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Chapter 1

Rings and their spectra

All theorems in algebraic geometry are ultimately grounded in commutative algebra, or the theory
of commutative rings (and their modules). In this chapter, we study a few ring-theoretic notions,
and introduce the Zariski topology on the spectrum of a ring.

Convention 1.0.1. Throughout, all rings are commutative, associative and unital. We use A to
denote a ring and k for a field.

The following definition opens the door from commutative algebra to algebraic geometry.
Definition 1.0.2. The spectrum of A is the set
Spec A := {p < A prime ideal}.
For a map f : A — B of rings, we have an induced map (of sets, for now),
Spec B — Spec A, q(c B) — f(q), (1.0.3)

noting that f~1(q) is a prime ideal in A. We will denote this map by Spec f or just f. Sometimes
we also use a different letter such as ¢ in order to avoid an overload of notation.

1.1 The Zariski topology

For f e A, we denote
D(f):={pc Al f¢np}

Recall that these prime ideals are precisely the prime ideals of the localization A[f~!] (more
precisely, the map Spec(A[f™!]) — Spec A from (1.0.3) is injective and its image is D(f).)

Definition 1.1.1. The Zariski topology on Spec A is defined to be the topology generated by the
subsets D(f). These subsets are called basic open subsets.

Remark 1.1.2. Since D(f) n D(g) = D(fg), the open subsets in Spec A are therefore (possibly
infinite) unions of open subsets of the basic open subsets. We have D(0) = ¢ and D(1) = Spec A.

Lemma 1.1.3. If f : A — B is a ring map, then ¢ : Spec B — Spec A is continuous (for the
Zariski topology). More precisely ¢ !(D(a)) (for some a € A) equals the fundamental open subset
D(f(a)) < Spec B.

Proof. This is directly clear from the definitions. O
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6 CHAPTER 1. RINGS AND THEIR SPECTRA

The closed subsets of this topology are the of the form
V(M) :={pc A|M < p},

where M < A is an arbitrary subset. Indeed, V(M) = (., V({f}), and V({f}) is the complement
of D(f). In the above it is enough to consider M to be an ideal. Indeed, if I < A denotes the

ideal generated by M, then
V(M) =V(I).

We can make a more precise relation between closed subsets of Spec A and (certain) ideals of A as

follows. Recall that the radical /I of an ideal I is defined as
VI:={aeA|a" el forn» 0}. (1.1.4)

A basic statement of commutative algebra [Stacks, Tag 00E(] asserts
VI = N p. (1.1.5)
p>DI,p a prime ideal
As a special case, the nil-radical is

VO:={acA|a"=0forn>»0}= ﬂ p.

p prime ideal

For a subset Y < Spec A, we define

Y) =ﬂp.

peY

This is clearly an ideal; one should think of this as the ideal of those elements f € A “vanishing”
at all points in Y in the sense explained in (1.2.5) below.

Lemma 1.1.6. There are mutually inverse bijections

V(=)
{JcAideal | J=+J} <—T {Y < Spec A closed} .
I(—

Slightly more generally and precisely:
(1) 1 v/ 1(Y) for any (not necessarily closed) subset Y < Spec A.

Y) =
(2) I(V(J)) = \F for any ideal J.
(3) V(I(Y)) = (the closure).

Proof. (1): We have p = /p for any prime ideal, and also for any intersection of prime ideals, such
as I(Y). (2): This is a reformulation of (1.1.5). (3): A closed subset V(K) (for some ideal K)
contains Y iff K is contained in the prime ideals p belonging to Y, which happens iff K < I(Y).
The stated bijection is then a consequence of (2) and (3). O

The Zariski topology is very different from topological spaces such as R", as we will soon
understand. In the sequel, we will define several basic properties of a topological space and then
rephrase them in ring-theoretic terms.

Definition 1.1.7. Let X be a topological space, and z,y € X.

e We call X quasi-compact if for every open covering X = | J,_; U; there is a finite subcovering,

i.e., already finitely many of the U; cover X.

iel

e We say z is a generic point if {7} = X. This is equivalent to requiring = to be contained in
any non-empty open subset U < X.


http://stacks.math.columbia.edu/tag/00E0
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e We say z is a closed point if {x} = {z}. (Note this is the other extreme in comparison to a
generic point.)

e We write x ~ y if y € {7}, i.e., y lies in the closure of x. We say that y is a specialization of
x (or z is a generalization of y) in this case.

Lemma 1.1.8. (1) We have V(p) = {p} for any prime ideal p.
(2) p ~ qiff p < g. In particular:

e p is a generic point in Spec A iff p = /0 (the nilradical).

e p is a closed point iff p is a maximal ideal.

Proof. (1) holds directly by definition. This implies the other claims as well: p is a generic point
iff p is contained in every prime ideal, i.e., p =) ¢ prime 4 = V0. However, for any prime ideal, we

always have /0 < p, so the preceding containment is actually equivalent to p = /0. [

Remark 1.1.9. Unlike many topological spaces encountered in other branches of mathematics,
Spec A is very rarely Hausdorff (and therefore compact in the sense of usual point-set topology);
we will describe this precisely in Lemma 1.4.9.

Lemma 1.1.10. (1) For asubset S < A, V(S) = ¢J iff S generates the unit ideal, i.e., if 1 = > s;¢;
for appropriate s; € S and t; € A.

(2) Suppose a set of elements f; € A is fixed. Then ( J, D(f;) = Spec A iff the f; generate the unit
ideal.

(3) For f,g € A we have D(f) < D(g) iff g is a unit in A[f~!] (in which case there is a ring
homomorphism A[g~'] — A[f™']). In particular,

D(f) = D(g) = Al = Alg™!] (1.111)
(4) Spec A is quasi-compact.

Proof. For (1) we note that V(S) = V(I) where [ is the ideal generated by S. An ideal I is the
unit ideal precisely if it is not contained in any maximal ideal.

(2) follows from (1) by passing to the open complements.

(3): We have D(f) < D(g) iff D(f) = D(f) n D(g) ie., iff D(f) = D(fg). We note that
D(f) = Spec A[f~']. Thus, applying (2) to the ring A[f~!], the preceding condition holds iff fg
generates the unit ideal in A[f~!] which happens iff ¢ is a unit in A[f~1].

For (4), it is enough to show that any covering Spec A = | J,.; D(fi) by basic open subsets
admits a finite subcovering. This condition is equivalent to (), V({f;}) = &. This implies the
claim by (1). Indeed, any element in the ideal generated by the f; is a finite linear combination of

Lemma 1.1.12. Let f: A — B be a ring homomorphism and ¢ : Spec B — Spec A the induced
map. Let J < B be an ideal. Then

V(7)) = V(). (1.1.13)

In particular ¢ is dominant (i.e., its image im ¢ is dense) iff every element of ker f is nilpotent.
In particular, if A is reduced then f is injective iff ¢ has dense image.
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Proof. We have the following equalities of ideals in A:

eV = () o= () S @=r7{ () a|"2” VI = V).

pep(V(J) qaeV(J) €V (J)

We then apply V(—) and conclude the assertion in (1.1.13) using Lemma 1.1.6(3) for the right
hand side.

For the next claim, take J = 0, and note that for an ideal I < A the inclusion Spec A/I < Spec A
is an equality precisely if I is contained in the nilradical (Exercise 1.1.22(4)). H

Definition 1.1.14. A topological space is called Noetherian if the descending chain condition
holds for closed subsets, i.e., if any sequence

X>VioVyo. ..
satisfies V,, = V,,.1 = ... for large enough n.

Lemma 1.1.15. If A is a Noetherian ring, then Spec A is a Noetherian topological space in the
sense above.

Definition 1.1.16. A topological space X is called irreducible if X # ¢ and whenever
X=VuWw

for two closed subsets V' and W, necessarily there holds X =V or X = W.
A subset Z < X is called an irreducible component if it is a maximal irreducible subset of X.

Lemma 1.1.17. (1) The irreducible closed subsets of Spec A are exactly the subsets V (p)(= {p}),
for arbitrary prime ideals p.

(2) The irreducible components of Spec A are exactly the subsets V(p) with p being a minimal
prime ideal.

In particular, if A is a domain (i.e., has no zero-divisors), so that (0) is a prime ideal, then
Spec A is irreducible.

Exercises

Exercise 1.1.18. (1) If X is a Noetherian topological space and U < X open, prove that U is
quasi-compact.

(2) Let A be a Noetherian ring. Show that any open subset U < Spec A is necessarily a finite
union of basic open subsets, i.e., U = [ J_, D(f).

(3) Let A = Z[tq,1s,...] (countably many variables). Show that U := Spec A\V ((t1,t2,...)) can
not be covered by finitely many basic open subsets. In the parlance of Definition 1.6.20 below,
one may think of Spec A as an infinite-dimensional affine space, and U the complement of the
origin in there.

Exercise 1.1.19. Let [ = A be an ideal. Prove that V(I) = V(+/I), where \/I := {a € A,a" € I}
denotes the radical of I.

Exercise 1.1.20. Let X be a topological space.
(1) If X is irreducible and U < X open, prove that U is irreducible.

(2) Prove that X is irreducible iff for any open ¢ # U,V < X one has U n'V # J (i.e., any two
open subsets intersect, unless one of them is empty).
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Exercise 1.1.21. (Solution at p. 105)
(1) Prove that a subset Y < Spec A is irreducible iff I(Y') is a prime ideal.

(2) Deduce that Spec A is irreducible iff the nilradical /0 is a prime ideal in A.

(3) One of the following three is reducible (i.e., not irreducible). Which one? Spec Z[x,y|/z* — y?,
Spec Z[z, y]/x* — vy, Spec Z[z, y]/xy — 1. (In particular, this shows that a closed subscheme of
Spec Z[z,y|, which is irreducible, may be reducible. This is in contrast with the permanence
of irreducibility for open subsets proved in Exercise 1.1.20.)

Exercise 1.1.22. Let A be aring, f € A and I < A an ideal.

(1) Prove that the map Spec A[f~!] — D(f) is a homeomorphism, where we endow D(f) with the
subspace topology of Spec A. Slightly more generally, prove that for a multiplicatively closed
subset S < A, there is a homeomorphism (where the right hand side carries the subspace
topology of Spec A)

Spec A[S™'] — {p € Spec A,p n S = I}

(2) Prove that the map Spec A/I — V(I) is a homeomorphism, where we endow V(I) with the
subspace topology of Spec A.

(3) Deduce that there is a homeomorphism

Spec(Ared) = Spec(A/+/{0}) — Spec A, (1.1.23)

where 4/{0} denotes the nil-radical of A.

(4) Strengthen the previous assertion as follows: for an ideal I < A the inclusion Spec A/l <
Spec A is an equality precisely if I < /0.

Exercise 1.1.24. Show that the converse of Lemma 1.1.15 fails (e.g., using Exercise 1.1.22).

Exercise 1.1.25. (Solution at p. 105) Recall that the boundary of an open subset U < X in some
topological space is defined as B
oU = U\U.

Let X = Spec A and U = D(f) for some f € A. Establish a bijection
oU = Spec A/I,

where I is the ideal generated by f and v0 : (f) := {r € Alrf € O} = {r € A|(rf)" =
0 for some n » 0}.
Hint: prove that D(r) = & iff r € 1/0.

Exercise 1.1.26. Let A;,i € I be an infinite set of rings, such that A; # 0. Is there a ring A such
that there is a homeomorphism of topological spaces as follows:

Spec A = |_| Spec A; 7

Exercise 1.1.27. Let C' = SpecZ[t,u]/tu. Show that C} := SpecZ[u] and Cy := Spec Z[t] are
the irreducible components of C'.

Exercise 1.1.28. Let ¢ = p" be a prime power, and F, a field with ¢ elements. Recall that for any
F -algebra A, the Frobenius (or, in certain situations also referred to as the absolute Frobenius) is
the ring homomorphism (!)

Frob: A — A,a — af.
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The induced map on affine spectra is again denoted Frob:
Frob : Spec A — Spec A.

Prove that this latter map Frob is the identity on the level of the underlying sets(!)
In particular, it is a homeomorphism (on the level of the underlying topological spaces). Of
course, Frob is not an isomorphism of rings for example for A = F[¢].

Exercise 1.1.29. Let A = F[t1,...,t.]/(f1,..., fm) be a finitely generated Fj-algebra. Fix an

algebraic closure F,, and write A := A®p F,. For \; e Fg,i=1,... ,nsuchthat f;(A,...,\,) =0

(for all j), we consider the maximal ideal m = (t; — A\;)A. (According to Hilbert’s Nullstellensatz,
to be proved below in Corollary 1.9.2, all maximal ideals of A are of that form.)
Consider the map
Frobs ® idfq A A

Prove that the induced map on spectra
Spec A — Spec A

has the property that it sends

In other words, this is the map that geometrically corresponds to raising the coordinates to the
g-th power. This map is of paramount importance in the study of algebraic geometry over a field
of positive characteristic.

1.2 Local rings

Definition and Lemma 1.2.1. The following properties are equivalent:
(1) A has exactly one maximal ideal (which is commonly denoted m or my), i.e., Spec A has exactly
one closed point.

(2) A+# 0 and A\A* (the elements in A that are not a unit) forms an ideal.
(3) A#0andif f+ge A" then fe A* or ge A*.
(
I

4) A # 0 and for any f € A we have fe A* or 1 — f e A*.
f these conditions are satisfied, A is called a local ring.

Proof. The simple proof is omitted. We only note that A\A* is the unique maximal ideal of A in
this case. See, e.g., [Stacks, Tag 07BJ] for further details. O

Example 1.2.2. e A field £ is a local ring.

e Z is not a local ring (the maximal ideals are the principal ideals (p) for the prime numbers
p).

e k[t] is not a local ring since neither ¢ nor 1 —¢ is a unit in k[t]. Moreover, the maximal ideals
are precisely the ones of the form (f), where f is an irreducible polynomial. (Immediately,
there is more than one of them, namely f =t and f = ¢t + 1. In fact there are infinitely many,
even if k is a finite field.

Definition and Lemma 1.2.3. Let f : A — B be a ring homomorphism between two local rings.
The following are equivalent:
(1) f~1(B*) = A*. A ring homomorphism with that property is called conservative.

(2) f(my) c mp,
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(3) fH(mp) = ma.
The map f is called a local map in this event.

Proof. The proof is again very simple, since mp = B\B*. n

Recall that for any ring A and any prime ideal p c A, the localization is defined as

Ay = A[(A\p) ]

This is a local ring whose unique maximal ideal is pA,. The quotient field
k(p) == Ap/pA,

of that maximal ideal is called the residue field of p. For each prime ideal p, there is a natural map
A— Ay, — k(p). (1.2.4)

This allows us to think of an element f € A as a function taking values in the residue fields (which
are generally different for different p). The map A, — A/p in (1.2.4) is a local map.
For a subset Y < Spec A, we have

I(Y) := ﬂ p = ker <A — H k:(p)) , (1.2.5)

peY peY

(if £ e pA,,ie. § =2 withpepand s ¢ p then ast = pt for some t ¢ p, i.e., ast € p, so that a € p).

In topology, one understands a continuous map f : X — Y (to a certain extent) if one un-
derstands the so-called fibers f~1(y) for all y € Y. Here is the corresponding algebro-geometric
notion.

Lemma 1.2.6. Let f : A — B be a ring map and ¢ : Spec B — Spec A the induced map on
spectra. Fix some p € A. Then there is a homeomorphism

Spec(B ®4 k(p)) = ¢ (p)

(where at the left the tensor product is formed using the canonical map (1.2.4) and the space at
the right carries the subspace topology of Spec B).

Proof. We have
B®a Ay = B A[(A\p) ] = B[f(A\p) "]

and by Exercise 1.1.22(1) the spectrum of this ring is homeomorphic to {q € Spec B | qn f(A\p) =
&}. That latter condition is equivalent to f~1(q) n (A\p) = &, or to f~1(q) < p.
We then have

BQak(p) = BQa Ap/pAy.

According to Exercise 1.1.22(2), its spectrum is homeomorphic to {q € Spec B®4 A4, | f(pA,) < q},
which is equivalent to f(p) = q and, in the presence of the above condition, to f~!(q) = p. [

Corollary 1.2.7. In the above situation, we have

¢(Spec B) = {p € Spec A | By/pB, # 0}.
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Exercises

Exercise 1.2.8. Let A be a ring and X = Spec A. Show that A is local if and only if for every
open covering X = | J._; U;, there is some i such that U; = X. One refers to this statement by
saying that (spectra of) local rings are the points of the Zariski topology.

Exercise 1.2.9. Show that the assignment

p o (4557 k(p)

gives rise to a bijection
Spec A 13 |_| Hompgings(4, &)/ ~,
k

where at the right the disjoint union runs over the collection (actually, a proper class) of all fields
and a ring homomorphism f : A — k is identified with g : A — &’ (possibly for some other field
k') if there is a commutative diagram

Exercise 1.2.10. (Solution at p. 106) Let 7 : A! := Spec Z[t] — Spec Z be the map induced by
the inclusion Z < Z[t]. Using the description of the points of z € A! from Exercise 1.3.7, describe
m(z) for each point x € Al.

1.3 Dimension

Definition 1.3.1. The Krull dimension of a topological space X, is
dim X :=sup{n|Zo = 21 < - < Z,(c X)},

where the supremum is taken over all chains of irreducible closed subsets. (Thus dim X = oo iff
arbitrarily long chains exist, it is by convention —oo iff X = ¢F.)

Definition 1.3.2. The Krull dimension of A is
dim A := dim Spec A = sup{n|po 2 p1 2 - 2 Pn},
where the supremum is taken over all chains of prime ideals.

Example 1.3.3. (1) A ring A is zero-dimensional iff every prime ideal is maximal. This is the
case if A is a field or, more generally, if A is an Artinian ring (see [Stacks, Tag 00JA]; in fact
the Artinian rings are precisely the zero-dimensional Noetherian rings [Stacks, Tag 00KH]). In
particular, if A is a k-algebra that is finitely generated as a k-vector space (as opposed to being
finitely generated as a k-algebra!), we have dim A = 0. We will give a complete description of
reduced O-dimensional rings in Lemma 1.4.9.

(2) For a principal ideal domain A that is not a field, such as A = Z or A = k[t], we have
dim A = 1: the chain of prime ideals are (0) < (f) (with f being irreducible elements of A).
Note that (0) is the generic point, and the ideals (f) are the closed points.

(3) For A = k[ty,...,t,] we have the chain of prime ideals
(0) < (1) & (hyts) © == (s E),

so dimA > n. We will see below that there are no longer chains of prime ideals, i.e.,
dim k[ty, ..., t,] = n (Corollary 1.9.3).


http://stacks.math.columbia.edu/tag/00JA
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(4) We have dim Z[t] = 2, cf. Exercise 1.3.7.

(5) By definition, the dimension only “sees” the underlying topological space of Spec A. In par-
ticular, we have dim A = dim A,eq, cf. (1.1.23).

Despite its simplicity, the dimension of a ring is actually not always harmless to work with. We
will use the following properties, which are non-trivial to prove.

Theorem 1.3.4. Let A be a Noetherian local ring, with m its maximal ideal.
(1) [Stacks, Tag 00KD] If m is generated by, say, n elements, then

dim A < n.

In particular,
dim A < 0.

(2) [Stacks, Tag 00KW] For z € m we have
dimA/x > dim A — 1.
If x not contained in a minimal prime ideal of A (for example x a non-zero divisor) we have
dimA/z = dim A — 1.

(L.e., modding out z causes the dimension to drop at most by 1, and it does drop if x is not a
zero-divisor.)

For a Noetherian, but non-local ring, we may have dim A = oo (despite all its localizations having
finite dimension), see [Stacks, Tag 02JC] for an example of the form A = k[z,xo,...|[S7].

Theorem 1.3.5. For a Noetherian ring A,
dim A[t] = dim A + 1.
(Le., one side is finite iff the other is, and equality holds in that case.)

This theorem is originally due to Krull. The theorem also holds if A is a valuation ring. See
[Bre+73] for a uniform proof of both statements.

Warning 1.3.6. For an arbitrary ring, a theorem due to Seidenberg! asserts that if dim A = d,
then

d+1<dimA[t] <2d+1,

and (for appropriate non-Noetherian rings), each value in between d+ 1 and 2d+ 1 can be attained.
See [Bou06, Chapter VIII, §2, Corollaire 2]. Because of that, we will consider the dimension of
(local) rings only in the context of Noetherian rings in this course. As an outlook, we just mention
the existence of valuative dimension of a ring, introduced by Jaffard [Jaf60] and denoted dimv A.
See, e.g., [WK24, §5.4.3] for a textbook account. It has the following properties:

e One has dim A < dimv A.
e If A is Noetherian or a valuation ring, then dim A = dimv A.

e For any ring A, we have dimv A[t] = dimv A.

Ihttps://msp.org/pjm/1954/4-4/pjm-v4-n4-p09-p. pdf
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Exercises

Exercise 1.3.7. (Solution at p. 106)

(1) Prove that the prime ideals of Z[t] are precisely the following:
e The zero ideal (0).
e A principal ideal of the form pZ[t], for a prime number p.

e A principal ideal of the form (f), where f € Z[t] is an irreducible polynomial of degree > 0
whose coefficients have no common prime divisor (equivalently, the ideal I < Z generated
by the coefficients of f satisfies I = Z).

e An ideal of the form (p, f), where p is a prime, f is again an irreducible polynomial such
that its image in F,[¢] is still irreducible.
Hint: any ideal is of the form (aq, ..., an, f1,..., fm) wWith a; € Z and f; polynomials of positive

degree. The above four cases correspond to m,n = 0, 1 respectively.

(2) Prove that the first is the generic point, the latter type of ideals the maximal ideals. Deduce
dim Z[t] = 2.

For this reason, on refers to AL = Spec Z[t] as an arithmetic surface.

(3) Discuss the relation of this fact with dimF,[t] = 1 and dim Q[t] = 1.

Exercise 1.3.8. (Solution at p. 106)
(1) Give an example of a ring A with 5 prime ideals, of which 4 are maximal and 1 is not maximal.

(2) What is the dimension of A?

1.4 Flatness

Recall that for a ring A, an A-module M is called flat (or flat over A to emphasize the ring A) if
M®A — MOdA — MOdA

is an ezact functor. (For any M, this functor is right exact, so the actual condition is that M ®4 N
is a submodule of M ®,4 N, for any submodule N < N'.) If f: A — B is a ring homomorphism,
we say that f is flat (or that B is flat over A) if B is flat as an A-module.

A flat module (or algebra) is called faithfully flat if M ®4 — is conservative (i.e., M ®4 N —
M ®,4 N’ is an isomorphism (if and) only if N — N’ is an isomorphism); equivalenty M is flat and
M ®4 N =0 (if and) only if N = 0.

Example 1.4.1. (1) Any free A-module M = @,_; A is flat (and it is faithfully flat iff M +# 0 or
equivalently I # ¢¥). Indeed, M ®, hAN = @,.; N.

e As a special case: A[t] and more generally A[t;,i € I] is a faithfully flat A-algebra.

e Another special case: if A = k is a field, any k-module is free (i.e., has a basis), and in
particular any module or algebra over a field k is flat.

(2) Unlike the inclusion A < A[t], the unique ring homomorphism A[t] — A satisfying ¢ — 0 is not
flat: the multiplication by ¢ : A[t] — A[t] is injective, but after applying A®apq—, i.e., applying
(—)/t, we get the map t = 0 : A = A[t]/t — A, which is no longer injective. We will see in
Proposition 1.8.7 that any flat ring map A — B often induce open maps Spec B — Spec A
(i.e., images of open subsets are open). However, the image of Spec A — Spec A[t] is closed.
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(3) Filtered colimits of flat A-modules are flat. This is true since colim M; ®4 — = colim(M; ®4 —)
and taking a filtered colimits of exact sequences of A-modules gives an exact sequence.

In fact, this is not just an example, but all flat modules arise this way. More precisely,
Lazard’s theorem asserts that M is flat iff it is a filtered colimit of finite free A-modules

[Stacks, Tag 058G].

(4) As a special case of filtered colimits, we have that any localization A[f~*] or A[S™!] of a ring
is flat. (There is an isomorphism of A-modules A[f~!] = colim(A Loat .) It is typically
not faithfully flat though: we have A[f~'|®@4 A/f = (A/f)[f7'] =0, but A/f # 0 (unless f
is a unit).

(5) If A — B is a ring homomorphism and M is a flat A-module, then M ®4 B is a flat B-module.
Indeed

M®sB®p—=M®a—

is an exact functor. This property is referred to by saying that “flatness is preserved under
base change”.

Lemma 1.4.2. Suppose M is a flat A-module. The following are equivalent:
(1) M is faithfully flat,

(2) M/IM(= AJI®4 M) # 0 for any ideal I < A,
(3) M/pM(= A/p ®4 M) # 0 for any prime ideal p A,
(4) M/mM(= A/m®4 M) # 0 for any maximal ideal m < A.

Proof. Clearly we have (1) = (2) = (3) = (4).
(2) = (1): suppose N is an A-module such that M ®4 N = 0. Any element n € N gives rise to
an exact sequence
0—1:=Annyn — A5 N,

which (using that M is flat!) then gives
0=>IQ@sM—>M—> N®yM.

By assumption the right hand term vanishes, so that the left map is an isomorphism, which by (2)
implies I = A, i.e., n = 0.

(4) = (2): any proper ideal I is contained in some maximal ideal m, i.e., there is a surjection
A/I — A/m. Applying — ®4 M gives a surjection M /IM — M /mM. Thus, if M/mM # 0, then
also M/IM # 0. O

Lemma 1.4.3. Let f : A — B be a flat ring map.
(1) Then f is faithfully flat if and only if f induces a surjective map ¢ : Spec B — Spec A.

(2) If f is a (flat) local map of local rings, it is faithfully flat.

Proof. (1): Let p < A be a prime ideal. Then ¢~ '(p) = Spec(B,/pB,) (Lemma 1.2.6). This is
empty iff B,/pB, = (B/pB), = 0iff B/pB = 0. (For the latter equivalence we use that for a ring
C and a multiplicatively closed subset S < C, 0 ¢ S we have C' = 0 iff C[S™!] = 0.) We conclude
by Lemma 1.4.2.

(2): since the map is local, we have f(m4) < mp, so that we have a natural map A/m, —
B/msB — B/mpg, which is a ring homomorphism between fields and therefore injective; in partic-

ular B/myB # 0. O

Example 1.4.4. Let fi,..., f, € A. The following are equivalent:


http://stacks.math.columbia.edu/tag/058G
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(1) The A-algebra
[ [AL
i=1
is faithfully flat.
(2) The f; generate the unit ideal.

(3) Spec A = U, D(fi) = Ui, SpecA[fi_l].

Indeed, the equivalence (2) < (3) was already shown in Lemma 1.1.10.

Corollary 1.4.5. An A-module M is flat iff all the localizations M, (for all prime ideals p < A)
are flat over A,.

Proof. Note that M, = M ®4 A, for any M and A. Thus the direction “=" holds by stability of
flatness under base change (Example 1.4.1(5)).

The direction “<” holds since the map A — Hp Ay is faithfully flat by Lemma 1.4.3: given
an injection N — N’ of A-modules, the injectivity of M ® 4 N — M ®4 N’ can be checked after
applying — ®4 A, (for all p). O

Having these preliminary technical properties of flatness at our disposal, we now come to a key
reason why flatness is important in commutative algebra and algebraic geometry.

Lemma 1.4.6. If B is a faithfully flat A-algebra, and M is an A-module, then there is an exact
equence (of A-modules), called the Amitsur complex

0—>M—>B®sM— (B®sB)@4 M

where the first map is m — 1 ® m and the second map is given by b@m — b®1@m — 1R b m.
(The key case to consider is M = A, in which case this simplifies to

0-4LB"*5% Bg,B) (1.4.7)

Proof. For simplicity of notation, we spell out the proof for M = A; in general one simply appends

the functor — ®4 M to all the arguments in the proof below.

(1) We first prove it if f admits a section, i.e., an algebra map s : B — A such that so f = id.
Clearly the map f is injective then, so the sequence (1.4.7) is exact at the left. To check the
exactness in the middle, consider the map k : B®4 B — B satistying k(b ® ') = bfs(b'). It
satisfies k(b® 1 —1®b) =b— fs(b),soif b®1 —-1®0b = 0, then b = fs(b) € f(A). (To
demystify what might look an unmotivated trick above see Exercise 1.5.9.)

(2) Suppose A — A’ is faithfully flat. Then we prove the claim for A" — A’ ®4 B implies the one
for A — B. Indeed, the complex (1.4.7) for A" - A’®4 B is obtained from the one for A — B
by applying —®4 A" and this functor is exact (by flatness) and conservative (by faithfulness).

(3) The map id®1: B — B®4 B arises from f by applying B®,4 —. In addition, the map id® 1
has a section given by the multiplication, so the asserted exactness holds by the first step. By
the second step, it then holds for f. O

Definition 1.4.8. A ring A is called absolutely flat if any A-module M is flat.

We have noted above that any field is absolutely flat. Most rings are not absolutely flat, for
example Z is not absolutely flat since Z/p is not a flat Z-module. The following characterization
of absolutely flat rings is due to Olivier [Oli78]. Part (2) appears in [BSY22, Proposition 4.41].
We will later use this notion to prove Chevalley’s theorem on images of constructible sets.
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Lemma 1.4.9. The following are equivalent:
(1) A is absolutely flat.

(2) Any ring homomorphism Z[t] — A factors uniquely as shown below:

t—a
Z|[t] —; A (1.4.10)
tH(O,t)J =
Z x Z[t*1]
(3) Any a € A can be written as
a=eu

for an idempotent e and a unit wu.
(4) A is reduced and Spec A is Hausdorff.
(5) A is reduced and satisfies dim A = 0.
(6) All its local rings A, are fields.
Proof. Independently of the property of being absolutely flat etc., recall the category-theoretic fact

that (2) admits a unique lift if the right hand-vertical map h in the pushout diagram below is an
isomorphism:

Z[t] i A (1.4.11)

| b

Z X L[t —— AQgzpy (Z x Z[t*])

In more plain terms, this just means that the following map is a ring isomorphism:

AHAmwaﬂmhwaé. (1.4.12)

We prove (1) = (2) by showing that A is an isomorphism provided that A is absolutely flat.

Since A is absolutely flat, the map h is flat. It is also surjective on the level of spectra (in fact

a bijection V(a) u D(a) — Spec A) and therefore faithfully flat. By faithful flatness we have an
eract Amitsur complex (1.4.7), cf. Lemma 1.4.6:

0->ALpBres®pe. B

This complex arises from the similar complex for g : Z[t] — Z x Z[t*'] by applying A®zj —. The
(non-exact) Amitsur complex for the (non-flat) map g is

0 = Z[t] = Z x Z[t*'] = (Z x Z[t*']) @z (Z x Z[t*"]).

We claim the right hand map is zero. Indeed, Z ®zp Z[tT'] = 0 (geometrically this corresponds
to the fact that 0 n G, = &), so we only have to consider

Z — 7 ®zp L,
Z[t] = Z[t7] @y Z[tT].

In both cases, for an element f in the domain, we have f ® 1 = 1 ® f in the target, so the map
f— f®1—-1® f is zero in the Amitsur complex for g and hence this is also the case for the
Amitsur complex for h. Hence h is an isomorphism, confirming (2).

(2) < (3) is left as Exercise 1.4.17.
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(3) = (4): suppose a™ = 0 for some a € A. Writing a = eu with an idempotent e and a unit u,
we have a" = e™u™ = 0,50 0 = e" =" ! = ... = ¢, so that a = 0. We prove Spec A is Hausdorff:
consider two distinct prime ideals, say p < q (i.e., p ~» q). Pick an element a € q\p. Again, writing
a = eu as before, we have e = u~'a € q, but e ¢ p. For any idempotent e, we have a decomposition
into two clopen (closed and open) subsets Spec A = V(e) u D(e). (Indeed, for an idempotent e,
one has V(1 —e) = D(e), as one checks readily. Another approach to seeing this is offered by
Exercise 1.5.7.) This gives two open subsets separating p and q.

(4) = (5): if we had p < q then q € {p}, so p and q could not be separated by two open subsets.

(5) = (6): For p e Spec A, Spec A, = {p}. Like A, A, is reduced. Such rings are fields.

(6) = (1): An A-module M is flat iff all the M, are flat over A, (Corollary 1.4.5), and fields
are absolutely flat. O]

Remark 1.4.13. As a forecast to the upcoming notion of morphisms of affine schemes, condition
(2) above is equivalent to the existence and unicity of a map of affine schemes as pictured below
(where at the right we have the map Spec Z — A! induced by Z[t] — Z, t — 0), and the standard
inclusion (1.6.33)):
0u Gy (1.4.14)
¢

EE

Spec A—C AL

Exercises

Exercise 1.4.15. If B is as in Example 1.4.4, prove the exactness of the Amitsur complex

n

0—A— AL - [T A A
i=1

3,7=1

by hand (cf. Lemma 1.4.6). Explain how the complex fails to be exact if the f; do not generate
the unit ideal in A.

Exercise 1.4.16. Suppose f : A — B is faithfully flat and an epimorphism (in the category of

rings, i.e., for B % C with g1 f = gof, we have g; = g».) Show that f is an isomorphism.
g1

Give an example of a (non-faithfully) flat epimorphism that is not an isomorphism.

Exercise 1.4.17. (Solution at p. 106)
(1) Prove the equivalence of (3) and (2) in Lemma 1.4.9.

Hint: recall or prove that there is a bijection Hompings(Z[t], A) = A (given by f — f(t)).
Establish a related description of Hompings(Z x Z[t], A) and then Hompgines(Z x Z[t*1], A).

(2) Also prove that the map Z[t] — Z x Z[t*'] is an epimorphism (in the category of rings).
Conclude that in (2) one may equivalently drop the unicity of the lift (and only demand its
existence).

1.5 The structural sheaf on Spec A

As a mere set and also as a topological space, the spectrum of a ring does not distinguish between
a ring A and its associated reduced ring A, := A/v/0 (Exercise 1.1.22). Possibly even more
dramatically, the spectrum does not distinguish between fields: SpecF, and SpecQ are both
the one-point topological space. Thus, one needs to refine this topological space Spec A with an
additional datum, namely the structural sheaf. The purpose of the structural sheaf is to record
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the “allowed” functions on the open subsets of Spec A. This will in particular allow to recover the
ring A.

We begin by recalling some basic notions pertaining to sheaves. See, e.g., [Har83, §I1.1], [GW20,
§11] or [Bre97, §§1.1-3] for more in-depth textbook accounts. A presheaf F' on a topological space
X is a functor

F : Open(X)? — Set.

Le., for any open U < X there is a set F(U) and whenever U — V are two open subsets of X,
there is a map (often called restriction map) resy : F(V) — F(U) that is compatible with further
restriction maps in the obvious sense. Note that the restriction map goes in the “wrong” way, i.e.,
F is a contravariant functor.

A morphism of presheaves F' — (' is just a natural transformation of functors. Equivalently, it
is a collection of maps F(U) — G(U) that commute with the restriction maps of F' and G. This
defines the category PSh(X) of presheaves. More succinctly, PSh(X') := Fun(Open(X)°P, Set).

Of particular importance is the functor, called the global sections functor

I : PSh(X) — Set, F — [(X, F) := [(F) := F(X).

A presheaf is called a sheaf if for any open subset U < X and any covering U = | J,_; U;, the

natural map

iel

Hresgi
FU) — moqﬂw_ﬂlﬂﬁm%o
el i,5€l
is an isomorphism. (Here the two maps in the equalizer are the following: given a collection (f;);
with f; € F(U;), its image in the (i, 7)-component in the right hand product is a) resg:mUj(fi),
respectively b) resgfmUj( fi)- In other words, the equalizer consists of those collections (f;) that
restrict to the same elements in F(U; n U;). A morphism of sheaves is, by definition, just a
morphism of presheaves. In other words, we define the category Shv(X) of sheaves to be the full

subcategory of PSh(X) consisting of the presheaves satisfying the above condition.
A noteworthy consequence of the definition is that

F(2) = {+}

for any sheaf, by applying the sheaf condition to the covering of ¢ consisting of no open sets, i.e.,
H@ = {+}.

A (pre)sheaf of abelian groups or rings is defined similarly, i.e., F'(U) are abelian groups (or
rings) and the restriction maps are group (or ring) homomorphisms. Note that for abelian groups
the sheaf condition can be rephrased as saying that the sequence

Ui —resU]: AU
0 FU) - [[Fw) " "R AUy (1.5.1)
i irj
is an exact sequence.
A typical example of a sheaf (on some fixed topological space X) is given by

F(U) :={f:U — R continuous}.

Indeed, this is a sheaf (actually a sheaf of rings) since a collection of continuous functions on U; can
be glued to a function on U = | J, U; precisely if fi|v,~v, = filv,nv,. Similarly, if, say X = R" or
if X is a differentiable manifold, one may consider the sheaf F(U) := {f : U — R differentiable}.
The structural sheaf O on Spec A constructed below is similar in spirit, except that instead of
continuous or differentiable functions, we consider functions that are—in a sense made precise by
(1.5.4)-algebraic.




20 CHAPTER 1. RINGS AND THEIR SPECTRA

The structural sheaf O and most of the sheaves (and morphisms of sheaves) we will consider
actually arise by knowing what they do on a basis of the topology, by means of the following
lemma.

Lemma 1.5.2. Let X be a topological space. Let B be a basis of the topology on X. Then
restricting a sheaf to its restriction on B yields an equivalence of categories

Shv(X) S Shv(B, Set),

where Shv(B, Set) < PSh(B, Set) := Fun(B°P, Set) denotes the full subcategory consisting of those
presheaves satisfying the sheaf condition for any U = | JU; where all U; and U are elements of B.

Proof. Clearly, restricting a sheaf to B < Open(X) gives a sheaf on B. Conversely, given some
F € Shv(B, Set), define a sheaf G by declaring for each open V < X:

G(V) = {(fv)vevves € GU) | res (fur) = fu}.

(More succinctly, G(V) = im({U € B,U < V}°P 5 Set).) One checks that these two functors are
inverse to each other essentially by repeatedly applying the sheaf condition, cf. [Stacks, Tag 0090].0]

Lemma 1.5.3. Let A be a ring. Then there is a unique sheaf, called the structural sheaf and
denoted O4 or O on Spec A satisfying

Oa(D(f)) = Alf™] (1.5.4)

(and restriction maps given by the natural maps A[f~!] — A[(fg)~!] between localizations). In
particular,

O(Spec A) = A.
More generally, if M is an A-module, there is a unique sheaf denoted M satisfying
M(D(f)) = MLf~')(= M @4 A[f ). (15.5)

Proof. We define a presheaf on the basis B of fundamental opens by taking (1.5.5) as a definition.
This is well-defined, i.e., independent of the choice of f, by (1.1.11). Also note that the restriction
maps for D(f) c D(g) exist by Lemma 1.1.10(3).

We prove that this defines a sheaf on B in two steps: First, we first check the sheaf condition if
some U = D(f) is covered by finitely many U; = D(f;). For simplicity of the notation, we replace
Spec A by U = Spec A[1/f], noting that D(f;) inside Spec A agrees with D(f;) inside Spec A[1/f].
Thus, we are in the situation that U; = D(f;) are a finite open covering of Spec A. In this case the

exactness of
0 M = [TMlf ] = [T M) (156)

is exactly the content of Lemma 1.4.6, given that M[r~'] = M ®4 A[r~!].

Second, we check that the sheaf condition also holds if U = D(f) is covered by infinitely many
U; = D(fi), i € I. The key here is that U = Spec A[f '] is quasi-compact (Lemma 1.1.10(4)).
Thus, there is a finite subset K < I such that the U; for i € K already cover U. This directly
implies the exactness of (1.5.6) at the left: if m € M is mapped to zero, it is in particular zero in
all the components for i € K, and thus m = 0 by the first step. Similarly, if (m;) € [T, M[f;']
is mapped to zero at the right, then for the above finite subset K < I, there is by the first step
an element my € M such that mg|y, = m; for all i € K. Let j € I\K be any element and put
J = K u {j}. Again using the first step, there is an element my € M such that m|y, = m;, this
time for all i € L. In particular, m; — myx = 0 € M[f; '] for all i € K. Using the exactness of
(1.5.6) at the left, my = mg (as elements in M, and in particular also in M[f;']). Since j was
arbitrary, we are done.

We finally apply Lemma 1.5.2 to obtain a sheaf defined on all open subsets of Spec A. O]


http://stacks.math.columbia.edu/tag/009O
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Exercises

Exercise 1.5.7. Recall that a subset of a topological space is called clopen if it is both open and
closed. Also recall that an element e € A is called an idempotent if

e’ =e.
Show that the mapping
{e € A, e idempotent} — {clopen subsets W < Spec A}, e — V(e)

is a bijection.
Hint: what does the sheaf axiom tell about W and its complement?

Exercise 1.5.8. A topological space X is called connected if whenever
X=UuV
(a disjoint union of two open subsets), one has X = U or X = V.
e Prove that any irreducible space X is connected.
e Show that Spec Z[t, u]/tu is connected (but not irreducible, cf. Exercise 1.1.27).

e Prove that Spec A is connected iff the only idempotents in A are 0 and 1.

Exercise 1.5.9. Let X be a topological space and F' a presheaf on X. Show that the sheaf
condition in (1.5) is automatically satisfied if U; = X for some i. Relate this observation to the
first step in the proof of Lemma 1.4.6.

Exercise 1.5.10. The following statement is referred to by saying that “sheaves glue”. Related
statements concerning glueing maps of locally ringed spaces and glueing schemes are discussed in
Exercise 1.6.30 and Lemma 2.1.5.

Let X be a topological space and X = |J,.;U; a (possibly infinite) open covering. Write
Uij := Ui nUj, Uy, .= U; nU; n Uy, for 4, j,k € I. Let use be given:

e for each i, a sheaf F; € Shv(U;),

~

vy — Fj

e for each ¢, j € I, isomorphisms of sheaves ¢;; : F; Ui

such that
Qjk © Pij = Gij,
once we restrict these to U;jx. (This condition is called the cocycle condition).
Construct a sheaf F' € Shv(X) and isomorphisms F|y, = F;.
Hint: this can be deduced from Lemma 1.5.2. Note that applying the cocycle condition to
i = 7 = k implies ¢;; = id.

Remark 1.5.11. Along similar lines, one may observe that given another such collection Fj, ¢;;,

and morphisms f; : F; — Fj(e Shv(U;)) that are compatible with the ¢;;, ¢}, there is naturally a
morphism F' — F’. Yet more comprehensively, one can consider the natural restriction functor

Shv(X) — lim <H Shv(U;) =3 | [Shv(Uy) — [ | Shv(Uijk)> ,

?:7.j7k

where the category at the right consists of objects as above; and morphisms are defined as alluded
to above. The assertion of the exercise above is that this functor is essentially surjective; one may
also check it is fully faithful, and therefore an equivalence of categories.
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1.6 Affine schemes

We have seen above that the structural sheaf O on Spec A recovers the ring A (and all its local-
izations). We will now isolate a key condition on morphisms the spectra of these rings, in such a
way that we precisely recover ring homomorphisms. To do so, we need another concept from sheaf
theory.

Definition 1.6.1. If F'is a presheaf on a topological space X, and x € X, the stalk of F' is defined
as
F, := colimuey F(U).

Here the colimit runs over all open subsets U containing x, and for a smaller open neighborhood
U oV, the transition maps are the restriction maps F(U) — F(V') (which are part of the datum
of a presheaf).

Remark 1.6.2. e More concretely, one can say that
F, = |_| F(U)/ ~
Usz

where ~ is the equivalence relation generated by the relation that identifies f € F(U) with
g € F(V) iff there is an open neighborhood W < U n V', z € W such that

f\w = g|W-

In prose: the stalk consists of sections of small open neighborhoods of x, where we identify
two sections iff they agree on a possibly smaller neighborhood of x.

e It is also worth noting that if F' is a presheaf (or sheaf) of rings, then F is a ring, too.

e A conceptual reason for this definition of the stalk is given by Exercise 1.6.27.

Example 1.6.3. If M is an A-module, we compute the stalks of the sheaf M (which includes as

a special case the structural sheaf A= Ospec 4) at a point p € Spec A. Since any open subset is a
union of D(f), we have

(M), = colimyep(sy M(D(f)) = colimy sy M[f™'] = M, (:= M[(A\p)~']).

To see the right hand identification, note that D(f) < D(g) holds iff ¢ is a unit in A[f~!] (equiv-
alently, the natural ring homomorphism A — A[f~!] factors through A[¢g~']; Lemma 1.1.10(3)),
the transition maps are the natural maps M[g~'] — M[f~'] in this event. In particular, we have

OSpec Ap = An~

Definition 1.6.4. A ringed space is a pair (X, Ox) consisting of a topological space X and a sheaf
of rings Ox on X. Here, sheaf “of rings” means a sheaf such that for each U ¢ X, Ox(U) is a
(commutative) ring, and the restriction maps Ox(U) — Ox (V) are ring homomorphisms.

A locally ringed space is a ringed space such that the stalk Ox , of the structural sheaf is a local
ring, for each z € X.

By Example 1.6.3, (Spec A, Ogpec 4) is a locally ringed space. Exercise 1.6.25 offers an approach
to define this notion without using stalks.

Example 1.6.5. Locally ringed spaces are an extremely broad notion. For example, if X is a
topological space, then we may consider, for U < X open:

Ox(U) :={f : U — R continuous}.
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This clearly defines a sheaf of rings, and (X, Ox) is a locally ringed space. One checks this either
directly from the definition (the maximal ideal in Ox , consists of functions f : V' — R such that
f(x) = 0). Alternatively, using Exercise 1.6.25: if f : U — R is continuous, then V := f~1(R\{0})
and W := f~1(R\{1}) are open subsets and U =V u W.

Definition 1.6.6. Fix a continuous map of topological spaces f : X — Y. The direct image
functor
f« 1 Shv(X) — Shv(Y)

is the functor given by precomposition with f=1, i.e., for a sheaf F on X, f,F is the sheaf defined
by
f+E(V):=F(f*(V)) for V.c Y open.

(One immediately checks that f,F, defined in this way, is indeed a sheaf, and that this construction
of f.F is functorial in F.)

Definition 1.6.7. A morphism of ringed spaces f : (X,0x) — (Y,0Oy) is a continuous map
f X — Y together with a map of sheaves of rings on Y

fﬁ:OY_’f*OX~

Thus, by the definition of f,, this means that for any open subset V < Y, there is a ring homo-
morphism

Oy (V) = Ox(f1(V)),

which is required to be compatible with the restriction maps of Oy and Ox.

Example 1.6.8. The idea of the map f* is that it takes a function that is defined on (an open
subset V' of) Y and in some sense composes that function with f in order to produce a function
on (the open subset f~1(V) of) X.

To give more content to this idea, let f : X — Y be a continuous map between topological
spaces, and consider the ringed spaces given by continuous functions (Example 1.6.5). Then there
is a map (of sheaves on Y)

Oy — [.O0x

whose evaluation at an open V < Y is
Oy(V)2(g:V—>R)= (g0 f: [T (V) > R)e Ox(f1(V)) = (£.0x)(V).

For a morphism of ringed spaces f as above, and any z € X, and y := f(x) € Y, we in particular
have a map
OY,y - OX,xa

Using the description of Remark 1.6.2, it takes a function f € Oy (V') for some neighborhood V' 3 v,
and takes its image under f* which is a function in Ox(f~1(V)). (Note that f~1(V) is an open
neighborhood of z.) If f is agrees with some other function g € Oy (U) on a possibly smaller
neighborhood W = U NV, then their images under f* will agree on f~1(W).

Definition 1.6.9. A morphism of locally ringed spaces is a morphism of ringed spaces f : (X, Ox) —f
(Y, Oy) such that the map
Oy fz) = Oxp (1.6.10)

is a local map (Definition and Lemma 1.2.3) between the stalks (which are local rings by Defini-
tion 1.6.4). The category of locally ringed spaces with these morphisms is denoted by LocRingedSpace.|]

The motivation behind requiring the map (1.6.10) to be a local map is this: if we think of Oy f ()
to be of germs of functions, then the maximal ideal my(,) corresponds to (germs of) functions that
vanish at f(x). The map f* should send those (germs of) functions to ones that vanish at z.
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Example 1.6.11. Given a ring homomorphism f : A — B, we define a map
@ : (Spec B, Ospec B) — (Spec A, Ogpec )
on the level of the underlying spaces as in Lemma 1.1.3, and given on the level of sheaves by
Ospec 4 = ©+Ospec B

by using Lemma 1.5.2, which requires us to specify the map only on basic open subsets, where we
define it to be the natural map

Ospeca(D(a)) = Ala™"] = (0:O08pec )(D(a)) = Ospec (¢~ (D(a))) = Ospec 5(D(f(a))) = B[(f(a)) 1N

(ie., & — (( )) ). Passing to stalks at a prime ideal q © B induces the map

Af-1(q) = By,
which is a local map (since f maps the maximal ideal of Ay to the maximal ideal of By).
Non-example 1.6.12. Let p be a prime number and consider the map
[+ (Spec Q, Ospecq) — (Spec Z, Ogpecz)
given on the level of the underlying spaces by Spec Q 3 (0) — (p) and on the level of functions by
Oz — f+:Oq

the map whose evaluations on the fundamental open subsets D(n), for n € Z, is given by the

obvious map
n
LY

Passing to stalks at the prime ideal p = (p), i.e., taking the colimit over all n such that p { n gives
Zy) — Q.
This is not a local map: since p is not mapped to the maximal ideal in Q (which is the 0-ideal).
Example 1.6.11 establishes a functor
Spec : Rings®® — LocRingedSpace,

which is on objects given by A — (Spec A, Ogpeca) and on morphisms by the above. We will
henceforth abbreviate Spec A := (Spec A, Ogpec 4), 1.€., unless otherwise mentioned we will always
regard Spec A as a locally ringed space (as opposed to its underlying topological space).

Proposition 1.6.13. The functor Spec is fully faithful. That is, there is a bijection
HomRings(Ba A) E’ HomLocRingedSpace(SpeC A, Spec B)
This is the special case X = Spec A of the next statement:
Theorem 1.6.14. There is an adjunction
I' : LocRingedSpace 2 Rings®? : Spec,

where the global sections functor T sends a locally ringed space X to the ring I'(X, Ox) := Ox(X)
and a map (f, f*) : (X,0x) — (Y,0y) to its evaluation on global sections, i.e., to f*(Y) :
Oy (Y) — Ox(f71(Y)) = Ox(X).
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Proof. For a ring B and a locally ringed space (X, Ox) we have to establish a bijection of Hom-sets
as follows:

HomLOCRingedspace (X, Spec B) — HOIIlRingSOP (OX (X) s B) = HomRingS (B, OX (X)) (16 15)

This may be paraphrased by saying that a map (from any locally ringed space) to an affine scheme

is determined by its value on global sections. Let us write Y := (Spec B, Ospec B)-

(1) Our first step is to prove the map is injective. Pick two elements (f, f*) and (g, ¢*) in the left
hand set, such that the induced map B := Oy (Y) — Ox(X) is the same. Denote this map by

o.

(a) We prove that f = ¢ (as a map of the underlying sets). Pick z € X and consider the
diagram

B = Oy (Y) -2 0x(X) (1.6.16)

L,

Bq - OY,f(.Z’) 4“ OX7x.

Here q c B corresponds to f(z) € Y. (The diagram is commutative by the functoriality
of f%.) Let m, be the maximal ideal of Oy,. Since f% is a local map, its preimage in B,
is the maximal ideal of B;, and so its preimage in B is q. If we replace f by g in there,
the map ¢ and the right vertical map don’t change, which shows that f(z) = q = g(z).
(b) We now prove that f# = g*. By Lemma 1.5.2, it is enough to check these two morphisms of

sheaves Oy — f,Ox agree on the basic open subsets U = D(b) for b € B. Again, consider
a similar commutative diagram as above:

~

B=0y(Y)—2 5 0x(X) —= (f.0x)(Y) (1.6.17)

lres lres Jres

~

Blv1] = 0y EF LYo (71 1) -2 (FOX) (V).

Note that at the right we have f,Ox = ¢.Ox since we already know f = ¢g. To see that
the bottom left maps agree, observe that a ring homomorphism out of B[b™!] is uniquely
determined by its composition with B — B[b™!], i.e., the left hand restriction map. This
confirms f* = ¢* and therefore that the map in (1.6.15) is injective.

(2) We now prove that the map in (1.6.15) is surjective. Given a ring homomorphism ¢ : B —
Ox(X), we need to construct a map (f, f*) : (X,0x) — (Spec B, Ogpec ) of locally ringed
spaces (whose global sections give back ¢).

(a) Taking our cue from the above part of the proof, we define f : X — Y like so. Pick x € X,
consider B % Ox(X) — Ox_. The preimage of m, in B is a prime ideal q. We define
f(x):=q.

(b) We check that the map f so defined is continuous. For a function t € Ox(X), define a

subset
D(t):={re X |te O%, } c X.

This is an open subset: if x € D(t), then ¢ is invertible when restricted to an open
neighborhood U 3 z, so that U < D(t). Note that if X happens to be affine, this precisely
agrees with the previous definition of basic open subsets. The continuity of f is now easy:
it suffices to check that f~'(D(b)) is open for any b € B. Indeed,

FHD®)) = {z e X | ¢(b) € O% .} = D(¢(b)).
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(c¢) Given the continuous map f, we define a homomorphism of sheaves Oy — f,Ox, which
again is enough to do on D(b), b € B. Consider again the diagram (1.6.17) above. We are
required to provide the bottom left horizontal map. Again using the universal property of
the localization B[b~1], there is a unique map making the diagram commute iff ¢(b) is an
invertible element in Ox (D(¢(b))). We have just checked that this is indeed the case.

(d) We finally check that the map (f, f*) of ringed spaces constructed so far is a map of locally
ringed spaces. By our construction, the diagram (1.6.16) commutes. We need to see the
map f¥ is a local map, i.e., (f#)~*(m,) = qB,. This preimage is certainly some prime ideal
in By, and the map Spec B; — Spec B is injective. So the commutativity of the diagram
(1.6.16) and the definition of q above finishes the job. O

Definition 1.6.18. We let the category AffSch of affine schemes be the essential image of the
functor Spec. In other words, it is the full subcategory of LocRingedSpace consisting of those
locally ringed spaces that are isomorphic to Spec A, for some ring A.

Example 1.6.11 then asserts an equivalence of categories

Spec : Rings®™ = AffSch : O(?), (1.6.19)
where the right hand functor sends an affine scheme X to the ring Ox(X).

Thus, affine schemes are “nothing but” commutative rings. The full power of Proposition 1.6.13
will become visible once we introduce (non-affine) schemes, which are locally ringed spaces that
are glued together from affine schemes. For now, the effect of Proposition 1.6.13 is that it gives
us a way to interpret statements about commutative rings in a more geometric fashion: it allows
us to switch back and forth between rings (and homomorphism between them) and their spectra
(regarded, crucially, as locally ringed spaces, and morphisms of locally ringed spaces).

Definition 1.6.20. For a ring A and n > 0, the affine n-space or just affine space over A is
defined as
A’} = Spec Alty, ..., t,].

For n = 1, we speak of the affine line. We usually abbreviate A" := A7.
Recall that there is a bijection

Hompings(Z[t], A)

Indeed, a ring homomorphism Z[t] — A is uniquely determined by its value on ¢, and this element
of A can be chosen freely. Reinterpreting this in light of Proposition 1.6.13, there is a bijection

HOIIlAffSCh(SpeC A, Al) = A.

Thus, functions (in the sense of algebraic geometry) on Spec A are just the elements of A. Similarly,
n-tuples (ay, ..., a,) of elements of A are nothing but maps Spec A — A™. We will use this insight
to phrase conditions about elements in A in geometric terms, such as Exercise 1.6.23 which gives
a(n obvious) geometric reinterpretation of the condition of being an integral domain.

Definition 1.6.21. For a ring A, we define
G4 = Spec A[t*1],

and again write Gy, := Gy, z. For reasons explained in Exercise 1.6.33, this is referred to as the
multiplicative group.
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Note that
Gn = D(t) c A’ (1.6.22)

is an open subscheme, namely the complement of V(¢), which we will refer to as the origin of A,
Similarly to the above, there are bijections

Homgscn (Spec A, Gp,) = HomRings(Z[til], A) ; Ef’( : AX
— f(t

Exercises

Exercise 1.6.23. Let C' = Spec Z[t, u]/tu. Recall the two irreducible components Cy, Co(=~ A')
of C' (Exercise 1.1.27). Recall that a domain is a (commutative) ring A such that ab = 0 implies
a=0orb=0. Let Abe a commutative ring such that Spec A is connected.

Prove that A is a domain iff for any horizontal arrow there is a diagonal arrow making the
triangle commute (the right vertical map is the natural map induced by the inclusions C; < C'):

01 L CQ
LT

|

SpecA —C.

Here C; u C5 is the coproduct in the category AffSch; by Proposition 1.6.13 finite coproducts of
affine schemes correspond to finite products of rings, i.e., we have C; L1 Cy = Spec(Z[u] x Z][t]).

Remark 1.6.24. The assumption that Spec A be connected can be removed if one considers the
category AffSch =~ Rings®® % Fun(Rings, Set), where y is the Yoneda embedding that takes any
ring R to the functor y(R) : Rings — Set given by S — Hompgines(R,S) (but y does not respect
coproducts). By general category theory, y is a fully faithful functor. Now, prove that A is a
domain iff the lifting condition below is satisfied:

y(C1) b y(Cy)

y(Spec A) ————y(C)
Exercise 1.6.25. Let (X, Oyx) be a ringed space. Prove that the following are equivalent:
(1) All stalks Oy, are local rings, i.e., it is a locally ringed space.
(2) The following two conditions are satisfied:

(a) The only open U < X such that Ox(U) =01is U = .

(b) If f € Ox(U) then U =V u W with two open subsets V,W < U (it is allowed that one of
them is empty) such that f|y is invertible and (1 — f)|y is invertible.

(Hint: it is convenient to use the characterization of local rings in Definition and Lemma 1.2.1(4).)]]

Exercise 1.6.26. Use Exercise 1.6.25 to give another proof of the fact that (Spec A, Ogpeca) is a
locally ringed space.

Exercise 1.6.27. Let X be a topological space and = € X. Consider the obvious map i, : {x} - X
sending * to x. Prove that the functor Shv(X) — Set, F' — F, is left adjoint to the direct image
functor (along the map i,):

Set = Shv({+}) "= Shv(X).



28 CHAPTER 1. RINGS AND THEIR SPECTRA

Exercise 1.6.28. Let ¢ : F' — G be a map of sheaves on a topological space X. Prove that ¢ is
an isomorphism (i.e., F(U) — G(U) is an isomorphism for all open U < X) iff for all z € X the
induced map on stalks, F, — G, is an isomorphism.

Exercise 1.6.29. Let (X, Ox) be a locally ringed space and U < X an open subset of the under-
lying topological space X.

(1) Show that (U, Ox|y) is naturally locally ringed space as well.

(2) Let (Y,Oy) be another locally ringed space. Prove that a morphism (f, f*) : (V,Oy) —

(X, Ox) factors uniquely (as a morphism of locally ringed spaces!) over (U, Ox|y) provided
that f(Y) < U. (In more formulaic terms,

HomLocRingedSpace((K OY)7 (U, OX |U)) = HomLocRingedSpace<<Y7 OY)) (X7 OX)) X HomTop(Y,X)HomTop<Y7 U) )I

Exercise 1.6.30. The following foundational statement, which is in a sense complementary to the
characterization of maps into an open subspace offered by Exercise 1.6.29(2), is often referred to
by saying that maps (of locally ringed spaces) glue.

Let (X, Ox) be alocally ringed space and X = [ J, U; a cover by open subsets. Put U;; := U;nU;
Consider the induced locally ringed spaces (U;, Op,) as in Exercise 1.6.29, and similarly for Uj;.
Hereafter we write X := (X, Ox) etc. For any locally ringed space (Y, Oy), establish a bijection

HomLocRingedSpace (X7 Y) = {(fz) € HomLocRingedSpace(Ui> Y) |f1 Ui — fj

Note that this is saying that X is a colimit (in the category of locally ringed spaces) of the diagram

|_| Ui; 3 |_| Ui,
i '

)

Uij}’

where the two maps are the inclusion of U;; into U; and Uj, respectively.

Exercise 1.6.31. Let f: (X,O0x) — (Y, Oy) be a map of ringed spaces. Prove that the following
are equivalent:
(1) For all z € X, the maps ¢ : Oy ) — Ox, induced by f are local ring homomorphisms in the

sense that ¢~ '(Ox ) = Oy ;.

(2) f is a map of locally ringed space in the sense of Definition 1.6.9.

Exercise 1.6.32. Let X = A? = SpecZ[t;,t3]. Let U < X be the punctured plane, i.e., the
complement of the origin, which is the closed point (equivalently, maximal ideal) (¢1,%5) € A?. Yet
another way to say this is U = D(t1) u D(t3). Show that the restriction map

(Z[t1,t2] =) Ox(X) g Ox(U)

is an isomorphism.

In other words, every regular function on U can be (uniquely) extended to one on X. This
situation is identical to Hartog’s theorem in complex analysis which states that a holomorphic
function on C?\{(0,0)} can be extended to a holomorphic function on C?; in contrast to what
happens on C\{0}.

Hint: let U; = D(t;) = SpecZ[t{',t;] and define U, similarly. Inspect the exact sequence
(1.5.1).

Exercise 1.6.33. (1) Show that for any affine scheme X, there are natural bijections
Homagsen (X, A') 5 (X, Ox).

HomAﬁ‘SCh(X7 Gm) i F(X, O)X()
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(2) Deduce from the Yoneda lemma that A' has the structure of a ring (and G, the structure
of an abelian group object) in AffSch (i.e., there is a “sum” and a “multiplication” map
Al x A > A! and a “negative” map A! — Al satisfying the usual ring axioms). One refers
to this by saying that A' (which is in this context also denoted by G, for additive group) and
G, are (abelian) affine group schemes.

(3) Describe concretely the ring homomorphisms
Z[t] - Z[t| ® Z[t], (vesp. Z[t"] — Z[t"] @ Z[t"]),

that correspond to the addition on A! (respectively the multiplication on G,)?

(4) Alternatively, construct the group structure on G,,, A' € AffSch by proving an adjunction
Z[—] : AbMon 2 Rings : (—)*,

where the left adjoint sends an abelian monoid to the group ring, and the right adjoint sends
a (commutative) ring to its group of units. Observe that Z[t] = Z[N], Z[t*'] = Z|Z].

1.7 Integrality and valuation rings

Definition 1.7.1. We say that an A-module M is finite (or A-finite if we want to emphasize the
ring A) if it is generated by finitely many elements my,...,m, € M. (Le., there is a surjection of
A-modules, @} ;| A — M.)

We say that an A-algebra B is finite if it is finite as an A-module. We also say that A — B is
a finite map in this case.

Remark 1.7.2. Note that this is much stronger than requiring B to be finitely generated as an
A-algebra: the polynomial ring A[t] is a finitely generated A-algebra, but not finitely generated
as an A-module; see Exercise 1.7.28 for a precise assertion pinpointing the difference between the
two.

Definition and Lemma 1.7.3. Let B be a ring, A ¢ B a subring and b € B an element. The

following conditions are equivalent; if they are satisfied we say that b is integral over A.

(1) A[b] is contained in an subalgebra B’ ¢ B that is finite over A. Here and below, A[b] denotes
the A-subalgebra of B generated by b, i.e., the image of the map A[t] — B, t — b.

(2) b is the zero of a monic polynomial with coefficients in A, i.e., there are ao, ..., a,_1 € A such
that
b + ap 0" 4+ +ay = 0.

(3) A[b] is a finite A-module.

Proof. (1) = (2): let B’ be as stated, with y; = 1,4s,...,y, being finitely many generators of B’
(as an A-module). For all i, we have B’ 5 by; = >, a;;y; for some a;; € A, so that

For i =1 and y; = 1 we get the requested monic equation for b.
(2) = (3) Ifb" + a,_1b" ' + -+ + ag = 0, then A[b] is generated by 1,b,...,b" L.
(3) = (1) is trivial. O

Definition 1.7.4. An integral extension is an injective ring homomorphism A < B such that any
b € B is integral over A.

An integral ring homomorphism (or integral map) is a ring homomorphism f : A — B such
that the induced map f(A) =~ A/ker f c B is an integral extension.
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A cheap example of a non-injective integral map is A — B := A/I. Geometrically this cor-
responds to a closed subscheme. We will mostly be concerned with integral extensions in the
sequel.

Corollary 1.7.5. Let A< B < C be given. If A < B and B c C are integral extensions, then so
is the composite A < C.

Proof. Let ¢ € C. There is a monic polynomial p(t) € B[t] with p(c) = 0. Its coefficients generate
(since A ¢ B is integral) a finite A-submodule of C', denoted B’. Then B’[¢] is a finite A-module,
so ¢ is integral over A (Definition and Lemma 1.7.3(1)). O

Corollary 1.7.6. If A ¢ B as above, then the subset
A= {be B |bis integral over A}

forms a subring. It is called the integral closure of A in B. We say that A is integrally closed in
Bif A= A.

Proof. If b, € A, then Alb, V'] is finite over A (by applying Definition and Lemma 1.7.3 twice).
Thus bb',b + b’ are contained in an A-finite subalgebra, so they are integral, again by Definition
and Lemma 1.7.3. O

Example 1.7.7. The integral closure is of paramount importance in number theory: given a finite
extension K /Q, one studies there the ring Ok, the integral closure of Z in K.

Lemma 1.7.8. For a subring A < B the following are equivalent:
(1) Tt is an integral extension (i.e., any b € B is integral over A or A = B).

(2) B is a filtered colimit of A-subalgebras that are finite A-modules.

Proof. For any A c B, we have
B = COthCB finite A[S]7

where the (filtered) colimit runs over all the finite subsets of B, and A[S] denotes the A-subalgebra
generated by S. Moreover, any b € B lies in the subalgebra A[b]. Given these prerequisites, the
statement is now an immediate consequence of Definition and Lemma 1.7.3: if any b is integral,
i.e., A[b] is finite, then by induction A[S] is finite for any finite subset S < B. Conversely, if
B = colim B; for some A-finite subalgebras, then any b € B (and therefore A[b]) lies in some B;.
That is, b is integral over A. O

Definition and Lemma 1.7.9. Let A be a ring, with A # {0}. For an ideal I < A, the following
conditions are equivalent:

(1) forall fel, 1+ fe A*,
(2) for all finite A-modules M we have IM = M (equivalently M/IM = 0) if and only if M = 0,

(3) I is contained in every maximal ideal.

There is a largest ideal satisfying these equivalent conditions, it is called the radical or Jacobson
radical (not to be confused with the nilradical or the radical of an ideal in A, cf. (1.1.4)), and
denoted by rad A.

Proof. (1) = (2): Assume M # 0 and pick a minimal system of generators ms,...,m,. By
assumption my = Y, a;m; for a; € I, so (1 —ay)my lies in the span of ma,...,m,. But 1 —a; € A,
hence the system was not minimal, giving a contradiction.

(2) = (3): If m < Ais a maximal ideal, the A-module M := A/m is a field and therefore simple,
i.e., any submodule is either 0 or equal to M. Since A # 0 we have M # 0 and therefore, by (2),
IM< M, soIM=0,iec., Icm.

(3) = (1): If f € I was such that 1+ f ¢ A*, then the principal ideal (1+ f) would be contained
in some maximal ideal m, so f ¢ m, contradicting (3). O
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Note that for a local ring A, we have rad A = m (the maximal ideal). The statement (2) is then
a bread-and-butter result in commutative algebra, known as the Nakayama lemma:

Lemma 1.7.10. For a local ring A, a finite A-module M is zero ifft M/mM (= M ®4k) = 0 (where
k = A/m is the residue field of A).

The next two statements will be used in the next section on valuation rings.

Lemma 1.7.11. Let A c B be an integral extension. Then rad A c rad B.

Proof. By Definition and Lemma 1.7.9(1), we have to show that for (finitely many) a; € rad A and
b; € B we have 1 + )} a;b; € B*. Let B’ := Alby,...,b,]. By integrality, it is a finite A-module,
and it is enough to show 1+ Y] a;b; € B'*. We can therefore replace B by B’ and suppose B is a
finite A-module.

Let I := (rad A) - B. In order to show I < rad B we use Definition and Lemma 1.7.9(2): it is
enough to show that for a finite B-module M, M = IM implies M = 0. But IM = (rad A)M,
where here at the right M is regarded as an A-module. M is (since B is finite over A) a finite
A-module, so again using the characterization of the radical (this time of A), we have M = 0, as
desired. ]

Lemma 1.7.12. Let again A < B and b e B. If 1 € (rad A)A[b] (the ideal in A[b] generated by
rad A), then b is invertible in A[b], and this inverse b~! is integral over A.

Proof. Let 1 = a + rb with a € rad(A) and r € A[b]. Since 1 —a € A*, say a’(1 — a) = 1 we have
1 = a'rb, so b is invertible in A[b] with b=t = a/r = Y7 a;b', so that b= = > ;b= (=9 50 p~1
is indeed integral over A. O

1.7.1 Valuation rings

Recall from Definition and Lemma 1.2.3 the definition of a local map between local rings. In the
sequel we will be considering injective homomorphisms A < B (between local rings). Such an
inclusion is local if

(1) mp N A = my or, equivalently,

(2) ms < mp or, yet equivalently,
(3) 1¢ muB.

Proposition 1.7.13. Let A < K be a ring contained in a field K. The following statements are
equivalent; if they hold we call A a valuation ring.
(1) For any x € K we have x € A or 7' € A (or both).

(2) Ais alocal ring and is maximal among the local subrings of K in the sense that if A c B < K,
with B a local ring and the inclusion A < B a local homomorphism, then A = B.

(3) A is local and for any intermediate ring A ¢ C' < K, myC = C (i.e., 1 lies in the ideal (in C)
generated by my).

Proof. We first prove (3) < (2). The implication = is trivial in view of the above discussion of
injective local homomorphism. Conversely, we prove (2) = (3): If myC < C, then there would be
a prime ideal p in C with msC' < p. We would then have a proper inclusion A < C), into a larger
local ring.

(2) = (1): let z € K\A. The subring A[z] < K generated by x is larger than A. By (3),
1 e maA[z] = (rad A)A[z]. By Lemma 1.7.12, 27! is integral over A. By Lemma 1.7.11 (applied
to Ac Alz71]), 1 ¢ myA[z7Y], so again using (2) < (3), we have A[z7'] = A, so 271 € A.

(1) = (2): to see that A is local, let ae A. If x := (1 —a)/a = a~' — 1 € A then a is invertible.

1 a

Otherwise 17" = ;% € A so, by symmetry, 1 — a is invertible.

If A< Bc K, wepickbe B\A. Then b~! € A and therefore b~! € my, then 1 = bb~! = m,-B.[J
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Note that in the event that (1) holds, K = Q(A) (the quotient field of A). The following
statement yields a rich supply of valuation rings.

Proposition 1.7.14. Let A < K be a local subring of a field K. There is a valuation ring V' such
that
AcVcK

and the inclusion A < V' is local (one also says that V' dominates A).

Proof. Consider the set of such factorizations
Ac Bc K

with B being local and A < B a local inclusion.

If (B;)ier is a totally ordered family of such intermediate local subrings of K, then B := | J,.; B;
is again a local subring of K (any element b € B lies in one of the B;’s, so be B or 1 — f € B,
and hence similarly in B). Also, the inclusion A < B is local: if a € A becomes a unit in B, then
it is a unit in one of the B;, so a € A*.

Zorn’s lemma implies the existence of a maximal element among such factorizations; by Propo-
sition 1.7.13, this is nothing but a valuation ring. O

This construction implies the following geometric key property of valuation rings. Recall that
valuation rings V' are local domains, so that (0) is a prime ideal; also there is unique maximal
ideal my,. These ideals correspond to the generic point, denoted 7, and the unique closed point,
denoted s, respectively.

Corollary 1.7.15. [Stacks, Tag 01J8] Let A be a ring and p < q a containment of prime ideals
(i.e., p ~> q a specialization in Spec A). Then there is a valuation ring V' and a map as displayed:

nwvﬁ e SpecV
p~~>q € SpecA.

In addition, if k(p) < £’ is a field extension, we may find V' in such a way that k(n) = k&’ (more
precisely, the field extension k(p) < k(n) of the residue fields induced by our map is isomorphic to
the given extension).

Proof. The given data yields a map
Ay Ay = k(p) = K.
According to Proposition 1.7.14, we can obtain a commutative diagram

A I

N

Vv

where
e f"islocal: by the discussion at the beginning of §1.7.1, this means f'~!(my) = my,, i.e., that
my — (.

e f” is injective: this is equivalent to f”~'(0) = (0). Thus, Spec Q(A) — SpecV maps the
unique point to the generic point of Spec V', which is therefore mapped to the generic point
of Spec Ay, i.e., to q. O
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Let us inspect some basic properties of valuation rings.

Lemma 1.7.16. The following are equivalent:
(1) A is a valuation ring.

(2) Ais a local domain, and every finitely generated ideal is principal (i.e., generated by a single
element).

Proof. (1) = (2): To show A is local, we use the characterization in Definition and Lemma 1.2.1(4):
let fe A. Then f|1— f or 1 — f|f. By symmetry we may assume f|1 — f, i.e., there is some a € A
with af =1— f. Thus (1 +a)f =1, so f is a unit.

If I = (f1,...,fn) we have fo|f1 (in which case I = (f,...,fn)) or fi|fe (in which case
I'=(f1,f3---, fn) etc.

(2) = (1): Let a,be A. The ideal (a,b) is principal, say, (a,b) = (z), i.e., a = az, b = Sz and
x =-ea+ fbfor a,B,e, f € A. Then eax + ffx = x, i.e., ea + ff = 1 since A is a domain. Since
A is local we have, say, ea € A*, so a € A* and b = Ba'a. O

Corollary 1.7.17. Let A be a Noetherian integral domain. Then A is a valuation ring iff it is a
local principal ideal domain (abbreviation: PID). If it is not a field, such a ring is called a discrete
valuation rings (abbreviation: DVR).

For example, for a field &, the localizations k[t], are DVRs. The ring Z,y above is also a DVR,
as is Z,, the ring of p-adic numbers, for example. For a DVR A, we have Spec A = {n, s}, where
n = (0) is the generic point, and s is any non-zero prime ideal, which is the unique maximal ideal
(i.e., closed point in Spec A). Another example (not used in the sequel) of a discrete valuation
ring is the stalk of the sheaf of holomorphic functions on a Riemann surface X: given z € X and
a meromorphic function f(z) defined locally around z, a) f is holomorphic a given point x or b)
f has a pole of order n, so that f is non-zero in a neighborhood of z, so that % is holomorphic in
a neighborhood of .

Another perspective on this remark is that a valuation ring is either a principal ideal domain
or non-Noetherian! This also explains to an extent why the construction of valuation rings in
Proposition 1.7.14 is somewhat indirect.

Lemma 1.7.18. Any valuation ring A is integrally closed in its field of fractions Q(A), i.e., any
¢ € Q(A) that satisfies a monic polynomial equation

" A a1 ag = 0(e Q(A)),
for appropriate a; € A, already lies in A.

Proof. Since A is a valuation ring, we have ¢ € A or ¢! € A, cf. Proposition 1.7.13(1). In the
latter case, we divide the given equation by ¢"~! so that

-1 —n+1
—C=Qp 1+ Ap_oc "+ +agec "t

lies in A. O

For example, any unique factorization domain (abbreviation: UFD) is integrally closed (Exer-
cise 1.7.25).

The following characterization of universally closed morphisms is a first stepping stone towards
the notion of proper morphisms between (not necessarily affine) schemes that we will study later
on.

Lemma 1.7.19. For a map ¢ : Spec B — Spec A (induced by a ring homomorphism f : A — B),
consider T":= im . If T is stable under specialization, then 7" is closed.
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Proof. Let I := ker f. We may replace A by A/I (since Spec A/I is closed in Spec A), so we may
assume f is injective. We claim that ¢ is surjective then.

In general, for f injective, im ¢ contains the minimal primes of A (for such a prime p, Spec A4,
is a singleton. Its preimage, ¢~ '(p) = Spec B, (Lemma 1.2.6), is non-zero, since it arises from the
injection A ¢ B by localization, which is an exact functor).

Now if T is stable under specialization, it contains with all the minimal primes all prime ideals.[]

Theorem 1.7.20. Consider a ring homomorphism f : A — B and denote by ¢ : Spec B — Spec A
the induced map on spectra. The following are equivalent:
(1) fis an integral map (not necessarily injective, i.e., f(A) € B is an integral extension),

(2) f satisfies the lifting property as shown, i.e., for each valuation ring V' (and its quotient field
Q(V)) and each commutative outer square there is a diagonal map such that the two triangles
commute:

A——>V

|

B——Q(V)
Equivalently, in the category of affine schemes, ¢ satisfies the lifting property as shown:

Spec Q(V') —— Spec B

Spec V. ——— Spec A

(3) ¢ : Spec B — Spec A is universally closed, i.e., for any algebra map A — A’ the induced map
Spec(B®4 A’) — Spec A’ is closed.

(4) AL = Spec B[t] — A} = Spec A[t] is closed,

Proof. (1) = (2): Contemplate the following diagram:

©

JA .
IS
v

— A

QV)«—2B

Since any b € B satisfies a monic equation (with coefficients in (the image of) A), ¢ := ¢(b) satisfies
a monic equation (with coefficients in V). Since V is integrally closed in Q(V') (Lemma 1.7.18),
ce V, so the diagonal arrow exists.

(2) = (3): since morphisms satisfying the lifting property are stable under pullbacks (of affine
schemes), it is enough to show that a map A — B satisfying (2) is closed (on spectra). Let
Z < Spec B be closed. We have to check that ¢(Z) is closed. By Lemma 1.7.19, it is enough
to show f(Z) is stable under specialization. Let z € Z and ¢(z) = p ~> q be a specialization.
By Corollary 1.7.15 there is a valuation ring V' with fraction field Q(V) = k(z) and the depicted
bottom horizontal map satisfying ny — p, sy — q

Spec k(z) — Spec B

Spec V ——— Spec A
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By (2), there is the diagonal dotted map 1, so the closed point  ~» s in SpecV lifts to a
specialization z = ¥ (n) ~ 1(s), which in turn maps to the given specialization p ~» q. Therefore,
q € im .

(3) = (4) is trivial: take A’ = A[t].

(4) = (1) (following [Oli83, Theorem 3.2]) pick b € B and consider the map B[t] — B[b™!]
sending ¢ to b='. Let C be the image of the composite A[t] — B[t] — B[b™']. We have a
commutative diagram

Spec B[b™!] := Spec B[t]/bt — 1 —— AL

| |

Spec C' Al

where the two horizontal maps are closed embeddings (since A[t] — C). By (4), the right hand
and therefore also the left hand vertical map is closed. In addition, C' — B[b™'] is injective. By
Lemma 1.7.22, the map is therefore conservative, so that ¢, which is invertible in B[], is already
invertible in the subring C' < B[b~']. That is, its inverse ¢ ' = b is of the form b = >, ja;(b™')
for some a; € A. Multiplying with " shows that b satisfies a monic polynomial equation with
coefficients in A. O

Remark 1.7.21. The proof of (1) = (2) actually shows that the (1) implies the existence and
unicity of the diagonal map. We have refrained from stating this above, since for maps between
general schemes the condition of being universally closed will turn out to be equivalent to (only)
the existence of the lift.

Lemma 1.7.22. Let f : A — B be an injective ring homomorphism such that ¢ : Spec B —
Spec A is closed. Then f is conservative, i.e., it satisfies the lifting property as shown (equivalently,
any a € A such that f(a) € B* already satisfies a € A*:

Spec B—— G,

Spec A —— Al

Proof. 1f f is injective then ¢ has dense image (Lemma 1.1.12); thus by closedness ¢ is surjective.
Thus the lifting exists by Exercise 1.6.29 (taking into account that morphism of affine schemes are
the same as morphisms of locally ringed spaces, Proposition 1.6.13). O

Proposition 1.7.23. Let f : A — B be an integral ring map. Then
dim A > dim B.

If f is an integral extension (i.e., injective), then
dim A = dim B.

Proof. To prove the first claim we take a chain of prime ideals in B and produce a chain of
prime ideals in A of the same length. We reduce this claim to the case where A is a field: if
Jo S g1 S -+ S gy is a chain of prime ideals in B then the prime ideals p; = f~!(q;) form a chain
in A. If, say, p := p; = p;+1, then q; & g,41 is a strict inclusion of prime ideals in By, ,/q;Bq,., -
However, k(p) = Ay /pAy — By,.,/q:By,,, is an integral map as well, so we have reduced to A being
a field, say A = k.

We have reduced the first claim to showing this: if £ — B is an integral map, then dim B < 0.
If Spec B # &, pick a prime q € B. Then C := B/q is a domain, and (as B) integral over k. We
claim that C is a field. For ¢ € C, there is a (monic) polynomial p(z) € k[z] such that p(c) = 0. If



36 CHAPTER 1. RINGS AND THEIR SPECTRA

1

Do —eic'” =1,

we write p(z) = Y, e;2", then we have ey # 0 (since C' is a domain), therefore c - -

so ¢ is a unit in C.

If f is injective then ¢ is dominant (Lemma 1.1.12). Since it is also closed, ¢ is surjective.
Given a specialization x ~~ 2’ in Spec A we can lift it to a specialization in Spec B. (This was
shown in the proof of (2) = (3) above.) Thus dim B > dim A. O

Proposition 1.7.24. (Noether normalization) Let A = k[ty,...,t,]/I be a finitely generated k-
algebra with dim A = d. Then there are d elements ay,...,aq € A such that the map

kluy, ... uq] — A u; — a;
is injective and turns A into a finite k[uy, ..., u4]-algebra. In other words, the map Spec A — A¢
is finite.
Proof. See, e.g., [Stacks, Tag 000Y] or [Eis95, §8.2.1, Theorem A1l] for a proof. ]
Exercises

Exercise 1.7.25. Recall that a ring A is a unique factorization domain (abbreviation: UFD) if it
is a domain and if any z € R, x # 0, x ¢ R* is a (finite) product of irreducible elements, and any
two such factorizations

T=ay -y =by b,

implies n = m and the a; equal the b; up to a permutation. (For example, Z and fields are UFDs;
if A is a UFD, then so is A[t]; localizations of UFDs are again UFDs).
Prove that any UFD is integrally closed.

Exercise 1.7.26. Let A be a domain that is integrally closed in its fraction field Q(A). Let S < A
be a submonoid (for the multiplication; also known as a multiplicatively closed subset), 0 ¢ S.
Prove that the localization A[S™!] is an integrally closed domain as well.

Exercise 1.7.27. Let A be an integral domain. Prove that the following are equivalent:
(1) A is integrally closed,
(2) A, is integrally closed for all prime ideals p < A,

(3) Ay, is integrally closed for all maximal ideals m < A.
Hint: for (3) = (1): if an element s € ()(A)\A satisfies a monic equation, consider the ideal

I:={reA|rse A} ¢ A

Exercise 1.7.28. Fix an inclusion of commutative rings A ¢ B. Prove that B is a finite A-module
iff B is integral over A and if it finitely generated as an A-algebra.

Exercise 1.7.29. Let ¢ : Spec B — Spec A be a finite morphism, i.e., such that B is finite as an
A-module. For any p € Spec A, prove that ¢~!(p) is homeomorphic to a disjoint union of finitely
many copies of a singleton.

Exercise 1.7.30. Let K — L be a field extension. Prove: the extension is algebraic (in the sense
of field theory) iff it is integral. Use this to give an example of an integral, but not finite ring map
Ac B.

Exercise 1.7.31. Recall that the support of an A-module M is defined as
SuppM := {p € Spec A | M, # 0}.

We now suppose M is a finite A-module.
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(1) Prove that
SuppM = V(AnnM),

where AnnM := {a € A | aM = 0} is the annihilator of M. In particular, the support of M is
closed.

(2) Also prove
SuppM = {p € Spec A | M,/pM, # 0}. (1.7.32)
Hint: use the Nakayama lemma.

Exercise 1.7.33. Let A — B be a finite ring homomorphism. Use Exercise 1.7.31 to give another
proof of the fact that Spec B — Spec A is closed.

Exercise 1.7.34. Let A = k[z,y|/y? — 2* and B = k[t], and consider the map f : A — B given
by x +— t2,y + t3. Prove the following

e f is injective, so that A is a domain.

e f is finite.

e A is not integrally closed in B, and therefore not integrally closed in Q(A).

e dimA = 1.

e Prove that the map Spec B — Spec A is bijective (on the level of the underlying sets). Deduce
that it is a homeomorphism (on the level of the underlying topological spaces).
Hint: prove that the localization A[z~!] — B[t™'] is an isomorphism.

e Let A’ be the localization of A at the prime ideal (z,y) and m < A’ its maximal ideal. Prove
that the residue field A’/m is isomorphic to k and prove dim; m/m? = 2.

The ring A (or Spec A) is referred to as the cusp. The map A} = Spec B — Spec A is referred to
as the normalization of the cusp. Given that dim A’ = 1 < dimy m/m?, the local ring A’ is called
singular.

1.8 Chevalley’s theorem on constructible subsets

By design, all ring homomorphisms A — B induce continuous maps ¢ : Spec B — Spec A; i.e.,
¢ 1(U) is open for any open U. Images of open (resp. closed) subsets need in general not be open
(resp. closed), as the following examples show.

Example 1.8.1. Consider the inclusion A = Z[x| — B = Z[z,y|/zy. Geometrically ¢ : Spec Z[z, y|/zy —|
A' = Spec Z[x] corresponds to the projection of a coordinate cross to the z-axis. One checks that

the image of D(y) is the origin in A', which in particular shows that the image of an open subset

may be closed.

Example 1.8.2. Consider the canonical inclusion Z[x] — Z[z,y]. Passing to spectra, we obtain
the projection A% — A'. The closed subset Z := V(zy — 1) « A? is the hyperbola. One checks
that its image in A is p(Z) = AL\{0}(= Spec Z[z,z7!]). In particular, the image of the closed
subset Z is open.

These two examples suggest considering a combination of open and closed subsets.

Definition 1.8.3. A subset of Spec A is called constructible if it is a finite union of subsets of the
form

D(f)mv(ghvgn))
for f,g1,...,9, € A.
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Remark 1.8.4. There is a definition of constructible subsets of arbitrary topological spaces [Stacks. ]
Tag 005G]. The definition above agrees with that one by [Stacks, Tag 00F6].

Theorem 1.8.5. (Chevalley’s theorem on constructible sets) Let B be a finitely presented A-
algebra, i.e., B = Alzy,...,2,]|/(f1,..., fm) and consider the map ¢ : Spec B — Spec A. If
Z < Spec B is constructible, then ¢(Z) < Spec A is also constructible.

We defer the proof of this theorem to §1.10. To see that Chevalley’s theorem imposes an actual
restriction, here is an example of a non-constructible subset:

Lemma 1.8.6. Consider {n} < A}, where n = (0) is the generic point. This subset is not
constructible (for any field k).

Proof. 1f it was constructible, then its complement, which consists of all the closed points, would
be constructible as well by Exercise 1.8.11, i.e., a finite union of closed points. However, there are
infinitely many closed points (even if k is finite), as one sees by adapting Euclid’s classical proof
showing that there are infinitely many prime numbers: the closed points are of the form (f), with
f € k[t] monic and irreducible polynomials. If there were only finitely many, say, fi,..., f,, then
the irreducible factors of [[\_, fi + 1 are distinct from the f;, giving a contradiction. m

Proposition 1.8.7. Let f : A — B be a finitely presented flat map. Then ¢ : Spec B — Spec A
is an open map (i.e., p(U) is open for any open U < Spec B).

Proof. [Stacks, Tag 0011] This is basically a consequence of Chevalley’s theorem (Theorem 1.8.5).
It is enough to prove that ¢(D(b)) is open, where b € B. Since D(b) = Spec B[b~'] % Spec B
is flat and finitely presented, it is enough to show that ¢(Spec B) is open. By Theorem 1.8.5 it
is constructible. By Exercise 1.8.10 it is enough to show ¢(Spec B) is stable under generization,
i.e. given q € Spec B and p = ¢(q) and a generization p’ ~~ p, we need to find some q' =7 in the
diagram below:

i

p

We have the map Spec B; — Spec A, = {p’,p’ ~» p}. This is a local map of local rings. It is flat,
being the composition of A, — A, ®4 B — B;. Being a flat local map between local rings it is
faithfully flat (Lemma 1.4.3). O

~

[~

p

Exercises

Exercise 1.8.8. Confirm the claims made about the images in Example 1.8.1 and Example 1.8.2.

Exercise 1.8.9. Prove the following converse to Chevalley’s theorem: for any constructible subset
S < Spec A there is a finitely presented A-algebra B such that S = im(Spec B — Spec A).

Exercise 1.8.10. (Solution at p. 108) Let S < Spec A be a subset.
(1) Suppose S is open. Prove that S is stable under generization (i.e., for z € S, y ~» x one has
yes).

(2) Conversely, prove that S is open provided that S is stable under generization and S is con-
structible.

Exercise 1.8.11. Show that complements and finite intersections of constructible subsets (inside
Spec A, for a fixed ring A) are again constructible.
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The statements proved in the exercises Exercise 1.8.13 and Exercise 1.8.14 are key special cases
of the openness of finitely presented flat maps (Proposition 1.8.7). We will use them in the proof
of Chevalley’s theorem, cf. p. 45. In a similar vein, Exercise 1.8.12 is a step in that proof.

Exercise 1.8.12. Let A — B be one of the following:
(1) B = A/I, for a finitely generated ideal I < A,

(2) B = A[f™!], for some f € A.
Prove that the induced map ¢ : Spec B — Spec A preserves constructible subsets. lLe., if S <
Spec B is constructible, prove that S is also constructible as a subset of Spec A.

Hint for B = A/I: for b € B, prove that Spec A\Dspec 5(b) is constructible and use Exer-
cise 1.8.11.

Prove that the assertion fails for B = A/I if I is not finitely generated: prove that the origin
in the infinite-dimensional affine space AP := Spec k[t1, s, ...] is not a constructible subset.

Exercise 1.8.13. (Solution at p. 108) (Moret-Bailly https://mathoverflow.net/q/481465) Let
A — B be a ring homomorphism such that B is a finitely generated free A-module, i.e., B =~ A?
(as a module). Consider the map ¢ : Spec B — Spec A.

(1) Let b4 = (ay,...,aq) (in a basis of B). Prove that Spec A\ f(D(b)) = V(ay,...,aq).
(2) Deduce that ¢ is an open map.

Exercise 1.8.14. (Solution at p. 108) Let A be a ring, and consider the canonical map ¢ : Al =
Spec A[x] — Spec A.
(1) For any f = 3¢ __ a,2" € Alz], prove that o(D(f)) = |, D(an)(c Spec A).

(2) Deduce that ¢ is an open map.

Exercise 1.8.15. (Solution at p. 108) Let A be absolutely flat. Prove that a subset S < Spec A
is constructible iff it is clopen (i.e., closed and open).

1.9 Hilbert’s Nullstellensatz

Proposition 1.9.1. (Hilbert’s Nullstellensatz) Let A = k[ty,...,t,]/I be a finite type k-algebra,
where k is a field. Let € Spec A. Then z is a closed point (i.e., a maximal ideal) if and only if
the residue field k(x) is a finite extension of k.

There are many proofs of this theorem, for example [Eis95] contains five of them. The one
below follows [MO15, Corollary 11.2.11] and [Stacks, Tag 00FV].

Proof. We begin with the trivial direction “<”: we have k < A/p < (A/p), = k(z), so if
dimy(A/p) < dimgk(z) < o0, so A/p is a field. (Recall, as was shown in the proof of Propo-
sition 1.7.23, that a domain that is also a finite-dimensional k-vector space is necessarily a field.)
We therefore obtain that p is maximal.

“=”: We first treat the case n = 1 (and I = 0). In this case a closed point z € A} is generated
by a non-zero monic irreducible polynomial f € k[x], and k(z) = k[t]/f is indeed a finite extension
of k.

For n > 1, consider the map

p; : Spec A < Ay 2 A,
where the right hand map is the projection onto the i-th coordinate, i.e., on the level of rings given
by

By Chevalley’s theorem (Theorem 1.8.5), p;(x) is constructible, so, by Lemma 1.8.6 it is not the
generic point, but a closed point. By the case n = 1, the residue field k(p;(x)) is a finite extension
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of k. The field k(z) is generated by the subfields k(p;(x)) (since the k[t;] for i < n generate
k[t1,...,t,] as a k-algebra). Thus, k(x) is also finite over k. O

The following consequence explains why the above theorem is referred to as “Nullstellensatz”
(“Null” = zero, “Stelle” = locus, “Satz” = theorem).

Corollary 1.9.2. If k is an algebraically closed field, the closed points of A} = Speck[ty,...,t,]
are in bijection to k™. More precisely these are the prime ideals

(t1 — a1, ..ty —ay), a; € k.
More generally, the closed points of V/((f1,..., fm)) = Speck[ts,...,t,]/(f1,-.., fm) are precisely
the prime ideals above, where for all ¢
filar,...,a,) =0.
Corollary 1.9.3. For a field k, dim A} = dim k[tq,...,t,] = n.

Proof. Assume first that k is algebraically closed. Let m = (¢; — a;,7 < n) be a maximal ideal. We
have the chain
pp=0)cm=(t—-a)S Spo=(th—a,....t, —a,) =m

Thus, dim k[t1,...,t,] = n. On the other hand, by Theorem 1.3.4(1), we have dim k[t;]m < n,
since m is generated by n elements. Then dim k[t;] = SUPy, maximar M k[t ]m = n.

For a general field k, the claim follows from Lemma 1.9.4. Alternatively, one can use a similar,
but more elaborate argument along the lines above [Stacks, Tag 000P]. O]

Lemma 1.9.4. Let k be a field, &” an algebraic field extension (but not necessarily finite, so &' = k
is allowed) and A a k-algebra. Then dim A = dim A ®, k.

This statement fails if &’ is transcendental over k, cf. Exercise 1.9.7.

Proof. The map k — k' is integral. By Theorem 1.7.20 so is its base change A — A®k’. The map is
injective since A is flat over k£ (Example 1.4.1). Thus their dimensions agree (Proposition 1.7.23).0

Exercises

Exercise 1.9.5. Let k£ be an algebraically closed field.

(1) For i = 1,2, let A; be a finitely generated k-algebra. Let X; := Spec A; and write X :=
Spec(A;1®Asz). (In the language of Proposition 2.4.2, this is the fiber product X = Spec Ay X spec il
Spec Ay.) Prove that there is a bijection

X = X7 x X3,
where the superscript cl denotes the set of closed points (and at the right we have the products
of these two sets).

(2) Exhibit (non-closed) points in A7 = A} Xgpeck A} that are not pairs of points in the two copies
of Aj.

(3) Show that the assumption of k being algebraically closed cannot be dropped: prove that
Spec(Q[v2] ®q Q[v/2]) consists of two points, for example.

(4) (bonus, for those with knowledge of Galois theory): For an arbitrary field k& and a separable
closure k%P, establish a homeomorphism where at the left we have the absolute Galois group

Gal(k*P /k) 5 Spec(k*P @), k*P).

(Hint: first prove the statement if k%P is replaced by a finite Galois extension.)
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Exercise 1.9.6. (Solution at p. 109) In Corollary 1.9.2, why is it necessary to require k to be
algebraically closed?

Exercise 1.9.7. Let k be a field. Prove that (in contrast to Lemma 1.9.4)
dim(k(t) ® k(u)) = 1.

Hint: Speck(t) is the generic point of A, = Speck[t]. Compare Spec(k(t) ®; k(u)) with
Spec(k[t] ®x k[u]).

Exercise 1.9.8. Let x € A}, = SpecZ][t4,...,t,]. Show that x is a closed point if and only if its
residue field k(z) is a finite field.

1.10 Proof of Chevalley’s theorem

In this section, we prove Chevalley’s Theorem 1.8.5 with the method due to Olivier [Oli78]. Given

the map Spec B — Spec A, the proof will proceed as follows:

(1) A series of relativy easy reduction steps shows that it is enough to consider B = A[t], i.e.,
geometrically the projection Al — Spec A.

(2) We will reduce to the case of A being an absolutely flat ring (Definition 1.4.8). Roughly
speaking, this amounts to tearing Spec A apart. This reduction step will use as an input that
Chevalley’s theorem holds true for maps of the form

D(a) L1 V(a) — Spec A,

cf. Exercise 1.8.12.

(3) In the case when A is absolutely flat, we will be able to inspect the statement basically by
hand. As it turns it is then enough to show that Chevalley’s theorem holds for maps of the
following two types:

e Spec B — Spec A, where B is a finite free A-module (Exercise 1.8.13),
e Al — Spec A (cf. Exercise 1.8.14).

A category-theoretic interlude

The following category-theoretic statement is known as the small object argument. It plays an
outsize role in homotopy theory, a branch of algebraic topology. It can also be used to systematize
various ring-theoretic constructions in algebraic geometry. We will employ it in order to perform
the reduction step (2) alluded to above.

Lemma 1.10.1. Let C be a compactly generated category that admits all (small) colimits. Let
gi + Ai — B; be a set of maps (indexed by ¢ € I), and assume that the objects A; are compact.
Then, for any map f: X — Z in C, there is a factorization

x— 1 7

N

where f” satisfies the right lifting property with respect to the maps g; and f’ lies in the saturation
of the set {g;}, i.e., it is obtained from the maps g; by taking coproducts, pushouts and transfinite
compositions.
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Proof. See, e.g. [Lur09, Proposition A.1.2.5]. The heuristic idea of the proof is simple: consider
the question whether f satisfies the right lifting property relative to the g;:

If these lifts do exist, there is nothing to be done. To account for the possibility that such a
lift does not exist, consider the set, denoted A(f), of commutative squares as above (without the
dotted arrow). Note this is a set, since the g; are indexed by a set and since morphisms between
any two fixed objects also form a set. Consider the factorization

|_|aeA(f) AZ X

J I

|_|aeA(f) Bl *>X1 =X LA, |_|Bz

Jm

Z.

By construction, f; is a pushout of a coproduct of maps g;, i.e., in the saturation. The map vy,
however, may not satisfy the right lifting property relatively to the g;. (It does satisfy it if we
only allow maps A; — X’ factoring over X as in the diagram above, though.) We can repeat the
construction with v; in place of f, and construct a refined factorization

X —->X, - Xy, > Z.

Repeating this (countably many times) and setting Y := colim X, gives a factorization X Ly LS
Z. By construction, f’is a transfinite composition of maps in the saturation of the g;. We check
that f” satisfies the right lifting property:

Ai >Xn*\>{Xn+1 Y

B; - A

Since A; is compact, the map A; — Y = colim X,, factors over some X,,, as shown. (This step
is why the lemma is called small object argument). By construction, the map A; — X,, — X411
factors through g¢; as shown, in such a way that the top left triangle and the bottom right part
commutes.

Lemma 1.10.2. If the maps g; above are epimorphisms, then the factorization above is unique
up to unique isomorphism. That is, given two factorizations of f = f{ o fi = f5 o f5, there is a
unique isomorphism Y — Y’ making the entire diagram commutative:

x Iy

lféf';;o J ]
2

Y =7

Proof. First, there is some morphism ¢ : Y’ — Y making the diagram commute since f] satisfies
the right lifting property against the maps g; and therefore also against the maps in the saturation
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of the g;. Similarly, there is a map ¢ : Y — Y’ going the other way (not depicted). It suffices to
check their composites are the identity maps, which reduces us to considering in the above diagram
the case Y/ = Y, and the composite ¥ o ¢ and idy. The composite of these two maps with f]
is the same. But any map in the saturation of the g; is an epimorphism, since the g; are. Hence
Y o ¢ = idy and likewise for ¢ o). O

Example 1.10.3. For any fixed ring A, the small object argument is applicable to the category
C' = Alg, (of A-algebras and A-algebra morphisms). Indeed, it has all colimits: by general theory,
it is enough to check the existence of pushouts and filtered colimits. Pushouts RugT" are precisely
the tensor products R ®g T. The filtered colimit colim; R; of a system of A-algebras is just the
ring R := | |, R;/ ~, where R; 3 r; ~ r; € R; iff there is some k > 4, k > j such that r; and r;
map to the same element in Rj (under the transition maps R; — Ry < R;). The addition and
multiplication are defined in the natural manner (which is well-defined since the transition maps
are ring homomorphisms.)

Any A-algebra R is a filtered colimit of finitely presented A-algebras. Indeed, R is first the
filtered colimit of its finitely generated A-algebras, namely the subalgebras of R generated by
finitely many elements rq, ..., r,. These subalgebras might not be finitely presented, but a finitely
generated algebra R = Alty,...,t,|/(fi,i € I) is the filtered colimit of the finitely presented
algebras A[ty,...,t,]/(fi,i € J) for increasingly large finite subsets J c 1.

An A-algebra R is a compact object in Alg , iff it is a finitely presented A-algebra.

The weak saturation of 0 U G,, = A'

In order to get mileage out of the small object argument, one needs to understand a) the saturation
of a set of maps and b) the maps satisfying the lifting property relative to those maps. To warm
up for Olivier’s proof of Chevalley’s theorem, we consider a slightly more basic example first.

Lemma 1.10.4. Consider the map ¢ : Z[t] — Z[t,t™']. The saturation of this map consists
precisely of the ring homomorphisms of the form A — A[S™!], i.e., localizations.
A map A — B satisfies the right lifting condition

iff it is conservative, i.e., if for any element a € A such that f(a) € B* we already have a € A*.
(If A and B are local rings, this is precisely the condition of being a local map in the sense of
Definition and Lemma 1.2.3).

Proof. Indeed, A[S™'] = colim A[{s1,...,s,} '], and the terms in the colimit agree with @, A[s; '] ]
Hence we are reduced to observing the following pushout diagram:

Z[t] —=— A
|
Z[tH ) —— Als7Y].

Conversely, the same reasoning shows that any morphism in the saturation of g is a localization.
The second statement is clear by Hompings(Z[tT!], A) = A etc. O

The map g is an epimorphism (even though it is not surjective!), so Lemma 1.10.2 supplies a
unique factorization of any ring homomorphism A — B as

f=fof Al as LB
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with f’ being a localization and f” being conservative. The latter can be made concrete by
observing that we have a factorization

A—A[(f(B) - B

where the second map is conservative. By unicity (up to unique isomorphism) of the factorization
(Lemma 1.10.2), we see that the abstractly supplied factorization is this one.

A subexample of the above: if B = k(p) is the residue field of a prime ideal p < A, this
factorization is

A— A, — k(p).

Lemma 1.10.5. Let g : Z[t] — Z x Z[t*'] be given by t — (0,t) and write ¢ : SpecZ LG, — Al
for the induced map on spectra. Let ¢’ be a map in the saturation of g. Then

e ¢ is bijective on the level of the maps of spectra (we do not assert these maps are homeomor-
phisms of the underlying topological spaces).

e ¢’ preserves constructible subsets.

Proof. Indeed, the bijectivity holds true for ¢ and finite products ¢™ : (Spec Z LU G,)*™ — A" and
also for any pullback of such maps:

Spec A" —— (Spec Z L1 Gy,) "

l g
(fl:--wfn)

Spec A A"

Indeed, Spec A’ is the disjoint union of spectra of Spec A/(fi,i € I)nSpec A[f; ', ¢ I], where I runs

through the (finite) subsets of {1,...,n}. This is nothing but V' (f;,i € I) n D([] fi,i ¢ I), and the

union of these is Spec A. Similarly, ¢’ as above preserves constructible subsets by Exercise 1.8.12.
We claim that for a diagram of rings (indexed by n € N)

A0—>A1—>...—>Aoo = COliHlAn

with each map inducing a bijection Spec A,,,1 — Spec A,,, the map Spec A, — Spec Ay also is a
bijection. (Similarly, if each of these former maps preserves constructible subsets, then so does the
latter.) This will imply the lemma.

We use that as a set Spec A consists of maps A — k, for fields k, up to the identification
(f:A— k)~ (f: A— k') iff there is a field " containing k and k&’ such that f = f’ when
regarded as maps A — k” (Exercise 1.2.9). Given a point in Spec Ay, i.e., a map Ay — ko, there
is a field extension kj/ky such that Ay — ko < k; factors through A; as shown below:

AO Al ce Aoo = colim Az
]{}0( le . .C U k@

The filtered colimit of these fields, | J; k;, is also a field and this gives a point in Spec A,; showing
the surjectivity of Spec A, — Spec Ag. The injectivity is similar: given two points colim 4; =3 k
whose composite with Ay agree, then its restriction to A; agrees etc.

The argument about constructibility is similar, since constructible subsets in Spec A, are finite
unions of subsets of the form V(f1,..., fn) n D(f). Then one uses that the elements f, f; € Ay,
arise from some A,,. O
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The proof

Proof of Theorem 1.8.5. We begin with a (standard) reduction step: it is enough to prove the
theorem for B = A[z]. Indeed, a constructible subset in Spec B = Spec A[z1, ..., 2,]/(f1,- - fm)
is also constructible in Spec A[xy, ..., z,] (Exercise 1.8.12; this step uses that B is finitely presented,
as opposed to finitely generated over A), so we may assume B = A|z;]. Then by induction, it
suffices to consider a single variable.

By the definition of constructible sets, we have to consider a finitely generated ideal I < B, and
f € B and show that the image of W := V(I) n D(f) in Spec A is constructible.

We apply the small object argument (Lemma 1.10.2) to the map g : 0 U G, — A! (which is
a monomorphism of affine schemes, cf. Exercise 1.4.17(2)). The map & — Spec A thus factors
uniquely (up to unique isomorphism) as

g — Specﬁ — Spec A,

where the map @§ — Specff satisfies the (unique) left lifting property against g. In other words,
A is absolutely flat by Lemma 1.4.9.
Consider the absolutely flat ring A and the associated pullback diagram

W —— Spec A[t]/I AL —F Spec A

| N A

W —— Spec A[t]/T “— AY, —Z Spec A.

By Lemma 1.10.5, the map f and all the vertical maps in the above diagram are bijections. Thus
the image of W in Spec A is the image of W' in Spec A. Also by Lemma 1.10.5, f preserves
constructible subsets. N

We can therefore replace A by A in the sequel and assume A is absolutely flat. We claim that
for our absolutely flat ring A, and I < A[t] finitely generated, Spec A decomposes into a disjoint
union of Spec A = | [, Spec A;, such that the fibers of m o are either A} or V(g;) = A}, , where
g:; € A;[t] is a monic polynomial. Indeed, for any p € Spec A, the I® 4 k(p) is (by absolute flatness of
A) a submodule (i.e., an ideal) of k(p)[t]. Tt is generated by a monic polynomial (here we consider
0 to be a monic polynomial as well), say f. There is a some fundamental open neighborhood
D(b)  p such that f extends to an element in A[b~!][¢], for some b € A. By Exercise 1.8.15, the
constructible subsets are the clopen subsets in Spec A, so the claim is true on a clopen neighborhood
of any point, as requested.

Using that claim, it suffices to check the constructibility claim for I = 0 and for I = (g) with g
monic:

e The former case holds by Exercise 1.8.14 (for any ring E, the map AL — Spec FE is open).

e For the latter case we use that for any ring F, and any monic polynomial g € E[t], then F' :=
E|[t]/g is finite free as an E-module, so that by Exercise 1.8.13, the image of D(f) < Spec F’
is constructible for any f e F. O

Exercises

Exercise 1.10.6. Let A be a discrete valuation ring with residue field k£ and quotient field K. (If
you prefer taking a more concrete example you can pick A = Z, with k = F, and K = Q,, or
alternatively A = k[t]), with residue field being k& and K = k(t).) Show that the absolutely flat
ring constructed in the proof above is given by

A=kx K.
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Hint: show that a proper field extension £ < F never induces a bijection AL — AL. l.e., E —> F
is not in the weak saturation of the map 0 u G, — Al

Exercise 1.10.7. With A a discrete valuation ring, use Exercise 1.10.6 to illustrate all the steps
in Olivier’s proof of Chevalley’s theorem for B = A[t]/t> — w, where w is a uniformizer, i.e., a
generator of the maximal ideal m < A.



Chapter 2

Schemes

Definition 2.0.1. A scheme is a locally ringed space that locally looks like an affine scheme.
More formally, it is a locally ringed space (X, Ox) such that for every point x € X there is a
(commutative) ring A (depending on x) and an open neighborhood U and an isomorphism (of

locally ringed) spaces
(U, OU) = (Spec A, OSpecA)'

(Here (U,Oyp) := (U,Ox]|y) carries the induced structure of a locally ringed space, cf. Exer-
cise 1.6.29). The full subcategory of LocRingedSpace consisting of schemes is denoted by Sch.

To simplify the notation, we will usually only denote a scheme by X, leaving the structural
sheaf Ox implicit.

Of course, by definition, any affine scheme is a scheme in this sense, so that we have an inclusion

of full subcategories
Rings®® >~ AffSch < Sch < LocRingedSpace.

Definition 2.0.2. If S is a scheme, the category of S-schemes Schg is the overcategory of S € Sch.
That is, objects of Schg are morphisms of schemes X — S, and morphisms in Schg are commutative
triangles

X————Y

S
We refer to objects in Schg also as “schemes over S”.

This definition is often applied when S = Spec A is affine. Given some X € Schg, fix any open
affine covering X = | JU; by affines U; = Spec B;. Then B; are A-algebras. Similarly, morphisms
X — Y over § are locally of the form Spec B — Spec C, with C' — B being an A-algebra map.

Exercises

In the following exercises we use the following notation for a scheme X and a ring A:
X (A) := Homge, (Spec 4, X).
We refer to the set X(A) as the set of A-valued points. (If X = Spec B is affine, then we have
X (A) = Hompgings(B, A).
Even more specifically, if B = Z[tq,...,t.]/(f1,- .-, fm) we have
X(A) ={(a1,...,a,) | filar,...,an) =0}

47
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In other words, the set X (A) encodes the solutions in the given ring A of the system of polynomial
equations. Of course, this depends dramatically on the ring A. The famous Fermat curve

" +yt =1

has certainly infinitely many solutions in R, say, but according to the so-called Fermat’s last
theorem (proved by Wiles in 1995) the only solutions in Z for n > 3 are the “trivial” solutions,
where at least one of the three variables is 0. Going back to the case of a general scheme we
retain the observation that X determines the sets X (A) for all rings A, i.e., X “knows” about the
solutions of polynomial equations in all rings at the same time.)

Exercise 2.0.3. Let X be a scheme. Construct a bijection between the set X (i.e., disregarding
the topology and the structural sheaf) and the set

|_| Homgep, (Speck, X)/ ~,
k

where the coproduct runs over all fields k, and we identify f : Speck — X with ¢g : Speck’ — X
(for another field k') iff there is a commutative diagram

Speck J .x

|

Spec &’
In particular, deduce a bijection for the k-points
X(k) ={re X, k(z) - k}.
Hint: reduce to the assertion in Exercise 1.2.9.

Exercise 2.0.4. Let A be a local ring and X a scheme.

(1) Let f: Spec A — X be a morphism of schemes. Prove that its set-theoretic image f(Spec A)
is contained in any affine neighborhood U < X of the point f(m,), where my is the unique
maximal ideal of A.

(2) Deduce the following description of the A-points of X:
X(A) ={zre X,0x, — A(local map of local rings)}.

Exercise 2.0.5. Let X be a quasi-compact scheme (i.e., its underlying topological space satisfies
the condition in Definition 1.1.7). Prove that any non-empty closed subset Z < X contains closed
point of X. In particular, X itself has a closed point. (This statement fails if X is not quasi-
compact, see [Liu02, Exercise 3.27] for a counter-example of the form X = Spec V\{my } where V'
is a certain (non-Noetherian) valuation ring.)

2.1 Open subschemes and glueing

Lemma 2.1.1. Let (X, Ox) be a scheme and U < X an open subset of the topological space X.
Then (U, Ox|y) is a scheme as well.

Proof. Pick a covering X = | J,.; X;, with X; = Spec A; being affine. For all z € U, pick some i € [
such that x € X;. Then U n X, is an open neighborhood of x in the affine scheme X;, so there is
some a € A; such that € Dgpec 4,(a) = U n X;. Note that D(a) is an affine scheme, so we have
produced an open affine neighborhood of x in U. O]
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Despite its simplicity, the statement is not completely harmless. More precisely, the statement
would fail if we were to replace “scheme” by “affine scheme”, as the following example shows.

Example 2.1.2. Let X = A? (or, in the same vein, A" for n > 2) and consider the punctured
plane U = A%\{(0,0)}, where we remove the origin, i.e., the closed point given by the maximal
ideal (t1,t3). We claim that U is not an affine scheme. Indeed, by Exercise 1.6.32, we have
Ouy(U) = Z[ty,t2]. Given the equivalence of categories (1.6.19), the natural map

U — Spec(Oy(U)) = Spec Z[t1,t,] = A?

would be an isomorphism. This map is the canonical inclusion U < X, which however is not an
isomorphism since it is not bijective on the level of the underlying topological spaces.

The scheme U is an example of a quasi-affine scheme, i.e., an open subscheme of an affine
scheme.

Recall from topology the glueing of topological spaces: given a (possibly infinite) family of
topological spaces X;, i € I and open subsets X;; < X; (for each j € I), where X;; = X, and
homeomorphisms

e

pij + Xij = Xy

satisfying the so-called cocycle condition

Spjk’inﬁXjk CVij|XijnXuy T  PiklXiynXik

there is a unique topological space X that is glued together from the X; and the above data,
namely
X o= X/~

where the relation is the equivalence relation generated by identifying, for any z;; € X;;, z;;(e X;)
with ¢;;(z;7) € Xj;. In addition, we have the following universal property of X: for any topological
space Y, we have

Homrop (X, Y) = {(fi : Xi > Y)|f;

x5 = filx;i o wiz}- (2.1.3)
In categorical terms,

X = colim <|_| Xi; 3 |_|X,> . (2.1.4)
irj i

The following statement is referred to by saying that schemes glue (along open subschemes).

Lemma 2.1.5. Using the above notation, assume that each X; is a scheme, and the isomorphisms
©i; are isomorphisms of schemes. Then X is naturally a scheme in such a way that for any scheme
Y, the formula (2.1.3) (with morphisms of schemes) holds.

Proof. We endow the topological space X discussed above with the structural sheaf Ox constructed
in Exercise 1.5.10 (given the isomorphisms Ox;|x,; = ¢;i+Ox,|x;: etc. that are part of the isomor-
phism of schemes ¢;;). The resulting pair (X, Ox) is a locally ringed space; note that the stalks
Ox . for € X identify with Oy, ., provided x € X;. Finally, any = € X;(c X) has an open affine
neighborhood inside X;, and therefore also inside X. O]

Remark 2.1.6. Lemma 2.1.5 says that (2.1.4) holds verbatim for schemes. In topology, one shows
that any diagram of topological spaces admits a colimit. By contrast, more general colimits in the
category of schemes do not usually exist.

The next statement, called affine communication lemma in [Vak17, p. 5.3.2] will help us orga-
nize various local-to-global arguments (i.e., extending statements from affine schemes to arbitrary
schemes).
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Proposition 2.1.7. Let P be a property of affine schemes (or, equivalently, of rings). We write
P(U) if P holds for U. Suppose:
(1) P(Spec A) (for U = Spec A = X)) implies P(Spec A[f~1]),

(2) if U = Spec A(c X) is covered by U; := Spec A[f; ], for fi € A,i = 1,...,n, then P(U;) for
all i implies P(U).

We call such a property affine-local. Now, if X = | JSpec A; with P(Spec A;), then P(U) holds for

any open affine subscheme U < X.

To prove this statement, we will use the following argument about “well-placed” basic open
neighborhoods.

Lemma 2.1.8. If Spec A and Spec B are open affine subschemes of a scheme X, then Spec A N
Spec B is a union of open subsets that are at the same time basic open subsets (in the sense of
Definition 1.1.1) inside Spec A and also inside Spec B.

Proof. Pick a point x € Spec A n Spec B. We can find a basic open subset Da(f) = Spec A[f!]
that is contained in Spec AnSpec B, and that contains z. Let Dp(g) = Spec B[g~!] be a basic open
subset contained in D4(f) and containing z. We have the restriction map B = Ox(Spec B) —
Ox(Spec A[f~']) = A[f7!], and we denote by ¢ = ?—Z the image of g under that map (with
g" € A). We have

Dg(g) = Spec Blg™'] = {p € Spec A[f '], ¢’ ¢ p} = Spec(A[f~D[g"""] = Spec A[(f¢")"].
This is therefore a basic open subset in both Spec B and Spec A containing x. O

Proof of Proposition 2.1.7. Let Spec A € X. By Lemma 2.1.8 and the quasi-compactness of Spec A
(Lemma 1.1.10), we can find a finite covering of Spec A by basic open subsets Spec A[g; '] which
are also basic open subsets of Spec A;. Then, using our two assumptions on the property P:

P(A;) = P(Alg;']) Vi = P(A).

A quick way to obtain an affine-local property of schemes is to demand some property of the
stalks at all points inside the given affine subset.

Definition 2.1.9. A scheme X is called normal (resp. factorial) if all the stalks Ox , are integrally
closed domains (resp. unique factorization domains).

By Exercise 1.7.27, an integral scheme X is normal iff all Ox (U) (for affine U < X) is integrally
closed. By Exercise 1.7.25, any factorial scheme is normal. The converse does not hold: an example
studied in number theory is Spec Ok, the integral closure of Z inside a number field K, i.e., a finite
extension K /Q. This is always normal, but not necessarily a UFD. A prototypical example from

number theory is Z[v/—5].

Definition 2.1.10. A scheme X is called locally Noetherian if it admits an open covering X =
U, U; with U; = Spec A; and A; is a Noetherian ring. X is called Noetherian if it is locally
Noetherian and quasi-compact (Definition 1.1.7).

Again, this definition is sensible in view of the fact (proved in Exercise 2.1.11) that being
Noetherian is an affine-local property. Thus, X is locally Noetherian iff for any open affine Spec A <
X, A is Noetherian.

Exercises

Exercise 2.1.11. Prove that the property P(A) :=“A is Noetherian” is an affine-local property.
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2.2 Irreducible and integral schemes

Definition 2.2.1. Let X be a scheme.
(1) X is called connected (resp. irreducible) if its underlying topological spaces is connected
(resp. irreducible) in the sense of Exercise 1.5.8 and Definition 1.1.16.

(2) X is called reduced if for any open U < X, the ring Ox(U) is reduced, i.e., has no non-zero
nilpotent elements.

(3) X is called integral if it is reduced and irreducible.
Lemma 2.2.2. A scheme X is integral iff Ox(U) is an integral domain for all open U < X.

Proof. Let X be integral. By definition and by Exercise 1.1.20, open subschemes of X are again
integral. So it is enough to prove A := Ox(X) is a domain. Suppose that f, g € A satisfy fg = 0.
Then X = V(f)uV(g), so X = V(f) say (by irreducibility). We claim that f = 0. To check this,
we may replace X by an affine open subscheme and assume X is affine. Then X = Spec A = V(f)
means f" = 0 for some n » 0 (Exercise 1.1.22(4)), so that f = 0 since X is reduced.

Conversely, we use Exercise 1.1.20 to show X is irreducible. Let U,V < X be open. If they do
not intersect then

Ox(U U V) = Ox(U) X Ox<V)

by the sheaf property, but if this ring is a domain then one of the factors must be 0, i.e., U or V
must be empty. O

Exercises

Exercise 2.2.3. Prove that a scheme X is reduced iff all the stalks Oy, are reduced (local) rings.

Prove that if X is integral, then all the stalks Ox ., are domains. Show by (a quite primitive)
example that the converse fails. In other words, being integral is not a local but a global property
of a scheme.

Exercise 2.2.4. Suppose X is an integral scheme. Show that for any inclusion of open subsets
g #V < U(c X) the restriction map Ox(U) — Ox(V) is injective. Deduce that the natural
maps Ox(U) — Ox, (for z € U) are injective.

Exercise 2.2.5. Consider the natural map Q[z] = Q[x,y]/y*—z, and let f : X := Spec Q[z,y]/y*—}
r—Y = A}Q = Spec Q[z] be the induced map of affine schemes. For each of the following points
p €Y, describe f~1(y), i.e., describe whether it is connected and whether it is reduced:

ep=(r-1)
op=(r+1)
°p=(x)
e p=(0).

2.3 The Proj construction

Recall that the n-dimensional complex projective space is defined as

CP" := C"™{0}/(zo,...,7,) ~ (A\xg, ..., An,) for all A e C* (2.3.1)
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It is known that this is a compact complex n-dimensional manifold. For example, CP! is home-
omorphic to the 2-sphere. Our goal in this section is to construct a scheme denoted P™ whose
C-points can be identified with CP". The above definition suggests to consider a quotient

A0}/ G,

where the multiplicative group G, (Exercise 1.6.33) acts on A"*1\{0} = A" by multiplication.
The handling of quotients of schemes by actions of group schemes is in general much more subtle
than, say, the quotient of a topological space by the action of a topological group. The G,,-action
on A™\{0} is a free action, and in this case one can confirm the existence of the above quotient by
hand; cf. Exercise 2.3.19 for further an explanation of the appearance of the gradings below.

Definition 2.3.2. (1) A graded ring (it would be more precise to call it an N-graded ring) is
a ring of the form A = @, A, satisfying the condition that the multiplication satisfies
A - An C A,

(2) A graded ring homomorphism f : A — B is a ring homomorphism such that f(A,) c B, for
all n.

(3) An element a € A is called homogeneous of degree n if a € A,,. In this event we write dega = n.
It is called homogeneous if it is homogeneous of degree n for some n. (Note this implies that
0 € A is considered to be homogeneous of any degree.)

(4) A graded ideal I < A is an ideal such that I is generated by its homogeneous elements.

(5) The drrelevant ideal is

A+ = @ An

n>0

(It is a graded ideal in A.)

For a graded ring A = @, A,, we note that Ay < A is a subring. Also, A, is a graded ideal.
If, above, we replace “n = 0" by “n € Z”, we obtain the notion of a Z-graded ring.

Example 2.3.3. For aring B (not equipped with a grading), the polynomial ring A = Blto, ..., t,]
is a graded ring if we declare A,, to consist of homogeneous polynomials of degree n. The irrelevant
ideal is A, = (to,...,t,). In other words, Spec A = A4 and V(A,) is the origin in this n + 1-
dimensional affine space (over Spec B).

Definition 2.3.4. The Proj construction is
Proj A := {p € Spec A\V(A,) | p is graded}.

We endow it with the topology coming from the Zariski topology of Spec A.
For a ring B (not carrying a grading), we define (using the grading discussed in Example 2.3.3)
the projective space (of dimension n, over Spec B):

% := Proj Blto, ..., t,].
We now elucidate the topology of Proj A.

Lemma 2.3.5. A basis of the topology on Proj A is given by the subsets

Di(f):= {peProjA, f¢p}=D(f)nProjA

where f is an arbitrary homogeneous element such that fe A,.
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Proof. A priori, we have to consider D(f) nProj A for any element f € A. However, if f = >,  fa
is a decomposition into its homogeneous components, then a graded prime ideal p < A satisfies
fé&piff f; ¢ p for some d. Thus, it is enough to consider f homogeneous. We show it suffices
to consider f homogeneous and of positive degree. Given a p € D, (f), we will show there is a
homogeneous g € Ay such that p € Dy(g9) < D,(f). Since p does (by definition of Proj) not
contain A, there is some h € A,, h ¢ p. Then f ¢ p implies fh ¢ p, and fh is homogeneous,
deg(fh) = deg f + degh > 0. So, we can put g = fh above. O

For f € A, homogeneous, we consider the localization A[f~!], which has a Z-grading given by

deg(%

We let A[f~!]o be the degree 0 part of this ring, i.e.,
_ a
Alf o = {F| dega = ndeg f}.
Proposition 2.3.6. For f homogeneous of positive degree, the ring homomorphisms

A— A= AL o

) = dega — ndeg f.

induce homeomorphisms
D, (f) & {Z-graded prime ideals in A[f~']} S Spec(A[f~ o).

Proof. We abbreviate S := A[f™'] o Sy := A[f']o. By definition, D, (f) = D(f) n Proj A is
a subspace (with the induced topology) of D(f) = SpecS. We note that Z-graded ideals and
N-graded ideals in S agree, which proves the left hand bijection.

Let us write ¢ for the right hand map. As usual, it is given by taking preimages under the
inclusion Sy < S, i.e., p— p(p) =p N So.

We show that ¢ is injective. Indeed, for two Z-graded prime ideals, p and q not containing f,
we have o(p) < ¢(q) iff p = q. Clearly, we have “<". Conversely, given a homogeneous element

a € p, we will show a € q. Let n:= dega > 0, d := deg f > 0. Then % € pS 1 Sy = @(p) = @(q),
so there is some homogeneous = € ¢ such that ?—: = fim(e S), where md = degz. Therefore, for

e » 0, we have f¢(f™a? — f"z) = 0 € q = A, so that f™a? — f"x € q, and therefore, since z € q,
f™a? € q, and again using that f ¢ q and d = deg f > 0, we see a € q.
We show that ¢ is surjective. Given a prime ideal pg = Sy, we define a subset (already

suggestively denoted) p := @D,,o, My, where M, := {a € S, ;‘ﬁ—i € po}. We have p n Sy = pg, so p
will be a preimage under ¢ once we show it is a graded prime ideal. We have a € M,, iff a® € M,

is clear; “<=": if ;‘%: = (;—:)2 € po, then ;‘5—: € po.) For a,b e M, we have a® + 2ab + b* € Moy,.

Indeed, this follows from expanding (a? + 2ab + b*)¢ into monomials and using identities such

as (;SZf = ?—Z;—i € po. Therefore, a + b € M,, so p is an ideal. It is a graded ideal since by

definition it is generated by homogeneous elements. Finally, it is a prime ideal. It suffices to check

that for two homogeneous elements a € S,, b € S, with ab € p we have a € p or b € p. From
(ab)? _ a? be
fn+m - fn fm

( (¢:>77

abe p N Spim = Myim, S0 again pg 3 and the primality of py we obtain our claim.
We have proved that ¢ is a bijection.

To see that both maps are in fact homeomorphisms it suffices to use Lemma 2.3.5 according to
which a basis for the topology on D, (f) is given by D, (f)n D, (g) = D+ (fg), where g is a homoge-
neous element of positive degree. Under the above bijections, this corresponds to Spec(A[(fg) o).
We claim that this identifies with the basic open subset D(g) inside Spec A[f~!]y. Indeed, this fol-

lows from the following equality (which is readily confirmed, note both are subrings of A[(fg)™']):

deg f
(ALF10) () ™1 = Al 9) ™ o (23.7)
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Definition 2.3.8. We let Proj A be the scheme that is obtained by glueing (in the sense of
Lemma 2.1.5) the Spec(A[f~1]o), where f € A, is an arbitrary homogeneous element.

Example 2.3.9. We continue exploring P" = Proj Z[to, ..., t,]. The irrelevant ideal A, is given
by Ay = (to,...,t,), so that P™ is covered by D, (¢;), 0 < i < n. We observe that there is a ring
isomorphism
~ ~ _ t;

Z[’LLO,. ey Ugy e e ,un] — Z[to,. .. ,tn,ti 1]0,'LL]' — t_]
7
(as usual, the notation @; means that w; is missing). According to the above definition of the
scheme structure, we then have isomorphisms of schemes

D (tit;) = SpecZlto, ... tn, (tit;) o — Spec Z[ug, . . ., Uiy - - . , Up, u; '] (2.3.10)

j J
D (t;) = Spec Zt, ... tn, t; ]o ——— Spec Z[ug, . . ., Ui, - . ., up] = A™.

Here, the top right subspace is the open subspace D(u;) < A"™. In other words, P" is covered
by n + 1 open affine subschemes U; that are each isomorphic to A™. Their pairwise intersections
Ui nUj (for i # j) are isomorphic to Gy, x A™1,

This shows that the construction of P™ recovers the topological structure of CP", which is
covered by the subsets of cosets of elements of the form (xq,...,z;1,1,Z41,...,2,) (for i =
0,...,n). In complex analysis, Liouville’s theorem asserts that any holomorphic function f :
CP" — C is constant. The following statement is the algebro-geometric incarnation thereof.

Lemma 2.3.11. Let B be aring and A = Blto, ..., t,] be equipped with its standard grading, as
before, and put X := Proj A = P%. There is a ring isomorphism

Proof. We compute the ring of global sections using the sheaf condition for the covering P} =

Uio D+ (ta).
Ox(X) = €q (H Ox(D+(tZ)) =3 HOX(D-i-(titj))) .

1,J
Thus we consider f; € A[t; ']y (for each i < n) such that fi = f; € A[(tit;)"]o. This latter
condition enforces that f; € Ay (as opposed to the localization). O

The following statement recovers the set-theoretical description of CP™ alluded to above. The
statement below does generally not hold for non-local rings; this will be adressed by the introduc-
tion of line bundles in 7?7 below.

Lemma 2.3.12. For any local ring A, we have the following description of the A-points

P"(A) := Homga (Spec A, P") = {(ao,...,a,) € A" a; € A* for some i}/ ~ (2.3.13)
= {A" - A} (2.3.14)

with ~ being defined as in (2.3.1) and in the second line we have the set of surjections of A-modules
as indicated.

Proof. We use Exercise 2.0.4: any map Spec A — P™ factors through D, (¢;) for 0 < i < n.
A morphism of (affine) schemes

Spec A — D (t;) = Spec Z[to, ... tn,t; ']o = Spec Z[ug, . .., Ui, . . ., Up]
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is a collection of elements a, := (ao,...,a;,...,a, € A); in fact a; is the image of i—’j (for k # 1).
Such a morphism will be identified with a morphism Spec A — D, (t;) iff it factors through their
intersection, D, (t;t;), as shown below. In view of the above discussion, we denote the above
element u by % at the bottom right below, and likewise for the bottom left:

Spec A

R

D+ (tl) — D+ (tzt]) E— D+ (t]>

SpecZ[,n # i Spec Z[’i—]’?,n # J]

If we denote the collection of elements corresponding to the map Spec A — D (¢;) by by, . . ., bAj, ..., by el
A, with b; € A* this means that a; and b; have to be invertible, and for the remaining indices we
have ay = bkl‘j—J One then confirms that this induces an identification of P"(A) with the set as
stated above, by sending a, to (ag,...,1,...,a,), where 1 is in the i-th spot.

The description in (2.3.14) is equivalent to the one above, since ay, ..., a, in the local ring A
generate A iff one of the a; is a unit. n

The Proj construction is also the basis of the following fundamental construction.

Definition 2.3.15. Let X = Spec B be affine and Z = Spec B/I a closed subscheme. The blow-up
of Z in X is defined as

Bl; X = Proj@[" = Proj(B(—BI(—BIQ@...).
n=0
Example 2.3.16. Consider B = Z[ty,...,t,],s0 X = A" and I = (t1,...,t,), so Z is the origin
in A”. Let us write A = @,,.,/". In order to understand BlgA"™ = Proj A, we use the surjection
Blxy,...,x,] = A, x; — t;. One checks that its kernel is generated by t;z; — t;z; for 1 <1, j < n.
In other words, BlgA™ is the closed subscheme of P"~! x A"(= ProjZ[z;] x Spec B) defined by
the homogeneous equations t;x; — t;z;. We analyze the fibers of the map ¢ : Bl)A™ — A™

e The fiber ¢~1(0) is Proj A/(t;) = ProjZ[z;] = P" 1.

e The restriction to the complement of the origin, U := A™\{0}, is an isomorphism. Indeed, it
is enough to check that the fiber on each D(¢;) is an isomorphism, but

ProjZ[zy, ... t1, ..., t; | /tix; — tjx; = Spec Z[ty, ...t ']
since z; = t;ltjxi, so the preceding Proj-scheme is isomorphic to ProjZ[x1,t1,...,ts, t; "]
(with 27 in graded degree 1).
In other words, we have a diagram whose two squares are cartesian:
P 1 —— BlyA" «+—— A™\{0} (2.3.17)
||
0 A" A™{0}

Exercises

Exercise 2.3.18. Prove that ProjZ[ty,ts,...] (infinitely many variables) is not quasi-compact.
(This is in contrast with Lemma 1.1.10, which shows that affine schemes are always quasi-compact.)
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Exercise 2.3.19. Recall from Exercise 1.6.33 that G,, = Spec Z[t*'] is the multiplicative group
whose multiplication p : Gy, x G, — Gy, inverse ¢ : G, — Gy, and neutral element 1 : SpecZ —
G, are obtained by applying Spec to

Z[t*'] - ZuT®ZvT] = Z[ut vt t - u®o,

Z[tT] — Z[tT),t -t

Z — Z[t'].
Let X = Spec A be an affine scheme. Similarly to the case of a group acting on a set, we say

that a Gy-action on X is a map (of affine schemes)

act : G x X - X

satisfying the usual axioms of a group action such as the commutativity of the diagram

Gm « Gm « XidGmxact Gm % X
Luxidx lact
G x X 2t X.

Prove that Gy,-action on X is equivalently a Z-grading of A, i.e. A =@, 5 An.
Hint: applying O to the above action map gives a map A > AQZ[t*!] = P, , A. What does
the commutativity of the diagram mean in terms of this map?

Exercise 2.3.20. Let A = Blto,...,t,] be as in Example 2.3.3.

(1) Check that the Gp-action on Spec A = A% given by scaling restricts to a Gp-action on
Spec A\V (A,).

(2) Let T be a scheme. We equip it with the trivial G,-action. For any Gy-equivariant map f
prove that there is a unique scheme homomorphism like so:

Proj A

/

Spec A\V'(A;) N
This confirms that Proj A is (in the category of schemes) a quotient of (Spec A\V (A ))/Gu.

2.4 Fiber products

Lemma 2.4.1. The category Sch has a final object, namely SpecZ. That is, for any scheme X
there is exactly one map X — SpecZ.

Proof. By Theorem 1.6.14, we have Homg, (X, Spec Z) = Hompings(Z, Ox (X)), and for any ring
R, there is exactly one ring homomorphism Z — R. O

Proposition 2.4.2. The category Sch of schemes has fiber products. That is, for any two maps
X' — X and Y — X there is a scheme Y’ with the following universal property: for any scheme T’
and maps T'— X’ and T" — Y making the outer diagram commute there is a unique map 7" — Y’
making the remainder of the diagram commute:
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Proof. We only prove this in the case where X’ = Spec A", X = Spec A and Y = Spec B are
affine. We claim that in this case the affine scheme Y’ = Spec(B®4 A’) is a fiber product. Indeed,
the universal property as above does hold if 7' = Spec R is also an affine scheme: passing to the
opposite category of rings, cf. (1.6.19), this is just the assertion that B®4 A’ is the pushout of the
diagram

B+—A

This holds by the very definition of the tensor product: the diagonal dotted arrow is the unique
map sending b ® a’ to s(b) - r(a’). If T is any scheme, then we have Homge, (7, Spec F) =
Homgsen (Spec Or(T'), Spec EY) by Theorem 1.6.14, i.e., we may replace T" by Spec Op(T') and
reduce to the case of T" being affine.

The case of not necessarily affine X, X’ Y is reduced in several steps to the affine case. See,
e.g., [Stacks, Tag 01JM] and [Stacks, Tag 01JS]. O

Example 2.4.3. For a ring A, we have
A"} = A7 Xgpecz Spec A,

n n
A= PZ XSpecZ Spec A,

where Spec A — SpecZ is the unique map (corresponding to the unique ring homomorphism
Z— A).

Warning 2.4.4. The underlying set of a (fiber) product of schemes X xy Z is not in general the

(fiber) product of the underlying sets. This issue already manifests itself for affine schemes. Here

are two concrete examples:

(1) For an algebraically closed field k, consider A% = A% X Speck A%. In A% = Speck(t1,ts], we
have closed subsets such as A := V (t; — t3), i.e., the diagonal. Its generic point is not of the
form A x {z} (for some point = € AJ).

(2) If k is a field and £'/k is a field extension then X := Speck’ Xgpecr Speck’ = Spec(k’ ®y, k') is
rarely consisting of a single point. If, say, the extension is a finite Galois extension, generated
by an element 2’ € ¥’ with minimal polynomial p(t) € k[t], then

degp

K Qi k' = k[t]/p(t) @ k' = K[t]/p(t) = H K,

where the right hand isomorphism is using the splitting of p in &’ into linear factors. Thus X
consists of degp points in this case.

If " = k(t), then dim X = 1 (Exercise 1.9.7).

(3) On the positive side, though, if & is an algebraically closed field and X7, X5/ Spec k are schemes
of finite type (Definition 2.7.2), then we have

cl cl cl
(Xl X Speck XQ) = Xl X X2 )

where the superscript cl denotes the subset of closed points. Indeed, this assertion reduces to
the case where X; are affine, which is discussed in Exercise 1.9.5.

Corollary 2.4.5. The category Sch has finite products: X x Y = X Xgpecz Y.


http://stacks.math.columbia.edu/tag/01JM
http://stacks.math.columbia.edu/tag/01JS
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Definition 2.4.6. Let P be a property of morphisms of schemes. We say “P is stable under
pullback” if for any pullback diagram

X xyY —X (2.4.7)
o
y —2 oy
we have the implication
P(f) = P(f).

This turns out to be a very important organizational principle. We will meet many more (and
more meaningful) examples of this soon.

Example 2.4.8. The condition “f is surjective” is stable under pullback. Indeed, a point in
y' € Y’ in the diagram 2.4.7 yields a map Spec k — Y’ (with k being the residue field of 3/’). By the
surjectivity, there is some x € X such that f(x) = g(3/). Using Exercise 2.0.3 we see that there is
a field extension k > k(y’) and a map Speck — X as indicated below, whose image is =, making
the outer part of the diagram commutative:

Spec k

ey
X Xy Y’

P

Spec k(y') vy —L oy

Since the right hand square is cartesian, there is a unique dotted map making everything commu-
tative; in particular this produces a point in X Xy Y’ that maps to v/’

Non-example 2.4.9. e The condition “f is injective” is not stable under pullback, as the
example in Warning 2.4.4(2) shows.

e The condition “f has finite fibers” is not stable under pullback: one can show that for a
field & and an algebraic closure k, Spec(k ® k) is homeomorphic to the (absolute) Galois
group Gal(k/k) (which is usually infinite); but of course Spec k — Speck is a bijection (of a
singleton). A remedy for this is discussed in Exercise 2.8.4.

2.5 Affine morphisms

Definition 2.5.1. A morphism f : X — Y of schemes is called affine if there is an open covering
of Y by open affines V < Y for which the preimages f~1(V) := V xy X are again affine schemes.

For example, a morphism Spec B — Spec A between affine schemes is affine. By contrast, for
n = 1, the structural map P™ — Spec Z is not affine: its pullback to V' = B, B = Z[1/n] is given
by P, but the natural map
P’ — Spec Opr (P) = Spec B
(cf. Lemma 2.3.11) is not an isomorphism.

Lemma 2.5.2. A morphism f: X — Y is affine iff for any open affine V < Y, f~}(V) is affine.

One can prove this using the affine communication lemma (Proposition 2.1.7) and Exercise 2.5.3,
see [Vakl7, Proposition 7.3.4] (or [Har83, Exercise 11.2.17] for a slightly different, but essentially
equivalent approach).
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Exercises

Exercise 2.5.3. Let X be a quasi-compact and quasi-separated scheme. The latter means that
for any two open affine subschemes U = Spec A,V = Spec B < X, their intersection U n V is
quasi-compact.

Let f : X — A! be a morphism of schemes (equivalently, by Theorem 1.6.14, an element
f € Ox(X)). Denote by X; := Gy, xa1 X (where the pullback is formed using f). Prove that
there is an isomorphism

Ox(X)[f7'] = Ox, (Xy).

2.6 Open and closed embeddings

Let f: X — Y be a map of schemes.

Definition 2.6.1. e f is called a locally closed embedding iff the following two conditions hold:
(1) The underlying map of topological spaces of f is a homeomorphism X =~ f(X) and, again

on the level of the underlying spaces, f(X) is open in its closure f(X).
(2) For each x € X and y := f(z), the induced map on stalks

OY,y - OX,x (262)
is surjective.

e f is called an open embedding if it satisfies these two conditions and f(X) is open and (2.6.2)
is an isomorphism.

e fis called a closed embedding if it satisfies these two conditions and f(X) is closed.

If X is homeomorphic to an open subset f(X) < Y, then the maps (2.6.2) are isomorphisms if
and only if Oy |fx) — Ox is an isomorphism. This follows from Exercise 1.6.28.

Lemma 2.6.3. For a map f: X — Y, the following are equivalent:
(1) f is a closed immersion,

(2) f is affine, and if for any Spec B = Y, the preimage f~!(Spec B), which is of the form Spec A
(since f is affine) is such that the induced map B — A is surjective.

Proof. The main idea for (1) = (2) is this: if X — Y is a closed immersion, then sois X nU — U,
for any open U < Y. Indeed, we have Oy, = Oy, for y € U etc. So we may assume Y = Spec B
is affine. If we put A := Ox(X), we get a canonical map v : X — SpecA (adjoint to the
identity of Ox(X) under the adjunction established in Theorem 1.6.14). More precisely, there is
a commutative diagram

X i Spec A

f 5
Y = Spec B.

One then shows that 7 is an isomorphism; cf. [Stacks, Tag 01IN] for an argument involving the con-
cept of a quasi-coherent sheaf or alternatively [GW20, Theorem 3.42] for a slightly more involved,
but completely elementary argument. O]

In particular, for a closed immersion into an affine scheme Z — Spec A, Z is again affine (in
contrast to the case of open subschemes, cf. Example 2.1.2).


http://stacks.math.columbia.edu/tag/01IN
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Exercises

Exercise 2.6.4. Show that a surjective closed embedding X — Y need not be an isomorphism. At
least if Y is affine, name an appropriate additional condition on Y that ensures that any surjective
closed embedding with target Y is an isomorphism.

Exercise 2.6.5. For a scheme X and two closed subschemes 7,7, < X, the scheme-theoretic
intersection is defined as the fiber product

Zl ﬂZQ = Zl X x ZQ.
(1) For X = A? = SpecZ[z,y], and Z; = V(y — 2?), Zy = V(y) compute Z; n Zy. Is it reduced?
(2) Compute the scheme-theoretic intersection of V(y? — x?) and V(y) in A2

Exercise 2.6.6. Let f : A — B be a ring homomorphism. Prove that ¢ : Spec B — Spec A is
an open immersion if and only if ¢ is locally an isomorphism in the sense that there are f; € A
(without necessarily | D(f;) = Spec A) such that Spec B[f; '] — Spec A[f; '] is an isomorphism.

7

2.7 Finiteness conditions

In this entire section, let f: X — Y be a morphism of schemes.

Definition and Lemma 2.7.1. The following conditions are equivalent; if they hold we call f
quast-compact:
(1) for any quasi-compact open U < Y, f~}(U) is quasi-compact,

(2) for any affine U = Spec B < Y, f~}(U) is quasi-compact.

Proof. Any quasi-compact U < Y admits a cover by finitely many affines U = J;_, Spec B;, and
1 U) =, f ' (Spec B;). O

Therefore, a scheme X is quasi-compact iff the unique map X — SpecZ is quasi-compact in
this sense. If X is Noetherian (Definition 2.1.10) then f : X — Y is automatically quasi-compact.
Indeed, X is then a Noetherian topological space (Definition 1.1.14), and any open in X is quasi-
compact (Exercise 1.1.18). Examples of non-quasi-compact morphism include

e | |..; Speck — Speck, for an infinite set I,

e The inclusion of infinite-dimensional affine space X := A®(:= SpecZ[ty,ts,...]) into the
infinite-dimensional affine space with doubled origin, i.e., Y is obtained by glueing two copies
of X along the open subscheme given by the complement of the origin, cf. Exercise 1.1.18.

Definition 2.7.2. A morphism f : X — Y of schemes is called locally of finite type (resp. lo-
cally of finite presentation), if for any affine open Spec B < Y and any affine open Spec A <
f~Y(Spec B)(c X) the induced map B — A is such that A is a finitely generated B-algebra
(resp. finitely presented).

We say f is of finite type if it is locally of finite type and quasi-compact.

Example 2.7.3. For any ring A, the structural map P’} — Spec A (obtained by glueing the maps
D, (t;) — Spec A induced by the inclusion A < Alty, ..., t,,t; ']o) is of finite type. Indeed, P is
quasi-compact since it is covered by finitely many affine schemes, which are quasi-compact, and
the Dy (t;) = A" are of finite type.

Definition 2.7.4. We say f : X — Y is finite if for any open affine Spec B < Y the preimage
f~Y(Spec B) = Spec A is affine (i.e., f is affine) and the induced ring homomorphism B — A is
such that A is a finite B-module.

Reiterating the comment in Remark 1.7.2, being finite is a much stronger condition than being
finitely presented. By definition, a closed embedding is finite.
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2.8 Permanence properties of morphisms

Definition 2.8.1. Let P be a property of a morphism of schemes. We write P(f) if some morphism
f X — Y has the property P.

e We say “P is stable under composition” if P(g) and P(f) implies P(g o f) (for any two
composable morphisms g and f).

e We say “P is local on the target” if for any open covering Y = | JU; we have

P(f(U) L vivi = P(f).

(Note that the converse holds if P is stable under base change.) Here and throughout below,
f_l(Ui) = Uz Xy X.

e We say “P is local on the source” if for any open covering X = | JU;, we have

PUcX->Y)Vi=PX->Y).

Lemma 2.8.2. The following properties are stable under composition, stable under pullback and
local on the target:
) locally closed immersion,

(1

(2) open immersion,

(3) closed immersion,

(4) affine,

(5) quasi-compact,

(6) locally of finite type (*),
(7) of finite type,

(8) finite
The properties marked (*) are also local on the source (but the others are not).

Proof. To illustrate the technique, we discuss this for closed immersions. The stability under
composition and the locality on the target is straightforward from Lemma 2.6.3. To see it is stable
under base change, consider a pullback diagram with f a closed immersion

X — X

I

Y —Y

To show that f’ is a closed immersion if f is one, we may by locality on the target assume Y’
is affine. Then, by stability of affine maps under base change, X’ is also affine and the map
Oy:/(Y') = Ox/(X') = Oy (Y') ®oy (v) Ox(X) is surjective since it is the tensor product of the
surjection Oy(Y) - OX (X) with OY/(Y’).

The map SpecZ u Spec Z(= Spec(Z x Z)) — SpecZ is locally on the source an isomorphism,
but not an open (or closed) immersion.

The proofs for the remaining properties are similar; see Exercise 2.8.5 for an approach to the
claims for morphisms that are locally of finite type. O
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Exercises

Exercise 2.8.3. (Solution at p. 109) Suppose f : X — Spec Z is of finite type such that X Xgpecz
Spec F), is non-empty for infinitely many primes p. Prove that X xgpe.z Spec Q is also non-empty.

Exercise 2.8.4. Show that the condition “f is of finite type and f has finite fibers” is stable under
pullback.

Exercise 2.8.5. (1) The following statement can be regarded as a relative version of Exercise 2.1.11:]
fix a ring B. For an B-algebra A, consider the property P(A) := “A is finitely generated as a
B-algebra”. Prove that this property is affine-local in the sense of Proposition 2.1.7.

Hint: if b, € B are such that | J, D(b;) = Spec B, how can one take advantage of the faithful
flatness of B — [, B[b;']?

(2) Deduce that a map f : X — Y (of schemes) is locally of finite type if for each Spec B < Y/,
the preimage f~'(Spec B) admits a covering by open affines Spec A; with A; being a finitely
generated B-algebra.

Exercise 2.8.6. Let X,Y be schemes that are of finite type (resp. locally of finite type) over
Spec A. Prove that X Xgpeca Y then has the same property.

Exercise 2.8.7. Taking Lemma 2.8.2(8) for granted, prove that any finite morphism f is univer-
sally closed, i.e., that for any pullback diagram as in (2.4.7), the pullback f’ is a closed map.

2.9 Separated and proper maps

In topology, compact Hausdorff spaces have several enjoyable features. In this section we are going
to explore the algebro-geometric analogues of this concept.

Recall that a topological space is Hausdorff X if for any x # y € X there are open neighborhoods
U>sax, V 3y such that U nV = . One checks that this is equivalent to requiring the diagonal
Ax = {(z,2)} € X x X to be a closed subset. This motivates the next definition.

Definition 2.9.1. A morphism of schemes f : X — Y is separated if the diagonal map
A: X - X Xy X

is a closed immersion (Definition 2.6.1). A scheme X is called separated if the unique map X —
Spec Z is separated.

Here, the map A := Ay is the unique map such that the composition with the two projections
pry, pry : X xy X — X is the identity idy. For any map f, Ay is a locally closed immersion
(Exercise 2.9.18).

Example 2.9.2. Any map f : Spec B — Spec A is separated. Indeed, the diagonal corresponds
to the multiplication map B&®4 B — B, which is surjective, and therefore a closed immersion after
passing to spectra.

Lemma 2.9.3. If X is separated, U,V < X are affine open subschemes, then U n V' is also affine
and the map
Ox(U)®z Ox(V) = Oy (UnV), f®g— fluav - gluav

is surjective.
Conversely, if X = | JU; is a cover by open affines such that U; n U, is affine for all 7, j and the
maps

Ox(UZ) @z Ox<U]) — Ov(UZ M U]) (294)

are surjective, then X is separated.
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Proof. We have a pullback diagram
UnV—UxV

Lo,

X—2,X x X,

so if A is a closed embedding, so is the top horizontal map, so that U n'V' is affine and the requested
surjectivity holds.
Conversely, X x X = U” U; x U;. By Lemma 2.8.2, A is a closed embedding iff its pullback
U nU; — U; x Uj is a closed embedding (for each ¢, j), but for U; = Spec A; our condition above
means that
Uz' M Uj = Spec(Ai ®AJ)/I

for some ideal I. ]

Non-example 2.9.5. Consider the scheme X obtained by glueing U; = A! and U, = A! along
the G, © A'. This scheme is called the affine line with doubled origin. It is not separated (which
is in line with the observation that, say, R ugyy R is not Hausdorff): the map (2.9.4) is the
multiplication

Zlt| @ Z[t] — Z[t*],

which is not surjective.

Example 2.9.6. P" is separated, since the covering by the affine subspaces D, (t;) = A" satisfies
the condition in (2.9.4). The map reads

Z[t,t; o ®z Z[t, t; o — Z[L, (tit;) o

It is surjective (here ¢t is a shorthand for tg,...,t,). Indeed this the right hand side identifies, as

noted in (2.3.7) with

t

Zlt, ti_l]U[(t_z)_l] = Z[t,;'Jo[(;5)]:

Lemma 2.9.7. Separated morphisms are stable under composition and stable under pullback.

Also, the condition of being separated is local on the target.

Proof. Using the same permanence properties for closed embeddings, this can be shown by purely
categorical considerations. We illustrate this for the composition: let f: X - Y andg:Y — 7
be separated. Write h := gf : X — Z. We can factor the diagonal A like so, where the right
hand square is cartesian:

X XUy X = (X % X) Xyspy Y ————Y
\ lidxAg JAQ
XXZXZ (X sz) XYx,Y (Y X2Y>4>Y XZy

By stability of closed immersions under pullback and under composition, Ay, is a closed embed-
ding. O]

Definition 2.9.8. A map f : X — Y is called proper if it is of finite type (Definition 2.7.2),
separated and universally closed (i.e., any pullback f’ of f is a closed map).

Lemma 2.9.9. Proper morphisms are stable under composition, stable under pullback. Also,
properness is local on the target.
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Proof. This is a consequence of the same permanence properties for separated, resp. finite type,
resp. universally closed maps. O

Proposition 2.9.10. (Valuative criterion for universally closed maps) For a quasi-compact mor-
phism f, the following are equivalent:
(1) f is universally closed,

(2) for any pullback " : X' := X xy Y — Y’ of f, specializations lift along f’, i.e., ie., if
Y' sy = f(2') ~ 3, then we can find 2” € X’ such that f(z") =3".

(3) for any commutative square as shown below, where V' is a valuation ring and Q (V') its fraction
field, there is a diagonal map as shown such that the two triangles are commutative:

SpecQ(V) —— X (2.9.11)

SpecV —— Y.

Proof. This proof follows essentially the same pattern as its affine analogue Theorem 1.7.20.

We prove (2) < (3) (this does not use that f is quasi-compact). This was shown in the special
case where X and Y are affine in (the proof of) Theorem 1.7.20, in this case we can find V' such
that the specialization y ~ 3’ is the image of the specialization = (0) ~ my in Spec V.

In general, if X and Y are not necessarily affine, we obtain (3) = (2): we pick an open affine
neighborhood Spec B < Y of ¢’ (which also contains y), and an affine neighborhood Spec A <
/7! (Spec B) = X of x and apply the preceding case. Conversely, for (2) = (3) we can do this
same reduction since the image of SpecV in Y is contained in an affine neighborhood of the image
of the closed point (Exercise 2.0.4(1)).

(2) < (1): we have to show that if is f quasi-compact then specializations lift along f iff f is
closed. Elementary arguments of point-set topology (see, e.g. [Stacks, Tag 01K9]) can be used to
reduce this to the following claim (for f quasi-compact):

f(X) is closed < f(X) is stable under specializations.

The direction = is a simple generality of point-set topology [Stacks, Tag 0062]. The converse is
exactly the content of Lemma 1.7.19 if X and Y are affine. If Y is affine and X = J_, Spec 4,
(the covering is finite since f is quasi-compact!), then f(X) is the image of Spec(A; x ... x A,,) =
| |; Spec A; — Y, so this is closed by the previous case. The case of non-affine Y is reduced to the
affine case again using basic point-set topology: being closed and being stable under specializations
are conditions that can be checked locally on an affine open subset of Y (cf. also Exercise 1.8.10).0

Proposition 2.9.12. For a map f: X — Y, the following are equivalent:
(1) f is finite,

(2) f is affine and proper.

Proof. All three conditions are local on the target, so we may assume Y is affine. In both cases
this implies that X is affine, as well.

(2) = (1): if f : Spec B — Spec A is universally closed, then in particular its pullback along
the projection Al; — Spec A is closed, so that f is integral (Theorem 1.7.20). Since f is also of
finite type, i.e., B is a finitely generated A-algebra, we see that B is actually finite We conclude
by Lemma 1.7.8.

(1) = (2): any finite map is affine and therefore separated (Example 2.9.2). It is also of
finite type. Finally, a finite map is integral, and therefore universally closed (this was checked in
Theorem 1.7.20 for pullbacks along an affine map Spec A’ — Spec A; the case of a general pullback
reduces to this since the condition of being a closed map local on the target). O
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Non-example 2.9.13. The projection A' — SpecZ is not proper: its pullback along A! —
Spec Z is the canonical projection A? — A, which is not a closed map (Example 1.8.2).

The following theorem is the algebro-geometric analogue of the fact that CP" is compact.

Theorem 2.9.14. The structural map 7 : P”; — Spec A is proper for any ring A.

(More generally, one can define for any scheme X, P% := P” X g,z X; then the structural map
to X is proper as well.)

Proof. Since properness is stable under taking pullbacks (Lemma 2.9.9), it suffices to consider the
case X = SpecZ. The map is of finite type (Example 2.7.3) and separated (Example 2.9.6). To
show it is universally closed we use Proposition 2.9.10:

Spec Q(V) —— P" (2.9.15)

Spec 1% —> Spec Z.

We will give two independent arguments for the existence of such a lift. The first proof uses
that the structural map 7 is the pullback of the map ¢ : BlyA"*! — A"*! (along the inclusion of
the origin), cf. (2.3.17). (This argument essentially appears in [GLO1, Proposition 2.1] and [Kel24,
Proposition 4.3].) We prove that ¢ satisfies the lifting property, which implies the same property
for m:

Spec Q(V) —4— BlyAm+!
\[ e - = 5 J
U ®
Spec V —% 5 AL,
The map a is nothing but a collection of elements ay,...,a, € V. Since V is a valuation ring, one
sees by induction that one of the a; divides all the other a;’s (cf. the proof of Lemma 1.7.16). For
simplicity of notation, let us say that ay divides aq,...,a,. This means that the map a factors

through ¢ o j as shown, i.e., a = @jb:

Spec Z[tg, &, ..., ]

%7 ? %o
)
b
Spec Q(V) -4 BlpA"t!
!
Spec V —%— A"l = SpecZ][ty, ..., t,]-
(Concretely, b parametrizes ay, Z—é, ....) Putting [ := jb we have ¢ ol = a. To check the commuta-

tivity of the other triangle above, i.e. d = [ o7, we note that the divisibility agla; etc. also holds
in Q(V), so the map d factors through j, i.e., d = je. Then

an = @l = pjbn = pd = pje.
We observe that in the category of integral domains, the map
t
L Zlt] — Zty, =, ... ]
to

is an epimorphism. Indeed, a map f from the target to some domain R is determined by ry := f(to),
rji=f (i—é) for j = 1. The composition with the above inclusion ¢ determines o and f(¢;) = ror;.



66 CHAPTER 2. SCHEMES

Thus, if we are given a second map [’ to R, with fio = f't, and write r{, := f'({y) etc., we have
ro = 1y and
rory = ror; = ro(ry —r;) =0 = r;=1]
since R is a domain.
Since Q(V) is, in particular a field, the above relation ¢jbn = pje implies

bn=-e

so that
In =7bn = je =d.
The second proof uses the description of the points of P™ in (2.3.14) (note that both V' and

Q (V) are local rings, Lemma 1.7.16). Now, the top horizontal map amounts to giving a surjection
Q(V)"* — Q(V). The composite

Vn-‘rl c Q(V)n+l s Q(V)

has image isomorphic to V' by Lemma 2.9.16. This shows the existence of a map such that the
diagram (2.9.15) commutes (note that the right triangle commutes for any map since SpecZ is a
final object). O

Lemma 2.9.16. Let V' be a valuation ring and M a finitely generated torsion-free V-module.
Then M is free, i.e., M =~ V™.

Proof. Let V™ — M be a surjection, and m; the images of the basis vectors. If 37" | a;m; = 0 for
some a; € V, then there is some 7 such that a; divides all the other a;. Since M is torsion-free,
we can then divide the relation by a; and express z; as a linear combination of the remaining x;’s.
Repeating the argument with the remaining generators shows that, eventually, there is a basis of
M. m

The following statement establishes a partial converse for the fact that projective spaces are
proper. For a proof, see [Har83, Exercise 11.4.10] or [Stacks, Tag 0200].

Proposition 2.9.17. (Chow’s lemma) Let f : X — Y be a proper morphism, with ¥ being
Noetherian. Then there is a commutative diagram

X 9% X

R
Pi=P"xY —Y

where 7 is a closed immersion, and g is a proper map for which there is a non-empty open U < X
such that g|,-1(yy is an isomorphism.

Exercises

Exercise 2.9.18. Show that for any map of schemes f : X — Y, the diagonal Ay : X — X xy X
is a locally closed embedding.
Hint: for any x € X using an appropriate open affine neighborhood x € Spec A < such that

Spec A 4 Spec B ¢ Y, construct an open affine neighborhood of A(x) in X xy X.

Exercise 2.9.19. Let U < Spec A be an open subscheme of an affine scheme. Prove that U is
separated.
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Exercise 2.9.20. (Solution at p. 109) Consider the following three conditions on a morphism of
schemes:

(1) f is proper.

(2) f is finite,

(3) f is separated,

For each 1 < i # j < 3, state (without proof) whether the implication

(i) = (J)
holds. If it does not hold, give a counter-example. (I.e., in total you should discuss 6 implications.)

Exercise 2.9.21. We say that a property P of morphisms of schemes is stable under left cancel-
lation if

P(go f) and P(g) = P(f)

for any composable morphisms (i.e., X Ly %z ). Prove that the properties “f is proper” and
“f is separated” are stable under left cancellation.
More sharply, show the following assertions:

e “go f proper” and “g separated” = “f proper”.

e “go f separated” = “f separated”.
Exercise 2.9.22. Let k be an algebraically closed field. Let X be a scheme that is connected and
proper over Spec k. Prove that any morphism f: X — A} is constant.

Hint: using Exercise 2.9.21, what can you say about the image of the composite X EA Al c Py?

Exercise 2.9.23. (Solution at p. 109) For the purposes of this exercise we call a morphism f :
Y := Spec B — X := Spec A nice if the diagonal map

A:Y Y xyY

is an open immersion.
(1) Which of the following maps are nice (and why, respectively why not)? Which of these maps

are flat (and why, respectively why not)?
e Spec A[f~1] — Spec A, for some f € A,
e SpecF, — SpecZ,
e the structural map A! — SpecZ,
e Spec C — SpecR.

(2) Prove that the composite of two nice maps is nice.

Remark 2.9.24. A morphism f as above is called étale if 1) f is locally of finite type, 2) B is
flat over A and 3) nice in the sense above. A morphism that satisfies 1) and 3) is more commonly
referred to as an unramified morphism.

2.10 Quasi-coherent sheaves

For a ring A and X = Spec A, and an A-module M, we have constructed in Lemma 1.5.3 a sheaf

M e Shv(X). In this section, we introduce the concept of quasi-coherent sheaves on arbitrary
schemes, which can be thought of as being glued together (in the sense of Exercise 1.5.10) from

sheaves of the form M. We will prove that quasi-coherent sheaves on affine schemes X = Spec A
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are precisely these sheaves M in the sense that there is an equivalence of categories between Mod 4
(the category of A-modules) and the category of quasi-coherent sheaves QCoh(Spec A). We start
by defining a larger “container” in which quasi-coherent sheaves live. (It is fair to say that the
consideration of this larger category is a bit of an artifact though; Exercise 2.10.24 sketches a way
to completely avoid it.)

Definition 2.10.1. Let X be a scheme (or even a ringed space). A sheaf of Ox-modules is a sheaf
F such that

e F(U) is a module over the ring Ox(U), and

e the restriction maps F(U) — F(V) is a map of Ox(U)-modules (where F'(V) is regarded as
an Ox (U)-module via the natural ring map Ox(U) — Ox(V)).

A morphism of Ox-modules is a sheaf morphism such that all maps F(U) — G(U) are Ox(U)-
linear maps. This defines a category denoted Mode, Shv(X) or just Modp, .

(The notation is motivated by the fact that equivalently, one can say that Ox is a ring object
in the category Shv(X), and an Ox-module is a module object over Ox etc.)

Example 2.10.2. The sheaf M e Shv(X), X = Spec A mentioned above is a sheaf of O x-modules.
Indeed, by using the equivalent description of sheaves from Lemma 1.5.2; it suffices to check the

Ox(U)-module structure for U = D(f) only. In this case M(D(f)) = M][f™'] is indeed an
Ox(D(f)) = A[f ']-module etc. Also, given a map M — N of A-modules, the associated map

M — N is clearly a map of Ox-modules. This defines a functor
= : Mody — Modo, .

Lemma 2.10.3. For an Ox-module F', we have a natural isomorphism

~

HomMod@X (O)(, F) — F(X)

Proof. The right hand side consists of compatible collections of maps, for each open U < X,
Ox(U) — F(U), each of which is a map of Ox(U)-modules. So this is nothing but an element
fv € F(U) (namely the image of 1 € Ox(U)). The compatibility amounts to res¥. fx = fu, so such
a map is uniquely specified by fx € F(X). O

In the proof of Proposition 2.10.6 we will use the following generality:

Lemma 2.10.4. For a ring homomorphism f : A — B, the forgetful functor
u : Modg — Mody

(i.e., a B-module M is just regarded as an A-module, by means of a - m := f(a)m) admits a left
adjoint, given by
B X4 —: MOdA - MOdB,
and a right adjoint, given by
HOHIA(B, —) . MOdA - MOdB.

Proof. The first claim means that for any B-module N and any A-module N there is a (functorial)
bijection

Homypoa, (B ®4 M, N) = Homygeq,, (M, u(N)). (2.10.5)

This is precisely the universal property of the tensor product. The one for Hom (which is not used
below) also follows from such considerations, see, e.g. [Eis95, §A5.2] for more background. m

Proposition 2.10.6. Let A be a ring and X = Spec A.
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(1) There is an adjunction
= :Mody 2 Modp, : T,

where as before I' is the global sections functor, i.e., I'(F) = F(X) (which is an A-module).
(2) The functor ~ is fully faithful.
(3) For F € Modp,, the following are equivalent:

(a) F lies in the essential image of ~.

(b) X admits an open covering X = | J D(f;) by basic opens such that there is an isomorphism
(of Ox-modules)

—_——

F’D(fi) = F(D(f:))-

(c) X admits an open covering by affine subschemes Spec B < X such that there exists an
isomorphism (of Ox-modules)

—

F|spec B = F(Spec B).
Proof. (1): We have to show that applying I' yields a bijection (for any M € Mod4 and F' € Modp,,)
Homytodo, (M, F) — Homygea,, (M, F(X)). (2.10.7)

Applying this to F' = N we immediately get the full faithfulness of =, i.e., (2).
This proof is somewhat similar to the one of Theorem 1.6.14. We check the map (2.10.7) is

injective. Given two morphisms of Ox-modules o, ¢’ : M — F such that (X)) =¢(X): M —
F(X), we consider the basic open subset U = D(f) and the commutative diagram

M —=5 M

Jg(X) Jw(U)

F(X) =5 F().

Recall that M[f~!] = M ®4 A[f™!], and an A[f~!]-linear map from here to F(U) (which is
an A[f~']-module!) is uniquely determined by its composite with M — M[f~!]. Therefore
o(U) = ¢'(U). By Lemma 1.5.2, ¢ = ¢'.

We check that the map (2.10.7) is surjective. Fix an A-linear map ¢ : M — F(X). Our goal
is to extend this to a map of Ox-modules M — F, so we pick U = D(f), for f € A, and try to
define the dotted map

M—=5M[f]=M®®isA[f]
s

F(X)— L F(U).

Since F' is an Ox-module, F(U) € Mod 4ff-1}, so the bijection (2.10.5) ensures the existence and
unicity of the dotted map, which we denote ¢(U). Given a basic open subset V = D(g) < D(f),
the map (V') is compatible with ¢(U) under further restriction, so again invoking Lemma 1.5.2

we have succeeded in constructing the map M — F'.
(3): generally, if for some affines V' = Spec B[b~!] ¢ U = Spec B ¢ X, F|y = F(U), then also

F|y = F(V) (by construction of the sheaves —, cf. Lemma 1.5.3). Thus, (3)a = (3)b = (3)c. The
proof of the implication (3)c = (3)a hinges on the following assertion:
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Lemma 2.10.8. Let U := D(f) ¢ X = Spec A. Suppose F' € Modp, satisfies the condition in
(3)c. Putting M := F(X) € Mod 4, there is an isomorphism
M= F(U).
Proof. More precisely, we show that
(1) We have an exact sequence

0— {meM, f'm=0}—>M=F(X)™ FU).

(2) For any t € F(U) there is some n » 0 such that ft € imres.

By quasi-compactness (Lemma 1.1.10), we can pick a finite covering of X by affine opens
V' = Spec B with the property that F|, = M for M e Modpg. By refinining these V', we may
assume they are of the form V; = D(g;) for g; € A, say F(D(g;)) = M;. We have a commutative
diagram whose rows are exact by the definition of the left hand term, and whose columns are exact
by the sheaf property of F'

ﬁ 0 0
0 ker res » M = F(X) = FU)

l

0——[[;{mie M;,3n; » 0: frim; = 0} —— [, F(D(g:)) = M; —=T1, F(D(fg:)) = Mi[f]

[L;,; F(D(9ig;)) ——— F(D(f9:9;))

Since there are finitely many ¢ only, the bottom left kernel agrees with the collection of (m;) such
that f™m; = 0 for n » 0. Now, if m € kerres, using the exactness of the middle row, we obtain
f"m =0 for n» 0.

The restriction of t € F(U) to U n'V; is an element of F(D(fg;)) = M;[f~']. Again using the
finiteness of the covering, there is some n » 0 such that f"m; € M;. The element f"(m; —m;) €
F(D(gig;)) may not be zero, but its restriction to F'(D(fgig;)) is zero, so there is again a uniform
m » n such that f™(m; —m;) = 0 by the first part. Thus f™¢ lies in the image of the restriction
map. O

We now prove the remaining implication (3)c = (3)a, using Lemma 2.10.8 and the following
generality from category theory: a functor F': C' — D is an equivalence of categories if (and only
if) a) F' admits a right adjoint G, b) F' is fully faithful, ¢) G is conservative. (The full faithfulness
of F' equivalent to the unit map v : ide¢ — GF being an isomorphism; the counit ¢ : FG — idp is
an isomorphism as well since G(c¢) : GFG — G agrees with uG, then use the conservativity of G).

Now, we have checked that — is fully faithful in (2); the conservativity of its right adjoint I
(on the full subcategory of Ox-modules satisfying the condition in (3)c) holds by Lemma 2.10.8:
some map ¢ : ' — G in QCoh(X) is an isomorphism iff p(D(f)) : F(D(f)) — G(D(f)) is an
isomorphism (Lemma 1.5.2), but this map agrees with ¢(X)[f~']. O

Definition 2.10.9. Let X be a scheme. A quasi-coherent sheaf on X is an Ox-module F' with

the property that there is some covering X = [ JU; = | JSpec A; by open affine subschemes such
that —
Fly, = F(U,).

A morphism of quasi-coherent sheaves is, by definition, an Ox-linear sheaf homomorphism.

In other words, the objects F' satisfying the condition above form a full subcategory, denoted
QCoh(X), of Modp, Shv(X).
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Using Corollary 2.10.10, one can equivalently replace the existence of some covering with the

above property by the condition that Flgyec4 = F(Spec A) for any open affine Spec A < X. In
particular:

Corollary 2.10.10. For any ring A and X = Spec A, there is an equivalence of categories
= :Mody 2 QCoh(X) : T.

More generally, we have the following description of quasi-coherent sheaves, which avoids the
reference to the ambient category of Ox-modules.

Corollary 2.10.11. Let X be a separated scheme, X = [ JSpec A; a covering by open affines, and
let Spec A; n Spec A; = Spec A;; (Lemma 2.9.3). Then there is an equivalence of categories

QCoh(X) = {(M; € Mod a,, ¢yj : Mi®a,Aij = M;®a,Aij) | irodiy = dij : Mi®a, Aij®a, Aji — M@, Aij®a,.

Proof. Given a collection of (M;, ¢;;) at the right hand side (satisfying the cocycle condition), we
consider the associated quasi-coherent sheaves M, e QCoh(Spec 4;) and qfﬁjj (in QCoh(Spec A4;5)).
By Exercise 1.5.10, there is a unique sheaf F' on X whose restrictions are isomorphic to ]\7[; This
is an Ox-module since the ]\Z are. It is quasi-coherent by Definition 2.10.9.
Conversely, for F' € QCoh(X), F; := Flspec 4, comes equipped with isomorphisms ¢;; : Fi[spec 4;~spec 4, =]

Flspec A;nSpec 4, satistfying the cocycle condition. Now, F; is quasi-coherent on Spec A;, so F; = M;
and the isomorphisms ¢;; can be expressed by what they do on the sections of Spec A; N Spec A;.[]

Remark 2.10.12. The separatedness above was imposed only to avoid discussing further affine
coverings of Spec A; N Spec A;.

Definition and Lemma 2.10.13. Let A be a graded ring, and consider X = Proj A. Let M be
a graded A-module, by which we mean that M = @,., Mq and the A-module structure is such
that A x M — M restricts to A,, x M,, — M,,.,. Morphisms of graded modules are required to
preserve the graded components. This defines a category grMod 4. Then there is a functor

= : grMod, — QCoh(Proj A)
characterized by the property (for f € A, being homogeneous)

(M)|p, (5 = M[F o,

where as before 0 denotes the elements of degree 0.

Proof. The existence of a sheaf M with these properties follows from the construction of Proj A =
U D+ (f). It is quasi-coherent by its definition. O

For example, A= Oproj a-

Definition 2.10.14. For a graded A-module M, the Serre twist M (e), where e € Z, is the graded
A-module defined by

(M(e))a = Mea.

We denote by Opyojale) or just O(e) := ;1@/). This sheaf is referred to as the Serre twist of the
structural sheaf O.

We have the following extension of Lemma 2.3.11.
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Lemma 2.10.15. Let A = Blto,...,t,], so that X := Proj A = P%. We have an isomorphism
I'(P%,0x(e)) = Blto, - - s tn]e,

where the subscript e denotes the B-submodule consisting of homogeneous polynomials of degree
e (and degt; = 1). In particular:

e the global sections vanish for e < 0,
e the global sections are a finitely generated B-module for any e (in fact finite free of rank
("2))
Lemma 2.10.16. For any scheme X, QCoh(X) is an abelian category (so, in particular, kernels
and cokernels exist). Also, there is a tensor product functor

® 1= ®o, : QCoh(X) x QCoh(X) — QCoh(X),

where (F® G)|speca = F(A) ®4 G(A), for two quasi-coherent sheaves F, G and Spec A < X open
affine.

This functor equips the category with the structure of a symmetric monoidal category (i.e.,
there is a unit object, namely Ox for ®, the tensor product is associative and commutative; see,
e.g. [Mac98, §VII] for more background).

Proof. Using general theory of sheaves, one proves that Shv(X, Modz) (the category of sheaves of
abelian groups) is abelian and has a tensor product. This formally implies the same properties for
Mode,, see, e.g. [KS05, Theorem 18.1.6]. One then checks that for a map F' — G in QCoh(X) <
Mode,, ker f and coker f, taken in the larger category Modp,, actually lie in QCoh(X), and are
therefore kernel and cokernel in here.

Concerning the tensor product, one can argue similarly, by first establishing a tensor product
for Ox-modules. See, e.g. [KS05, §18.2]. The key point in showing that QCoh(X) < Modop, is
stable under tensor product is the following claim: for X = Spec A affine, and M, N € Mod 4, we
have a natural isomorphism

(M®4N) > M®o, N.
Indeed, a map (of Ox-modules) arises from the adjunction established in Corollary 2.10.10: M ®4
N — I‘(]\7 Roy N) arises by observing that for (m,n) € M x N = F(]\7 x N), we have a global
section of the presheaf tensor product M ®g§(h N , and therefore of its sheafification as well. To

show the map is an isomorphism it suffices to see it induces an isomorphism on stalks, and by
general sheaf theory we have

(M ®(9X N)P = (M)P ®OX,p (N)P = MP ®Ap NP’
which agrees with (M ®4 N),.
Remark 2.10.17. A different (but equivalent) perspective is to use the description of QCoh(X)

in Corollary 2.10.11. For example, the tensor product of quasi-coherent sheaves F' ®o, F’ just
corresponds to the tensor products M; ®4, M; etc.

Pullback and pushforward

Recall that for a continuous map f: X — Y (between two topological spaces), we have the direct
image functor (also called the pushforward functor)

f« : Shv(X) — Shv(Y).
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It is given by (f« F)(V) = F(f~1(V)) (for V < Y open, F € Shv(X)). This functor admits a left

adjoint, called the inverse image functor or pullback functor
f~': Shv(Y) — Shv(X).

Among various characterizations, it can be described to be the unique functor that preserves
colimits, and that sends the representable sheaves (for V' < Y open) hy : U — Homy (U, V) to
hg-1(vy. See, e.g., [KS05, §17.5]. However, all properties of f~' can be deduced solely from this
being the left adjoint of f,, cf. Exercise 2.10.22 for an illustration of the principle.

Suppose now that f : (X,0x) — (Y,Ox) is a map of ringed spaces (for example a morphism
of schemes). Then the above functors give adjoint functors

¥ : Modp, Shv(Y) 2 Modp, Shv(X) : fi,

where f, is the functor above, which uses the Oy-action on f,F

Oy x f.F & f,0x x f,F = f(Ox x F) "% 1, F.
It is a formal (i.e., category-theoretic) consequence of the setup that the left adjoint is given by
J*F = Ox @10, f'F.
For example,
f*Oy = Ox. (2.10.18)

Here is how to connect quasi-coherent sheaves on different schemes. We say that a map f :
X — Y of schemes is quasi-separated if Ap : X — X xy X is a quasi-compact morphism. (This
condition can be checked locally on Y; if Y = Spec A is affine, then X is quasi-separated iff for
any open affines U,V < X, U n V admits a finite covering by affine open subschemes.)

Lemma 2.10.19. Let f: X — Y be a map of schemes.
(1) The pullback functor f*: Modp, — Mode, preserves quasi-coherent sheaves, i.e., it restricts
to a functor

f*:QCoh(Y) — QCoh(X).

(2) Suppose f is quasi-compact (Definition and Lemma 2.7.1) and quasi-separated. (For example,
this is true whenever X is Noetherian and f and Y arbitrary.) Then the pushforward functor
f« : Modp, — Modp, preserves quasi-coherent sheaves, i.e., in this case we have an adjunction

#* 1 QCoh(Y) 2 QCoh(X) : f..

Example 2.10.20. Suppose f : X = Spec B — Y = Spec A, for a ring homomorphism A — B.
We claim that the adjunction

f*:QCoh(Y) 2 QCoh(X) : f.
is, under the equivalence with the categories of modules, simply given by
f*=B®s—:Mody & Modg : f, = forget.

Indeed, for any A-module M, there is a resolution
PA-PA->M-0.
el jedJ

(with generally infinite sets I, J). Using the equivalence Corollary 2.10.10 for Y, we have an exact
sequence
Pi-@A-T o

el jedJ
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The functor f* is right-exact. Applying f* gives (by (2.10.18)) an exact sequence in QCoh(X)
PB—-@PB - M) o (2.10.21)
el jedJ

However, applying B ®4 — (which is right exact) to the first exact sequence, we get

PB—->@B—B®sM 0.

iel jeJ
Using the equivalence Modg = QCoh(X), we see that

f*(M)=M®@a B
We conclude from this and from Lemma 2.10.4 that f, is the forgetful functor.

Proof. The condition of being a quasi-coherent sheaf, and the condition of being a qcqs map are
local (on Y, Lemma 2.8.2), so we may assume Y = Spec A is affine.

(1): it is enough to show f*(M) € QCoh(X) for any M € Mody, but this is true by virtue of
an exact sequence as in (2.10.21), noting that f*(4) = f*Oy = Ox.

(2): By assumption X is quasi-compact and quasi-separated, so X has a finite covering X =
U Spec B;, i € I by open affines. Since X is quasi-separated, Spec B; n Spec B; = Ukelij Spec Bijx,
is again a finite covering. As a preliminary observation, note that for any sheaf F on X and any
open U < X, we have an exact sequence

0— F(U) =] [F(SpecB; nU) — | [ [ | F(SpecBijx 0 U).

iel i,j€l kel;;

Indeed, this holds since the maps from F(Spec B; n Spec Bj) — [ [4r,, F'(Spec Biji) are injective
(by the sheaf condition).

Let F € QCoh(X) and let M :=T'(f,F) = F(X) € Modp be the global sections of f,F. We
need to show that for any a € A and V := D(a) < Y, there is an isomorphism

M[a™"] = f.F(V) = F(f~1(V)).
We apply the above exact sequence to U = X:

0— F(X)= M—>HF Spec B;) —>HF Spec Bij).

0,7,k

These products are finite, so localizing (which is an exact functor) gives an exact sequence

0— Mla']— H( (Spec By)[ — H (Spec Byi)[a™']).

2,5,k

We also apply the above exact sequence to U = f~1(V):

0— F(f (v —>HF Spec B n f71 (V) = [ [ F(Spec Biji 0 f (V).

1,7,k

We see that the terms in the two right hand products agree (Spec B; n f~!(V) is the preimage of
V under the map Spec B; — Y, i.e., it is Spec B;[a™!]; then use that F is quasi-coherent.) O
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Exercises

Exercise 2.10.22. Let f : X — Y be a continuous map. Let f* : Shv(Y, Modz) — Shv(X, Modg)
be a left adjoint of f,. (It was asserted above that f* is the left adjoint of f,; the point of the
notation f? and of this exercise is not to use anything claimed above.)

e Let Z denote the sheaf on a singleton {*} whose global sections are Z. Let us write Zx := p%Z,
where px : X — {x} is the unique map. Prove that f’Z is the so-called constant sheaf, which
is given by

f'z) =z~

(A direct sum of copies of Z, one for each connected component of U.)

Hint: prove that this is a sheaf on X (while the constant presheaf U +— Z is generally not a
sheaf). Then check that

HomShv(X)(f?Z7 F) = HOH’I(Z, (pX>*F)

e Prove f?Zy = ZX.

e For a point x € X, let i : {*x} — X be the map that sends  to x. Show that for F' € Shv(X)
(or also Shv(X, Modgz) etc.) i’ F = F, (the stalk of F). Deduce that

(f'F)z = Fia).

Exercise 2.10.23. Let j : G, — A! be the standard open immersion. Consider the extension by
zero of Og,,, defined as

(ji0a,)(U) = { O () L =G

Prove that this is an Oa1-module, but that this is not a quasi-coherent sheaf.

This example pins down a decisive difference between quasi-coherent sheaves in algebraic ge-
ometry and general sheaves in algebraic topology. A beautiful fix to this issue is offered by the
recent advent of condensed mathematics [Sch19, esp. §8].

Exercise 2.10.24. This exercise can be regarded as a natural extension of the description of
quasi-coherent sheaves in Corollary 2.10.11. Generally, approaching a scheme X by the sets of
its A-points (see around Exercise 2.0.3) is known as the “functor of points approach”, and this
exercise stipulates that a quasi-coherent sheaf on a scheme X is ultimately just depending on the
points X (A) of the scheme (however, for all rings A, not just fields).

Prove that for a scheme X, there is an equivalence

QCoh(X) > lim Mody,

SpecALX
where the right hand category is the category whose objects are
(My € Moda, . : My @4 B > M,)

where M is the datum of an A-module for any map Spec A — X (we do not insist Spec A to be
an open subscheme of X). At the right, for a commutative diagram

Spec B——5— Spec A .

N T
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Finally, the ¢¢ are subject to the condition that the composite
M;®4B®pC PeBle M, ®p C 23 M,

should be equal to yg4., where

SpecC' -4 Spec B .

Morphisms (M, p.) — (M}, ;) are maps My — M} in Mod4 that are compatible with . and
¢! in the obvious sense.

Hint: the key geometric input is the idea (for arbitrary f : Spec A — X) to choose an open
covering Spec A of open affines whose images under f are contained in an affine subscheme of X.

Exercise 2.10.25. Let f : X — Y be a map of schemes. Show that f* : QCoh(Y) — QCoh(X)
is given by the functor
lim Mody — lim Mody

Spec ALY Spec ASX
sending (M,, ¢.) to the collection whose component for = : Spec A — X is simply M.,.
Exercise 2.10.26. For a map f: X — Y of schemes, prove that
e f* preserves colimits (i.e., the natural map colim; f*(F;) — f*(colim F;) is an isomorphism),

e f* preserves the tensor product, i.e., there are natural isomorphisms
(M ®0, M) S f*M @, [*M'.

These turn out to be the critical two properties of f*. Indeed, [BC14] proves that for two
quasi-compact quasi-separated schemes X, Y there is an isomorphism

HomSch(X: Y) E’ FunCOhm7®(QCOh(Y)7 QCOh(X>>7 f e f*

where at the right one considers functors that preserve colimits and are compatible with the tensor
product!

Exercise 2.10.27. For a quasi-compact and quasi-separated map f: X — Y and F' € QCoh(X),
G € QCoh(Y'), establish an isomorphism

[F®GS f(F®f*G).
This isomorphism is referred to as the projection formula.

Exercise 2.10.28. Prove the following analogue of Lemma 2.10.8 on projective space X := P} =
Proj Blto, ..., t,]. Let F' e QCoh(X). Let us write F(x) := @ ., F(e)(e QCoh(X)) and M :=
I'X,F(x) = @, T'(X,F(e)). Let U = D.(t;). Establish an isomorphism of graded Blto, ... |-
modules

M[t; ] = (F()(V).

7

In particular, for any s € F(U) < F(x(U)), there is some d » 0 such that t¢s(e F(d)(U))
extends to a global section of F'(d).

Exercise 2.10.29. Fix a scheme X and a morphism F' — G of quasi-coherent sheaves. For an
affine open U < X, let P(U) be the property “F(U) — G(U) is surjective” (resp. injective,
resp. bijective). Prove that this property is affine-local (as defined in Proposition 2.1.7).
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2.11 Line bundles and vector bundles

Definition 2.11.1. A quasi-coherent sheaf F' on a scheme X is called a vector bundle (resp. line
bundle) if X admits a covering by open affines Spec A such that there is an isomorphism (of
quasi-coherent sheaves)

~ (N
F|SP60A = OSpecA

(resp. F|SpecA = OSpecA)-
A trivial vector bundle (resp. trivial line bundle) is one isomorphic to Ox™ (resp. Ox).

We denote by
Vb(X) := {vector bundles}/ =

the set of vector bundles up to isomorphism. This is an (abelian) monoid with respect to the
tensor product. The subset
Pic(X) c Vb(X)

consisting of the line bundles, is an abelian group: for a line bundle £, the dual line bundle
LY := Hom(L, Ox)
(cf. Exercise 2.11.12) is again a line bundle, and £ ®p, LY — Ox is an isomorphism.

Lemma 2.11.2. For X = Spec A and a quasi-coherent sheaf F = M (for M € Mod ) the following
are equivalent:
(1) F is a vector bundle,

(2) M is a finite projective A-module,
(3) M is a finitely presented flat A-module,
(4) M is finitely presented and the localizations M, are free A,-modules, for all p € Spec A.

Proof. See, e.g. [Stacks, Tag 00NX]. The proof uses the Nakayama lemma (Lemma 1.7.10). [

Lemma 2.11.3. Let A be a PID or a local ring. Then any vector bundle (and thus any line
bundle) on Spec A is trivial:

Vb(Spec A) = N,
Pic(Spec A) = {x}.

For example, for a field k, any vector bundle on A} is trivial.

Proof. Our vector bundle V' corresponds to a finite projective A-module. We recall from commu-
tative algebra (see, e.g., [Stacks, Tag 0ASV]) that for any PID A, any finitely generated projective
A-module is actually free. The same holds for local rings by Lemma 2.11.2. O]

By contrast, on P", we have the Serre twists Opn(€). These are locally (namely on each D, (¢;))
isomorphic to Opn, so O(e) is a line bundle. We have

0 e<0
tkI'(P",0(e)) =4 1 e=0
>1 e>0,n=>1

(Lemma 2.10.15). Therefore, for e # 0, O(e) is not trivial (see also Exercise 2.11.13). For the
projective line over a field, these are essentially the only outliers, in the following sense.


http://stacks.math.columbia.edu/tag/00NX
http://stacks.math.columbia.edu/tag/0ASV
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Theorem 2.11.4. Let k be a field, and V a vector bundle over X = P;. Then there is an

isomorphism
m

V =@ 0(e).

i=1

Moreover, the number m and the integers e; are (up to permutation) uniquely determined by V.

In order to prove Theorem 2.11.4 we first establish the following result:

Proposition 2.11.5. There is a bijection between the set Vb, (P}) of rank n vector bundles (up
to isomorphism) on P}, up to isomorphism, with the double coset space

GLy, (K[t )\GLa (k[t=])/GLa (K[t]).

Proof. Let V be a vector bundle. We use the covering P! = D, (ty) U D, (t;) =: Uy u Uj.
Recall that Uy = Speck[to, t1,t;"']o is isomorphic to A} = Spec k[i—é] and, by symmetry U; =
Spec k[to, t1,1;']o = Spec k[i—i’] Their intersection, denoted Uy, := D, (tot1) = Spec k[to, t1, (tot1) o =I
Spec(k[to, t1, tfl]o[(i—i’)*l] is isomorphic to G,, = Spec k:[v, v™1] (where v = i—‘l)) By Lemma 2.11.3,

we can choose (for & = 0,1) an isomorphism ¢, : O, = V|y,. Their restrictions to Uy, give rise

to an isomorphism «:

Oty —== O" v (2.11.6)
:\L(POlUOl :\LSDl'UOl
V|U01 - V|U01

Such an isomorphism (of quasi-coherent sheaves on Gy,) is nothing but an element of GL,, (k[t*!]).
The construction of this element depended on the choice of the isomorphisms ¢g, ¢;. Different
such isomorphisms are obtained by postcomposing with (the restriction to Up; of) an isomorphism
Op, = O, i.e., by multiplying with an element of GL, (k[t]), and likewise with U_. ]

Example 2.11.7. We illustrate the above for the line bundle O(e), with e € Z. Note that the
trivialization of O(e) on D (ty) is given by multiplication with the unit ¢§:

O(D+(to)) = Zlto 11,15 Jo > Zlto, 11,15 e = O(e) (D (to)).
Therefore the diagram in 2.11.6 reads
Zlto, tr,ty " t7 o —2— Zlto, t1, tg 1 o
ls I
Zlto, t1,ty " t7 e == Z[to, t1, 5", 17 ]e.
Thus, « is given by multiplication with (32)°.

This reduces the computation of Vb(P}) to understanding the double coset space, which is
provided by the following elementary statement due to Kronecker and Weber in the 1880’s.

Lemma 2.11.8. Let M € GL, (k[t*!]) be a matrix whose determinant is ¢*, for s € Z. Then there
are matrices U, € GL,(k[t]), U- € GL,(k[t"']) such that

U_MU, = diag(t™,...,t™),

where r; > -+ = r,(€ Z) are uniquely determined by X.



2.11. LINE BUNDLES AND VECTOR BUNDLES 79

Proof. For n = 1 we have GLy(k[t*']) = k[t*']* = k* x Z, since an invertible element is of the

= k[t
form A\t", X\ € k*, n € Z. By contrast, GLy (k[t]) = k[t]* = k:. Thus, the double coset space reads

(
GLy (K[t~ )\GLy([£5])/GL ([t]) = k*\(k* x Z)/1* =

Under this bijection, e € Z corresponds to t¢ € GLy(k[t*]). This corresponds to the line bundle

Opl (6) .
For general n, a more involved, but completely elementary argument using Gaussian elimination
is used. See, e.g., [GW20, Lemma 11.50]. O

The above theorem hinges on the triviality of vector bundles on A}. For curves other than P}
(or A}), this will not carry over, but there is the following more local description of vector bundles.
If X is a smooth curve over an algebraically closed field k (i.e., irreducible, reduced, of dimension
1, and all the local rings Ox , are discrete valuation rings), and K := k(X ) = Oy, is the function
field, i.e., the local ring at the generic point, then one has the adeles

Ag= [] QOx.).

zeX closed

where (’7;; denotes the completion of Ox , at its maximal ideal, and the restricted product means

that for all but finitely many closed points x, the entry lies in (7;; This group of adeles contains
the integral adeles -

OK = 1_[ O X,z

zeX closed

For any f € K, one can show that f € Ak (since f has poles only at finitely many points),
and therefore K ¢ Ag. The following theorem, which is a foundational result in the Langlands
program, is pL()Eed along the lines above, but rather using that a vector bundle on Spec K and
also on Spec Ox , is trival; the possible mismatch of these trivializations is accounted for by the

appearance of the adeles, with the idea that the intersection of Spec K nSpec 5;5 is Spec Q((ﬁ;(\x)

Theorem 2.11.9. (Weil uniformization theorem) There is a bijection

Definition 2.11.10. For a scheme X, the K-group K(X) (or Ko(X)) is the Grothendieck group
associated to the monoid of vector bundles equipped with the direct sum. That is:

- @z + V- V]
V/X
where the direct sum runs over all vector bundles V', and a relation is imposed for any exact
sequence
0>V -V ->V"-0.

Thus, Theorem 2.11.4 implies
KP)=7ZdZ
(one copy for the rank, another one for the twist). For general schemes (even of finite type over
k), the computation of K-groups is an open problem!

Example 2.11.11. e In number theory, on considers rings of algebraic integers Ok, i.e., the
integral closure of Z inside a number field K. These rings are not in general principal ideal
domains. The group Pic(Of) is known in this context as the ideal class group. It is known
to be a finite group. The class number formula uses §Pic(Op) and other data related to K
to compute certain values of the (-function of K.

It is also known that any finite projective module over a Dedekind domain A (such as A = Op)
is a direct sum of a free A-module and a line bundle, which leads to K(Or) = Z @ Pic(OF).
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e One can prove by elementary means, similar to the above that Pic(A}) = 1 and Pic(P}) = 1,
i.e., all line bundles on these are trivial. See [Stacks, Tag 0BCH] (a line bundle for any UFD,
such as k[ty,...,t,] [Stacks, Tag 0BCI] is trivial) and [Stacks, Tag 0BXJ].

e A much deeper result (due to Quillen and Suslin in the 1970’s) shows that any finite projective
k[ti,...,t,]-moduleis free. Thus Vb(A}) = Z. But, for P}, there are non-split vector bundles
for n > 2. However, at least K(P}) = Z"*!.

Exercises

Exercise 2.11.12. (1) Let M be a finitely presented A-module and N any A-module. Prove that
HOHIA(M, N)[f_l] = HomA[f’l]<M[f_1]7 N[f_l])

(2) Recall (e.g., from [KS05, §17.7]) that for two Ox-modules F' and G, Hom, (F,G) is the sheaf
(actually an Ox-module) defined by

(Homy, (F, G))(U) := Homoae,, (Flv; Glo)-

Suppose F'is a finitely presented quasi-coherent sheaf (i.e., X admits a cover by open affines
Spec A such that F(Spec A) is a finitely presented A-module), and G is any quasi-coherent
sheaf. Prove that Hom, (F,G) e QCoh(X).

Exercise 2.11.13. Show that a line bundle L on a scheme X is trivial iff there is a global section
s € L(X) such that s, € L, = Ox, is invertible.
Hint: use Lemma 2.10.3.

The following two exercises highlight the categorical aspects of vector and line bundles. See,
e.g., [PS13] for an invitation to pervasive topic of dualizability.

Exercise 2.11.14. Prove that a quasi-coherent sheaf I’ is a vector bundle iff it is a dualizable
object in the category QCoh(X).

The latter means that there is another object G € QCoh(X) and maps (where here and below
all tensor products are over Oy, cf. Lemma 2.10.16)

coev:O0x > FRG,ev: GRF — Ox

such that the composites
FCO@IdFC@G@Fe@dF,

Gid@)}evG@)F@Ge\@gdG

are the identity maps. (Note that this only makes use of the tensor product in QCoh(X), and the
object Ox, which is the monoidal unit with respect to this tensor product.)

Hints: first treat the case of X = Spec A affine, so F' corresponds to an A-module M. Use
that M being locally free of finite rank is equivalent to being finitely generated projective. If M
is dualizable and coev : A — M ® N sends 1 to the finite(!) sum " | m; ® n;, show that the m;
generate M. Using the second identity, prove that the surjection map A™ — M induced by the m;
admits a splitting.

Exercise 2.11.15. Prove that a quasi-coherent sheaf F' is a line bundle iff it is dualizable and
the coevaluation (or, equivalently, the evaluation) map is an isomorphism. For this reason, line
bundles are also called invertible sheaves.


http://stacks.math.columbia.edu/tag/0BCH
http://stacks.math.columbia.edu/tag/0BC1
http://stacks.math.columbia.edu/tag/0BXJ

Chapter 3

Cohomology of quasi-coherent sheaves

3.1 Prelude: the Koszul complex

The Koszul complex is a foundational tool in homological algebra and its applications. Textbook
accounts of this material include [Eis95, §17], [Wei94, §4.5]; or see [Stacks, Tag 0621]. We will use
it below to compute cohomology of affine and projective schemes.

Definition 3.1.1. For an A-module M, the tensor algebra is
TM =P MO**"=AOMOMOUM®...
n=0

(It is a non-commutative A-algebra whose multiplication is given by juxtaposition of tensors.)
The exterior algebra /\ M is the non-commutative algebra obtained as the quotient of T'M by
the two-sided ideal generated by tensors of the form m & m, for m € M. The image of a tensor
m®...Q0m, e TMin /A M is denoted by mq A -+ A m,,.

We equip TM and A M with the natural grading, i.e., /\" M is the image of M®".

For m,n € M, the relation (m + n) A (m 4+ n) = 0 can be expanded into
mAam+man+naAam+nan=0,
which gives
mAn+naAm=D0.

Example 3.1.2. If M = A% is a free A-module of rank 7, then T'M is the algebra of non-
commutative polynomials in r variables. If we denote these variables by ey, ..., e, we have e; Ae; =
—e; A €, so that
/\Mz @ Aegy Ao A €eq,
a;<--<ap
is a free A-module of rank ( ) In particular,

T
n

/0\]\/[=A,/l\M:Ar,...,/r\MgA,/k\M=Ofork>r.

One refers to A" M as the determinant of M.
If, slightly more generally, M is a locally free A module of rank r, then the determinant A" M
is locally free of rank 1, and the higher exterior powers vanish.

Definition 3.1.3. Let M be an A-module, and consider an A-module map ¢ : M — A. (In other
words, ¢ € MY := Homy (M, A).) The Koszul complez K(p) is the chain complex

.—>/n\M—>n/\1M—>...—>M—>A,
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where A is in degree 0 and M in (homological) degree 1 etc. The differential d is the endomorphism
of A\ M that is a derivation (of degree —1) and that is given in degree 1 by d(m) = ¢(m). This
means that in degree 2 we have
d(miy A my®mn) =d(my) A mg®@n —my A mid(ms) ®n = (@(my)me — p(mq)msa) @n
and in general
dimy A~ Am,®n) = Z(—l)”lgo(mi)el A AT A AT, @
i<n
Example 3.1.4. If M = A, our map ¢ is given by an element f, and the complex is
K(fy=AL A
(in degrees 1 and 0). If M = A®? and ¢ corresponds to f, g € A, the complex is given (in degrees
2, 1, and 0) by
K(f,g) = Ae; A ey (:59) Ae, @ Aey 19 A
or, more briefly,
K(fl,fg) _ A (f27__)f1) A@Q fi)fZ A
We observe that Ho(K(f1, f2)) = {a € A, fia = foa = 0}, while Hyo(K (f1, f2)) = A/(f1, f2).

Definition 3.1.5. In general, if M = A®" is finite free, and ¢ is given by an ordered n-tuple
f="(f1,..., fr), we also write

K(f):=K(fi,--., f) == K(p). (3.1.6)

We write K (f) := Homu(K(f), A) for the cochain complex obtained by taking the termwise dual
of K(f). We refer to it as the dual Koszul complex.
Given another A-module N, we also write

K(f,N):=K(f)®aN

KY(f,N) := Homu(K(f), N)

(we refer to them as the Koszul complex with coefficients in N and the dual Koszul complex with
coefficients in N).

Since K (f) consists of finitely many, finite free A-modules, we have, for any A-module N,

Kv(f) XA N = HOHIA(K(f>, N)

Therefore, the salient homological properties of K(f, N) and K (f, N) will follow from the ones
of K(f).

Lemma 3.1.7. In the situation of Definition 3.1.3, fix m € M and let a := ¢(m) € A. Then
a=dm+md

where m denotes the multiplication with m (on /\ M; note this raises the degree by 1), while d is
the above differential (which lowers the degree by 1).

Proof. Note that dm denotes the endomorphism mapping n € /\ M to d(m A n), which agrees with
dim) An—m A d(n) =q@(m)n—m A dn. O
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Corollary 3.1.8. For fi,..., f. € A, multiplication by each element f; is null-homotopic on K(f)
and therefore also on K(f, N) and KV (f, N), for any N € Mod,. In particular, all the homology
groups H;(K(f,N)) and the cohomology groups H?(KY(f, N)) are annihilated by each f; and
therefore by the ideal (fi,..., f.). In particular, if (f1,..., f,) = A, then the complexes K(f, N),
KY(f,N) are exact. B

Proof. The first part is immediate from the lemma. The statement about homology groups is a
generality in homological algebra. (Homotopic maps, in the above situation multiplication by f;
and by 0, induce the same maps on the homology groups; see [Wei94, Lemma 1.4.5] for the very
simple proof or [Stacks, Tag 00LO] onwards.) Applying any functor (of chain complexes) to a
null-homotopic chain complex gives again a null-homotopic chain complex, which shows that the
(dual) Koszul complex is exact also for any N. ]

In the following lemma, we use that a cochain complex C* can be regarded as a chain complex
by setting C,, := C~". We apply this to the cochain complex KV(f), and regard it as a chain
complex below. We also need the shift of a chain complex C[p], defined by C[p],, := Cpyn, with
differential derpy) := (—=1)Pdc, cf. [Wei94, p. 1.2.8] for further discussion.

Lemma 3.1.9. For f = (fi,..., f;), there is an isomorphism (of chain complexes of A-modules)

K(f) = K" (f)]-r]

Therefore, for any N € Mod 4, there are isomorphisms
H, (K (f,N)) = H(KY(f,N)).
Proof. If f consists of a single element f € A, we have

deg 1 deg 0 deg —1

K(f) AT 4
KY(f): A—T1 4
KY(f)[-1] : AT,

So an isomorphism K (f) — KY(f)[—1] is given by multiplication with —1 in degree 1 and by the
identity in degree 0.
In general, there is an isomorphism of chain complexes K(f) = K({f1}) QK ({f2})®... QK ({f-})

and likewise for K, so tensor products of the isomorphisms K({f;}) = KY({fi})[—1] gives an
isomorphism K (f) =~ KV (f)[—r] as requested.

The isomorphism on (co)homology follows (remembering that given a cochain complex C*,

regarded as a chain complex C, as mentioned above, we have, H"(C*) = H_,(C)). O
Definition 3.1.10. Let N be an A-module. A sequence f = (fi,..., fn) of elements of A is called
an almost N-regqular sequence if for each ¢ < n, f; is a nonzerodivisor in N/(f1,..., fi_1)-

It is called a regular sequence if, in addition, N/(fi,..., fn) # 0.

Proposition 3.1.11. If f = (fi,..., f,) is an almost N-regular sequence, then the Koszul complex
K(f,N) is exact in positive degrees, i.e.,

Hy(K(f, N)) =

{ 0 kE+#0
N/(fi) k=0
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In other words, we have an exact sequence

0— AAY®UN — ... N" LN - N/(f) = N®a A/(f) — 0.

In particular, if N = A, this yields a resolution of A/(f;) by finite free A-modules. In terms of the
dual Koszul complex, the above vanishing can be restated as
0 k#n
Hy(K(f,N)) = 3.1.12
s -4l Ko 3.112)

Proof. If n =1, then Hy (K (f, N)) = ker(N 4, N) = 0 since f is nonzerodivisor.
If n = 2, we observe that we have diagram

fi

0 0 N N—0
00— N2zl N g
lpl l
f1
0— N N 0

where the vertical maps are (split) exact sequences. The top row is just K (f;), the bottom row is
K(f1)[—1]. A basic result in homological algebra (e.g. [Wei94, Theorem 1.3.1]) asserts that such
a short exact sequence of complexes induces a long exact sequence

0= Ho(K(fi, f2)) = (0 f)w 2 (0 fi)w = WK (fi, f2)) = N/fi 5 N/ fy = Ho(K (. £)) — 0}

Since f; is a nonzerodivisor, we have (0 : fi)y = 0. Since fs is a nonzerodivisor on N/f;, and
since (by unwinding the long exact sequence above) the map marked ¢ is multiplication by fo, we
have Hy (K (f1, fo, N)) = 0 as well.
A similar argument shows the claim inductively for larger n, see e.g. [Wei%4, Corollary 4.5.4].
The statement for the dual Koszul complex holds by Lemma 3.1.9. [

Remark 3.1.13. The Koszul complex is functorial in M in the following way: fix M and ¢ :
M — A. Consider an A-linear map pu : M’ — M, and put ¢’ := ¢ o u. Then there is a natural
map (of chain complexes)

K(¢') = K(p)
obtained by observing that M — A M is functorial.

Fixing some f as above, we write f™ := (f{",..., f/™). The functoriality of the Koszul complex
as discussed above yields a natural map K (f™"!) — K(f™): the multiplication with (f;) : A" —
A" yields, by passing to exterior powers, a map A(A") — A(A"). For example, for n = 2, the
map reads

K(f™) AT p UMD,
l lflﬁ Jdiag(fl,h) lid

Passing to duals, we therefore have maps K (f™) — K"(imﬂ).
Definition 3.1.14. We write

KY((f)) :=colim(... » KV (f™) — KY(f™™) - ...),

where the colimit (indexed by m > 0) is taken in the category of A-modules.
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In order to describe this more explicitly, recall that for any A-module N, and f € A, there is
an isomorphism (of A-modules)

N[f 3 colim(N L N L N L)

?

under which a fraction f"—k to n corresponds to n regarded as an element of the k-th copy of N. (If
f is a nonzerodivisor on N, i.e., if the multiplication by f is injective, then the colimit above can
also be thought of as the union N = ;- N < N < ...

Example 3.1.15. If f = (f) consists of a single element, then KV (f™) is the chain complex

(located in degrees 0, —1) A i A, and the transition maps in the above colimit are id in degree 0
and multiplication by f in degree —1. Therefore

KY((f),N) = colim(N S N3 N - ) > colim(N L N L N — ) = (N - N[f]).
Similarly, for f = (f1, f2), we get that K ((f), N) is the complex

NS N < NS N )Y,

where the maps are essentially the canonical maps to the localiaztions, with signs as indicated.

Exercises

Exercise 3.1.16. Prove the following converse of Proposition 3.1.11. Let A be a Noetherian local
ring, N finitely generated, and fi,..., f, € ma. Prove that these elements form an N-regular
sequence if the Koszul complex K(fi,..., fu, N) is exact in degrees > 0.

Hint: use the Nakayama lemma (Lemma 1.7.10).

3.2 Definition of Cech cohomology

Notation 3.2.1. Throughout the remainder of this chapter we use the following conventions,
unless explicitly stated otherwise:

o All schemes X are supposed to be quasi-compact and separated.

e U denotes a finite covering of X by affine opens:

X:Om
=1

For a (finite) subset I < {1,...,a}, we write Uy := (),.; U;. As X is separated, the schemes
Uy are affine (Lemma 2.9.3).

e [ denotes a quasi-coherent sheaf on X.

Definition 3.2.2. The Cech complex (of F with respect to a fixed covering U) is the cochain
complex that in degree n — 1 is given by ch{l ..... a}dl=n F(Uy). Thus, in degrees 0 and 1 the
complex consists of

HF(UZ) and HF(UimUj)a

i<a i<j
respectively. The differential (from degree n — 1 to degree n) is the map

d:=d"': [ Fon— [] F

IiI=n I 4I=n+1
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which is such that its component F'(U;) — F(Uy) is zero unless I < J. If I < J, i.e., J =1 v {j}
for some (unique) j < n, then the map is (—1)k+1resgj if j is the k-th element of J. One checks

that this is indeed a complex, i.e., that d"*! o d" = 0. We denote it by ['(U, F).

The next step is to construct a complex that is independent of U.

Definition 3.2.3. We put

I'(X, F) := colimy, I'(U, F),

where the colimit runs over all affine coverings U; whenever V is a finer open affine covering than
U (i.e., each subset V; is contained in some U;), then the transition map I'(U, F') — ['(V, F) is
induced by the restriction maps.

The colimit over the U above is filtered (given two coverings U; and U one can find a covering
U that is finer than both of them, by covering the Uy; n Us; by smaller open affines).

Definition 3.2.4. Finally, the n-th Cech cohomology of F (first with respect to a fixed covering
U; then without the choice of such a covering) is defined as

HY(X,F) = H'TU,F):=kerd"/imd" ",
H"(X,F) = H'T(X,F).

It is a generality of homological algebra that H” commutes with filtered colimits (Exercise 3.2.13) |}
so that §
H"(X, F) = colimy, H"T'(U, F).
Example 3.2.5. Consider X = A2\{0}, endowed with the covering by U; = A'xG,, = Spec Z[t, 13" ]||

and Uy = G, x A = Spec Z[t{, t5]. We have U; nUy = Gy, x Gy, and therefore the Cech complex
for this covering reads

Ty (X,0x) = Bty 5] x Z[tE to] S Z[tE" 121, (3.2.6)

(The groups are located in degree 0 and 1, respectively). The differential d is given by d(f1, f2) =
fa — f1. We have
HY, (X, Ox) = kerd = Ox(X) = Z[t1,ts].

Indeed, this holds by the sheaf property of Ox (cf. also Example 2.1.2). Moreover,
H,(X,0x) = cokerd = @ Zt}'t52.

n1,n2<0

All other cohomology groups vanish, since the complex 'y (X, Ox) is zero there. We will shortly
relate this computation to the cohomology groups H"(P', @ ., O(e)) (Theorem 3.4.1). We note
that both U; are affine; we will shortly prove that this implies H*(X, Ox) = HZ‘,(X ,Ox) (Proposi-
tion 3.3.4).

By the sheaf property, we have (for any X, F' and /) an isomorphism
F(X) 5 HY(X,F)(=kerd®). (3.2.7)

In particular, this does not depend on . Of course, then taking the colimit over all affine coverings
U does not do anything, so §
F(X)=HY(X,F).
The following fact is the workhorse when it comes to computing cohomology groups in prac-

tice. Recall from Lemma 2.10.16 that QCoh(X) is an abelian category, so we can consider exact

sequences
0->F —->F—>F"—0
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in this category. Concretely, given F’, F, F” and maps of Ox-modules F' — F and F' — F” (whose
composition is zero), a sequence is exact if for any open affine U < X belonging to some fixed
covering U, the sequence

0— F'(U)—> FU)— F'(U)—0 (3.2.8)
is exact. Note that this is not implying that
00— F(X)> F(X)—>F'(X)—>0

is an exact sequence. The next lemma does state that it is exact except possibly for the surjectivity
of the map F'(X) — F”(X). This map is, in general, not surjective, and the failure to be surjective
is measured by H'(X, F”).

Lemma 3.2.9. For an exact sequence as above, there is a long exact sequence as follows, where
H™(F) := H"(X, F) etc.
0 — H(F') - HY(F) - HY(F") - HY(F') —» HY(F) — HY (F") — ... (3.2.10)
In particular, the map § §
HO(F> _ HO(F//)
is surjective if and only if H'(F") — H'(F) is injective (and this is the case if H*(F’) = 0, but not

necessarily in general).

Proof. Fix an affine covering U. Applying the exact sequence (3.2.8) to the multiple intersections
Ur (which are all affine) we obtain an exact sequence of complexes

0—TU,F)—>TU,F)—TU,F") >0

(i.e., the terms of these complexes form exact sequences of abelian groups). The assertion then is
nothing but the long exact sequence of cohomology groups, e.g. [Wei94, Theorem 1.3.1]. [

Example 3.2.11. Consider X = P! = ProjZ[t,¢;] and i : Y := V(ty) — X. Note that ¥ =
Proj Z[ty, t1]/to = ProjZ[t,] = P° = Spec Z.

There is an exact sequence of graded Z[to, t1]-modules, where (—2) etc. denotes the Serre twist
(Definition 2.10.14):

0 — Zlto, t1](=2) 5 Zto, t:](—1) — Z[t;](—1) — 0.

We can apply the functor = (Definition and Lemma 2.10.13; note that by its very definition this
is an exact functor), and obtain an exact sequence

0 — Ox(~2) > Ox(~1) = ixOspecz — 0 (3.2.12)

in QCoh(X). (Initially, it would be more appropriate to write ixOgpecz(—1) at the right; however
note that P® = Proj Z[t;] is isomorphic to D, (¢;), on which O(—1) = ). We inspect the above
exact sequence (3.2.10), using Lemma 2.10.15 for the two left hand groups:

0 - I'(O(-2)) - I(O(-1)) - I'(,0) = Z — H'(X,0(-2)) - H'(X,0(-1)) — ...

=0 =0

We observe that the global sections of O(—1) — i, O are not surjective. In Theorem 3.4.1, we will
compute the next groups in the long exact sequence to be

H'(X,0x(-2)) = Z - H(X,O0x(-1)) = 0.

So the failure of the surjectivity on global sections for O(—1) — ,O is captured by the non-
vanishing of this first cohomology group.
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Exercises

Exercise 3.2.13. Let [ be a filtered category (a useful example to keep in mind is I = {0 - 1 —
2 —> ...}). Let C : I — Ch be a functor, i.e., for each i € I there is a chain complex C;, and
whenever ¢ — j, there is a map (of chain complexes) C; — C;. Let C,, := colim C; be the (filtered)
colimit of these chain complexes. Establish an isomorphism

~

colim H"(C;) = H"(Cy,).
Hint: first prove a similar claim for the kernel of the differential, and its image.

Exercise 3.2.14. Let X be quasi-compact and separated, and F; € QCoh(X), where i € [ for

some index set I.

(1) Show that the presheaf U — @), F;(U) is in fact a quasi-coherent sheaf. We denote it by @, F;.
Prove that for any G € QCoh(X), there is a natural isomorphism Homqconx)(@, Fi, G) =
[ [, Homqeon(x) (£, G) (so this is indeed the coproduct in the category QCoh(X)).

(2) Prove that cohomology (on a quasi-compact separated scheme) commutes with direct sums,
i.e., establish an isomorphism

DX F) > (X DF).

Exercise 3.2.15. For a scheme X /k, the Fuler characteristic of F' € QCoh(X) is defined to be
X(F) = x(X, F) := > (=1)* dim H'(X, F),
520

provided that each dimension in this alternating sum is finite, and provided that only finitely many
groups are nonzero.

(1) For a short exact sequence
0> F - F > F' 0

prove that if y is defined for two out of the three sheaves, then it is also defined for the third
one, and that in this event the formula

X(E") + x(F") = x(F) (3.2.16)
holds.
(2) Deduce that for an exact sequence
0—-F,—-F,1—...Fh—0

one has

X(Fo) = ) (=1)X(X, Fp).

q>0

Hint: establish exact sequences 0 — ker(F, — F,_1) — F, — coker(F,4; — F,;) — 0.

3.3 Cech cohomology of affine schemes

Given (3.2.7), our interest is now to understand higher cohomology groups. Here is a first such
computation. The exposition below follows [Gro61, §II1.2].

Lemma 3.3.1. Let X = Spec A, F' € QCoh(X) and consider a finite covering U of X by basic
open subsets U; = D(f;), i < a. Then

H (X, F) =0 for n > 1.
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Proof. Let N := F(X) (so that N = F). For m > 0, write f™ = (f™, ..., f™).

Since X = | JD(f;) = J D(f™), we have that 1 is a linear combination of the ™ (Lemma 1.1.10(2)).J]
Thus multiplication by 1, i.e., the identity map on the dual Koszul complex KV (f™, N) is null-
homotopic. Hence this is an exact complex (Corollary 3.1.8). However, this complex identifies
with the following (with the nonzero terms being in degrees 0, 1, 2 etc.)

0—N—[[NT—= [ Nfaf) 1= (3.3.2)
i1 11 <@g
This is just the complex N — T'y(X, N ), so we are done. O
Corollary 3.3.3. If X = Spec A, F = N (for N € Mody), we have

“n N n=0
H(X’F):{o n>0

Proof. Any affine covering U of X admits a refinement by a covering consisting of basic open
subsets. When computing H"(X, F') = colimy H}}(X, F), it is enough to take the colimit over
those coverings. The groups at the right are, however, F(X) for n = 0 and 0 for n > 1 by
Lemma 3.3.1. [

We now prove that Cech cohomology can be computed using any affine covering.

Proposition 3.3.4. Let X be a quasi-compact and separated (but not necessarily affine) scheme,
and U a fixed covering by affines. Then, for any F' € QCoh(X) there is an isomorphism

H(X,F) S HY(X, F).

Proof. Given that the colimit colimy H"T (X, F') is filtered, it is enough to show for any open
affine covering V : X = |V} that is finer than U, we have a quasi-isomorphism

Ty(X, F) — Ty(X, F).

By considering the covering ‘U v V": X = [ JU; uJV;, we may assume the subsets of U are part
of the subsets of V. By an induction it therefore suffices to show that we have a quasi-isomorphism
as above in the situation where V is of the form X = | J, U; u Uy, for some arbitrary open affine

subset Uy < X.
We have an exact sequence of chain complexes (i.e., each column below is exact)

0 0 0 0

F(Uy) —— ][, FUynU;) —... %H;u:n F(Uy) HH;I:W’_I F(U;)— ...

Hi>0 F(Ui) - nw:z F(UI) s Hﬂ[zn F(UI) - Hﬁ]zn-ﬁ-l F(UI) — .-
HiséO F(UZ) — Hj,j,I:Q F(U[) ce ;j/]:n F(U[) — HgI:nJrl F(U[) —_— ...
0 0 0 0

Here the notation [ " means the product over the index sets such that 0 € I, while [ [” means 0 ¢ I.
(The leftmost column is in cochain degree 1, the right most in degree n + 1.) The middle row is
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just T'y(X, F), while the bottom row is I'y (X, F'). The top row is comprised of F'(Up) in degree 1,
and in higher degrees of 'y~ (Up, F'), where Uy nU is the covering of Uy given by Uy = |, Upn U;.

By a general fact in homological algebra [Wei94, Theorem 1.3.1], the map from middle to bottom
row is a quasi-isomorphism if (and only if) the top row is an exact complex.

In other words, we have to see that I'yy, is exact in degrees > 1. In other words, we have
reduced our claim for X to the one for Uy, i.e., we may henceforth assume X is affine.

We consider X = | JU; as before. Our goal is to prove that

0 FX)ST[FU) - [ FUL) — - (3.3.5)

11 <ig

~-
FU(X7F)

is an exact sequence. We first do this in the special case where one of the open subsets, say Uj is
equal to X.

In this case we observe that there is a commutative diagram of chain complexes as below,
where the middle row is the complex (3.3.5) above, and where each column is a (split) short exact
sequence:

0 0 HﬁI:LOeI F(U) — HﬂI:Z,OeI F(Ur) — ...

J |

00— F(X) —"S T, F(U) —— [Ty F(U) — ...

J |

00— F(X) ;*eﬂﬂ:mel F(Ur) — Hﬁ[=2,0$1 F(U) — ...

Writing T, M, B for top, middle and bottom row, we observe that 7' = B[—1], so that H*(T') =
H""!(B), and the long exact cohomology sequence associated to this short exact sequence of
complexes then reads

H™(T) — H"(M) — H"(B) > H"*/(T) = H"(B)

and one checks that the map ¢ is the identity (for all n). Therefore H"(M) = 0, i.e., M is exact.

We now prove that the exactness of the complex in (3.3.5) in the general case where X = Spec A
is affine. We can pick a refinement of the covering U that consists of open subsets V' = D(f) (i.e.,
cach D(f) is contained in some U;). It suffices to prove the exactness of the complex after localizing
at any such f. Since F'is quasi-coherent we have

0— X[~ = F(D(f) = [[FOF = [FWU:n D) — ...

In other words, this localization is the complex (3.3.5), but with X being replaced by D(f) and
the covering U being replaced by its intersection with D(f). Since D(f) is contained in some Uj,
the exactness in this case holds by the case handled previously. O

Exercises

Exercise 3.3.6. Consider a pullback diagram

X' - X

T

S’ = Spec A’ —=— S = Spec A
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where X is quasi-compact and separated, and the bottom map s is induced by a flat map A — A’.
(A typical example is when A is a field, in which case any A’ is flat.) Prove that there is a natural
isomorphism

A ®,yHY(X,F) S HY(X',s"*F)
for any F' € QCoh(X). One refers to this by saying that cohomology commutes with flat base
change.

Exercise 3.3.7. Let X be a quasi-compact and separated scheme that admits a covering by n
affine open subschemes. Prove that H*(X, F) = 0 for k > n for any F € QCoh(X).

3.4 Cech cohomology of projective space

We now compute the cohomology of the line bundles O(e) on projective space X := P7% (for some
ring B). Recall that X = [J , D, (¢;), and each D, (t;) is isomorphic to A%. In particular X
is quasi-compact. It is also separated (Example 2.9.6). We are thus in a position to compute
Cech cohomology to begin with (cf. Notation 3.2.1), which we will do using the above affine open
covering U.

Instead of focussing on a single O(e) it will be convenient to consider

Ox (%) := @Ox(e)(e QCoh(X)).
By Exercise 3.2.14, we have
H'(X, Ox(») = H'(X, @ Ox(e)) = @H"(X, Ox(e))

so that the cohomology groups of Ox () are Z-graded. We write A = Blty, ..., t,], which is graded
such that degt; = 1 (Example 2.3.3).

Theorem 3.4.1. With the above notation, we have isomorphisms of graded A-modules as follows:

e HO(X,Ox(x)) = A (so that H(X,Ox(e)) = A., the degree e component of A; note this
vanishes if e < 0)

e H'(X,0x(x)) =0forr#0,n+1,

o H'(X,Ox(%)) = Al(to...t) '/A[(to . - tn) 50 = @ oo Bty ... 1, L.e., afree B-module
with a basis given by monomials as indicated, where the multiindex a = (aq, ..., a,) € Z"*!
is such that a; > 0 for all i. (The subscript “> 0” indicates the A-submodule spanned by
monomials in which at least one ¢; appears with a non-negative exponent.) In particular,

butting b; := —(a; — 1) in the above expressions the summands for individual Serre twists e
have the following descriptions (i.e., there are isomorphisms of B-modules)
H"(X,Ox(e)) = P Bty -t (3.4.2)

b;<0,>,bi=e+(n+1)
H"(X,0x(e)) = Ofore>-n—1
H"(X,0x(-n—-1)) = B.

Proof. The proof consists in essentially expressing the complex I'y (X, O(x)) in terms of an appro-
priate Koszul complex.
Consider the sequence t := (to,...,t,) in A, and " := (¢{',...,t"). The dual Koszul complex
(Definition 3.1.14)
KY((t)) = colim,,>1 K" (t™)
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reads as follows (compare with (3.3.2); the term B|[t.] is in cochain degree 0 where ¢, serves as a
shorthand for “to,...,¢,”; the rightmost term is in cochain degree n + 1):

B[t ——T1, Blte, t; '] —— [T, i, Blte, (titi,) '] . Blt., (tot1 ... ty) 1]

Hi F(Ulv O(*)) E— Hz‘1<z’2 F(Uh A Ui2> O(*)) B AT — F(ﬂ

Ui, Ox(+))

<n

Underneath, we have indicated the agreement of the degree > 1-parts of KV ((t)) with the Cech
complex I'y (X, Ox(x)). (An inspection of the definition shows the signs of the differentials agree
as well.)

For m > 1, the sequence " is a regular sequence in A, so that Proposition 3.1.11 gives

Kl T A/t k=n+1

The nonzero group is a free B-module of finite rank spanned by monomials of the form ¢t"7¢ :=
[Tyt ", where 0 < a; < m. The (filtered) colimit over m > 1 is formed using the transition

map KV (t") — KV (t""!) that is given by multiplication with tot; ... ¢,. It maps ™ % t0 ¢(m+1)—a;
so that passing to the colimit gives

Do Bte® k=n+1

R (1)) = ol 1 (1) = | o

Here the direct sum is indexed by all multi-indices a = (ay, . .., a,) with a; > 0 for all i, as claimed
above

In other words, the group Hy,(X, Ox (%)), which is the kernel of the leftmost differential in the
bottom complex, identifies with B[t,]. (This was already clear from (3.2.7) above.) For r > 1, we
have

H"(X, Ox (%)) = Hy, (X, Ox(+)) = HHH(E((2)))-

It remains to observe that the above identification of the Cech complex with the Koszul complex

respects the Z-gradings;

t;

e the Koszul complex for the Z-graded A-module A"*1(—1) (and the graded map A™"!(—1) =
A) is Z-graded as well. Concretely, this is simply the Z-grading on (the localizations of) Bt
where degt; = 1.

e The Cech complex is Z-graded by means of the grading on Ox ().
This finishes the computation of the cohomology groups. O
Outlook 3.4.3. Consider the following maps

U= AL\ (0) L — A

§ |
P% = U/G,,—— Spec B.
There is a formalism of so-called derived categories of quasi-coherent sheaves on these schemes,
and, for any map of schemes f : X — Y, the derived functor Rf, : Dqcon(X) — Dqcon(Y). Then
the Cech cohomology groups H*(P", ©) are the cohomology groups of the complex Rm,Opn €
Dqcon(SpecZ) = D(Modgz); similarly H*(P™, @_O(e)) is related to R, @, O(e). The above
computation of these cohomology groups are explained by observing that

@ O(€> = RQ*OU»
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which follows essentially from the fact that ¢ is affine (!), which by Lemma 3.4.4 implies that
Rq.Op = ¢.0p = @, O(e). This implies

Rm, @O(e) = Rm,Rq.Opy = Ra.Rj.Op.

Since A"*! is affine, the vanishing of higher cohomology of quasi-coherent sheaves means that Ra,
is essentially just a forgetful functor. By contrast, the inclusion j is not affine, and Rj,Oy is given
by the Cech comples T'(U, Oy ), for the standard covering of A"*\0 by n + 1 copies of G, x A",
of. (3.2.6).

Lemma 3.4.4. If f : X — Y is an affine morphism (Definition 2.5.1, for example f could be
finite or, more specifically, a closed immersion), then for any F' € QCoh(X) there is a natural
isomorphism

H*(Y, f.F) = H*(X, F).

Proof. Fix an affine open covering U of Y. By assumption, the open covering f~(U) of X consists
of affine opens. Using Proposition 3.3.4, we can compute Cech cohomology using these covers. By
definition, T'(Uy, f« F) = T(f~(Uy), F'), so the Cech complexes are isomorphic, hence so are their
cohomology groups. O]

Theorem 3.4.5. (Bézout’s theorem) Let f; € k[to,...,t,], 1 <i < n be homogeneous polynomials
of degree d;. Consider the hypersurface

H; .=V (f;) := Projklto, ..., t.]/fi c P} = X.
We suppose that the scheme-theoretic intersection (Exercise 2.6.5)
Y = Hlﬂ“'ﬂHnIV(fh...,fn)

is finite over k. Then

dlmk Oy H d

In particular, if k is algebraically closed and Y is reduced, then
=1 ]d

Proof. Let E := @, O(—d;). Note this is a locally free sheaf of rank n on P}. We consider
the Koszul complex for £ — O given by multiplication with the f;. (This is possible since the
definition of the Koszul complex can be adapted to any quasi-coherent sheaf F/, and map £ — Oy;
equivalently, but more closely related to the above computation, one may also consider the graded
A= k[ty, ..., t,]-module M := @, A(—d;) and form the Koszul complex of this graded A-module
with respect to the map M — A given by multiplication with the f;; then apply the (exact)
functor — in Definition and Lemma 2.10.13.) As in Example 3.2.11, we obtain an exact sequence

(in QCoh(P™))
0—>/\E—>...—>E—>(’)X—>i*0y—>0.

where 7 : Y — P7 is the closed embedding. For any F' = /\“ E appearing in the complex above,
the Fuler characteristic x(F') (cf. Exercise 3.2.15) is defined. Indeed, x(O(—d;)) is defined (all but
possibly two cohomology groups of Ox(—d;) are zero). Therefore the Euler characteristic is also
well-defined for F and its exterior powers, as one checks inductively using that

T

N\ (O(dy) @ E') = (/\Od0®/\E’>@</l\O(do)@7\lE’> /\E’ /\ )(d).
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We obtain

q

V(020y) = S(=1)1y (/\ E) .
q

Crucially, the right hand side depends only on d;, but not on the f;. To compute x(i.Oy),

we may therefore assume f; = t&. Similarly to Example 3.2.11, we have Y := [}, V(t¥) =

Speck[z1, ..., z,]/(z%) (noting that Y < D, (t;) = Spec k[:—o] =: Speck|zy,...,2z,]). Using

Lemma 3.4.4 and Corollary 3.3.3, we get
X(X,i,0y) = x(Y,Oy) = dim; Oy (V) = dimy, k[2;]/2% Hd

The additional claim holds since for any finite k-algebra A (such as Oy (Y')) there is an isomor-
phism A = @, _ 4 Aw (cf. Exercise 1.7.29). If A is reduced, then Ay is a domain, which is therefore

a field extension of k. If k = k, An = k. n

3.5 Finiteness of cohomology

One consequence of Theorem 3.4.1 is that the cohomology groups of O(d) on P™ are finitely
generated. In this section, we provide a more general statement asserting such finiteness results.
We begin by discussing the necessary finiteness condition on quasicoherent sheaves F'.

3.5.1 Coherent sheaves

Let A be a Noetherian ring. Recall that for an A-module M, the following are equivalent:
(1) M is finitely generated, i.e., lies in an exact sequence

A" - M — 0.

(2) M is finitely presented, i.e., lies in an exact sequence

A" - A" - M — 0.

(3) M is coherent, i.e. M is finitely generated and the kernel of any (not necessarily surjective)
map A" — M is finitely generated.

Indeed, the implications (3) = (2) = (1) are obvious, and for (1) = (3), the kernel of A" — M is a

submodule of a finitely generated A-module, and for Noetherian rings, these are finitely generated.

Remark 3.5.1. For simplicity, we only consider coherent modules over Noetherian rings. A well-
behaved theory of coherent modules exists for a more general class of rings called coherent rings,
cf. [Stacks, Tag 05CV] onwards. A ring is coherent if it satisfies condition (3) above, i.e., if any
finitely generated ideal is finitely presented. Any Noetherian ring is coherent, but not conversely.
An example of a coherent, non-Noetherian ring is the ring O(Z) of holomorphic functions on a
polydisk Z := {(z1,...,2,) € C", |z] < 1}.

Throughout this section, let X be a locally Noetherian scheme (Definition 2.1.10), so X =
| Spec A;, with A; being Noetherian. A typical case is if X is locally of finite type over Spec A,
for a Noetherian ring A, e.g. a field or Z. We are going to introduce the concept of a coherent
sheaf, which extends the above notion of finitely generated modules.

Definition 3.5.2. A quasi-coherent sheaf F' on a locally Noetherian scheme X is called coherent
if for any open affine U = Spec A < X, F(U) is a coherent (equivalently, finitely generated)
A-module. Coherent sheaves spann a full subcategory Coh(X) < QCoh(X).


http://stacks.math.columbia.edu/tag/05CV

3.5. FINITENESS OF COHOMOLOGY 95

Example 3.5.3. e The structural sheaf Oy is a coherent sheaf.

e More generally, for a closed immersion ¢ : Y — X, i,Oy € Coh(X). Indeed, locally on X, i is
of the form Spec A/I — Spec A.

e Even more generally, if f : Y — X is a finite morphism, and F' € Coh(Y"), then f,F € Coh(X):
locally on X, f is given by Spec A — Spec B for A being finite (as a module!) over B, and so
any finitely generated A-module is also finitely generated when regarded as a B-module.

e Lemma 2.10.15 shows that for the structural map f : P" — SpecZ,
f+O(e) € Coh(SpecZ).

e However, for f: A! — SpecZ,
f«Oa1 ¢ Coh(Spec Z)

since its global sections are Z[t], which is not finitely generated (as a Z-module).

e Another notable permanence property is that for any map f:Y — X (of locally Noetherian
schemes), the pullback functor f* (Lemma 2.10.19) preserves coherent sheaves (since if M is
a finitely generated A-module, and A — B a ring homomorphism then M ®,4 B is a finitely
generated B-module).

It is a consequence of the above properties of coherent modules that Coh(X) < QCoh(X) is an
abelian subcategory.

3.5.2 Cohomology of coherent sheaves on projective schemes

Theorem 3.5.4. Leti:Y < X := P7 be a closed subscheme, with A being a Noetherian ring. For
any F' e (;oh(Y)7 the cohomology groups H*(Y, F') are finitely generated A-modules. In particular,
F(Y) =HO(Y, F) is finitely generated.

By Lemma 3.4.4, and using that i, F' € Coh(P7) (Example 3.5.3), it is enough to prove Theo-
rem 3.5.4 in the case Y = X = P7}.

Lemma 3.5.5. For any F' € Coh(X) there is a surjection

éox(—d )

for appropriate (finite) n and d; € Z.

Proof. We need to find a map of coherent sheaves whose cokernel in QCoh(X) or Coh(X) is 0;
equivalently, we need to supply a map such that the sections on every basic open U; := D, (t;),
@D, Ox(U;) — F(U;) are surjective. Since this involves finitely many i, and since F(U;) =: M; is
a finitely generated Ox (U;)-module, it is enough to prove the following: for any ¢ and any fixed
element s € F(U;), there is some d such that t¢s € (F(d))(U;) extends to a global section s’ of
F(d), i.e., an element in F(d)(X). Here we use Lemma 2.10.3, i.e., a global section s’ € (F(d))(X)
is nothing but a map (of Ox-modules) Ox — F(d) or, equivalently, a map Ox(—d) — F. This
assertion is precisely the content of Exercise 2.10.28. O

Proof. (of Theorem 3.5.4, for Y = X = P’) We will prove that H?(X, F') is finitely generated by
descending induction on ¢. The statement holds for ¢ > n + 1 by Exercise 3.3.7.
Pick a surjection as above, and consider its kernel

0—>K—>@0Ox(-d;) > F —0. (3.5.6)
J
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The kernel K is coherent since Coh(X) < QCoh(X) is an abelian subcategory (this uses that A is
Noetherian). Consider the long exact cohomology sequence

HI(X, P O(—d;)) = @Hq(x, O(—d;)) — HY(X,F) - H (X, K) — ...

The outer terms are finitely generated by Theorem 3.4.1 and the inductive assumption, respectively.
Hence the middle group is also finitely generated (over the Noetherian ring A). ]

Remark 3.5.7. The proof technique above also shows that for a fixed F' € Coh(P7%), there is
e » 0 such that for all ¢/ > e we have

HY(X, F(e')) = 0 for all ¢ > 0.

The following statement is the algebro-geometric incarnation of Liouwville’s theorem (which
asserts that a holomorphic function on a connected compact complex manifold is constant).

Corollary 3.5.8. Let X < P} be an integral closed subscheme, where k is algebraically closed.
(In more classical terminology, one refers to this by saying that X is a projective variety, where

“variety” means integral and of finite type scheme over k = k.) Then

H(X,Ox) = k. (3.5.9)
Proof. By Theorem 3.5.4, A := H°(X, Ox) is a finite-dimensional k-vector space. By Lemma 2.2.2
it is a domain. Thus A is a finite field extension of k, and therefore A = k, since k = k. n

Remark 3.5.10. Note that both the closed embedding X < P} and the structural map P} —
Spec k are proper, and hence so is the map X — Speck (Lemma 2.9.9). The assertion of The-
orem 3.5.4 holds true for arbitrary proper morphisms X — Spec B. This is proved in [Gro61,
Théoréme 3.2.1] using Chow’s lemma (stated above in Proposition 2.9.17). Also note that Corol-
lary 3.5.8 reproves the statement in Exercise 2.9.22 (in the projective case). Finally, the assumption
that k is algebraically closed can be relaxed, as discussed in Exercise 3.5.12.

Exercises

Exercise 3.5.11. We say that some F' € QCoh(X) is generated by global sections iff there is a
surjection (in the category QCoh(X), see around (3.2.8) what this means)

PHox - F.
el
Let now X = P’ with A Noetherian and F' € Coh(X). Prove that there is an e » 0 such that
for all ¢’ > e the sheaf F(¢’) is generated by finitely many global sections (i.e., the sum above is
finite).
One refers to this statement by saying that Ox (1) is an ample line bundle. This is an important
positivity property in algebraic geometry.

Exercise 3.5.12. A scheme X /k is called geometrically integral if X xgpecr, Speck (where k is an
algebraic closure of k) is integral.
(1) Prove that any geometrically integral scheme is integral.

(2) The converse does not hold: for & = R, prove that SpecR[t]/f is geometrically integral iff
deg f = 1.
(3) Prove that the natural map k& — HY(X,Ox) (which is nothing but the pullback along the

structural map X — Spec k) is an isomorphism provided that X is geometrically integral, and
X c P} is a closed subscheme.
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Exercise 3.5.13. (Solution at p. 109) For the purposes of this exercise, we call a function
P:N—->N

a numerical polynomial if there is a (necessarily unique) polynomial @) € Q[z] and mg € N such
that
P(m) = Q(m)

for all m € N, m = my. We set its degree to be deg P := deg ().
Let k be a field and let us write X := P}. For F' € Coh(X), we consider the function
P:=Pr:N — N, P(m) := dim, H*(X, F(m)).

(1) For e € Z, compute the values of the function Pp, (). You may use without proof that the
r-‘rs—l)

k-vector space of homogeneous polynomials of degree r in s variables has dimension ( o

Compute deg Pp, .
(2) Leti:Y =V(f) < X be the closed immersion defined by a non-zero homogeneous polynomial
f € klto, ..., ta]q of degree d = 0. Prove that

deg B0, <n—1

(you may use (3) below). Is it possible that “<” holds in the above?
(3) For any F' € Coh(X), prove that there is some ¢y > 0 such that

Pr(e) = (X, F(e)) (3.5.14)

for e > ey.

(4) (Bonus) Generalizing Part (2), prove that for Y = V(f1,..., fi), for homogeneous polynomials
fiy--s fm € K[to, ..., tn], we have

deg .0, <n —m.

3.6 Outlook: The Riemann—Roch theorem

In this outlook, we are going to state the Riemann-Roch theorem, which is the cornerstone in the
theory of algebraic curves. Throughout we make the following assumptions:

Notation 3.6.1. e k = k will be an algebraically closed field,

e X is a scheme that is

(1) 1-dimensional (Definition 1.3.1),

(2) integral, i.e., reduced and irreducible (Definition 2.2.1),
(3) a closed subscheme of some P},
(4)

4) regular in the sense that the local rings Oy, are regular rings. Note: if x is the generic
point, this condition is vacuous. If z is a closed point, so that dim Ox , = 1, this means
that m, is a principal ideal, so that equivalently for these points, Ox ,is a discrete valuation
ring, see around Corollary 1.7.17). We the valuation map

val := val, : Q(Ox.)\{0} — Z

which is the unique group homomorphism sending a generator w, € m, to 1, and sending
all the elements in 0%, to 0. (Le., there is a unique u € O%, and n € Z such that
s = w} - u, and then val(s) = n).
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We refer to the conjunction of these assumptions by saying that X is a smooth projective curve.
We will denote by
K :=k(X) := Ox,

the local ring at the generic point (for any nonempty open U < X, we have K = Q(Ox(U))). We
refer to its elements as rational functions.

According to Corollary 3.5.8, we have dimy Ox (X) = 1, paralleling the fact that on a connected
compact Riemann surface there are only constant holomorphic functions. However, there is an
infinite-dimensional space of meromorphic functions (i.e., locally of the form z=" - f(z), where
f(2) is holomorphic). The Riemann—Roch theorem below gives a way to count, more precisely,
how many functions having prescribed pole orders there are. In this section, we formulate this
theorem, including the rudiments of the necessary preliminaries in the specific situation of a smooth
projective curve.

Definition 3.6.2. For X as above, the genus is defined as
g := g(X) := dim, H(X, Ox).
We will use without proof that for any F' € Coh(X):
H"(X,F) =0 for n > 1 = dim X. (3.6.3)

(This can be proved by in two ways: 1) by comparing Cech cohomology with sheaf cohomology
and using a vanishing for sheaf cohomology beyond the dimension [Stacks, Tags 03AG, 04AR), or
2) in our situation by Serre duality as stated in Theorem 3.6.30 below.) Thus

1 —g(X) =dimH(X, Ox) — dimH' (X, Ox) = x(X, Ox).

Example 3.6.4. If i : X = V(f) < P? is a plane curve, where f is a homogeneous polynomial of
degree d, then we have an exact sequence

0 — Op:(—d) L Opz — i,0x — 0,

and

2—d
(P2, 1,0x) = (X, 0x) = (P%.0) ~ (P2, 0(-) = 1- ().
For d = 0, we have x(P?, O(—d)) = dim; H*(P?, O(—d)), and by (3.4.2) we see that H"(P?, O(—d))

is isomorphic (as a k-vector space) to the space of homogeneous polynomials (in 3 variables) of
_ (d-1)(d-2)

degree d — 3, and the dimension of this k-vector space equals ((d_g)ff_l)) = (d_l) 5

3 2
Hence (@-1)(d—2)

9(X) = (X, 0x) ~ 1 = x(P*, 0(~d)) = L= DI=2)
For example, if deg f = d = 3, we obtain ¢g(X) = 1, while for d = 1 or d = 2, we have g = 0. For

X as in Notation 3.6.1 and k£ = C, one can prove that there are equalities
2dimH'(X, Ox) = 2dim H*(X, Q') = dim H{;,,(X(C), Q),

where at the right we have the first singular cohomology group of the complex submanifold of PZ,
defined by the equation f. One may conclude that g is equal to the number of “handles” attached
to 5% ~ P¢.

Definition 3.6.5. (see [Vakl7, §14.2], [Stacks, Tag 0BE2] for the definition in general) A Weil
divisor D on X is a finite formal linear sum of closed points, written as D := > n;x;, where x; € X
is a closed point and n; € Z. In other words, D € @ _ya Z. The degree of such a Weil divisor is

reX¢©

deg D :zzm eZ.


http://stacks.math.columbia.edu/tag/03AG
http://stacks.math.columbia.edu/tag/04AR
http://stacks.math.columbia.edu/tag/0BE2
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The support of the divisor is

D] = | {=}.

ng#0
Definition and Lemma 3.6.6. For a Weil divisor D = ) n,x, we define
O(D) := Ox(D)

to be the sheaf
O(D)(U) := {s € k(X)*|val,(s) + n, = 0 for all x € U} U {0}.

(In other words, we consider rational functions that have a pole of order at most n, in the points
x.) For another divisor F' = > m,x and their sum D+ FE := > (n, +m,)z, we have an isomorphism

OD+FE)=0(D)®O(E).
Thus O(D) is a line bundle (and therefore in particular a coherent sheaf) with dual given by
O(D)Y = O(-D).
Proof. On X\|D|, we have O(D) = O. For any of the points x € |D| there is an open neighborhood
U 5 x such that Un|D| = {x}, such that w, € m, < Ox, extends to an element of f € Ox(U), and
such f|i\(ey is invertible. Then the multiplication map Ox |y = O(D)|y is an isomorphism. [
Lemma 3.6.7. (See [Har83, §I1.6], especially Corollary 6.16 there, or [Vak17, Proposition 14.2.10]

for the statement in the generality of a Noetherian, integral, separated scheme whose local rings
Ox . are factorial rings) The map

@ Z - Pic(X),D — O(D)

reXcl

induces an isomorphism of abelian groups

where
CUX) = @ Z/ (div(s), s € k(X))

is the so-called divisor class group, where

div(s) := Z val,(s)x.

reXecl

Moreover, we have

deg(div(s)) = 0,

so there is a well-defined map
deg : Cl(X) — Z.

Example 3.6.8. Recall from Theorem 2.11.4 that on X = P}, any line bundle is of the form O(e)
(Definition 2.10.14), i.e.
Pic(P;,) = Z.

This is matched by the fact that any two (closed) points x, 2’ € (PL) are rationally equivalent,
i.e., there is a function s € k(P}) = k(t) such that divs = z — /. (This is seen by showing that
there is an automorphism of ¢ : P! — P! such that ¢(z) = 0,¢(2’) = 1 and then the function £
has a simple zero at 0 and a simple pole at 1; cf. [Vak17, Exercise 16.4.B]).
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Definition 3.6.9. For a divisor D and a line bundle L on X we write
h(L) := dim;, H°(X, L)

and h(D) := h(O(D)).

Lemma 3.6.10. (See [Har83, Proposition I1.7.7] for a discussion in the generality of a smooth
projective variety.) If h(D) # 0, then O(D) = O(D’) with D’ being an effective divisor, i.e.,
Proof. 1f we have a non-zero global section s € O(D)(X), then locally on U < X where O(D)|y =
Ox|u, s gives rise to a section s' € Ox(U). This section depends on the choice of the isomorphism
up to multiplying with some element in Ox(U)*, so that V(s') is a well-defined closed subset of

dimension 0 (since s # 0). This subset therefore defines an effective divisor D', and one checks
O(D) = O(D'). O

Proposition 3.6.11. (Riemann—Roch theorem, preliminary version) Let X be as in Notation 3.6.1 ]
g = g(X) its genus and D a divisor on X. Then the Euler characteristic of O(D) can be computed
by

X(X,0(D)) =degD +1—g.

Proof. Using (3.6.3), we have to prove
dim H(X, O(D)) — dim H' (X, O(D)) = degD + 1 — g. (3.6.12)

For D = 0, this formula holds true by the definition of g and by (3.5.9). It suffices to show that
(3.6.12) holds for some divisor D iff it holds for D’ = D + z, where x € X is any (closed) point.
We claim that there is an exact sequence (in QCoh(X))

0— O(D) = O(D + x) — ik — 0, (3.6.13)

where i : {z} — X is the closed embedding, and we have z = Spec k (by Hilbert’s Nullstellensatz),
and we have written k& = Ogpeci. Indeed, the restriction of the above sequence to X\{xz} is exact,
given that (i.k)|x\(z; = 0. Consider now an open affine neighborhood U = Spec A 3 x as in the
proof of Definition and Lemma 3.6.6, i.e., U contains no other point of D, and w, € m, < Ox,
extends to an element of w € A = Ox(U) such that z = V(w). The restriction of the above
sequence to U then arises by applying — to the following exact sequence of A-modules (where in
the middle %A < Q(A) denotes the A-submodule generated by %)

1 1
0>Ac— A—->—-A/A-0
w w
which is isomorphic to

0> A3 A A/w—0.

This confirms (3.6.13), so we obtain our claim from the additivity of Euler characteristics in
(3.2.16), given that x(X,i.k) = x(Speck, Ospecr) = 1. ]

3.6.1 Interlude: Kahler differentials
Definition 3.6.14. For an A-algebra B, the Kdhler differentials is the B-module

Qp/a = (—DBdb/ ~,
beB
where db is just a symbol for each b € B, and the relations divided out are
dot) = b-dV +V -db (Leibniz rule)
d(ab+ad't)) = a-db+d -db.
for a,a’ € A, b,V € B.
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Remark 3.6.15. One should think of 25,4 as being the algebraic analogue of differential 1-forms.
The above relations imply

dl = dl+dl=4dl1 =0
da = adl =0. (3.6.16)

There is a natural map (called universal derivation, in view of Exercise 3.6.27 it corresponds to
idg € Dery(B, B))
d: B — Qpg/a,b— db. (3.6.17)

Example 3.6.18. Let B = A[t;,i € I], where I is some (possibly even infinite) index set, so
Spec B = A’;. Then
Qp/a = @ Bdt;,
iel
i.e., the Kéhler differentials for a polynomial algebra are just a free module (over that polynomial
algebra). (This computation matches the analogous fact in differential geometry, where the 1-forms
on R" are of the form

W = zn] fldl'z)
i=1

The universal derivation is given by

One quick way to see this is to first prove Exercise 3.6.27 and to show Dera(A[t;], M) =[], M.

Lemma 3.6.19. (First fundamental sequence) Let A L, B % C be two ring homomorphisms.
Then there is an exact sequence (of C-modules)

Qp/a®pC = Qcja — Qo — 0.
The maps are given by v : db® ¢ — ¢ - d(g(b)) and dc — de, respectively.

Proof. The right hand map is clearly surjective (since symbols dc generate Q¢ ). The extra
relations db = 0 in {2¢/p, for b € B are precisely the image of the generators db®1 in the left hand
group. 0

Lemma 3.6.20. (Conormal sequence or second fundamental exvact sequence) Suppose A — B >
C' = B/I are two ring homomorphisms (with / an ideal in B). Then there is an exact sequence of
C-modules
[/[2 lgd C@B QB/A D_7)r QC/A - O

Here, the left hand map is ¢ — 1 ® d(i), where d is the universal derivation (3.6.17).
Proof. First note that d factors over I/I? since d(i7') = 1 ® (idi’ +i'di) = i@ di’ + 7 @ di = 0 €
C ®pQpja=Q0p/a/1p)4.

We already noted that D7 is surjective since C' — B is surjective. To prove the exactness in

the middle we use again Exercise 3.6.27 and Exercise 3.6.28 and prove that we have the following
exact sequence, for any C-module T

Home(Qeyp, T) —— Home (g4 @p C, T) — Home (1/17,T)

Derg(B/I,T) ——— Dera(B,T) Homp(1,T).

0—0|1

For the right hand identification note that applying ® 3/ to 0 - I — B — C — 0 gives the exact
sequence 0 — I*(=imI®p ) - [ — C ®p I — 0. This sequence is clearly exact. O
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Example 3.6.21. Suppose A = k is a field, B = k[z,y,t], so Spec B = A% and C = k[z,y]/f. In
other words Spec C' = V/(f) is the zero-set of f. By Theorem 1.3.4, we have dim C' = 1.
The conormal sequence implies the following formula

Qep = (Bdr @ Bdy)/(f, df).

We specialize to the case
flz,y) =y* — (2° + ax + b),

where a,b € k are fixed. The above quotient is modding out 2ydy and (3z* + a)dz. We are
interested in seeing when the stalk of the above C-module at a closed point (x —r,y — s) € Spec C
(with 7, s € k), i.e., s2 = r® +ar + b, is 1. If s # 0 (and char k # 2) then 2ydy # 0 (and it follows
that 322 + a # 0). If s = 0, then we have 0 = r® + ar + b, and the above module is of rank
1 precisely if 3r2 + a # 0, i.e., if 7 is a simple zero of the polynomial 23 + az + b. It is known
from the theory of (cubic) polynomials that this happens precisely if the so-called discriminant
A = 4a3 + 270* # 0.

Proposition 3.6.22. (Jacobian criterion for smoothness, see e.g. [Eis95, Theorem 16.19] for the
statement for k[t;]/(f;)) Fix C = k[x,y]/f, and p € Spec C. We assume that k(p) is a separable
extension of k (this is automatic if chark = 0 or if k = k).

Then Cy is a DVR iff the vector
(0f /o, 0f /oy)

is non-zero in k(p)?. In this event, the above conormal exact sequence is split exact, i.e., there is
a split exact sequence of C-modules

0— (f)/(f*) = C®5 U — Uy — 0.

In order to establish Kahler differentials as a quasi-coherent sheaf, we need the following com-
patibility with localizations.

Lemma 3.6.23. Let A — B be a ring homomorphism and S < B a multiplicatively closed subset,
the natural map

B[S ®p Q54 — Qprs-11/a

is an isomorphism. Under this isomorphism —s~2ds at the left corresponds to d(1/s) at the right,
for se S.

Proof. 1t suffices to show that Hompgrg-1j(—, M) gives an isomorphism for each B[S™']-module M.
This corresponds to restriction of derivations:

Der 4(B[S™], M) — Der (B, M).

Given an A-linear derivation ¢ : B — M one checks that the map ¢’ : B[S™'] — M defined by

b 1 1
(=) := ~0b—b—0s
( (S) -0 20
is well-defined, is a derivation, and is the unique derivation extending 0. O]

Definition and Lemma 3.6.24. Let X — Y = Spec A be a map of schemes. Then there is a
unique quasi-coherent sheaf €1x /vy, called the sheaf of Kdhler differentials whose restriction to an
open affine subscheme U = Spec B < X satisfies

Qxvlo = Q;/;L
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Corollary 3.6.25. If i : X c Y is a closed embedding of k-schemes, and I = ker(Oy — i,Ox) €
QCoh(Y) is the so-called ideal sheaf defining i, there is an exact sequence

]/12 g Z*Qy/k - QX/k — 0.

If X satisfies the condition ((4)) in Notation 3.6.1 and Y = P}, then this sequence can be extended
to an exact sequence
0— I/ = i*Qyj, — Qxp, — 0. (3.6.26)

In this event (1x; is a locally free sheaf of rank 1 = dim X.

Exercises
Exercise 3.6.27. For any B-module M, establish a natural bijection
Homp(2p/a, M) = Dery (B, M)
where at the right we have the set (or, rather A-module) of derivations, defined by
Dery(B, M) = {f : B — M(map of A-modules), f(bb") = bf (V') + V' f(b) for all b,V € B}.

Exercise 3.6.28.

M LS
be two composable morphisms of modules (over some fixed ring A).
(1) Prove that the sequence is exact if the induced sequence

Hom(M”, N) =¥ Hom(M, N) = Hom(M’, N)
is exact for any A-module N. (Hint: it is enough to take N = M /im f.)
(2) Prove that the sequence is split exact (i.e., there is an isomorphism M =~ M’ @ M” such that
f becomes the canonical injection M’ — M’ @ M"” and ¢ the canonical projection) if
0 — Hom(M", N) =¥ Hom(M, N) =¥ Hom(M’,N) — 0

1s exact.

3.6.2 The statement of Riemann—Roch

We continue working under the assumptions in Notation 3.6.1. By these assumptions and by the
Jacobian criterion for smoothness (cf. Proposition 3.6.22 in the case of a plane curve), the sheaf
Qx i is locally free of rank 1, i.e., a line bundle.

By Lemma 3.6.7, we can therefore find a divisor K (which is well-defined only up to rational
equivalence, i.e., up to replacing K by K + div(s), where s € k(X)*) such that

This divisor is called canonical divisor.

Example 3.6.29. If i : X = V(f) < P? = Projk[to,t1,12] is a plane curve with deg f = d
(satisfying our standing assumptions in Notation 3.6.1), then

K = (d=3)(X nV(t)),

say, where N denotes the scheme-theoretic intersection (Exercise 2.6.5). This can be deduced from
the exactness of the conormal sequence in (3.6.26), which by passing to the highest exterior powers
gives

One computes the right hand side to be Op2(—3), and (f)/(f?) = i*O(—d).
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Then 3.6.12 allows to compute dim H°(X, Ox (D)) in terms of computable data (deg D, g =
g(X)) and an “error term” H'(X, Ox(D)). This error term can be accessed as follows.

Theorem 3.6.30. (Serre duality) For X as in Notation 3.6.1 and any coherent sheaf F' € Coh(X)
there is an isomorphism

H'(X,F) =~ (H"*(X, Hom(F, Qx /1)) v

(where at the right v denotes the dual k-vector space). In particular, for F' = O(D), we have
H!(X, 0x(D)) = (H(X, O(K — D))"

Remark 3.6.31. This holds true much more generally: for X < P} (closed) being smooth over k
and integral of dimension d, we have an isomorphism

<Hd (X, Hom(F /\Qx/k )

See, e.g., [Vak17, Theorem 18.5.1] or [Stacks, Tag 0DWE], especially [Stacks, Tag 0BRT] for an

even more sweeping account.

\%

lle

H (X, F)

Example 3.6.32. For X = P! = Proj k[tg, ;] =: Proj A, Serre duality for the sheaves F' = Ox(e)
is nothing but the agreement

H°(X,0(e)) = A,
with the dual of H'(X, O(—2 —¢)), cf. (3.4.2).

Theorem 3.6.33. (Riemann—Roch, final form) For X as in Notation 3.6.1, and any divisor D on
X we have an equality

dim H°(X,O(D)) — dimH°(X,O(K — D)) =degD + 1 — g.
Example 3.6.34. Putting D = K and using Serre duality we get
deg K = ¢g—1+x(X,0(K))

- g-1-(-yg)
= 2¢9—2.

Corollary 3.6.35. If D is a divisor with deg D > deg K = 2g — 2, then
dimH°(X,O(D)) = degD + 1 —g.

Proof. This holds since HY(X,O(D)) = (H°(X,O(K — D)))¥ = 0 by Lemma 3.6.10 given that
deg K — D < 0. 0


http://stacks.math.columbia.edu/tag/0DWE
http://stacks.math.columbia.edu/tag/0BRT

Chapter 4

Solutions for selected exercises

Solution of Exercise 1.1.21: We first prove that Y < X (in any topological space X) is
irreducible iff its closure Y is irreducible. First, we have Y # @ iff Y # . Now, directly from
the definition, a non-empty space X is irreducible iff any two non-empty open subsets Uy, Uy < X
have non-empty intersection, i.e., Uy n Uy # . Also note that the open subsets of Y (or Y) are
of the form U nY (resp. U nY), with U = Spec A open. Now, we observe that U n Uy n'Y # (J
iff U, n Uy nY # &, by definition of the closure. Given that Y = V(I(Y)), this claim allows us
to replace Y by its closure, so we may assume Y is closed.

To prove the Parts (1) and (2) of the exercise, we use the bijection established in Lemma 1.1.6,
under which the non-empty closed subsets ¢J # Y < Spec A correspond to proper radical ideals
I < A. We may replace A by A/I(Y), so we are reduced to proving that for a ring A, Spec A is
irreducible iff v/0 = I(Spec A) is a prime ideal.

“<": given two open nonempty subsets U;,U; < Spec A, we need to prove Uy n Uy # .
By definition of the Zariski topology there are fi, fo € A with & # D(f;) < U;. We then claim
D(f1) n D(fs) = D(f1fs) # &. Otherwise we would have fifs € [\,c p = /0 (the nilradical),
which is by assumption a prime ideal, so that f; € /0, say. Then D(f;) = ¢, which is a
contradiction.

“=7: if Spec A is irreducible, we show /0 is a prime ideal: if a,b € A are such that (ab)” = 0
for n » 0, then Spec A < V((ab)") = V(ab) = V(a) u V(b), so by irreducibility Spec A = V(a),
say, so that a € /0.

Concerning Part (3), we note that 22 — y? = (z — y)(z + y) yields V(22 —y*) = V(z + y) U
V(x—1y) and these are two proper subsets, so Spec Z[z, y|/x? —y? is reducible (with two irreducible
components being each isomorphic to Spec Z[x] = A'). By contrast, the polynomials z* — y* and
xy — 1 are both irreducible (as one sees directly by considering the degree with respect to z), and
therefore these polynomials cut out two irreducible (closed) subsets of AZ2.

Solution of Exercise 1.1.25: (solution provided by Cecilia Moriggi) Recall from (1.1. 5) that

Moespeca P = V0. Now fix f € A: we have (Npespec aff-11 P = V0[-17; recall that Spec A[f~!] is in
bijection with D(f) and

\fOA[f‘l] = {fk

Thus we get ﬂpeD =/0: (f).
Now D(f) = V(I ( ())) = {p € Spec A|Nyep(y) 9 < p} and so

0D(f) = {p e Spec Al[{f} U ) q<p} = {peSpecAll <p}

qeD(f)

st.ae A,Ine N : (fk)n:o}:{aeAyameN;(af)m:o}—fo;(f).

105
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And from this we immediately get the required bijection.

4.1 Rings and their spectra

Solution of Exercise 1.3.7: (solution provided by Francesco Feltrin and Manuel Zorzo; this is
also adressing Exercise 1.2.10) The inclusion Z < Z[t] induces the map ¢ : Spec Z[t] — SpecZ,
sending a prime ideal p of Z[t] to pnZ. The spectrum of Z[¢] is the disjoint union of the fibers of ¢:
we will describe ¢! (pZ) for pZ € Spec Z. We consider two cases, using in both cases Lemma 1.2.6
and the fact that prime ideals in k[t] (for a field k such as F, or Q) are (0) and (f) with f € k[t]
being an irreducible polynomial.

e p # 0 is a prime number. Then
¢~ (pZ) = Spec(Z[t] ®z k(pZ)) = Spec(Z[t] ®z F,) = SpecF,[t]

We conclude that
6" (bZ) = {p = (p, )| is irreducible mod p} U {pZ[1]},

e p =0. Then

$»1(0) = Spec(Z[t] ®z k(0)) = Spec(Z[t] ®z Q) = Spec Q[t]

We also note that an irreducible polynomial f € Q[¢] is, by clearing the denominators gener-
ating the same ideal (in Q[t]) as a unique irreducible integer multiple of f having the property
that its coefficients are coprime. We conclude that

¢1(0) = {p = (f)|f € Z[t] is an irreducible polynomial with coprime coefficients} U {(0)}.

Since Z[t] is a domain, (0) is a prime ideal, and it is the generic point (e.g., by using Exer-
cise 1.1.21).

The ideals of type 4 are maximal (equivalently, the quotients Z[t]/(p, f) are fields); now it is
easy to see that they are the only ones, because ideals of type 2 and 3 can always be included in
one ideal of type 4 (alternatively, look at Z[t]/(p) and Z[t]/(f)).

This discussion implies that dim Z[t] = 2: indeed we do have the chains of length 2: (0) <
(p) < (p, f) and (0) < (f) < (p, f). And there are no longer chains, since there can’t be inclusions
between two ideals of type 2, or 3, or 4, nor between an ideal of type 2 and one of type 3, the only
possible chains of length 2 are the ones just mentioned.

Solution of Exercise 1.3.8: An example is A =V x k3, where V is a DVR and k a field. For
any ring A with 4 maximal ideals and one non-maximal (i.e., minimal), we have dim A = 1.

Solution of Exercise 1.4.17: (Solution by Mario Mascolo and Paola Schiavone)

e “(2) = (3)": Let a € A and let ¢: Z x Z[t*'] — A be a ring homomorphism such that
©(0,t) = a. Set e == ¢(0,1) and u == (1,t). Note that, since (0,1) is an idempotent, so is e;
and since (1,t) is a unit, so is u. Finally,

a=p(0,t) = (0,1)p(1,t) = eu.
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e “(3) = (2)”. Any element of Z x Z[t*'] can be written in the form (n,p(t)t~®), where n € Z,
a € N and p(t) € Z[t]. Fix an homomorphism Z[t] — A sending ¢ to a € A. By assumption,
a = ue for an idempotent e € A and a unit v € A*. We define ¢: Z x Z[t*'] — A by setting

Y(n,p(t)t™) =n(l —e) + p(a)u%e, (4.1.1)

for all n € Z, « € N and p(t) € Z[t]. It is clear that ¥(0,t) = ae = uee = ue = a. Some short
computation proves that the map 1 defined in 4.1.1 is indeed a ring homomorphism. Indeed,
1 preserves sums (we assume without loss of generality, that 8 > «a):

G(n, p(t)t™) + (m, q(t)t )] = ¥[n + m, (p(t)t"* + q(t))t 7]
= (n+m)(1—e) + (p(a)a”* + g(a))u7e
= (n(1 —e) + p(a)u=e) + (m(1 — e) + q(a)u™"e)
= (n, p(t)t=") + (m, q(t)t7);

and it also preserves products:

D(n, p(t)t=*) - (m, q(6)t7)] = ¢ (nm, p(t)g(t)t—*7)
=nm(1l—e)+ p(a)g(a)u™
= (n(1 =€) + pla)u™e) - (m (1—6)+Q( Jue)
= ¢(n, p(t)t= ") (m, q(t)t™"),

where we have used the fact that e and 1 — e are orthogonal idempotents. We conclude that
1 makes the diagram in (2) commute.

e Let R be any (commutative) ring. We say that two elements z,y € R are associate if they
generate the same ideal, i.e. if there exists u € R* such that y = zu. Notice that if two
idempotent elements of a ring are associate, they coincide. Indeed, let e € R and f € R be
two idempotents such that e = fu for some v € R*. Then f = u~'e, and

e=fu="Ff fu=feulu=fe=ule-e=ute=u"tuf = f.

In particular, for any r € R, either no idempotent is associate to r or the idempotent associate
to r is unique.

e Using the previous observation we prove that v : Z[t] — Z x Z[t*'],t — (0,t) is an epimor-
phism (in the category of rings). Let us be given ring homomorphisms

Z[t] S Zx Z[tT'] 3 A

<|ls

be such that p oy =1 o~. To prove ¥ = ¢ it suffices to show that any ring homomorphism
Z x Z[t*'] — A is uniquely determined by the image of (0, ).

Let ¢: Z x Z[t*'] — A be a ring homomorphism. Set a = ¢(0,¢). We can write a = eu,
where e = ¢(0,1) is idempotent and u = (1,t) € A*, hence a and e are associate in A:
by what we have proven earlier, we may thus deduce that ¢(0,1) is the unique idempotent
element of A that is associate to a = ¢(0, ).

In particular, the value of ¢(0,1) is uniquely determined by the value of a = ¢(0,¢). Notice
that ©(1,0) = ¢(1,1)—p(0,1) = 1—¢(0, 1) and that if (n, p(t)t~*) is any element of Z x Z[t*'],
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then

o(n, p(t)t™*) = ¢(n,0) + ¢(0,p(t))(0,7)
= n90<17 O) + p(@(oa t>)§0(07 t)_a¢(07 1)
=n(1 —(0,1)) + p((0,£))p(0,1)"*¢(0, 1).

Thus ¢ is indeed uniquely determined once the value of ¢(0,¢) is fixed, which proves that
is an epimorphism in the category of rings.

e Here is another proof that v is an epimorphism. Consider the diagram

Z[t] ! 7 x Z[t*]

By assumption the outer quadrangle commutes, which gives a unique map d making the
diagram commute. However, as was discussed in the proof of Lemma 1.4.9, the map 7/ (and
also 7”) is an isomorphism, so that ¢ = 1.

Solution of Exercise 1.8.10: In general, a subset S © X := Spec A is stable under specialization
iff its complement X\S is stable under generization. For example we show “=7: if z € X\S and
y ~ x are given, suppose y € S. Then we would have x € S by the assumption. We also recall
from Exercise 1.8.11 that X\ S is constructible iff S is constructible.

We prove part (2) of th exercise only. Putting V' := X\S, we have to prove a constructible
subset V < X is closed iff it is stable under specialization. By Exercise 1.8.9, V' is the image of a
finite type map Spec B — Spec A. It is closed by Lemma 1.7.19.

Solution of Exercise 1.8.13: This proof is due to Moret-Bailly https://mathoverflow.net/
q/481465. Let Z be the image of D(b) under ¢ : Spec B — Spec A. For a prime p < A we have
pé¢ Ziff @ = D(b) A (p) “™2*% D(b) A Spec B®4 k(p) = Spec B[b"'] ®4 k(p), which in
turn is equivalent to b being nilpotent in B ®4 k(p). Given that B is free of rank d over A, the
latter is a d-dimensional k(p)-vector space. So being nilpotent is equivalent to b = 0. In the
given basis b = (ay,...,aq), so this amounts to a; = 0 € k(p), or equivalently a; € p. Therefore

Spec A\p(Z) = M, V(a).

Solution of Exercise 1.8.14: As in the proof before, for a prime p = A we have p € o(D(f))
iff f is not nilpotent in k(p)[t]. For a general ring A, a polynomial f = >} a,t" is nilpotent in A[t]
iff all its coefficients a; are nilpotent in A, as one sees by induction on deg f. ForA = k(p), this
means that f = 0. Thus Thus

o(D(f)) = {p,a; ¢ p for some i} = UD(ai).

Solution of Exercise 1.8.15: : “=": first, V(f) is clopen for any f € A. This holds by (1.4.11).
This implies that V(I), for any finitely generated ideal I < A, is clopen. This then implies that
any constructible subset is clopen.

“<": we use that Spec B is compact Hausdorff (Lemma 1.4.9(4)), and therefore any open subset
is a finite union of fundamental open subsets D(f).


https://mathoverflow.net/q/481465
https://mathoverflow.net/q/481465
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Solution of Exercise 1.9.6: If k is no longer algebraically closed, there are prime ideals not of
this form, e.g. in R[z] we have a prime ideal (z* + 1), whose residue field is C.

4.2 Schemes

Solution of Exercise 2.8.3: By definition, X is covered by finitely many open affines Spec A
with A being a finitely generated Z-algebra. By Chevalley’s theorem (Theorem 1.8.5), the image
of Spec A in Spec Z is constructible, hence so is the image of X. If f(X) contains infinitely many
closed points, it must contain the generic point as well by Definition 1.8.3.

Solution of Exercise 2.9.20: We have the implications “proper” = “finite” (Proposition 2.9.12)
and (by definition) “proper” = “separated” and “finite” = “separated” (Example 2.9.2). The
converse implications do not hold: A! — SpecZ is separated but not finite nor proper. The
map P! — SpecZ is proper, but not affine and in particular not finite (cf. the discussion after
Definition 2.5.1).

Solution of Exercise 2.9.23: Throughout we use that the diagonal map A corresponds to the
multiplication map B®4 B — B.

The map A — A[f~'] is flat (being a localization) and nice, since A[f~'| @4 A[f7'] — A[f7]
is an isomorphism.

The map Z — F,, is not flat (since p is a zero-divisor in F, but not in Z), but nice: F,®zF, — F,
is an isomorphism.

The map Z — Z[t] is flat (even free as a Z-module), but not nice (Z[t] ®z Z[t] — Z[t] is
surjective but not flat, and therefore not an open embedding).

We have a ring isomorphism C ®g C = C[t]/t* + 1 = C® C, and the multiplication map to C
is given by (z,w) — iz + iw. There is a splitting C — C ®g C given by u — (1u,0), so the map
is an open embedding after passing to spectra. The map is flat (anything over a field is flat).

The composite of nice maps is nice, as one sees by expressing Ag.; as the composite of Ay and
a pullback of Ay, cf. the proof of Lemma 2.9.7.

4.3 Cohomology of quasi-coherent sheaves

Solution of Exercise 3.5.13:

(1): We have
Po, (m) = dim, H*(P}, O(m)) = dim k[to, . .., tu]m
so that
(m+n) _ (m+n)(m+n—1)--(m+1) m=0
= n n! =
Fox(m) { 0 m <0

We note that for m > 0, the above expression is a polynomial (in m) of degree n.

We have Po,()(m) = Poy(e + m), which for any m with e + m > 0 agrees with the above
polynomial. In particular, this is a numerical polynomial, with deg Po () = n.

(2) In order to compute P, 0, , we use the exact sequence

0— Ox(—d) L Oy — i,0y — 0.
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The Euler characteristic is additive, so we get

X (1 0y (¢)) = x(Ox(e)) = x(Ox(=dy + ¢)).

Using (3.5.14), we may replace x(F) by Pr throughout, provided that e » 0. We get

‘Pi*OY (6) = POX (6) - POX (6 - dl)

- ()0
e o)t )2t

In the enumerator, there is no term of order e™ (these cancel), so the degree is <n—1. If d =0
and f =1, we have ¢,Oy = 0, so that deg P;,0, =0 <n—1.

(3): We need to show that for each F' there is some ey such that H™ (X, Fi(e)) = 0 for all m > 1
and e = eg. For any F' € Coh(X), we have an exact sequence

0—->K—>PO(-d;) - F -0,

and we know H™(X, —) = 0 for any m > n + 1. We do a downward induction on m. We have the
exact sequence

H™(X, K(e)) — H™(X, D O(e — d;)) — H™(X, F(e)) — H™ (X, K (e + 1)),

and by induction the right hand term vanishes for e » 0, and this is also true for the second term
(again for e » 0).
(4): We use the exact Koszul sequence
OHOXHHC—DOx(*dZ)HOXHZ*OyHO

. /

We see that the Euler characteristic of i,Oy only depends on the d;, so we may assume f; = tgl,
say. We have a short exact sequence of chain complexes

O_)K(f%afm)(_dl)ﬂ)K(f%7fm) _>K(f17>fm) _’0

Let us write i’ : Y’ := V(f,..., f) © X and P’ for the numerical polynomial Py o ,. We know
by induction, beginning with the case m = 1 discussed above, deg P’ <n —m + 1. We obtain

X(X, 1,0y (e)) = P'(e = d1) — P'(e),

which is a polynomial of degree < deg P' — 1.



References

[BC14]

[Bou06]

[Bre+73]

[Bre97]

[BSY22]

[Eis95)

[GLO1]

[Gro61]

[GW20]

[Har83]

[Jaf60)

[Kel24]

[KN21]

[KS05]

[Liu02]

[Lur09]

Martin Brandenburg and Alexandru Chirvasitu. “Tensor functors between categories of quasi-coherent
sheaves”. In: Journal of Algebra 399 (Feb. 2014), pp. 675-692. 1SsN: 0021-8693. DOI: 10 . 1016/ j .
jalgebra.2013.09.050. URL: http://dx.doi.org/10.1016/j.jalgebra.2013.09.050.

Nicolas Bourbaki. Elements of Mathematics. Commutative Algebra. Chapters 8 and 9. French. Reprint of
the 1983 original. (Eléments de mathématique. Algebre commutative. Chapitres 8 et 9.) Berlin: Springer,
2006, p. 200. 1SBN: 3-540-33942-6.

J. W. Brewer et al. Krull dimension of polynomial rings. English. Conf. commutat. Algebra, Lawrence,
Kansas 1972, Lect. Notes Math. 311, 26-45 (1973). 1973.

Glen E. Bredon. Sheaf Theory. 2nd ed. Vol. 170. Graduate Texts in Mathematics. Springer, 1997. ISBN:
978-0-387-94905-5. DOI: 10.1007/978-1-4612-0647-7. URL: https://link.springer.com/book/10.
1007/978-1-4612-0647-7.

Robert Burklund, Tomer M. Schlank, and Allen Yuan. The Chromatic Nullstellensatz. 2022. eprint:
arXiv:2207.09929

David Eisenbud. Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward
algebraic geometry. New York: Springer-Verlag, 1995, pp. xvi+785. ISBN: 0-387-94268-8; 0-387-94269-6.
DOI: 10.1007/978-1-4612-5350-1. URL: http://dx.doi.org/10.1007/978-1-4612-5350-1.

Thomas G. Goodwillie and Stephen Lichtenbaum. “A Cohomological Bound for the h-Topology”. In:
American Journal of Mathematics 123.3 (2001), pp. 425-443. DOI: 10.1353/ajm.2001.0016. URL:
https://doi.org/10.1353/ajm.2001.0016.

Alexander Grothendieck. Eléments de géométrie algébrique: III. Etude cohomologique des faisceaux
gohérents, Premiére partie. French. Vol. 11. Publications Mathématiques de 'THES. Institut des Hautes
Etudes Scientifiques, 1961.

Ulrich Gortz and Torsten Wedhorn. Algebraic geometry I. Schemes—with examples and exercises. Sec-
ond. Springer Studium Mathematik—Master. Springer Spektrum, Wiesbaden, [2020] (¢)2020, pp. vii+625.}
ISBN: 978-3-658-30732-5; 978-3-658-30733-2. DOI: 10.1007/978-3-658-30733-2. URL: https://doi.
org/10.1007/978-3-658-30733-2.

Robin Hartshorne. Algebraic Geometry. English. Corrected 3rd printing. Vol. 52. Graduate Texts in
Mathematics. New York-Heidelberg-Berlin: Springer-Verlag, 1983, pp. XVI + 496.

Paul Jaffard. Théorie de la dimension dans les anneaux de polynémes. French. Vol. 146. Mémorial des
Sciences Mathématiques. 1960, p. 78.

Shane Kelly. Non-reduced valuation rings and descent for smooth blowup squares. 2024. arXiv: 2401 .
02706.

Achim Krause and Thomas Nikolaus. Algebraic Geometry. Lecture notes from the University of Miinster.
2021. URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Files/Algebraic
20Geometry.pdf.

Masaki Kashiwara and Pierre Schapira. Categories and Sheaves. Vol. 332. Grundlehren der mathematis-
chen Wissenschaften. Berlin: Springer, 2005. 1SBN: 978-3-540-27949-5. DOI: 10.1007/3-540-27950-4.

Qing Liu. Algebraic Geometry and Arithmetic Curves. Vol. 6. Oxford Graduate Texts in Mathematics.
Translated from the French by Reinie Erné, Oxford Science Publications. Oxford: Oxford University
Press, 2002, pp. xvi+576.

Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton, NJ: Princeton
University Press, 2009, pp. xviii+925. 1SBN: 978-0-691-14049-0.

111


https://doi.org/10.1016/j.jalgebra.2013.09.050
https://doi.org/10.1016/j.jalgebra.2013.09.050
http://dx.doi.org/10.1016/j.jalgebra.2013.09.050
https://doi.org/10.1007/978-1-4612-0647-7
https://link.springer.com/book/10.1007/978-1-4612-0647-7
https://link.springer.com/book/10.1007/978-1-4612-0647-7
arXiv:2207.09929
https://doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1353/ajm.2001.0016
https://doi.org/10.1353/ajm.2001.0016
https://doi.org/10.1007/978-3-658-30733-2
https://doi.org/10.1007/978-3-658-30733-2
https://doi.org/10.1007/978-3-658-30733-2
https://arxiv.org/abs/2401.02706
https://arxiv.org/abs/2401.02706
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Files/Algebraic%20Geometry.pdf
https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Files/Algebraic%20Geometry.pdf
https://doi.org/10.1007/3-540-27950-4

112
[Mac98s]
[Mat80]
[MO15]

[01i78]

[01i83]

[PS13]

[Sch16]
[Sch19]

[Stacks]
[Vak17]

[Wei94]

[WK24]

REFERENCES

Saunders Mac Lane. Categories for the Working Mathematician. 2nd. Vol. 5. Graduate Texts in Math-
ematics. New York: Springer, 1998. 1SBN: 978-0-387-98403-0. DOI: 10.1007/978-1-4612-4726-9.

Hideyuki Matsumura. Commutative Algebra. Mathematics Lecture Note Series. Reading, MA: Ben-
jamin/Cummings Publishing Company, 1980.

David Mumford and Tadao Oda. Algebraic Geometry II. Hindustan Book Agency, 2015. 1SBN: 978-93-
80250-80-9.

Jean-Pierre Olivier. “I’anneau absolument plat universel, les épimorphismes et les parties constructibles” .Jj
In: Bol. Soc. Mat. Mezicana (2) 23.2 (1978), pp. 68-74. URL: https://www.boletin.math.org.mx/
pdf/2/23/BSMM(2) .23.68-74.pdf.

J.-P. Olivier. “Going up along absolutely flat morphisms”. In: J. Pure Appl. Algebra 30.1 (1983), pp. 47—
59. 18SN: 0022-4049,1873-1376. DOIL: 10.1016/0022-4049(83)90038-5. URL: https://doi.org/10.
1016/0022-4049(83)90038-5.

Kate Ponto and Michael Shulman. “Traces in symmetric monoidal categories”. In: Ezxpositiones Mathe-
maticae 31.2 (2013), pp. 130-159. DOI: 10.1016/j.exmath.2013.03.002. URL: https://doi.org/10.
1016/j.exmath.2013.03.002.

Peter Scholze. Algebraic Geometry I. Lecture notes from the University of Bonn. 2016. URL: https:
//www.math.uni-bonn.de/people/mihatsch/24%20SS/ec/notes.pdf.

Peter Scholze. Lectures on Condensed Mathematics. Lecture notes, University of Bonn. 2019. URL: https:
//www.math.uni-bonn.de/people/scholze/Condensed.pdf.

Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2017.

Ravi Vakil. The Rising Sea: Foundations of Algebraic Geometry. 2017. URL: http://math.stanford.
edu/~vakil/216blog.

Charles A. Weibel. An Introduction to Homological Algebra. Vol. 38. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1994. 1SBN: 9780521559874. DOI: 10.1017/CB09781139644136.1
URL: https://doi.org/10.1017/CB09781139644136.

Fanggui Wang and Hwankoo Kim. Foundations of Commutative Rings and Their Modules. English. 2nd.
Vol. 31. Algebra and Applications. Singapore: Springer, 2024, pp. xxi + 847. ISBN: 978-981-97-5284-3.


https://doi.org/10.1007/978-1-4612-4726-9
https://www.boletin.math.org.mx/pdf/2/23/BSMM(2).23.68-74.pdf
https://www.boletin.math.org.mx/pdf/2/23/BSMM(2).23.68-74.pdf
https://doi.org/10.1016/0022-4049(83)90038-5
https://doi.org/10.1016/0022-4049(83)90038-5
https://doi.org/10.1016/0022-4049(83)90038-5
https://doi.org/10.1016/j.exmath.2013.03.002
https://doi.org/10.1016/j.exmath.2013.03.002
https://doi.org/10.1016/j.exmath.2013.03.002
https://www.math.uni-bonn.de/people/mihatsch/24%20SS/ec/notes.pdf
https://www.math.uni-bonn.de/people/mihatsch/24%20SS/ec/notes.pdf
https://www.math.uni-bonn.de/people/scholze/Condensed.pdf
https://www.math.uni-bonn.de/people/scholze/Condensed.pdf
http://stacks.math.columbia.edu
http://math.stanford.edu/~vakil/216blog
http://math.stanford.edu/~vakil/216blog
https://doi.org/10.1017/CBO9781139644136
https://doi.org/10.1017/CBO9781139644136

Index

A-valued points, 47
p-adic numbers, 33
Cech cohomology, 86
Cech complex, 85

absolute Frobenius, 9

absolutely flat, 16

action, 55

acyclic assembly lemma, 90
additive group, 28

adeles, 78

affine, 58

affine n-space, 26

affine communication lemma, 49
affine line, 26

affine line with doubled origin, 63
affine schemes, 26

affine space, 26

affine-local, 50

almost N-regular sequence, 83
Amitsur complex, 16

ample line bundle, 96
annihilator, 37

arithmetic surface, 14

base change, 15
basic open subsets, 5
blow-up, 55
boundary, 9
Bézout’s theorem, 93

Chevalley’s theorem on constructible sets, 38

Chow’s lemma, 66

class number formula, 78
clopen, 20

closed embedding, 59
closed point, 7

cocycle condition, 21, 49
coherent, 94

coherent rings, 94

cohomology commutes with flat base change, 90

compact Hausdorff spaces, 62
complex projective space, 51
connected, 21, 51

conservative, 10, 43
constant sheaf, 74
constructible, 37
cusp, 37

dense, 7

derived categories, 92
derived functor, 92
determinant, 81

direct image functor, 23, 72
discrete valuation rings, 33
domain, 27

dominant, 7

dominates, 32

dual Koszul complex, 82
dual line bundle, 76
dualizable object, 79

Euler characteristic, 88, 93
extension by zero, 74
exterior algebra, 81

factorial, 50

faithfully flat, 14

Fermat’s last theorem, 48

fibers, 11

finite, 29, 60

finitely presented quasi-coherent sheaf, 79
flat, 14

Frobenius, 9

functor of points approach, 74

generalization, 7

generated by global sections, 96
generic point, 6

global sections, 19

global sections functor, 24
glue, 21, 28

graded ideal, 52

graded ring, 52

graded ring homomorphism, 52
Grothendieck group, 78

group schemes, 28

Hartog’s theorem, 28

113



114

Hausdorft, 62

Hilbert’s Nullstellensatz, 39
homogeneous, 52
homogeneous of degree n, 52
homogeneous polynomials, 52
hypersurface, 93

idempotent, 20
infinite-dimensional affine space, 8, 39
integral, 29, 51

integral adeles, 78

integral closure, 30

integral extension, 29

integral map, 29

integral ring homomorphism, 29
integrally closed, 30, 33

inverse image functor, 72
invertible sheaves, 79
irreducible, 8, 51

irreducible component, 8
irrelevant ideal, 52

Jacobson radical, 30

K-group, 78
Koszul complex, 81
Krull dimension, 12

Lazard’s theorem, 14

line bundle, 75

Liouville’s theorem, 54, 95
local map, 11

local ring, 10

locally closed embedding, 59
locally Noetherian, 50

locally of finite presentation, 60
locally of finite type, 60

locally ringed space, 22

minimal, 8

monoidal unit, 79

morphism of locally ringed spaces, 23
multiplicative group, 26

Nakayama lemma, 31
nil-radical, 6, 9

nilradical, 9

Noether normalization, 36
Noetherian, 8, 50

normal, 50

normalization, 37

of finite type, 60

open embedding, 59

open map, 38
open maps, 14
origin, 26
points, 12

presheaf, 18

Proj construction, 52
projective space, 52
projective variety, 95
proper, 33, 63

pullback functor, 72
punctured plane, 28
pushforward functor, 72

quasi-affine scheme, 49
quasi-coherent sheaf, 70
quasi-compact, 6, 60
quasi-separated, 59, 72

radical, 6, 8, 30
reduced, 51
reducible, 9

regular sequence, 83
residue field, 11
restriction map, 18
ringed space, 22

saturation, 41

scheme, 47
scheme-theoretic intersection, 60
schemes glue, 49
separated, 62

Serre twist, 71

sheaf, 19

sheaf of Ox-modules, 67
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