ 0 for k ą 0. Also, Xztxu

is homeomorphic to Sn´1 ˆ R and therefore homotopy equivalent
to Sn´1. (We say two spaces X, Y P Top are homotopy equiva-
lent if there is a (continuous) homotopy equivalence f : X Ñ Y .)
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Therefore, the above long exact sequences reads

. . . Ñ HkpSn´1
q
ik
Ñ HkpXq

loomoon

“0pką0q

Ñ HkpX,Xztxuq
d

Ñ Hk´1pSn´1
q
ik´1
Ñ Hk´1pXq

looomooon

“0pką1q

so the connecting homomorphism d is an isomorphism except for
k ą 1. For k “ 0, the map i0 identifies with the identity map
Z Ñ Z, so that d is injective, and hence the local homology group
vanishes. For k “ 1, the group HkpXq “ 0, so that our group is
ker i0 “ 0.

Here is another bread-and-butter result from homological alge-
bra.

Lemma 4.33. (Five lemma) Let

C5
//

f5
��

C4

f4
��

// C3

f3
��

// C2

f2
��

// C1

f1
��

D5
// D4

// D3
// D2

// D1

be a map between two exact chain complexes (of abelian groups or,
more generally, objects in any abelian category). Suppose that f2
and f4 are isomorphisms, f1 is injective, and f5 is surjective. Then
f3 is an isomorphism.

Proof. The proof is a typical case of diagram-chasing, see [Stacks,
Tag 05QB]. (To show f3 is surjective, one only needs f2 and f4
surjective and f1 injective.)

Theorem 4.34. (Excision) Let Z,A Ă X be two subspaces such
that

Z Ă A˝

(closure and interior, respectively). Then there is a natural isomor-
phism

HnpXzZ,AzZq
–
Ñ HnpX,Aq.

Proof. Putting B :“ XzZ we have XzZ “ B˝. Thus, by assump-
tion, we get a covering

A˝
Y B˝

“ X.

http://stacks.math.columbia.edu/tag/05QB
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Let us write CpA ` Bq :“ CUpXq for this covering. We are getting
short exact sequences of chain complexes

0 // CpA X Bq //

��

CpBq //

��

CpBq{CpA X Bq

–

��

// 0

0 // CpAq // CpA ` Bq //

„

��

CpA ` Bq{CpAq //

„

��

0

0 // CpAq // CpXq // CpXq{CpAq // 0.

The maps labelled “„” are quasi-isomorphisms: for the middle map
this is Theorem 4.19, and for the right hand map this then follows
from the five lemma above, applied to the long exact homology
sequences provided by the snake lemma.

In each chain degree, the top left square is a pushout square of
abelian groups (cf. the proof of Lemma 4.17), so that the right hand
vertical map is an isomorphism (in each chain degree, and therefore,
since it is a chain map, also a chain isomorphism).

Example 4.35. Recall that a topological manifold of dimension n
is a topological space X such that every point x P X has an open
neighborhood that is homeomorphic to an open ball in Rn. For such
a manifold, we can now strengthen the above computation of local
homology: for any x P X and any such open neighborhood U Q x
we have isomorphisms

HkpX,Xztxuq “ HkpU,Uztxuq “

"

Z k “ n
0 otherwise.

Indeed the first isomorphism follows by taking Z :“ XzU and A “

Xztxu in Theorem 4.34.

Outlook 4.36. While the excision isomorphism above is canonical
(i.e., functorial with respect to inclusions U Ă X), this is not the
case for the right hand isomorphism. It is therefore not in general
possible to choose these isomorphisms in a way that is compatible for
all U . A manifold is called orientable if this is in fact possible. We
will study this matter more in depth using cohomological methods,
and for the moment just state that RPn is not orientable, while Sn

and CPn and more generally, all complex manifolds, are orientable.
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4.6 The mapping degree

We will leverage our understanding of how continuous maps act on
H1pS

1q in order to prove the hedgehog theorem and the fundamental
theorem of algebra. Before that, we systematize our considerations
above a bit.

Definition and Lemma 4.37. Let k ě 1 and f : Sk Ñ Sk a con-
tinuous map. Then deg f is the unique integer such that the map

f˚ : HkpSkq Ñ HkpSkq

is multiplication by degpfq.
This map has the following properties:

(1) The assignment f ÞÑ deg f can be organized into a map

EndHoToppSkq
deg
Ñ Z,

i.e., homotopic maps have the same degree.

(2) deg is a monoid homomorphism, i.e., degpidSkq “ 1 and

degpg ˝ fq “ degpgq ¨ deg degpfq.

(3) The degree of a constant map is 0.

(4) The degree of a reflection r (along a hyperplane through the
origin) is deg r “ ´1.

(5) The degree of i : z ÞÑ ´z is deg i “ p´1qk`1.

(6) For k “ 1, the degree of z ÞÑ zd (for z P S1 Ă C) is d, for any
d P Z.

Proof. Any group homomorphism Z Ñ Z is multiplication by a
unique integer d. The existence and unicity of deg f then follows
from the isomorphism

Z Ñ HkpSkq.

The remaining statements hold by functoriality of Hk and the ho-
motopy axiom. The third statement holds since f factors as Sk Ñ

t˚u Ñ Sk, and thus Hkpfq : HkpSkq Ñ HkpS0q “ 0 Ñ HkpSkq must
vanish.

Sketch of (4): Any reflection is homotopic to the map ι : px0, . . . , xnq ÞÑ

p´x0, x1, . . . , xnq. Tracing down the isomorphisms HkpSkq – Hk´1pSk´1q,
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one reduces the computation deg ι “ ´1 to the case k “ 1, which is
part of Example 4.63.

(5) then follows since i is the composition of k ` 1 reflections.
(6) is proven in Example 4.63. (Alternatively, instead of using Ex-
ample 4.63, one can also prove that the map π1pS

1, ˚q Ñ H1pS
1q

mentioned in Remark 4.6 is a group homomorphism. In π1pS1q, the
loop winding around n times is the n-fold sum of loops winding
around once.)

Outlook 4.38. For categorical thinkers, the map deg is just the
evaluation of the functor Hk : HoTop Ñ Ab:

EndHoToppSkq Ñ EndAbpHkpSkqq “ EndAbpZq “ Z.

The right-most isomorphism maps an n P Z to the map Z
n

Ñ Z
(multiplication by n).

The rôle of Sk is not that special in the definition of the mapping
degree. Poincaré duality asserts (among other things), that for a
compact connected orientable manifoldM of dimension k, HkpMq –

pH0pMqq_ “ Z_ “ Z, and then the definition above carries over
verbatim.

Our knowledge about the mapping degree has various conse-
quences such as the hedgehog theorem and the fundamental theorem
of algebra.

Definition 4.39. The tangent bundle of Sn is

TSn :“ tpx, vq P Sn ˆ Rn`1
|xx, vy “ 0u.

Here the equation xx, vy “ 0 signifies that v is a tangent vector at
Sn at the point x. The tangent bundle comes with a natural map

π : TSn Ñ Sn, px, vq ÞÑ x.

A vector field is a (continuous) section of this map, i.e., a map of
the form x ÞÑ px, vpxqq.
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Corollary 4.40. (Hedgehog theorem or hairy ball theorem) For n ě

1 there is a non-vanishing (continuous!) vector field on Sn if and
only if n is odd.

Proof. If n is odd, then

vpxq :“ px2,´x1, x4,´x3, . . . , xn`1,´xnq

provides a non-vanishing vector field. Suppose, conversely, that v is
a non-vanishing vector field on Sn. Let h : Sn ˆ r0, 1s Ñ Sn be the
geodesic from x to ´x in the direction of vpxq.

In a formula,

hpx, tq :“ cospπtqx ` sinpπtq
vpxq

||vpxq||
.

Then h is a homotopy between idSn and ´idSn . Thus, the mapping
degrees

1 “ degpidSnq “ degp´idSnq “ p´1q
n`1

so that n is odd.
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Corollary 4.41. (Fundamental theorem of algebra) Let fpzq “
řn
k“0 akz

k

be a non-constant complex polynomial (i.e., ak P C, and an ‰ 0 for
n ą 0). Then there is some z0 P C such that

fpz0q “ 0.

Proof. We may assume an “ 1, for notational simplicity. We assume
f has no zeros, and hence is a continuous map

f : C Ñ Cˆ :“ Czt0u.

The overall idea of the proof is to construct maps that have mapping
degree n, but, if f has no zeros, deform this map into one that has
degree 0.

For R ą 0, we consider the polynomial

fRpzq :“ Rnfpz{Rq “ zn `
an´1

R
zn1 ` ¨ ¨ ¨ `

a0
Rn

.

Since f has no zeros, nor does fR have any zeros, so we can set

gRpzq :“
fRpzq

|fRpzq|
.

(1) For R " 0, this is getting close to the polynomial zn in the sense
that for R " 0

|fRpzq ´ zn| ă 1 (4.42)

for all z P S1. This implies that fR : S1 Ñ Cˆ is homotopic to
the map z ÞÑ zn. Indeed,

hpz, tq :“ tfRpzq ` p1 ´ tqzn

is a continuous map S1 ˆ r0, 1s Ñ C. It is in fact taking values
in Cˆ: if hpz, tq “ 0, then t ‰ 0 and fRpzq “ t´1

t
zn, and hence

|fRpzq ´ zn| “ 1
t

ě 1, contradicting (4.42).

(2) For R " 0, the homotopy fR „ zn gives rise to a homotopy of
gR to the map z ÞÑ zn. The degree of the latter map is n.

(3) On the other hand, the map f “ f1 is homotopic to fR (both are
regarded as maps S1 Ñ Cˆ) and therefore g :“ g1 is homotopic
to gR (both are maps S1 Ñ S1) so that

deg g “ deg gR.
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The map g so-defined admits an extension to the closed ball B
2
,

namely fpzq

|fpzq|
. Here we use critically that f has no zeros.

Thus,

g˚ : H1
pS1

q Ñ H1
pB

2
q “ 0 Ñ H1

pS1
q,

so that deg g “ 0.

(4) We obtain n “ deg gR “ deg g “ 0, contradicting the assump-
tion that f is non-constant.

Points (5) and (6) in Definition and Lemma 4.37 suggest that the
degree of a map f : Sk Ñ Sk is related to the number of preimages
of a given point. This is indeed so, provided we count the preim-
ages in the right way, i.e., with appropriate multiplicities. These
multiplicities are the local degrees of f :

Definition 4.43. Let f : Sk Ñ Sk be a map, y P Sk in the
codomain, and suppose that f´1 “ tx1, . . . , xmu. Then we can
choose neighborhoods V Q y and Ui Q xi such that fpUiztxiuq Ă

V ztyu. For clarity, write fi :“ f |Ui
. The local degree of f at xi, de-

noted by degxi f is the integer such that the bottom horizontal map,
which is defined to be the one making the diagram commutative, is
multiplication by degxi f :

HkpUi, Uiztxiuq

–

��

pfiq˚
// HkpV, V ztyuq

–

��

HkpSk, Skztxiuq HkpSk, Skztyuq

HkpSkq

–

OO

// HkpSkq.

–

OO

Here the two upper vertical maps are excision isomorphisms, while
the lower ones come from the long exact sequence (4.31).

In the above diagram, the bottom horizontal map is not in general
the map induced by f , as the following lemma shows. (The problem
is that f does not induce a map Skztxiu Ñ Skztyu, if f´1pyq Ľ txiu,
so that in the above diagram one can not insert a natural map f˚

in the middle row.)
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Lemma 4.44. In the above situation, one has

deg f “

m
ÿ

i“1

degxi f.

Proof. Pick disjoint neighborhoods Ui Q xi that are mapped by f
into a neighborhood V Q y.

4.7 Cellular homology

We have defined the homology of simplicial sets and have computed,
without much ado, the homology of the simplicial k-sphere

HkpSnsimpq “

"

Z k “ n
0 otherwise.

Using the Mayer–Vietoris sequence, we have been able to compute
HkpSnTopq, and it turns out that

HkpSnTopq “ HkpSnq.

The topological sphere arises as the pushout

B∆n
Top

//

��

∆n
Top

��

∆0 // SnTop,

which is very much the same as the correpsonding diagram for the
simplicial n-sphere. (In fact, |Snsimp| is homeomorphic to SnTop.) The
process of glueing in “cells” of higher dimension (in this case, glueing
in an n-simplex ∆n) along its boundary into an already existing
space (in this case ∆0) is quite wide-spread. In this section we
study the homology of such spaces systematically.

Definition 4.45. A cell complex or CW complex is a topological
space X “

Ť

kě0Xk such that

• X0 is a finite discrete topological space,

• Xk is obtained from Xk´1 by attaching finitely many k-cells,
i.e., there is a pushout diagram (for a finite, possibly empty,
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set Jk)
Ů

jPJk
BB

k
//

��

Xk´1

��
Ů

jPJk
B
k

// Xk.

Here B
k
denotes a closed (non-empty) ball in Rk and the left

vertical maps are the inclusions of the boundary.

• The topology on X is the weak topology : a U Ă X is open iff
all the U XDk are open. (Equivalently, X is the colimit of the
diagram X0 Ñ X1 Ñ . . . in the category Top.)

Example 4.46. • The pushout

BB
k

//

��

X0 :“ t˚u

��

B
k

// Sk

shows that Sk is a CW complex. (Note the similarity to the
simplicial sphere, cf. Exercise 2.7!)

• Sn ˆ Sm is a CW complex with one cell in dimensions 0, n, m
and n ` m. For example, the torus T 2 “ S1 ˆ S1 has cells in
dimension 0 (one), 1 (two), 2 (one).

• Recall that the real projective space is defined as

RPn :“
`

Rn`1
zt0u

˘

{x „ λx for λ P Rzt0u

“ Sn{px „ ´xq

and is equipped with the quotient topology. The inclusions
Sn´1 Ă Sn at the equator px0, . . . , xn´1q Ñ px0, . . . , xn´1, 0q

are compatible with these identifications and show that RPn

is a cell complex with exactly one cell in dimensions 0, . . . , n.

• Complex projective space is defined as

CPn :“
`

Cn`1
zt0u

˘

{x „ λx for λ P Czt0u

“ S2n`1
{x „ λx for |λ| “ 1u.



100 CHAPTER 4. SINGULAR HOMOLOGY

There is a homeomorphism

S2n`1
{x „ λx “ tpw,

a

1 ´ |w|2q P Cn`1, |w| ď 1u{pw, 0q „ λpw, 0q for |w| “ 1

“ B
2n

{w „ λw for w P BB
2n
.

Since BB
2n

“ S2n´1, this shows that we have a pushout diagram

BB
2n

//

��

CPn´1

��

B
2n

// CPn.

Therefore, CPn is a cell complex with one cell in dimensions
0, 2, . . . , 2n. In (complex) dimension 1, CP1

– S2 is also called
the Riemann sphere.

• Infinite real and complex projective spaces are defined as

RP8 :“
ď

ně0

RPn,CP8 :“
ď

ně0

CPn.

They are cell complexes with one cell in each dimension, resp. in
each even dimension.

Definition 4.47. For a topological space Y , the reduced chain com-

plex rCpY q is defined by

rCpY qn :“

"

CnpY q n ą 0
kerC0pY q Ñ C0pt˚uq “ Z n “ 0

.

(The map in degree 0 is applying C0 to the map Y Ñ t˚u, i.e.,
ř

nyy ÞÑ
ř

ny.)

This is (!)indeed a chain complex (the idea of appending a Z at
the end already appeared in the proof of Theorem 4.19). We define
the reduced homology

rHnpY q :“ Hnp rCpY qq “

"

HnpY q n ą 0
kerH0pY q Ñ H0pt˚uq “ Z n “ 0

.

For example, if Y is connected, the group rH0pY q “ 0.
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Let y P Y be a point, and write i : tyu Ñ Y for the inclusion.
There is an exact sequence

0 Ñ H0ptyuq
i˚
Ñ H0pY q Ñ H0pY, yq Ñ 0.

Except for the zero at the left, this is a consequence of the defini-
tion of relative homology. The left hand map i˚p:“ H0piqq is injective
since the map p : Y Ñ tyu (sending everything to that point) sat-
isfies p ˝ i “ id, so that p˚ ˝ i˚ “ id. Thus, the sequence splits, i.e.,
there is an isomorphism

H0pY q – Z ‘ H0pY, yq.

For the same reason, the exact sequence

0 Ñ rH0pY q Ñ H0pY q
p˚
Ñ H0ptyuq Ñ 0

splits, and we obtain an isomorphism

rH0pY q – H0pY, yq. (4.48)

Definition 4.49. A good subspace A Ă X of a topological space
X is such that A is closed and that there is a neighborhood V of
A in X such that the inclusion A Ă V is a deformation retract
(Example 4.11).

Proposition 4.50. If A Ă X is a good subspace, the quotient map

q : pX,Aq Ñ pX{A,A{Aq

induces is an isomorphism

q˚ : HnpX,Aq – rHnpX{Aq.

Proof. Let V Ą A be a neighborhood as in Definition 4.49: then the

inclusion A Ă V includes isomorphisms H˚pAq
–
Ñ H˚pV q and thus

the five lemma yields long exact sequence for relative homology gives
the isomorphisms marked ˚. Again using the deformation retract
A Ă V , V {A is homotopy equivalent to A{A – t˚u, so that we get
the isomorphisms marked ˚˚:

H˚pX,Aq

��

–

˚ // H˚pX, V q

��

H˚pX ´ A, V ´ Aq

–

��

–

Exc.
oo

H˚pX{A, t˚uq
–

˚˚ // H˚pX{A, V {Aq H˚pX{A ´ A{A, V {A ´ A{Aq.
–

Exc.
oo
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The two horizontal isomorphism at the right are excision isomor-
phisms. The vertical maps arise via q˚. Since that map q is a
homeomorphism on the complement XzA, it gives the right hand
vertical isomorphism. Thus the left hand vertical map is also an iso-

morphism. We conclude using HpX{A, t˚uq “ rHpX{Aq, cf. (4.48).

In order to compute the homology of cell complexes, we need a
little preparation:

Definition 4.51. If X, Y P Top are topological spaces with base
points x, y, the wedge sum is defined by

X _ Y :“ X \ Y {x „ y.

The same definition applies for possibly infinitely many pointed
spaces pXi, xiq:

ł

iPI

Xi :“
ğ

Xi{xi „ xj. (4.52)

Lemma 4.53. In the situation of (4.52), suppose that the txiu Ă Xi

are good subspaces. Then there are isomorphisms
à

iPI

rH˚pXiq
–
Ñ rH˚p

ł

i

Xiq.

Proof. We have isomorphisms
à

i

rH˚pXiq “
à

i

H˚pXi, txiuq “ H˚p
ğ

Xi,
ğ

txiuq “ rH˚p
ł

i

Xiq,

by Proposition 4.50, the additivity axiom (extended to relative ho-
mology), and again Proposition 4.50, where we use that the inclusion
Ů

txiu Ă
Ů

Xi is a good subspace, as well.

Proposition 4.54. Let X “
Ť

kXk be a cell complex. Let nk be
the number of disks of dimension k being attached (i.e., n0 “ |X0|

and nk “ |Jk| in Definition 4.45). There holds:
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•
HnpXk, Xk´1q “

"

Znk n “ k
0 otherwise

(4.55)

• The homology groups of X in low degree are controlled by the
low-dimensional pieces of a cell complex. More formally, the
inclusion Xk Ñ X induces an isomorphism

HnpXkq
–
Ñ HnpXq for n ă k. (4.56)

• We also have HnpXkq “ 0 for n ą k.

Proof. The inclusion Xk´1 Ă Xk is a good subspace, so that

H˚pXk, Xk´1q “ rH˚pXk{Xk´1q – rH˚p
ł

nk

Skq

which by Definition 4.51 (and the computation of H˚pSkq!) takes
the value stated above.

The idea of the second point is to use that the (homological) dif-
ference between Xk and Xk´1 just lives in degree k. More formally,
for the very last assertion, we use the long exact sequence

. . . Ñ Hn`1pXk, Xk´1q Ñ HnpXk´1q Ñ HnpXkq Ñ HnpXk, Xk´1q Ñ . . .

• The outer groups are zero for n ą k, giving an isomorphism in
the middle. Thus, HnpXkq “ HnpX0q “ 0 for n ą k ě 0.

• The outer groups are also zero for n ă k ´ 1. If X “ XN for
N " 0 this immediately shows the second assertion.

• We now prove that, in general, the isomorphisms HnpXk´1q
–
Ñ

HnpXkq yield the isomorphism (4.56). We have that

CpXq “
ď

kě0

CpXkq.

(Note that CpXkq Ă CpXq is a subcomplex since Xk Ă X is
a subspace.) I.e., every element f “

ř

nσσ P CpXqr comes
from some Xk, for large enough k (depending on f). To see
this, it suffices to consider some σ : ∆r Ñ X “

Ť

Xk. The
inclusions Xk Ă X are closed subspaces and ∆r is compact.
Thus, we can find a finite subcovering of the open covering
∆r “ σ´1p

Ť

kXzXkq, i.e., σp∆rq Ă Xk for large k.
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With this topological preparation, let f be a n-cycle in X. It
is an n-cycle in Xk for k " 0. Thus, rf s lies in the image
of HnpXkq Ñ HnpXq, which by the previous step (applied to
Xk instead of X) is the same as the image of HnpXn`1q. For
the injectivity, suppose an n-cycle f in Xk is a boundary on
X. This boundary comes from some XK for K " k, so that
f is zero in the homology of XK . Again applying the finite-
dimensional case (to XK), f “ 0 as well.

Definition and Lemma 4.57. Let X “
Ť

Xk be a cell complex.
The cellular chain complex CcellpXq is defined by

Ccell
pXqk :“ HkpXk, Xk´1q

and differential

B
cell
k : HkpXk, Xk´1q Ñ Hk´1pXk´1q Ñ Hk´1pXk´1, Xk´2q,

i.e., the composite of the indicated maps in the long exact sequences
(4.31). This is indeed a complex, i.e., Bcell

k ˝Bcell
k`1 “ 0, so we can define

the cellular homology of X as

Hcell
˚ pXq :“ H˚pCcell

pXqq.

Proof. This holds since the two maps going down-right compose to
zero:

HkpXkq

))

Hk`1pXk`1, Xkq

OO

Bcell
k`1
// HkpXk, Xk´1q

))

Bcell
k // Hk´1pXk´1, Xk´2q

Hk´1pXk´1q

OO

Example 4.58. For X “ Sn, with the above cell structure (X0 “

t˚u “ X1 “ ¨ ¨ ¨ “ Xn´1 Ă Xn “ Snq, we have

Ccell
pSnq “ rZ Ñ 0 Ñ . . . Ñ 0 Ñ Zs.

The differentials are all zero. For n ą 1 this is clear and for n “ 1 we
note that the map H1pS

1, t˚uq Ñ H0pt˚uq (and therefore also Bcell
1 )

is zero since it lies in the exact sequence

. . . Ñ H1pS
1, t˚uq Ñ H0pt˚uq “ Z

id
Ñ H0pS

1
q “ Z.
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Thus, the above complex is the same complex as NpZrSnsimpsq.

In order to compute more general examples, we need the following
formula for the cellular differential. Recall from Definition 4.45 that
Jk denotes the set of k-cells glued in by passing from Xk´1 to Xk.
For i P Jk, we denote the corresponding generator of

HkpXk, Xk´1q “
à

iPJk

Z

by ei.

Lemma 4.59. The cellular differential is given by

B
cell

peiq “
ÿ

jPJk´1

dijer,

where dij is the mapping degree of the following map

Sk´1
i

ai
Ñ Xk´1 Ñ Xk´1{Xk´2 “

ł

jPJk´1

Sk´1 qj
Ñ Sk´1.

The map ai is the map Sk´1
i “ BB

k
Ñ Xk´1 that is part of the

definition of a cell complex. The right map collapses all copies of
Sk´1 different from j to a point. (The sum is finite since the copy

of B
k
corresponding to i has compact image and therefore only

intersects finitely many pk ´ 1q-cells.)

Proof. This basically follows from the definitions. The cell differen-
tial is the diagonal map in the following commutative diagram

HkpB
k

i , BB
k

i q
B

–
//

ai

��

rHk´1pBB
k

i q

ai
��

∆ // rHk´1pS
k´1
j q

HkpXk, Xk´1q
B //

))

rHk´1pXk´1q
q

//

��

rHk´1pXk´1{Xk´2q

–

��

qj

OO

Hk´1pXk´1, Xk´2q

qj–

OO

–// Hk´1pXk´1{Xk´2, Xk´2{Xk´2q.

The two maps labelled “ai” arise from glueing in the k-cell corre-

sponding to i, i.e., the map ai : BB
k

Ñ Xk´1. Under the above
computations, the left vertical map is the inclusion Z Ñ

À

iPJk
Z
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into the i-th copy of Z. The two maps labelled “B” are boundary
maps of the long exact sequence of relative homology. The map q
arises from the quotient map, qj is as in the claim, so that ∆ is the
pushforward along qjqai .

Example 4.60. We compute the cellular homology of X “ RPn,
using the above cell structure (Example 4.46). We have one cell
in each dimension k ď n and the attaching map is the standard
quotient map Sk´1 Ñ Xk´1 :“ RPk´1. The cell differential is the
composite

HkpRPk,RPk´1
q “ HkpRPk

{RPk´1
q “ HkpSkq

“ Hk´1pSk´1
q

p˚
Ñ Hk´1pRPk´1

q

q˚
Ñ Hk´1pRPk´1

{RPk´2
q

“ Hk´1pSk´1
q,

where
Sk´1 p

Ñ RPk´1 q
Ñ RPk´1

{RPk´2
“ Sk´1

are the degree 2 covering and the projection onto the quotient, re-
spectively. The composite qp is a homeomorphism on each of the
two components of Sk´1zSk´2. These two homeomorphisms are ob-
tained from each other as antipodes. The degree of the antipode
map is p´1qk. By Lemma 4.44, we can compute the degree as the
sum of local degrees, i.e.,

deg qp “ 1 ` p´1q
k.

Thus the cell complex is concentrated in degrees n, . . . , 0 and reads

0 Ñ Z
2 or 0
Ñ Z Ñ . . . Ñ Z

0
Ñ Z

2
Ñ Z

0
Ñ Z Ñ 0.

We obtain

Hcell
k pRPn

q “

$

’

’

&

’

’

%

Z k “ 0
Z{2 0 ă k ă n, k odd
Z k “ n for n odd
0 otherwise

Note that the groups CcellpXqk depend on the way X is presented
as a cell complex, i.e., the choice of the Xk. However, its homology
does not, as we now see.
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Theorem 4.61. Cellular homology agrees with singular homology.
More formally, for a cell complex X “

Ť

kXk, there is an isomor-
phism

H˚pXq
–
Ñ Hcell

˚ pXq.

Proof. We consider the commutative diagram of (relative) homology
groups

0 “ HkpXk`1, Xkq

0 “ HkpXk´1q

''

HkpXk`1q “ HkpXq

44

HkpXkq

66

φ

((

Hk`1pXk`1, Xkq

d
77

Bcell
k`1

// HkpXk, Xk´1q

ψ

**

Bcell
k // Hk´1pXk´1, Xk´2q

Hk´1pXk´1q

i
55

0 “ Hk´1pXk´2q

44

The diagonal exact sequences are the ones from (4.31), the diagram
commutes by definition of the cellular complex, and the vanishings
hold by Proposition 4.54. Thus, we have isomorphisms

HkpXq “ HkpXk`1q

“ coker d

“ im φ{im B
cell
k`1 by the injectivity of φ

“ kerψ{im B
cell
k`1 by the exactness of the down-right diagonal

“ ker B
cell
k {im B

cell
k`1 by the injectivity of i

“: Hcell
k pXq.

Remark 4.62. Suppose

f : X “
ď

Xk Ñ Y “
ď

Yk
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is a continuous map of cell complexes respecting the cell structure,
i.e., f restricts to a (continuous) map fk : Xk Ă Yk. Then the fk
give rise to a map of chain complexes f cell

˚ : CcellpXq Ñ CcellpY q and
the resulting morphism on cellular homology is compatible with the
one on singular homology:

H˚pXq
– //

f˚

��

Hcell
˚ pXq

fcell˚

��

H˚pY q
– // Hcell

˚ pY q.

This is true since all maps in the proof above are functorial.

Example 4.63. For n P Z, consider the map

f : X :“ S1
Ñ Y :“ S1, z ÞÑ zn

(in complex number notation). We will show that the induced map

f˚ :“ H1pfq : H1pXq Ñ H1pY q

is multiplication by n. In other words, the mapping degree of f is
n. This is clear for n “ 0.

Next, we consider the case n ą 0. We equip X and Y with
different cell structures, namely X0 has n points and Y0 “ t˚u.
Likewise, X1 arises by glueing in n copies of ∆1, while Y1 only glues
in one:

The map f is then compatible with the cell structure.
In order to show that f˚ is multiplication by n, it suffices to see

this for the map Hcell
1 pXq “ H1pS

1, X0q Ñ H1pS
1, Y0q. Suppose first

that n ě 0. We have an exact sequence

0 Ñ H1pS
1
q

loomoon

“Z

Ñ H1pS1, X0q Ñ H0pX0q
loomoon

“Zn

Ñ H0pS1
q

loomoon

“Z

Ñ 0.

Writing e1, . . . , en for the 1-simplices in S1 as shown, these are gener-
ators of H1pS

1, X0q. Under f , they map to the loop in S1 denoted e,
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which is in turn a generator of H1pS
1, Y0q. In H1pS1q, e1 ` ¨ ¨ ¨ `en is

a generator. By the above considerations, it maps to e`¨ ¨ ¨`e “ ne.
If n ă 0, the same argument still works, except that ek maps

to the loop e with its direction reversed. This reversed loop is, in
H1pS

1q, the same as ´e.

4.8 Homology with Z{2-coefficients

In this section, we will consider homology with coefficients in Λ “

Z{2 in order to prove the following theorem, which can be stated
colloquially by saying that at any moment in time there is a place x
on earth such that wind and temperature at x and at its antipode
´x agree.

Theorem 4.64. (Borsuk–Ulam theorem) Let f : Sn Ñ Rn be a
continuous map. Then there exists some x P Sn such that fpxq “

fp´xq.

This theorem rests on the computation of homology of RPn

with Z{2-coefficients: According to the computation of H˚pRPn
q

in Example 4.60 (and Theorem 4.61) and the short exact sequences
(cf. Example 4.14)

0 Ñ HkpRPn
q{2 Ñ HkpRPn,Z{2q Ñ pHk´1pRPn

qq2 Ñ 0,

we get

HkpRPn,Z{2q “

"

Z/2 0 ď k ď n
0 otherwise

(4.65)

and
HkpRP8,Z{2q “ Z{2 for all k ě 0.

(By comparison, HkpCP8
q “ Z for all even k ě 0, and 0 otherwise.)

Recall that a continuous map

p : E Ñ B

is called a fiber bundle if each point b P B admits an open neigh-
borhood U Q b such that there is a homeomorphism fitting into a
commutative diagram (for some topological space F ):

p´1pUq
– //

p
%%

U ˆ F

pr

��

U
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For simplicity, we will only apply this concept when B is connected,
in which case all fibers (for all b P B) are homeomorphic to one
another. Then it makes sense to refer to F as “the” fiber (as opposed
to “a” fiber; note that F is homeomorphic to p´1pbq.) The space B
is called the base and E the total space. If the fiber F is a discrete
topological space, then p is called a covering .

Example 4.66. • R Ñ S1, t ÞÑ expp2πitq is a covering (with
fiber Z).

• The canonical map Sn Ñ RPn is a covering (with fiber Z{2).
We also refer to it as a double covering .

In order to compute the homology of covering spaces, we use the
following fact from homotopy theory (for a proof see, e.g., [May99,
§3.2]).

Proposition 4.67. Let p : E Ñ B be a covering. For any n-
simplex in SingpBq, i.e., σ : ∆n Ñ B, there is a lift of σ to E, i.e.,
a continuous map σ̃ making the diagram commutative:

E

p
��

∆n
σ
//

σ̃

==

B.

If the fiber F has n elements, then there are exactly n such maps σ̃.

Proposition 4.68. Let p : E Ñ B be a double covering (i.e.,
p´1pbq “ tx, yu). Then there is a short exact sequence of chain
complexes

0 Ñ CpB,Z{2q
τ

Ñ CpE,Z{2q
p˚
Ñ CpB,Z{2q Ñ 0,

where τpσq :“ σ̃1 ` σ̃2 and p˚pσq :“ p ˝ σ. Thus, the snake lemma
(Lemma 4.13) gives long exact sequences

. . . Ñ HnpB,Z{2q Ñ HnpE,Z{2q Ñ HnpB,Z{2q Ñ Hn´1pB,Z{2q Ñ . . .

Proof. First of all, we have p˚ ˝ τ “ 0, since p˚σ̃1 ` p˚σ̃2 “ 2σ,
which vanishes in CpB,Z{2q! It is then a routine check to show the
exactness of the sequence.

Corollary 4.69. Let n ě 1 and let f : Sn Ñ Sn be a continuous
map such that fpxq “ ´fp´xq. Then f has odd mapping degree.
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Proof. This proof is based on computations of homology with Z{2-
coefficients so we abbreviate Cp´q :“ Cp´,Z{2q and H˚p´q “

H˚p´,Z{2q. We have to show that f˚ is an isomorphism on HnpSnq.
By assumption on f , it induces a (continuous) map

f : RPn
Ñ RPn.

Since the two lifts σ̃1 and σ̃2 of a chain σ on Sn are antipodal, the
following is a commutative diagram of short exact sequences:

0 // CpRPn
q

τ //

f˚

��

CpSnq
p˚
//

f˚

��

CpRPn
q

f˚

��

// 0

0 // CpRPn
q

τ // CpSnq
p˚
// CpRPn

q // 0.

This yields a commutative diagram of long exact sequences (all ho-
mologies with Z{2-coefficients), where we write fn for f˚ acting on
the n-th homology etc.:

Hk`1pRPn
q

δ //

fk`1

��

HkpRPn
q

τ //

fk
��

HkpSnq

fk
��

p˚
// HkpRPn

q

fk
��

Hk`1pRPn
q

δ // HkpRPn
q

τ // HkpSnq
p˚
// HkpRPn

q.

By the five lemma and Exercise 4.9, it therefore suffices to show that
the maps fk are isomorphisms for all k. This holds for k ě n ` 1,
since then HkpRPn

q “ 0 by the computation in (4.65). This van-
ishing also implies that τ : HnpRPn

q Ñ HnpSnq is an injective map
of finite-dimensional Z{2-vector spaces (of the same dimension), so
it is an isomorphism. Thus, in high degrees, the sequences read

0 Ñ HnpRPn
q

δ
Ñ Hn´1pRPn

q Ñ Hn´1pS
n
q “ 0,

and fn is (up to isomorphism) the same map as fn´1 etc. until we
reach the end of the sequence where

. . . Ñ H1pRPn
q Ñ H0pRPn

q
τ

Ñ H0pSnq
p˚
Ñ H0pRPn

q Ñ 0.

Since both Sn and RPn are connected, their H0 with integral co-
efficients is Z, hence H0p´,Z{2q “ Z{2. Moreover, the map p˚ is
(isomorphic to) idZ{2. Thus τ “ 0 and we again get f 1 “ f 0. That

last map f 0 is, again, (isomorphic to) idZ{2. Hence all fn are iso-
morphisms, and hence fn is an isomorphism as well.
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Proof. (of Theorem 4.64) We assume the contrary. Then our map
f : Sn Ñ Rn yields a continuous odd map

g : Sn Ñ Sn´1, x ÞÑ
fpxq ´ fp´xq

|fpxq ´ fp´xq|
.

The composite with the canonical inclusion i : Sn´1 Ñ Sn has
degpi ˝ gq “ 0, since HnpSn´1q “ 0. On the other hand g ˝ i, like
g itself, is an odd map, so that degpg ˝ iq is odd by Corollary 4.69.
However, its effect on homology is zero:

Z “ Hn´1pS
n´1

q
i˚
Ñ Hn´1pSnq

!
“ 0

g˚
Ñ Hn´1pS

n´1
q,

giving the required contradiction.

4.9 Outlook: the Eilenberg–Steenrod axioms

We finish this chapter with an axiomatic point of view on singular
homology. Let Pairs be the category whose objects are pairs pX,Aq

consisting of a topological space X and a subspace A Ă X, and
whose morphisms are continuous maps X Ñ X 1 such that A is
mapped to A1.

In the sequel we consider (abstract) functors

hn : Pairs Ñ Ab,

i.e., an assignment pX,Aq ÞÑ hnpX,Aq P Ab. Given such a functor,
we write hnpXq :“ hnpX,Hq. We have an obvious functor R :
Pairs Ñ Pairs, pX,Aq ÞÑ pA,Hq.

Definition 4.70. A generalized homology theory is a collection of
functors

hn : Pairs Ñ Ab, n ě 0

together with natural transformations (sometimes called connecting
homomorphisms)

dn : hn Ñ hn´1 ˝ R

such that the following conditions are satisfied:
(1) The functoriality of hn and the natural transformation dn, ap-

plied to the pair pX,Aq constitute long exact sequences

. . . Ñ hnpAq Ñ hnpXq Ñ hnpX,Aq
dnpX,Aq

ÝÑ hn´1pAq Ñ . . .
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(2) (Additivity) There are (functorial) isomorphisms
à

iPI

h˚pXiq
–
Ñ h˚p

ğ

Xiq.

(3) (Homotopy invariance) If f, g : pX,Aq Ñ pY,Bq are homotopic
relative to A (i.e., the homotopy h : ∆1 ˆX Ñ Y maps ∆1 ˆA
to B) then

h˚pfq “ h˚pgq : h˚pX,Aq Ñ h˚pY,Bq.

(4) (Excision) If Z Ă A˝ then the inclusions yield isomorphisms

h˚pXzZ,AzZq – h˚pX,Aq.

Example 4.71. The contents of everything up to §4.5, except for
the pretty obvious dimension axiom, can be summarized in on sen-
tence: singular homology is a generalized homology theory.

Proposition 4.72. Suppose h˚ and k˚ are generalized homology
theories, and

F : h˚ Ñ k˚

is a natural transformation between them, i.e., the maps F pX,Aq :
hnpX,Aq Ñ knpX,Aq are functorial in the pair pX,Aq, and likewise
the connecting homomorphisms:

hnpX,Aq
F pX,Aq

//

��

knpX,Aq

��

hn´1pAq
F pA,Hq

// kn´1pAq.

Suppose further that for a point pt :“ t˚u, we get an isomorphism

F pptq : h˚pptq
–
Ñ k˚pptq.

Then, F is an isomorphism for all pair pX,Aq consisting of a cell
complex X and a sub-complex A.

The motivation of stating this proposition is the fact that singular
homology is, up to functorial isomorphisms, the only generalized
homology theory that satisfies the dimension axiom

Hnpptq “

"

Z n “ 0
0 otherwise
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Outlook 4.73. Generalized homology theories not satisfying the
dimension axiom are harder to construct, but highly interesting.
The stable homotopy groups defined by

hnpXq :“ πsnpXq :“ colimrÑ8 πr`npΣnXq

give rise to another generalized homology theory. Here Σ :“ S1 ^ ´

is the suspension functor and πn`r denotes the pn` rq-th homotopy
group. The transition maps

πrpXq Ñ πr`1pS1
^ Xq Ñ πr`2pS2

^ Xq Ñ . . .

are given by using that πrpXq consists of homotopy classes of maps

Sr
f

Ñ X, and then f maps to

Sr`1
– S1

^ Sr
id^f
Ñ S1

^ X.

The Freudenthal suspension theorem states that the maps

πr`npSrq Ñ πr`n`1pΣS
r
q “ πr`n`1pS

n`1
q

are isomorphisms for r ą n ` 1, see, for example, [Swi02, Theo-
rem 6.26]. This motivates the name stable homotopy groups:

πsnpS0
q :“ πr`npSrq for r ą n.

For example, non-trivial computations show:

π1pS
0
q “ 0 Ñ π2pS

1
q “ 0 Ñ π3pS

2
q “ Z Ñ π4pS

3
q “ Z{2

–
Ñ π5pS4

q
–
Ñ . . .

so that πs1pS0q “ Z{2. Understanding the stable homotopy groups
of spheres is a matter of ongoing research. The Wikipedia article
https://en.wikipedia.org/wiki/Homotopy_groups_of_spheres

surveys the richness of this topic.

Proof. (of Proposition 4.72) We only sketch the main ideas, see
[Swi02, Theorem 7.55] for complete details. By the five lemma, it
suffices that the natural transformation induces isomorphisms when
applied to cell complexes (as opposed to pairs consisting of such).

As in Exercise 4.11, one shows that the maps

hnpX, tx0uq
δ

Ð hn`1pCX,Xq Ñ hn`1pCX{X, t˚uq “ hn`1pΣX, t˚uq

https://en.wikipedia.org/wiki/Homotopy_groups_of_spheres
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are isomorphisms, where CX is the cone and ΣX the suspension of
X. Since Sn “ ΣpΣp. . . S0qq (n-fold suspension), we obtain isomor-
phisms h˚pSnq – k˚pSnq. The proof of Lemma 4.53 was based solely
on the Eilenberg–Steenrod axioms, hence one has isomorphisms

à

iPI

k˚pSn, t˚uq
–
Ñ k˚p

ł

iPI

Sn, t˚uq.

If X “
Ťm
n“0 is a finite cell complex, then in order to show h˚pXnq –

k˚pXnq, we proceed inductively, using that both for h˚ and for k˚,
we can compute the relative groups

h˚pXn, Xn´1q “ h˚p
ł

jPJn

Snq

which by the above agrees with the value for k˚ instead of h˚.
For an infinite cell complex X “ colimXn, one argues further,

using the additivity again that colimh˚pXnq “ h˚pXq, see [Swi02,
Proposition 7.53].

4.10 Exercises

Exercise 4.1. Using the stereographic projection, compute the ho-
mology groups of Snztp1, 0, . . . , 0qu.

Exercise 4.2. Verify that HoTop is indeed a category and that
there is an “obvious” functor

Top Ñ HoTop.

Exercise 4.3. Using Proposition 4.3 and Example 4.11, show that
the homology of the following figure is isomorphic to the one of
R3zpR ˆ p0, 0q \ R ˆ p0, 1qq. We will eventually show that these
homology groups are given by Z in degrees 0 and 2, and Z ‘ Z in
degree 1.

Exercise 4.4. Let A,B Ă Z be subsets of some set Z. Consider
the obvious maps:

A X B
f 1

//

g1

��

B

g
��

A
f
// A Y B.
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Show that there is a short exact sequence of abelian groups

0 Ñ ZrA X Bs
g1`f 1

Ñ ZrBs ‘ ZrAs
f´g
Ñ ZrA Y Bs Ñ 0.

Exercise 4.5. Let X be a simplicial set and ℓ P Z. Using Exam-
ple 4.14, prove that there is an exact sequence

0 Ñ HnpXq{ℓ Ñ HnpX,Z{ℓq Ñ pHn´1pXqqℓ Ñ 0

where again p´qℓ denotes the ℓ-torsion part of the group.
Tabulate these exact sequences for the simplicial spheres X “ Sk

and for the projective plane X “ P 2.

Exercise 4.6. Let A be a simplicial abelian group. The goal of
this exercise is to prove the following fact: the natural map of chain
complexes

p : C :“ CpAq Ñ N :“ NpAq

is a quasi-isomorphism.

(1) Let D :“ DpAq Ă CpAq be the subcomplex which is in degree

n given by Adeg
n (cf. Definition and Lemma 3.9). Show that the

above claim is equivalent to the assertion that the complex D is
exact.

Hint: show that 0 Ñ D Ñ C Ñ N Ñ 0 is an exact sequence of
complexes.

(2) Let C be a chain complex and C 1 Ă C a subcomplex (i.e., C 1
n Ă

Cn and BC1 “ BC). Show: if C 1 and the quotient complex C{C 1

are exact, then C is exact.

(3) For p ě 0, let Dppq Ă D be defined by

pDppq
qn :“

"

Dn n ď p
σ0pCn´1q ` ¨ ¨ ¨ ` σppCn´1q n ą p

Show this defines a sequence of subcomplexes

¨ ¨ ¨ Ă Dpp´1q
Ă Dppq

Ă ¨ ¨ ¨ Ă DpĂ Cq.

(4) Show that the quotients Dppq{Dpp´1q are null-homotopic, i.e.,
there is a homotopy between the identity map of this complex
and the zero map.

(5) Conclude that D is exact.
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Exercise 4.7. Let X :“ BpR, xq P Rn be a closed ball with radius
R ą 0. Let y P X be an arbitrary point. Compute HnpX,Xztyuq.
(Hint: the result depends on whether y is a point on the boundary
of X or not).

Exercise 4.8. Let X and Y be two topological manifolds. Show
that X and Y have the same dimension if they are homeomorphic.
The converse is false: prove that there exist connected surfaces (i.e.,
manifolds of dimension two) which are not homeomorphic.

Exercise 4.9. “Long exact sequences can be broken into short ex-
act sequences.” More formally, let

. . . Cn`2
Bn`2
Ñ Cn`1

Bn`1
Ñ Cn

Bn
Ñ Cn´1

Bn´1
Ñ Cn´2

Bn´2
Ñ . . .

be a long exact sequence. Construct a short exact sequence

0 Ñ cokerpBn`2q Ñ Cn Ñ kerpBn´1q Ñ 0.

Exercise 4.10. The Euler characteristic of a topological space X
is defined as

χpXq :“
ÿ

kě0

p´1q
k rkHkpXq “

ÿ

k

p´1q
k dimQ HkpX,Qq,

provided that only finitely many HkpXq have non-zero rank and that
all these ranks are finite. The rank rkHkpXq is called the k-th Betti
number .

(1) In the situation of Corollary 4.20 suppose that χpUq, χpV q and
χpU X V q are defined. Show that χpXq is defined and that

χpXq “ χpUq ` χpV q ´ χpU X V q.

Hint: use Exercise 4.9 and find out what the rank–nullity the-
orem tells you about the ranks of the groups in a short exact
sequence 0 Ñ A Ñ B Ñ C Ñ 0.

(2) Prove that for a cell complex X “
Ť

kXk,

χpXq “
ÿ

p´1q
knk,

where nk is the number of cells glued in (where we suppose
nk “ 0 for k " 0 and all nk are finite).
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(3) Compute the Euler characteristics of S4, S3 ˆ S1, S2 ˆ S2, and

S1 ˆ S1 ˆ S1 ˆ S1, and CP2.

Hint: both (1) or (2) can be used for such computations.

(4) Just using the Euler characteristic, which of these five spaces
can you prove to be not homeomorphic?

(5) (Optional, bonus) Compute the Betti numbers of these spaces
and conclude that, in fact, none of these spaces are pairwise
homeomorphic.

Exercise 4.11. The cone CX of a topological space X is defined
as

CX :“ X ˆ r0, 1s \Xˆt0u t0u,

while the suspension is defined as

ΣX :“ X ˆ r0, 1s \Xˆt0,1u t0, 1up“ CX{X ˆ t1uq.

• Show that Sn is homeomorphic to ΣSn´1 (including for n “ 0
if we put S´1 :“ H).

• Construct a natural isomorphism

rHnpΣXq – rHn´1pXq.

Hint: inspect the Mayer–Vietoris sequence for an appropriate
covering of ΣX.

• Reprove the computation of the homology of Sn.

Exercise 4.12. [Hat02, §2, Exercise 7] Let f : Rn Ñ Rn be an
invertible linear map. Show that the induced map on the local
homology group

f˚ : HnpRn,Rn
zt0uq Ñ HnpRn,Rn

zt0uq

equals multiplication by sgn detpfqpP t`1,´1uq.
Hint: Use Gaussian elimination to show that the matrix of f can

be joined by a path of invertible matrices to a diagonal matrix with
˘1’s on the diagonal.



Chapter 5

Singular cohomology

Singular cohomology is another invariant of simplicial sets and topo-
logical spaces. The cohomology groups are denoted by

Hn
pXq.

On the face of it, it just arises by essentially reversing (or, rather,
dualizing) the arrows in the normalized chain complexes. Therefore
it is closely related to and, in several cases, even agrees with, homol-
ogy. The advantage of cohomology is that there are maps, called
cup products

Hn
pXq ˆ Hm

pXq Ñ Hn`m
pXq,

which is a feature that homology groups do not have. These cup
products can be used to equip the direct sum

À

nH
npXq with the

structure of a commutative ring. For example, for X “ CP2, we
already know HnpCP2

q “ Z for n “ 0, 2, 4. We will prove below
(Theorem 5.33) that the multiplication is such that the generator
ω P H2pCP2

q generates the ring, so that there is a ring isomorphism:

à

n

Hn
pCP3

q “ Zrωs{ω3.

5.1 Definition and examples

Cohomology arises by homology by dualizing. For an abelian group
M , we write

M_ :“ HompM,Zq

119
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for the dual abelian group. We will mostly apply this to M being a
free abelian group, in which case we have

˜

à

iPI

Z

¸_

“
ź

iPI

Z.

(For countably infinite I, this is known to be a non-free abelian
group.)

Any group homomorphism f :M Ñ N gives rise to a map

f_ : N_
Ñ M_, pN

n
Ñ Zq ÞÑ pM

f
Ñ N

n
Ñ Zq.

This constitutes a functor

´
_ : Abop

Ñ Ab.

This construction extends to a functor taking values in the category
of cochains

´
_ : Chop

ÑCoCh,

C ÞÑC_ :“ r. . . Ñ C_
n´1

pBC
n q_

Ñ pCnq
_

pBC
n`1q_

ÝÑ pCn`1q
_

Ñ . . . .s

Indeed, the composite vanishes:

pB
C
n`1q

_
˝ pB

C
n q

_
“ pB

C
n ˝ B

C
n`1q

_
“ 0_

“ 0.

Here, we regard C_
n to be in cochain degree `n (so that the differ-

ential goes up by +1).

Definition 5.1. The n-th cohomology functor is the following com-
posite:

sSetop
Zr´s
Ñ sAbop N

Ñ Chop ´_

Ñ CoCh
Hn

Ñ Ab.

More concretely, for a simplicial set X,

Hn
pXq

is the cohomology (at the spot NpXq_
n ) of the cochain complex

. . . Ñ pNpXqn´1q
_ pBnq_

Ñ pNpXqnq
_ pBn`1q_

ÝÑ pNpXqn`1q
_

Ñ . . . .

The singular cohomology of a topological space X is defined as

Hn
pXq :“ Hn

pSingpXqq.
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Thus, cohomology is a functor

Hn : Topop
Ñ Ab.

Again, for a commutative ring Λ, we define cohomology with
coefficients in Λ by replacing the free abelian group functor Zr´s by
Λr´s. We denote the result by

Hn
pX,Λq.

We first look at cohomologies of a few simplicial sets.

Example 5.2. For k ě 1, the dual of the chain complex NpSkq “

rZ
0

Ñ 0 . . . Ñ 0 Ñ Zs (with the left hand Z in degree k, the right
one in degree 0) is the cochain complex

NpSkq
_

“ rZ
0

Ð 0 ¨ ¨ ¨ Ð 0 Ð Zs.

Since all differentials are (still) zero, we have

Hn
pSkq “ HnpNpSkq

_
q “

"

Z n “ 0, k
0 otherwise

Thus, HnpSkq – pHnpSkqq_. This example is somewhat proto-
typical. More precisely, one can show:

Proposition 5.3. Let X be a simplicial set or a topological space.
Then

Hn
pX,Qq “ HomQpHnpX,Qq,Qq,

i.e., cohomology with rational coefficients is just the homology, du-
alized.

With torsion coefficients, however, a more subtle relationship
holds, as we see for the projective plane P 2, cf. Example 3.20.

Example 5.4. Recall that the (simplicial) projective plane P 2 is
the simplicial set pictured as follows:
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We had computed the normalized chain complex as

Λα ‘ Λβ

¨

˚

˚

˝

´1 1
1 ´1
1 1

˛

‹

‹

‚

// Λa ‘ Λb ‘ Λd

¨

˝

´1 ´1 0
1 1 0

˛

‚

// Λx ‘ Λy.

We now pass to duals, writing Λα :“ pΛαq_. With respect the the
obvious dual bases, the dual then is the cochain complex

Λα ‘ Λβ Λa ‘ Λb ‘ Λd

¨

˝

´1 1 1
1 ´1 1

˛

‚

oo Λx ‘ Λy.

¨

˚

˚

˝

´1 1
´1 1
0 0

˛

‹

‹

‚

oo

For example, the basis vector ex maps to ´ea´eb etc. We write Zk,
Bk for the cocycles and coboundaries of that complex. We see that

• H0pP 2,Λq “ Z0 “ tpx, xq, x P Λu – Λ,

• B1 “ tpx, x, 0q, x P Λu,

• Z1 “ tpxa, xb, xdq| ´ xa ` xb ` xd “ 0, xa ´ xb ` xd “ 0u “

tpxb ` xdq, xb, xd, 2xd “ 0u – Λ ‘ Λ2, where Λ2 is again the
2-torsion subgroup of Λ.

• Thus the map

Z1
{B1

Ñ Λ2, tpxb ` xdq, xb, xd, 2xd “ 0u ÞÑ xd

yields an isomorphism

H1
pP 2,Λq “ Λ2.
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Indeed, the map is clearly surjective and it is injective since for
xd “ 0 the triple lies in B1.

• Finally B2 “ tpxa ` 2xd,´xaq, xa, xd P Λu Ă Z2 “ Λα ‘ Λβ.

• The map

H2
“ Z2

{B2, pxα, xβq ÞÑ rxα ` xβs P Λ{2

is an isomorphism: it is clearly surjective and also injective
since if xα ` xβ “ 2x for some x P Λ, the pair is equal to
p2x ´ xβ, xβq P B2.

We sum up our findings, and notice a more subtle relationship
between homology and cohomology than in the case of the k-sphere:

Hn
pP 2

q “

$

’

’

&

’

’

%

Λ n “ 0
Λ2 n “ 1
Λ{2 n “ 2
0 otherwise

compared to HnpP 2
q “

$

’

’

&

’

’

%

Λ n “ 0
Λ{2 n “ 1
Λ2 n “ 2
0 otherwise

Remark 5.5. The observation that in the above computation Λ2

gets exchanged by Λ{2 can be explained as follows: the complex (in
degrees 1 and 0 as labelled)

Λ1
2

Ñ Λ0

(2 stands for the map given by multiplication by 2) has homology
H1 “ ker 2 “ Λ2 and H0 “ coker 2 “ Λ{2. Passing to duals, we get
the cochain complex (Λi :“ Λ_

i lives in cochain degree i)

Λ0 2
Ñ Λ1

which now has H0 “ ker 2 “ Λ2 and H1 “ coker 2 “ Λ{2.
Such an observation is at the heart of the so-called universal

coefficient theorem for cohomology which expresses HnpXq in terms
of HompHnpXq,Zq and a so-called Ext-group ExtpHn´1pXq,Zq. See,
e.g., [Rot88, Theorem 12.11].

This second group vanishes whenever Hn´1pXq is a free Z-module.
Thus, in this case we get an isomorphism

Hn
pXq “ HompHnpXq,Zq.
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5.2 The Eilenberg–Steenrod axioms for cohomol-
ogy

Singular cohomology satisfies the following properties. This theorem
can be proven by redoing the proofs for homology.

Theorem 5.6. (1) (Functoriality) For each n ě 0, there is a func-
tor

Hn : Topop
Ñ Ab.

(2) (Dimension axiom) The groups Hnpt˚uq are zero for n ‰ 0, and
H0 is isomorphic to Z.

(3) (Additivity) For a family of topological spaces pXiq, we have

Hn
p
ğ

i

Xiq “
ź

i

Hn
pXiq.

(4) (Homotopy) Homotopic maps f, g : X Ñ Y induce the same
map on cohomology:

Hn
pfq “ Hn

pgq.

In particular, homotopy equivalences induce isomorphisms on
cohomology.

(5) (Mayer–Vietoris sequence) If X is a topological space, U, V Ă X
such that their interiors cover X: X “ U˝ Y V ˝, then there is a
long exact sequence

. . . Ñ Hn
pXq Ñ Hn

pUq‘Hn
pV q Ñ Hn

pUXV q Ñ Hn`1
pXq Ñ . . . .

Example 5.7.

Hn
pSkq “

"

Z n “ 0, k
0 otherwise

Hn
pCPk

q “

"

Z n “ 0, 2, 4, . . . , 2k
0 otherwise

Hn
pRPk,Z{2q “

"

Z/2 n “ 0, 1, . . . , k
0 otherwise

These computations can be confirmed by using the above axioms,
in particular the Mayer–Vietoris sequence. Alternatively they also
follow from Remark 5.5.
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5.3 The cup product

A key advantage of passing from homology to cohomology is the
existence of cup products on the latter. These maps, constructed
soon, are of the form

Y : Hn
pXq b Hm

pXq Ñ Hn`m
pXq.

This ring structure is a finer structure than the mere existence of
the abelian groups HnpXq or HnpXq.

Example 5.8. Let X “ S2 _ S1 _ S1 and Y “ T “ S1 ˆ S1 be
the torus. These two spaces are both path-connected, so H0pXq “

H0pY q “ Z. For n ě 1, by using additivity (of reduced homology,
Lemma 4.53), we have

HnpXq “ HnpS2
q ‘ HnpS1

q ‘ HnpS1
q “

$

&

%

Z n “ 2
Z ‘ Z n = 1
0 n ě 3

These groups are isomorphic to

HnpT q “ Hcell
n pT q “ HnpZ

0
Ñ Z ‘ Z

0
Ñ Zq.

So, homology groups and therefore also the cohomology groups are
isomorphic.

However, it turns out that the cup product of the two generators
in H1pXq vanish (this is always the case for wedge sums of spaces).
By contrast, we will momentarily see that the two loops in T which
are the two generators of H1pT q have the property that

γ1 Y γ2 P H2
pT q

is non-zero, and instead in fact the generator of H2pT q – Z. Thus,
there can be no homotopy equivalence

f : X Ñ Y

since out would have to induce (as we will see) an isomorphism of
rings

H˚
pfq :

à

ně0

Hn
pXq Ñ

à

ně0

Hn
pY q.
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Notation 5.9. For some σ : ∆n Ñ X and a subset J Ă rns, we
write ∆J Ă ∆n for the subset consisting of those px0, . . . , xnq where

xj “ 0 for j R J . We also write σ|J for the composite ∆J Ă ∆n σ
Ñ X.

Definition 5.10. Let X be a topological space. The cup product is
the map

´ Y ´ : C˚
pXq ˆ C˚

pXq Ñ C˚
pXq

which, for a P CkpXq and b P C lpXq is given by

pa Y bqpσq “ apσ|r0,ksq
looomooon

PZ

¨ bpσ|rk,k`lsq
loooomoooon

PZ

.

Here σ : ∆k`l Ñ X. We extend this by bilinearity to a map

´ Y ´ : C˚
pXq b C˚

pXq Ñ C˚
pXq.

The same definition applies for cochains taking values in a com-
mutative ring Λ.

Example 5.11. Let X “ T “ S1 ˆ S1 be the torus. The only
interesting cup product is the map

Y : H1
pT q b H1

pT q Ñ H2
pT q.

(We will see below cup product with n P H0pT q “ Z is just multi-
plication by n, and if the degrees add up to ě 3, the cup product
must vanish since then HnpT q “ 0.)

We consider the following vertices, 1-simplices and 2-simplices on
T :
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The dual cochains are denoted by a_ etc., i.e., a_ P C1pT q is the
cochain satisfying

a_
paq “ 1, a_

pbq “ 0, a_
pdq “ 0.

We compute the cochain a_ Y b_ by applying the definition:

• pa_ Y b_qpαq “ a_pα|r0,1sqb
_pα|r1,2sq “ a_pbq ¨ b_paq “ 0,

• pa_ Y b_qpβq “ a_pβ|r0,1sqb
_pβ|r1,2sq “ a_paq ¨ b_pbq “ 1.

• Thus, by linearity

pa_
Y b_

qpβ ´ αq “ 1.

• The 2-chain γ :“ β ´ α is a generator of H2pT q. So that its
dual cochain γ_ is a generator of H2pT q “ HompH2pT q,Zq.

• We obtain

a_
Y b_

“ γ_.

• A similar computation (!)shows

b_
Y a_

“ ´γ_.

• Again by the above computations, we have

a_
Y a_

“ 0, b_
Y b_

“ 0.

The above computation suggests the following statement: there
is a ring isomorphism (where the right hand carries the cup product)

Zxs, ty{pst ` ts, s2, t2q
–
Ñ

2
à

n“0

Hn
pT q,

sending s ÞÑ a_, t ÞÑ b_ and st ÞÑ γ_. Here at the left Zxs, ty
denotes the non-commutative polynomial ring (which has as a Z-
basis the 1, s, t, st, ts, s2, t2, . . . ), and we mod out the 2-sided ideal
generated by st` ts, s2 and t2. In order to make this statement, we
need to exhibit how the cup product turns the sum

À

nH
npXq into

a ring. This ring structure comes in fact from a “ring” structure on
C˚pXq which is “essentially commutative.”
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Definition 5.12. A differential graded algebra (dga for short) is a
cochain complex A together with a cochain map (called the multi-
plication)

µ : A b A Ñ A

(denoted by juxtaposition) such that the usual conditions on a com-
mutative ring hold:

• (Unitality) There is an element 1 P Z0pAq “ HomCoChpZ, Aq

such that 1a “ a1 “ a.

• (Associativity) apbcq “ pabqc.

A morphism of dga’s is a cochain map A Ñ B compatible with
the multiplication maps in the obvious sense.

Lemma 5.13. The cup product turns C˚pXq into a dga. For any
continuous map f : X Ñ Y the induced map

f˚ : C˚
pY q Ñ C˚

pXq

is compatible with the multiplications and the units. We refer to
this by saying that f˚ is a map of dga’s. We have therefore a functor
taking values in the category of dga’s:

C˚ : Topop
Ñ DGA.

Proof. We first check that Y is a chain map. By definition of B on
tensor products of chain complexes, this means

Bpa Y bq “ pBaq Y b ` p´1q
ka Y pBbq,

where again a P CkpXq. Recall that the differential B on cochains
is obtained by dualizing the differential on chains. Thus, for a σ :
∆k`l`1 Ñ X,

pBpa Y bqqpσq “ pa Y bqp

k`l`1
ÿ

i“0

p´1q
iσ ˝ δiq

“ pa Y bqp

k`l`1
ÿ

i“0

p´1q
iσ|

r0,...,pi,...,k`l`1s
q

“
ÿ

iďk`1

p´1q
iapσ|

r0,...,pi,...,k`1s
q ¨ bpσ|rk`1,k`l`1sq `

ÿ

iěk

apσ|r0,ksq ¨ bpσ
rk,...,pi,k`l`1s

“ ppBaq Y bqpσq ` p´1q
k
pa Y pBbqqpσq.
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The unit element is the cocycle 1 such that 1pσq “ 1 for each
0-simplex σ in X. The associativity is a routine check, as is the
compatibility of f˚ with unit and multiplication maps.

Lemma 5.14. Let C be a dga, and consider its cohomology

H˚
pCq :“

à

nPZ

Hn
pCq.

The multiplication
ras ¨ rbs :“ rabs

turns this into a graded algebra, i.e., the same conditions as for a
dga above hold (except H˚pCq carries no differential).

Proof. The multiplication µ : C bC Ñ C is a cochain morphism so
that

Bprsq :“ Bµpr b sq “ µpBpr b sqq “ pBrqs ` p´1q
deg rrpBsq.

Thus, if r and s are cocycles (i.e., map to 0 under B), the same is
true for rs. In order to check this induces a multiplication on H˚pCq,
it suffices to check that pBrqs and rpBsq are coboundaries. Indeed,
again by the above formula

pBrqs “ Bprsq ´ p´1q
deg rrpBsq “ Bprsq

(for any cocycle s) is a coboundary.

Combining the above, we see that cohomology is a functor

H : Topop
Ñ GA

(taking values in the category of graded algebras). In fact, we can
do better:

Proposition 5.15. The cup product on
À

nH
npXq is in fact a

graded commutative ring, i.e., we have

ab “ p´1q
degm degnba

for a P HmpXq, b P HnpXq.

Proof. (Proof idea) This graded commutativity comes from the fol-
lowing idea: put ϵn :“ p´1qnpn`1q{2 and define a map on the chain
complexes

ρ : CnpXq Ñ CnpXq, pσ : ∆n
Ñ Xq ÞÑ ϵn ¨ σop.
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Here
σop : ∆n

Ñ ∆n σ
Ñ X,

where the first map is the unique affine-linear map sending the basis
vector ek to en´k. One checks that this map ρ is a chain map. One
also checks that there is a homotopy between ρ and the identity
map.

With these claims checked, a quick algebraic manipulation im-
plies that the multiplication on

À

nH
npXq is graded commutative

as stated. See, e.g., [Hat02, Theorem 3.14].

Example 5.16. ForX “ S1ˆS1 as in Example 5.11, aop is the loop
a, but with its direction reversed. Thus ρpaq “ ´areversedpP C1pXqq.
The asserted homotopy between ρ and id reduces to the fact that
a ` areversed is homotopic to a constant loop.

5.4 Poincaré duality

In this section, we explore Poincaré duality, one of the foundational
results of algebraic topology. The idea is a certain symmetry be-
tween homology (or, cohomology) groups.

Example 5.17. HkpSnq “ HkpSnq “ Z in degrees 0 and n. The
group vanishes otherwise. This can be recast as a symmetry

HkpSnq “ Hn´kpSnq
_,

Hk
pSnq “ Hn´k

pSnq
_
.

(At this point, the appearance of the dual is unmotivated; we
might as well write HkpSnq “ Hn´kpSnq, but see Theorem 5.30.)

Example 5.18. The space X “ S1 ˆ S3 is a cell complex with one
cell in dimension 0, 1, 3 and 4, respectively. One can compute (for
example using Mayer–Vietoris)

HkpXq “ Hk
pXq “ Z

for k “ 0, 1, 3, 4, and the groups vanish in all other degrees. Thus,
again

HkpXq “ H4´kpXq
_

Hk
pXq “ H4´k

pXq
_.
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Example 5.19. For complex projective space

HkpCPn
q “ H2n´kpCPn

q
_

and again likewise for cohomology.

Example 5.20. Consider X “ S1 _ S1. By additivity (for reduced
homology), we get

H0pXq “ Z,H1pXq “ Z ‘ Z.

Thus, the symmetry encountered above breaks:

H0pXq ‰ H1pXq
_.

It is suggestive to link this behaviour to the presence of the “sin-
gular” point. In order to rule out this kind of pathology, we con-
sider (topological) manifolds , i.e., topological spaces X such that
each x P X has a neighborhood that is homeomorphic to an open
ball in some Rd, where d is independent of x. All the spaces above,
except for S1 _ S1 are manifolds, leading to the idea that for such
a manifold X we might expect a close relation between

HkpXq and Hd´kpXq

Hk
pXq and Hd´k

pXq.

Example 5.21. Real projective space

RPn
“ Sn{x „ ´x

is a manifold of dimension n. However, the homology groups

H0pRPn
q “ 0,

HnpRPn
q “

"

Z n odd
Z{2 n even

fail to be symmetric (say, when considering their ranks) when n is
even.

Example 5.22. The Klein bottle X (cf. also Exercise 3.10) is the
geometric realization of the following simplicial set:
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It is a manifold of dimension 2. It is connected, so that H0pXq “

0. However, one can show H2pXq “ 0. This can be done either
using Mayer–Vietoris sequences or also using cellular homology. As
a plausibility check, let us note that there are no 2-cycles for the
above simplicial set:

Bpnαα`nββq “ nαpb´a`dq`nβpa´d`bq “ apnβ´nαq`bpnα`nβq`dpnα´nβq “ 0

only if nα “ nβ “ 0. Thus, the above symmetry fails again.

To rule out this problem, we need to impose an extra condition
on the manifolds we consider. We call a subset B Ă X a (finite)
open ball if there is a neighborhood U Ą B that is homeomorphic
to Rd, under which B is homeomorphic to Bp0, 1q Ă Rd.

For a subspace A Ă X, let us abbreviate

H˚pX|Aq :“ H˚pX,XzAq.

For any manifold X and any open ball B Ă X, we have (compare
with Example 4.35)

HdpX|Bq “ HdpU |Bq – HdpR
d
|Bp0, 1qq “ HdpS

d
q – Z.

The isomorphisms ““” are canonical. The left hand “–” depends
on the choice of a homeomorphism U – Rd, and the right hand
isomorphism can not be made canonical at all. Nonetheless, this
tells us that the local homology group is a free abelian group of
rank one. A choice of a generator eB P HdpX|Bq is called a local
orientation. (I.e., there is always precisely two local orientations for
each such B).
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Remark 5.23. The above applies verbatim to B “ txu as well, in
which case we recover exactly Example 4.35.

Multiplication with a matrix A P GLdpRq is a homeomorphism

f : Rd
Ñ Rd

respecting the subspace Rdzt0u. It therefore induces a map

f˚ : HdpR
d
|0q Ñ HdpR

d
|0q.

By Exercise 4.12, this map is given by multiplication with sgnpdet fq P

t˘1u. Thus, an orthogonal matrix A P SLnpRq preserves the local
orientation, while a map of the form px1, . . . , xdq ÞÑ p´x1, x2, . . . , xdq
does not preserve it. This motivates the name “(local) orientation”.

Definition 5.24. Let X be a manifold of dimension d. We call
X orientable if one can choose local orientations compatibly for all
open balls B Ă X. I.e., if there is a collection of generators

peB P HdpX,XzBqqBĂX open ball

such that for any inclusion of open balls C Ă B,

eB ÞÑ eC

under the canonical map

HdpX|Bq Ñ HdpX|Cq.

Example 5.25. Rd is orientable. To see this, fix a homeomorphism

e : ∆d
– Bp0, 1q.

For R ą 0, let eR : ∆d –
Ñ Bp0, Rq be the homeomorphism obtained

by scaling. Now, for a bounded ball B Ă Rd, consider the d-simplex,
the d-simplex eR is a generator of HdpR

d|Bq as soon as B Ă Bp0, Rq.
Note that eR “ eR1 for R1 ą R. Thus, defining eB to be eR for R
large enough, yields a compatible system of local orientations.

Definition 5.26. A complex analytic manifold X is a topological
space where each x P X has a neighborhood U Q x that is homeo-
morphic to an open ball in Cd:

fU : U
–
Ñ Bp0, 1q Ă Cd,
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and where the transition maps

fU ˝ f´1
V

are complex differentiable (also known as holomorphic), as opposed
to a mere homeomorphism.

Example 5.27. Complex projective space CPn is an example of a
complex projective manifold, with open charts given by (0 ď i ď n)

fi : Ui :“ tpz0, . . . , znq, zi ‰ 0u{ „
–
ÑCn,

z ÞÑ p
z0
zi
, . . . ,

pzi
zi
, . . . q,

where the equivalence relation is as in Example 4.46. Thus the
transition functions are given by

p
z0
zi
, . . . ,

pzi
zi
, . . . ,

zn
zi

q ÞÑ p
z0
zj
, . . . ,

xzj
zj
, . . . ,

zn
zj

q.

This is essentially given by multiplication with zi
zj
, which is a com-

plex differentiable function. (In fact, since this is a quotient of
polynomials, CPn is an example of a complex algebraic variety).

Lemma 5.28. Any complex analytic manifold is orientable.

Proof. Proving this requires unwinding the definition of a complex
manifold, but the basic point distinguishing real from complex man-
ifolds is that a matrix A P GLdpCq has, when regarded as a matrix
Ã P GL2dpRq, positive determinant:

det Ã “ | detA|
2

ą 0.

This implies that the transition maps fU ˝ f´1
V will always preserve

orientation.

Example 5.29. Non-orientable manifolds include:

• RP2 (and all other even-dimensional real projective spaces),

• the Klein bottle,

• the Möbius strip.
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It requires further means (such as proving Theorem 5.30) to rigor-
ously show that these are non-orientable

Theorem 5.30. Let X be a compact, orientable manifold of dimen-
sion d. Then there is an isomorphism

Hd
pXq – Z

and the cup product

Hn
pXq b Hd´n

pXq
Y
Ñ Hd

pXq – Z

is a perfect pairing, i.e., the induced map

Hn
pXq Ñ pHd´n

pXqq
_

is an isomorphism. In particular, the ranks of these groups, and
therefore also of the corresponding homology groups agree:

rkHn
pXq “ rkHd´n

pXq, rkHnpXq “ rkHd´npXq.

Remark 5.31. The three assumptions: compactness, orientability,
and smoothness (i.e., being a manifold), can be removed at the
expense of a more involved statement.

Question 5.32. Why does one have to assume X is compact for
the above statement to be correct?

5.5 Cohomology of projective spaces

In this section, we compute the ring structure of cohomology on
complex projective space CPn.

Theorem 5.33. There is a ring isomorphism

Zrxs{xn`1 –
Ñ HpCPn

q :“
à

kPZ

Hk
pCPn

q. (5.34)

Here the right hand side carries the cup product, and the element
x in the left hand side has degree 2, i.e., it maps to an element in
H2pCPn

q.
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Remark 5.35. This computation is one of a family of similar re-
sults such as

Zrxs – HpCP8
q, pdeg x “ 2q

Z{2rxs{xn`1
– HpRPn,Z{2q, pdeg x “ 1q

Z{2rxs – HpRP8,Z{2q, pdeg x “ 1q.

See, e.g., [Mas91, §XV].

By the presentation of CPn as a cell complex with one cell in
every even dimension, we have

HkpCPn
q “ Hcell

k pCPn
q “ Z

whenever 0 ď k ď 2n is even, and the groups vanish otherwise. By
Remark 5.5, this gives us

Hk
pCPn

q “ HompHkpCPn
q,Zq “ Z.

Thus, the underlying abelian groups in (5.34) are isomorphic. If we
pick a generator ω P H2pCPn

q, we have a ring homomorphism

Zrxs Ñ HpCPn
q, x ÞÑ ω,

which factors over Zrxs{xn`1, since the pn ` 1q-fold cup product
ω Y ¨ ¨ ¨ Y ω P H2n`2pCPn

q “ 0. It suffices to see that ωYn is a
generator of H2npCPn

qp– Zq. If this is the case then also ωYk must
be a generator of H2kpCPn

q.
We will prove this result by a basic, if somewhat special argument

due to Lam [Lam70]. We will consider projective space as

CPn
“ tppzq “ anz

n
` an´1z

n´1
` ¨ ¨ ¨ ` a0, p ‰ 0u{Cˆ,

i.e., the space of nonzero complex polynomials of degree ď n, up to
multiplication by a non-zero complex number.

The proof is based on the map

h :M :“ CP1
ˆ . . . ˆ CP1

Ñ CPn,

(n factors) given by taking products of polynomials as above. Note
that CP1

– S2 is a cell complex with a single cell in dimension 0
and 2. Then M is a cell complex having no cells in odd dimensions,
and one cell in dimension 0, and one cell in dimension 2n (but more
cells in the even intermediate dimensions, e.g. n cells of dimension
2n ´ 2 etc.) Therefore

H2npMq “ Hcell
2n pMq “ Z.
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Lemma 5.36. The map

h˚ : H2npMq Ñ H2npCPn
q

maps a generator to ˘n! times a generator. (Both groups are iso-
morphic to Z.) Therefore, the dual map

h˚ : H2n
pCPn

q Ñ H2n
pMq

also maps a generator to ˘n! times a generator.

Proof. LetD1, . . . , Dn be pairwise disjoint disks inCP1 (i.e., parametriz-
ing polynomials of the form z`λi P Di, where C Ą tλiuXtλju “ H

for i ‰ j.) By the fundamental theorem of algebra (Corollary 4.41
+ standard abstract algebra), every polynomial of degree n can be
factored as a product of linear ones, uniquely up to the order of the
factors. Therefore

h|D : D
–
Ñ hpDq.

is a homeomorphism and

K :“ h´1
phpDqq “

ğ

σPΣn

Dσ “
ğ

σPΣn

Dσp1q ˆ . . . ˆ Dσpnq.

Here σ ranges over the permutations of n letters.
The inclusions Dσ Ă K induce an isomorphism

H2npM |Kq
–
Ñ

à

σ

H2npM |Dσq.

Indeed, by Proposition 4.50 we can the left hand group as the 2n-th
homology group of the quotient M{pMzKq, which space is homeo-
morphic to a wedge sum of n! copies of S2n. Each of these S2n is
homeomorphic to M{pMzDσq.

The map h˚ fits into the following commutative diagram

H2npMq
h˚

//

��

H2npCPn
q

–

��

H2npM |Kq
h˚
//

��

H2npCPn
|hpDqq

H2npM |Dσq.

h˚

–

66
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(This diagram is similar to the one in the discussion of the local de-
gree, Lemma 4.44). The right hand vertical map is an isomorphism
since HkpCPn

zhpDqq “ 0 (except for k “ 0). Indeed, by homotopy
invariance we may replace hpDq, which is homeomorphic to a prod-
uct of disks, by a standard disk Bp0, 1q Ă Cn Ă CPn, and then use
that the complement CPn

zBp0, 1q is contractible.
By the orientability ofM (Lemma 5.28), the compositie H2npMq Ñ

H2npM |Dσq Ñ H2npCPn
|hpDqq is the same map for all σ P Σn. This

follows by choosing open balls Bk Ą Dσpkq Y Dσ1pkq, for k ď n and
σ, σ1 P Σn.

A generator of H2npMq is mapped to a generator of each H2npM |Dσq,
so that summing up all σ gives the claim.

Consider the standard inclusion

i : CP1
Ñ CPn.

It induces an isomorphism on H2 by (4.27). Thus, passing to duals,
we see that

i˚ : H2
pCPn

q Ñ H2
pCP1

q

maps a generator ω to a generator, which we denote for clarity by
ω.

In addition, we use the cell structure of M (n cells of dimension
2, no cells of odd dimension) which implies

H2pMq “

n
à

i“1

H0pCP1
q b . . . b H2pCP1

q b . . . b H0pCP1
q

“
à

i

H2pCP1
q.

If we let (for 1 ď k ď n)

CP1 ik
Ñ M

pk
Ñ CP1

be the embedding (ik) adding the base points in all other factors
than the k-th one, respectively (pk) the projection onto the k-th
factor, then we have pk ˝ ik “ id, so that ppkq˚pikq˚ “ id. Since both
groups are isomorphic to Z, this means that ppkq˚ is an inverse to
pikq˚. Passing to duals, we have inverse isomorphisms

H2
pMq

p˚
k

Õ
i˚k

n
à

k“1

H2
pCP1

q.
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Lemma 5.37. The map

h˚ : H2
pCPn

q Ñ H2
pMq

satisfies

h˚
pωq “

ÿ

k

p˚
kω.

Therefore

h˚
pωYn

q “ n!p˚
1ω Y ¨ ¨ ¨ Y p˚

nω.

Proof. In order to show the first claim, it suffices to apply pikq˚ to
both sides and show these agree:

pikq
˚h˚ω “ i˚ω “: ω.

Here we use that the composite

CP1 ik
Ñ M

h
Ñ CPn

is the standard inclusion i mentioned above. On the other hand,

pikq
˚

ÿ

r

p˚
rω “

ÿ

r

pp˚
r i

˚
kqω “ p˚

ki
˚
kω “ ω.

Here we use that for r ‰ k, the map pr ˝ ir is a constant map, which
induces the zero map on H2pCP1

q, and therefore also on H2pCP1
q.

For the second statement, we use that f˚ : HpXq Ñ HpY q is a
ring homomorphism for any map f : Y Ñ X. We apply this remark
to h, and to the pk:

h˚
pωYn

q “ ph˚
pωqq

Yn.

We have

p˚
kpωq Y p˚

kpωq “ p˚
kp ω Y ω

loomoon

PH4pCP1q“0

q.

By the commutativity of the cup product, we also have p˚
i pωq Y

p˚
j pωq “ p˚

j pωq Y p˚
i pωq. Using bilinearity of Y and expanding the

sum, we therefore get

n!p˚
1pωq Y ¨ ¨ ¨ Y p˚

npωq.



140 CHAPTER 5. SINGULAR COHOMOLOGY

Thus, if e (resp. f) is a generator of H2npCPn
q (resp. of H2npMq),

and ωYn “ re for some r P Z then

h˚
pωnq “ h˚

preq “ rn!f.

On the other hand ω is a generator of H2pCP1
q. One can show (this

is the so-called Künneth formula) that

H2n
pMq “ H2

pCP1
q b . . . b H2

pCP1
q,

and that the element p˚
1pωqY¨ ¨ ¨Yp˚

npωq P H2npMq above corresponds
to the tensor

ω b . . . b ω,

which is also a generator of the group. Therefore,

rn!f “ ˘n!pωˆn
q.

This implies r “ ˘1, finishing the proof of Theorem 5.33.

5.6 The cohomology of SOpnq

In this section, we survey a computation of the cohomology H˚pSOpnq,Z{2q,
following [Hat02, §3.D].

The set

Opnq “ OnpRq “ tA P MatnˆnpRq |AAT “ idu

can also be described as the isometries of Rn fixing the zero vector.
It is a subset of Rn2

, and as such a topological group since the
multiplication and inverse (in this case given by A ÞÑ AT ) are con-
tinuous. The columns of some A P Opnq are vectors in Sn´1, which
is compact. Therefore

Opnq Ă Sn´1
ˆ . . . ˆ Sn´1

is a compact topological group.

Example 5.38. The low-dimensional cases of SOpnq can be de-
scribed as follows:

• SOp1q “ t˘1u,

• SOp2q “ S1,
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• SOp3q – RP3. To see this, one uses that RP3
“ D3{x „ ´x

for x P BD3. There is a map D Ñ SOp3q, sending a vector
x P D3 to the rotation by |x|π around the line spanned by
x P R3. For x P BD, |x| “ 1, and so this gives a well-defined
mapRP3

Ñ SOp3q. This map is compact andRP3 is compact,
while SOp3q is Hausdorff. Therefore it is a homeomorphism.

• One can show SOp4q “ S3 ˆ SOp3q.

• SOp8q “ S7 ˆ SOp7q. These latter two are shown using unit
vectors of quaternions, resp. octonions.

5.6.1 Basic topological properties

The determinant

det : Opnq Ñ t˘1u

is a surjective group homomorphism, therefore its kernel

SOpnq :“ ker det

is a subgroup of index 2. We have SOpnq “ OpnqzSOpnq (namely if
B is an element in the right hand side, then the bijections are given
by A ÞÑ AB, and inverse given by C ÞÑ CB´1).

• The group SOpnq is path-connected. This can be shown using
linear algebra.

• We will later see that SOpnq is a CW complex with a single
0-cell. This gives another argument showing the connectedness
of SOpnq.

• There is a unique top-dimensional cell, of dimension npn´1q

2
.

• SOpnq is orientable, this is a general fact about topological
groups.

The computation of (co)homology of SOpnq also gives the one
for Opnq “ SOpnq \ pOpnqzSOpnqq, and also the one for GLpnq “

Opnq ˆ Rk, with k “
npn`1q

2
“ dimGLpnq ´ dimOpnq. The latter

isomorphism is given by Gram–Schmidt orthogonalization, or using
polar decomposition.
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5.6.2 Cell structure of SOpnq

Recall that a cell complex is inductively obtained by pushouts

Ů

BDk //

��

Xk´1

��
Ů

Dk // Xk.

The resulting maps Dk Ñ X are also called the characteristic maps.
For v P Rnzt0u let rpvq be the reflection along xvyK P OpnqzSOpnq.

Then we set
ρpvq “ rpvqrpe1q P SOpnq.

This defines a map ρ : Rn Ñ SOpnq. However, ρpvq only depends
on the line spanned by v, so we have a map

ρ : Pn´1
Ñ SOpnq.

This map is continuous and injective. This can be restricted to give
subspaces Pj Ă SOpnq, for j ď n ´ 1.

For a multi-index I “ pi1, . . . , imq (with all ij ď n ´ 1), we have
a map

ρ : PI :“ Pi1 ˆ . . .ˆPim Ñ SOpnq, pv1, . . . , vmq ÞÑ ρpv1q ¨ ¨ ¨ ¨ ¨ ρpvmq.

Definition 5.39. We call such a multi-index admissible if I “ p0q

or if n ą i1 ą i2 ą ¨ ¨ ¨ ą im ą 0.

Recall that Pk has a cell structure with one cell in each dimension
in r0, ks. In particular, there is a map ϕk : Dk Ñ Pk. Their product
is a map

ϕI : DI :“
ź

j

Dij Ñ PI :“
ź

Pij .

The composition with ρ gives a map

ρϕI : DI
Ñ SOpnq.

Proposition 5.40. The maps ρϕI , for all the admissible multi-
indices I, are the characteristic maps of a cell structure on SOpnq.

Remark 5.41. The admissible I will contribute cells of dimension
ř

j ij. In particular, there is a single 0-cell. Also, the multi-index
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I “ pn1, . . . , 1q gives a single top-dimensional cell, of dimension
npn´1q

2
.

In total, there are 2n´1 “
řn´1
i“0

`

n´1
i

˘

admissible sequences.

Example 5.42. For n “ 3, there are the following multi-indices
and associated characteristic maps:

• p0q⇝ D0 Ñ SOp3q.

• p1q⇝ D1 Ñ SOp3q.

• p2q⇝ D2 Ñ SOp3q.

• p2, 1q⇝ D2 ˆ D1p– D3q Ñ SOp3q.

These cells match the standard cell structure on RP3.

Proof. (Sketch:) The proof uses a general criterion for cell struc-
tures. One needs to check the following (for all admissible I):
(1) ρϕI induces a homeomorphism pDIq˝ onto its image. Let eI be

the image thereof.

(2) All eI are disjoint and cover SOpnq.

(3) ρϕIpBDIq is contained in a union of lower-dimensional cells.
If we let p : SOpnq Ñ Sn´1, α ÞÑ αpenq. Then

Pn´1
zPn´2 p

Ñ
–
Sn´1

ztenu.

We have a homeomorphism

h : pPn´1
zPn´2

q ˆ SOpn ´ 1q
–
Ñ SOpnqzSOpn ´ 1q,

given by pv, αq ÞÑ ρpvqα, with inverse β ÞÑ pvβ, αβq, with vβ cor-
responding to ppβq under the above homeomorphism, and αβ “

ρpvηq
´1βpenq.

Thus, for I “ pn ´ 1, . . . q, we get a cell (induced by pDn´1q˝ ˆ

ppDi2q˝ ˆ . . . ˆ pDimq˝) inside SOpnqzSOpn ´ 1q.
For the third point above, note that

BDI
“ BDi1 ˆ Di2 ˆ . . . ˆ Dim ` Di1 ˆ BDi2 ˆ ¨ ¨ ¨ ` . . . .

For I “ pi1, . . . , imq, the multi-index pi1 ´ 1, i2, . . . , imq need not be
admissible. But, one can show (where the juxtaposition denotes the
product of subsets of SOpnq)

PiPi
Ă PiPi´1.
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Therefore, one can replace the possibly non-admissible multi-index
pi1 ´ 1, i2, . . . q by pi1 ´ 1, i2 ´ 1, . . . q.

Corollary 5.43. The map

ρ : Pn´1
ˆ . . . ˆ P1

Ñ SOpnq

is surjective and cellular.

5.6.3 Z{2-homology and cohomology

According to computations above, the cellular complex for PI are
complexes with differential equal to 0, and in each degree k given by
pZ{2qak , with k being the number of k-dimensional cells in PI . The
surjectivity of ρ implies that likewise the differential in the cellular
complex for SOpnq is is zero.

We want to use an isomorphism

HkpSOpnq,Z{2q “ HkpSn´1
ˆ . . . ˆ S1,Z{2q.

For this, we need to understand the homology of the right hand side.
We do this using the following

Theorem 5.44. If X, Y are cell complexes, R is principal ideal do-
main, then there is a short exact sequence

0 Ñ
à

i

HipX,RqbRHn´ipY,Rq
h

Ñ HnpXˆY,Rq Ñ
à

i

TorRpHipX,Rq,Hn´i´1pY,Rq Ñ 0.

In particular, if R is a field, such as Z{2, then h is an isomorphism.

Here is the description of the cup product:

Theorem 5.45.

H˚
pSOpnq,Z{2q “

à

i

Hi
pSOpnq,Z{2q “

â

i odd

Z{2rβis{β
pi
i .

Here |βi| “ i, i.e., βi P Hi. This is the duall class of ei, which is the i-
dimensional cell ofPn´1 Ă SOpnq. Moreover, pi “ minkt2k such that 2ki ě

nu.

Example 5.46. For n “ 3, |β1| “ 1, so that p1 “ 4. |β3| “ 3, then
p3 “ 1, so that Z{2rβ3s{pβ3q “ Z{2. Thus

H˚
pSOp3q,Z{2q “ Z2rβ1s{β4

1 .

This agrees with H˚pRP3,Z{2q “ Z{2rαs{α4, as seen above.
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5.7 Exercises

Exercise 5.1. Let X be an orientable compact manifold of odd di-
mension. Show that its Euler characteristic vanishes:

χpXq “ 0.
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Appendix A

Category theory

A.1 The Yoneda lemma

Given any category C, and any object X P C, there are functors

hX : Cop
Ñ Set, Y ÞÑ HomCpY,Xq.

The functor hX is called the representing functor associated to X.
Let C be any small category, X P C and F : Cop Ñ Set a functor.

There is a map (of sets)

F pXq Ñ HomFunpC,SetqphX , F q

that sends f P F pXq to the natural transformation hX Ñ F that
is given on objects Y P Cop by hXpY q “ HomCpY,Xq Q α ÞÑ

F pαqpfq P F pY q. (Note here F pαq : F pXq Ñ F pY q since F is
contravariant. Note also that given a morphism Y Ñ Z in Cop, i.e.,
a morphism y : Z Ñ Y in C, the diagram

hXpY q “ HomCpY,Xq

y˚“HomCpy,Xq

��

// F pY q

F pyq

��

hXpZq “ HomCpZ,Xq // F pZq

commutes since F is a functor. Thus we have indeed defined an
element in HomFunpC,SetqphX , F q.)

Conversely, there is a map (of sets)

HomFunpCop,SetqphX , F q Ñ F pXq

147
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that sends a natural transformation g : hX Ñ F to gpidXq P F pXq

(note the evaluation of g at X gives a map hXpXq “ HomCpX,Xq Q

idX Ñ gpidXq P F pXqq.

Lemma A.1. The above two maps are inverse to each other, so we
have an isomorphism.

The (completely formal) proof is left as an exercise.
We now specialize this assertion. There is a natural map

HomCpX, Y q Ñ HomFunpCop,SetqphX , hY q. (A.2)

It sends a morphism f : X Ñ Y to the morphism hX Ñ hY whose
evaluation on any T P C is given by

hXpT q “ HomCpT,Xq Ñ hY pT q “ HomCpT, Y q, t ÞÑ f ˝ t

Lemma A.3. The above map (A.2) is a bijection.
In more high-level language: for any small category C, the func-

tor
C Ñ FunpCop, Setq, X ÞÑ hX :“ HomCp´, Xq

is fully faithful. It is called the Yoneda embedding .

Proof. This follows directly from Lemma A.1:

HomCpX, Y q “ hY pXq “ HomFunpCop,SetqphX , hY q.
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Homological algebra

B.1 The tensor product

The tensor product
A b B :“ A bZ B

of two abelian groups is characterized by the following universal
property: it is an abelian group together with a group homomor-
phism

A ˆ B Ñ A b B,

such that every bilinear map f : AˆB Ñ C, where C is an arbitrary
abelian group, factors uniquely like so:

A ˆ B //

f

%%

A b B

��

C.

We will mostly apply the tensor product in the case where A and B
are free, i.e., there are isomorphisms

A –
à

iPI

Z, B –
à

jPJ

Z

for appropriate (possibly infinite) sets I, J . In this case,
à

iPI

Z b
à

jPJ

Z –
à

pi,jqPIˆJ

Z. (B.1)

More generally, let R be a commutative ring. Then there is the
tensor product

M bR N,

149
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which is again an R-module, and which satisfies the same universal
property as above:

HomRpM bR N,Kq “ HomRpM,HomRpN,Kqq,

where HomR denotes the R-module consisting of R-linear maps.

B.1.1 Flatness

For a fixed R-module M , the tensor product functor N ÞÑ M bRN
is a right-exact functor, i.e., for any short exact sequence of the form

N1 Ñ N2 Ñ N3 Ñ 0,

the sequence

M bR N1 Ñ M bR N2 Ñ M bR N3 Ñ 0

is again exact. (Indeed, ´ bR N is left adjoint to HomRpN,´q,
so the former preserves all colimits including the above one: N3 “

cokerpN1 Ñ N2q. See, e.g., [Eis95, Appendix 5].)
M is called a flat R-module, if the functor M bR ´ is exact

(equivalently: if N1 Ă N2 is a submodule, then M b N1 Ă M b N2

is again a submodule). Every free R-module, and more generally
every projective R-module is flat. In general, these implications are
not reversible, but for R “ Z the situation does simplify: an abelian
group is free abelian iff it is a projective Z-module iff it is a flat
Z-module.

A non-flat Z-module is Z{n for n ą 0: the injective map Z
n

Ñ Z

becomes, after tensoring with Z{n, the map Z{n
n

Ñ Z{n, but in Z{n
multiplication by n is not injective.

Any localization of a flat module is again flat. For example Q “

Zr1
2
, 1
3
, 1
5
, . . . s is a flat module (but is not projective).

For any ring R, a flat-module M is torsion-free (i.e., multiplica-
tion by r ‰ 0 is injective on M). If R is a principal ideal domain,
then the converse holds as well.

B.1.2 Tor functors

Tor functors (the name comes from torsion, which is motivated by
the above example) provide a way to measure how “non-flat” mod-
ules are. For a proof of the following statement, see e.g., [Eis95,
§6.2].
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Proposition B.2. There are functors, for any i ě 0,

TorRi : ModR ˆ ModR Ñ ModR

such that
(1) TorR0 pM,Nq “ M bR N .

(2) If
. . . P1 Ñ P0 Ñ M Ñ 0 (B.3)

is a projective resolution (i.e., an exact complex with Pk being
projective modules) or, more generally a flat resolution (the Pk
are flat R-modules), then

TorRi pM,Nq “ HipP˚ bR Nq.

(3) In particular, if M is projective or flat, then TorRi pM,Nq “ 0
for all i ą 0 and N P ModR.

(4) For a short exact sequence

0 Ñ N1 Ñ N2 Ñ N3 Ñ 0,

there is a long exact sequence

. . . Ñ TorR2 pM,N3q Ñ TorR1 pM,N1q Ñ TorR1 pM,N2q Ñ TorR1 pM,N3q Ñ MbRN3 Ñ MbRN2 Ñ MbRN1 Ñ 0.

The Tor functors also satisfy a symmetry

TorRi pM,Nq – TorRi pN,Mq,

extending the isomorphisms M bR N – N bRM .

One also refers to the collection of all the Tor functors as the left
derived functor of b.

For a principal ideal domain R (e.g., R “ Z), every submodule
of a free R-module is free, so that N admits a free resolution of the
form

0 Ñ P1 Ñ P0 Ñ M Ñ 0. (B.4)

This implies that all TorRi vanish for i ě 2.

Proposition B.5. (Künneth formula) Let R be a principal ideal
domain (such as R “ Z), C,D P ChpModRq be two complexes, with
each Cn P ModR being flat. Then there is a short exact sequence

0 Ñ
à

p`q“n

HppCqbHqpDq Ñ HnpCbDq Ñ
à

p`q“n´1

TorR1 pHppCq,HqpDqq Ñ 0.

(B.6)
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Example B.7. For D “ Z{ℓ (concentrated in degree 0), this gives
back the sequence

0 Ñ HnpCq{ℓ Ñ HnpC{ℓq Ñ pHn´1pCqqℓ Ñ 0,

of Example 4.14 (cf. also the remarks after Definition 3.16): indeed,

TorZ1 pZ{ℓ,Mq “ Mℓ,

by virtue of the resolution 0 Ñ Z
ℓ

Ñ Z
Z

{ ℓ Ñ 0, which gives after
tensoring with M :

0 “ TorZ1 pZ{ℓ,Zq Ñ TorZ1 pZ{ℓ,Mq Ñ MbZZ
ℓ

Ñ MbZZ Ñ MbZZ{ℓ Ñ 0.

By comparisonD “ Q (again in degree 0) is flat, so TorZ1 p´,Qq “

0, and we get isomorphisms

HnpCq b Q
–
Ñ HnpC b Qq.

Proof. We first do the special case where the differentials in C are
zero. In this case C “

À

iPZCiris and HppCq “ Cp is a free R-module
and therefore TorR1 pHppCq,HqpDqq “ 0. Our claim now holds since
H˚ commutes with tensoring with a flat module, and also commutes
with direct sums:

à

p`q“n

Cp b HqpDq “
à

HqpCp b Dq

“
à

p`q“n

Hp`qpCprps b Dq

“ Hnp
à

Cprps b Dq

“ HnpC b Dq.

We now do the general case. Let Bi Ă Zi Ă Ci be the boundaries
and cycle submodules in Ci. We use that R is a PID, so that “flat”
is equivalent to “torsion-free”. In particular, Bi and Zi are also flat.
These groups form subcomplexes B Ă Z Ă C with the property
that their differentials are zero, and there is a short exact sequence

0 Ñ Z Ñ C
d

Ñ Br1s Ñ 0.

Tensoring with D gives an exact sequence, since Bi are flat (so that
TorR1 pBi, Dnq “ 0):

0 Ñ Z b D Ñ C b D
d

Ñ Br1s b D Ñ 0.
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We have long exact sequences of homology groups (the ‘ run over
p ` q “ n), where the vertical isomorphisms come from the special
case above:

0 // ‘Tor1pHpC,HqDq // ‘Bp b HqpDq

–

��

// ‘Zp b HqpDq

–

��

// ‘HpC b HqD //

��

0

. . . // Hn`1pB b Dq // HnpZ b Dq
i // HnpC b Dq

BCbidD// Hn`1pB b Dq

There is a unique dotted map as indicated. It is injective by a
diagram-chase. The dotted map has the same image as the one
labelled i, so that their cokernels agree as well. By the 0 at the very
top left (which holds because of 0 “ Tor1pZp,HqDq, using that Zp
is flat), we have coker i “

À

p`q“n´1Tor
R
1 pHpC,HqDq.

Remark B.8. If the Cn are in fact projective modules, then one
can choose non-canonical isomorphisms Cn – Zn ‘ Bn, which gives
the added information that (B.6) is in fact a split exact sequence,
i.e., there are isomorphisms

à

p`q“n

`

HppCq b HqpDq ‘ TorR1 pHp´1C,HqDq
˘

– HnpC b Dq.

However, this depends on the above choices and is therefore not
functorial in C. See, for example, [Rot88, Corollary 10.82].

B.2 Exercises

Exercise B.1. Let

. . . Ñ 0 Ñ A
a

Ñ B
b

Ñ C Ñ 0 . . .

be an exact complex of abelian groups. (This is called a short exact
sequence.) Show that for any abelian group T , there are complexes,
with appropriate natural maps

0 Ñ HomAbpT,Aq
a˚
Ñ HomAbpT,Bq

b˚
Ñ HomAbpT,Cq Ñ 0.

Show that this complex is exact except possibly at the spot HompT,Cq,
i.e., b˚ need not be surjective. Show that for a free abelian group T
(T “ ZrSs for some set S), the complex is exact.
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Also show that

0 Ñ A b T Ñ B b T Ñ C b T Ñ 0

is a complex. Show that it is exact except that possibly the map
A b T Ñ B b T need not be injective. Show that the complex is
exact for a free abelian group T .
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