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Chapter 1

Rings and their spectra

All theorems in algebraic geometry are ultimately grounded in commutative algebra, or the theory
of commutative rings (and their modules). In this chapter, we study a few ring-theoretic notions,
and introduce the Zariski topology on the spectrum of a ring.

Convention 1.0.1. Throughout, all rings are commutative, associative and unital. We use A to
denote a ring and k for a field.

The following definition opens the door from commutative algebra to algebraic geometry.

Definition 1.0.2. The spectrum of A is the set

SpecA :“ tp Ă A prime idealu.

For a map f : A Ñ B of rings, we have an induced map (of sets, for now),

SpecB Ñ SpecA, qpĂ Bq ÞÑ f´1
pqq, (1.0.3)

noting that f´1pqq is a prime ideal in A. We will denote this map by Spec f or just f . Sometimes
we also use a different letter such as φ in order to avoid an overload of notation.

1.1 The Zariski topology

For f P A, we denote

Dpfq :“ tp Ă A | f R pu.

Recall that these prime ideals are precisely the prime ideals of the localization Arf´1s (more
precisely, the map SpecpArf´1sq Ñ SpecA from (1.0.3) is injective and its image is Dpfq.)

Definition 1.1.1. The Zariski topology on SpecA is defined to be the topology generated by the
subsets Dpfq. These subsets are called basic open subsets .

Remark 1.1.2. Since Dpfq X Dpgq “ Dpfgq, the open subsets in SpecA are therefore (possibly
infinite) unions of open subsets of the basic open subsets. We have Dp0q “ H and Dp1q “ SpecA.

Lemma 1.1.3. If f : A Ñ B is a ring map, then φ : SpecB Ñ SpecA is continuous (for the
Zariski topology). More precisely φ´1pDpaqq (for some a P A) equals the fundamental open subset
Dpfpaqq Ă SpecB.

Proof. This is directly clear from the definitions.

5



6 CHAPTER 1. RINGS AND THEIR SPECTRA

The closed subsets of this topology are the of the form

V pMq :“ tp Ă A | M Ă pu,

whereM Ă A is an arbitrary subset. Indeed, V pMq “
Ş

fPM V ptfuq, and V ptfuq is the complement

of Dpfq. In the above it is enough to consider M to be an ideal. Indeed, if I Ă A denotes the
ideal generated by M , then

V pMq “ V pIq.

We can make a more precise relation between closed subsets of SpecA and (certain) ideals of A as
follows. Recall that the radical

?
I of an ideal I is defined as

?
I :“ ta P A | an P I for n " 0u. (1.1.4)

A basic statement of commutative algebra [Stacks, Tag 00E0] asserts
?
I “

č

pĄI,p a prime ideal

p. (1.1.5)

As a special case, the nil-radical is
?
0 :“ ta P A | an “ 0 for n " 0u “

č

p prime ideal

p.

For a subset Y Ă SpecA, we define

IpY q :“
č

pPY

p.

This is clearly an ideal; one should think of this as the ideal of those elements f P A “vanishing”
at all points in Y in the sense explained in (1.2.5) below.

Lemma 1.1.6. There are mutually inverse bijections

␣

J Ă A ideal | J “
?
J
(

V p´q
//
tY Ă SpecA closedu .

Ip´q

oo

Slightly more generally and precisely:
(1) IpY q “

a

IpY q for any (not necessarily closed) subset Y Ă SpecA.

(2) IpV pJqq “
?
J for any ideal J .

(3) V pIpY qq “ Y (the closure).

Proof. (1): We have p “
?
p for any prime ideal, and also for any intersection of prime ideals, such

as IpY q. (2): This is a reformulation of (1.1.5). (3): A closed subset V pKq (for some ideal K)
contains Y iff K is contained in the prime ideals p belonging to Y , which happens iff K Ă IpY q.
The stated bijection is then a consequence of (2) and (3).

The Zariski topology is very different from topological spaces such as Rn, as we will soon
understand. In the sequel, we will define several basic properties of a topological space and then
rephrase them in ring-theoretic terms.

Definition 1.1.7. Let X be a topological space, and x, y P X.

• We call X quasi-compact if for every open covering X “
Ť

iPI Ui there is a finite subcovering,
i.e., already finitely many of the Ui cover X.

• We say x is a generic point if txu “ X. This is equivalent to requiring x to be contained in
any non-empty open subset U Ă X.

http://stacks.math.columbia.edu/tag/00E0


1.1. THE ZARISKI TOPOLOGY 7

• We say x is a closed point if txu “ txu. (Note this is the other extreme in comparison to a
generic point.)

• We write x⇝ y if y P txu, i.e., y lies in the closure of x. We say that y is a specialization of
x (or x is a generalization of y) in this case.

Lemma 1.1.8. (1) We have V ppq “ tpu for any prime ideal p.

(2) p⇝ q iff p Ă q. In particular:

• p is a generic point in SpecA iff p “
?
0 (the nilradical).

• p is a closed point iff p is a maximal ideal.

Proof. (1) holds directly by definition. This implies the other claims as well: p is a generic point
iff p is contained in every prime ideal, i.e., p Ă

Ş

q prime q “
?
0. However, for any prime ideal, we

always have
?
0 Ă p, so the preceding containment is actually equivalent to p “

?
0.

Remark 1.1.9. Unlike many topological spaces encountered in other branches of mathematics,
SpecA is very rarely Hausdorff (and therefore compact in the sense of usual point-set topology);
we will describe this precisely in Lemma 1.4.9.

Lemma 1.1.10. (1) For a subset S Ă A, V pSq “ H iff S generates the unit ideal, i.e., if 1 “
ř

siti
for appropriate si P S and ti P A.

(2) Suppose a set of elements fi P A is fixed. Then
Ť

iDpfiq “ SpecA iff the fi generate the unit
ideal.

(3) For f, g P A we have Dpfq Ă Dpgq iff g is a unit in Arf´1s (in which case there is a ring
homomorphism Arg´1s Ñ Arf´1s). In particular,

Dpfq “ Dpgq ô Arf´1
s “ Arg´1

s. (1.1.11)

(4) SpecA is quasi-compact.

Proof. For (1) we note that V pSq “ V pIq where I is the ideal generated by S. An ideal I is the
unit ideal precisely if it is not contained in any maximal ideal.

(2) follows from (1) by passing to the open complements.
(3): We have Dpfq Ă Dpgq iff Dpfq “ Dpfq X Dpgq i.e., iff Dpfq “ Dpfgq. We note that

Dpfq “ SpecArf´1s. Thus, applying (2) to the ring Arf´1s, the preceding condition holds iff fg
generates the unit ideal in Arf´1s which happens iff g is a unit in Arf´1s.

For (4), it is enough to show that any covering SpecA “
Ť

iPI Dpfiq by basic open subsets
admits a finite subcovering. This condition is equivalent to

Ş

i V ptfiuq “ H. This implies the
claim by (1). Indeed, any element in the ideal generated by the fi is a finite linear combination of
the fi.

Lemma 1.1.12. Let f : A Ñ B be a ring homomorphism and φ : SpecB Ñ SpecA the induced
map. Let J Ă B be an ideal. Then

V pf´1
pJqq “ φpV pJqq. (1.1.13)

In particular φ is dominant (i.e., its image imφ is dense) iff every element of ker f is nilpotent.
In particular, if A is reduced then f is injective iff φ has dense image.
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Proof. We have the following equalities of ideals in A:

IpφpV pJqqq :“
č

pPφpV pJqq

p “
č

qPV pJq

f´1
pqq “ f´1

¨

˝

č

qPV pJq

q

˛

‚

(1.1.5)
“ f´1

p
?
Jq “

a

f´1pJq.

We then apply V p´q and conclude the assertion in (1.1.13) using Lemma 1.1.6(3) for the right
hand side.

For the next claim, take J “ 0, and note that for an ideal I Ă A the inclusion SpecA{I Ă SpecA
is an equality precisely if I is contained in the nilradical (Exercise 1.1.22(4)).

Definition 1.1.14. A topological space is called Noetherian if the descending chain condition
holds for closed subsets, i.e., if any sequence

X Ą V1 Ą V2 Ą . . .

satisfies Vn “ Vn`1 “ . . . for large enough n.

Lemma 1.1.15. If A is a Noetherian ring, then SpecA is a Noetherian topological space in the
sense above.

Definition 1.1.16. A topological space X is called irreducible if X ‰ H and whenever

X “ V Y W

for two closed subsets V and W , necessarily there holds X “ V or X “ W .
A subset Z Ă X is called an irreducible component if it is a maximal irreducible subset of X.

Lemma 1.1.17. (1) The irreducible closed subsets of SpecA are exactly the subsets V ppqp“ tpuq,
for arbitrary prime ideals p.

(2) The irreducible components of SpecA are exactly the subsets V ppq with p being a minimal
prime ideal.

In particular, if A is a domain (i.e., has no zero-divisors), so that p0q is a prime ideal, then
SpecA is irreducible.

Exercises

Exercise 1.1.18. (1) If X is a Noetherian topological space and U Ă X open, prove that U is
quasi-compact.

(2) Let A be a Noetherian ring. Show that any open subset U Ă SpecA is necessarily a finite
union of basic open subsets, i.e., U “

Ťn
i“1Dpfiq.

(3) Let A “ Zrt1, t2, . . . s (countably many variables). Show that U :“ SpecAzV ppt1, t2, . . . qq can
not be covered by finitely many basic open subsets. In the parlance of Definition 1.6.20 below,
one may think of SpecA as an infinite-dimensional affine space, and U the complement of the
origin in there.

Exercise 1.1.19. Let I Ă A be an ideal. Prove that V pIq “ V p
?
Iq, where

?
I :“ ta P A, an P Iu

denotes the radical of I.

Exercise 1.1.20. Let X be a topological space.
(1) If X is irreducible and U Ă X open, prove that U is irreducible.

(2) Prove that X is irreducible iff for any open H ‰ U, V Ă X one has U X V ‰ H (i.e., any two
open subsets intersect, unless one of them is empty).
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Exercise 1.1.21. (Solution at p. 105)
(1) Prove that a subset Y Ă SpecA is irreducible iff IpY q is a prime ideal.

(2) Deduce that SpecA is irreducible iff the nilradical
?
0 is a prime ideal in A.

(3) One of the following three is reducible (i.e., not irreducible). Which one? SpecZrx, ys{x2 ´ y2,
SpecZrx, ys{x2 ´ y3, SpecZrx, ys{xy´ 1. (In particular, this shows that a closed subscheme of
SpecZrx, ys, which is irreducible, may be reducible. This is in contrast with the permanence
of irreducibility for open subsets proved in Exercise 1.1.20.)

Exercise 1.1.22. Let A be a ring, f P A and I Ă A an ideal.
(1) Prove that the map SpecArf´1s Ñ Dpfq is a homeomorphism, where we endow Dpfq with the

subspace topology of SpecA. Slightly more generally, prove that for a multiplicatively closed
subset S Ă A, there is a homeomorphism (where the right hand side carries the subspace
topology of SpecA)

SpecArS´1
s Ñ tp P SpecA, p X S “ Hu.

(2) Prove that the map SpecA{I Ñ V pIq is a homeomorphism, where we endow V pIq with the
subspace topology of SpecA.

(3) Deduce that there is a homeomorphism

SpecpAredq :“ SpecpA{
a

t0uq Ñ SpecA, (1.1.23)

where
a

t0u denotes the nil-radical of A.

(4) Strengthen the previous assertion as follows: for an ideal I Ă A the inclusion SpecA{I Ă

SpecA is an equality precisely if I Ă
?
0.

Exercise 1.1.24. Show that the converse of Lemma 1.1.15 fails (e.g., using Exercise 1.1.22).

Exercise 1.1.25. (Solution at p. 105) Recall that the boundary of an open subset U Ă X in some
topological space is defined as

BU :“ UzU.

Let X “ SpecA and U “ Dpfq for some f P A. Establish a bijection

BU “ SpecA{I,

where I is the ideal generated by f and
?
0 : pfq :“ tr P A|rf P

?
0u “ tr P A|prfqn “

0 for some n " 0u.
Hint: prove that Dprq “ H iff r P

?
0.

Exercise 1.1.26. Let Ai, i P I be an infinite set of rings, such that Ai ‰ 0. Is there a ring A such
that there is a homeomorphism of topological spaces as follows:

SpecA “
ğ

i

SpecAi ?

Exercise 1.1.27. Let C “ SpecZrt, us{tu. Show that C1 :“ SpecZrus and C2 :“ SpecZrts are
the irreducible components of C.

Exercise 1.1.28. Let q “ pr be a prime power, and Fq a field with q elements. Recall that for any
Fq-algebra A, the Frobenius (or, in certain situations also referred to as the absolute Frobenius) is
the ring homomorphism (!)

Frob : A Ñ A, a ÞÑ aq.
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The induced map on affine spectra is again denoted Frob:

Frob : SpecA Ñ SpecA.

Prove that this latter map Frob is the identity on the level of the underlying sets(!)
In particular, it is a homeomorphism (on the level of the underlying topological spaces). Of

course, Frob is not an isomorphism of rings for example for A “ Fqrts.

Exercise 1.1.29. Let A “ Fqrt1, . . . , tns{pf1, . . . , fmq be a finitely generated Fq-algebra. Fix an
algebraic closure Fq and write A :“ AbFqFq. For λi P Fq, i “ 1, . . . , n such that fjpλ1, . . . , λnq “ 0

(for all j), we consider the maximal ideal m “ pti ´ λiqA. (According to Hilbert’s Nullstellensatz,
to be proved below in Corollary 1.9.2, all maximal ideals of A are of that form.)

Consider the map
FrobA b idFq

: A Ñ A.

Prove that the induced map on spectra

SpecA Ñ SpecA

has the property that it sends
mpλ1,...,λnq ÞÑ mpλq1,...,λ

q
nq.

In other words, this is the map that geometrically corresponds to raising the coordinates to the
q-th power. This map is of paramount importance in the study of algebraic geometry over a field
of positive characteristic.

1.2 Local rings

Definition and Lemma 1.2.1. The following properties are equivalent:
(1) A has exactly one maximal ideal (which is commonly denoted m or mA), i.e., SpecA has exactly

one closed point.

(2) A ‰ 0 and AzAˆ (the elements in A that are not a unit) forms an ideal.

(3) A ‰ 0 and if f ` g P Aˆ then f P Aˆ or g P Aˆ.

(4) A ‰ 0 and for any f P A we have f P Aˆ or 1 ´ f P Aˆ.
If these conditions are satisfied, A is called a local ring .

Proof. The simple proof is omitted. We only note that AzAˆ is the unique maximal ideal of A in
this case. See, e.g., [Stacks, Tag 07BJ] for further details.

Example 1.2.2. • A field k is a local ring.

• Z is not a local ring (the maximal ideals are the principal ideals ppq for the prime numbers
p).

• krts is not a local ring since neither t nor 1´ t is a unit in krts. Moreover, the maximal ideals
are precisely the ones of the form pfq, where f is an irreducible polynomial. (Immediately,
there is more than one of them, namely f “ t and f “ t`1. In fact there are infinitely many,
even if k is a finite field.

Definition and Lemma 1.2.3. Let f : A Ñ B be a ring homomorphism between two local rings.
The following are equivalent:
(1) f´1pBˆq “ Aˆ. A ring homomorphism with that property is called conservative.

(2) fpmAq Ă mB,

http://stacks.math.columbia.edu/tag/07BJ
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(3) f´1pmBq “ mA.

The map f is called a local map in this event.

Proof. The proof is again very simple, since mB “ BzBˆ.

Recall that for any ring A and any prime ideal p Ă A, the localization is defined as

Ap :“ ArpAzpq
´1

s.

This is a local ring whose unique maximal ideal is pAp. The quotient field

kppq :“ Ap{pAp

of that maximal ideal is called the residue field of p. For each prime ideal p, there is a natural map

A Ñ Ap Ñ kppq. (1.2.4)

This allows us to think of an element f P A as a function taking values in the residue fields (which
are generally different for different p). The map Ap Ñ A{p in (1.2.4) is a local map.

For a subset Y Ă SpecA, we have

IpY q :“
č

pPY

p “ ker

˜

A Ñ
ź

pPY

kppq

¸

, (1.2.5)

(if a
1

P pAp, i.e.
a
1

“
p
s
with p P p and s R p then ast “ pt for some t R p, i.e., ast P p, so that a P p).

In topology, one understands a continuous map f : X Ñ Y (to a certain extent) if one un-
derstands the so-called fibers f´1pyq for all y P Y . Here is the corresponding algebro-geometric
notion.

Lemma 1.2.6. Let f : A Ñ B be a ring map and φ : SpecB Ñ SpecA the induced map on
spectra. Fix some p Ă A. Then there is a homeomorphism

SpecpB bA kppqq
–
Ñ φ´1

ppq

(where at the left the tensor product is formed using the canonical map (1.2.4) and the space at
the right carries the subspace topology of SpecB).

Proof. We have

B bA Ap “ B bA ArpAzpq
´1

s “ BrfpAzpq
´1

s

and by Exercise 1.1.22(1) the spectrum of this ring is homeomorphic to tq P SpecB | qXfpAzpq “

Hu. That latter condition is equivalent to f´1pqq X pAzpq “ H, or to f´1pqq Ă p.

We then have

B bA kppq “ B bA Ap{pAp.

According to Exercise 1.1.22(2), its spectrum is homeomorphic to tq P SpecBbAAp | fppApq Ă qu,
which is equivalent to fppq Ă q and, in the presence of the above condition, to f´1pqq “ p.

Corollary 1.2.7. In the above situation, we have

φpSpecBq “ tp P SpecA | Bp{pBp ‰ 0u.
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Exercises

Exercise 1.2.8. Let A be a ring and X “ SpecA. Show that A is local if and only if for every
open covering X “

Ť

iPI Ui, there is some i such that Ui “ X. One refers to this statement by
saying that (spectra of) local rings are the points of the Zariski topology.

Exercise 1.2.9. Show that the assignment

p ÞÑ pA
(1.2.4)

Ñ kppqq

gives rise to a bijection

SpecA
1:1
Ñ

ğ

k

HomRingspA, kq{ „,

where at the right the disjoint union runs over the collection (actually, a proper class) of all fields
and a ring homomorphism f : A Ñ k is identified with g : A Ñ k1 (possibly for some other field
k1) if there is a commutative diagram

A
f
//

g
  

k

��

k1.

Exercise 1.2.10. (Solution at p. 106) Let π : A1 :“ SpecZrts Ñ SpecZ be the map induced by
the inclusion Z Ă Zrts. Using the description of the points of x P A1 from Exercise 1.3.7, describe
πpxq for each point x P A1.

1.3 Dimension

Definition 1.3.1. The Krull dimension of a topological space X, is

dimX :“ suptn|Z0 Ĺ Z1 Ĺ ¨ ¨ ¨ Ĺ ZnpĂ Xqu,

where the supremum is taken over all chains of irreducible closed subsets. (Thus dimX “ 8 iff
arbitrarily long chains exist, it is by convention ´8 iff X “ H.)

Definition 1.3.2. The Krull dimension of A is

dimA :“ dimSpecA “ suptn|p0 Ľ p1 Ľ ¨ ¨ ¨ Ľ pnu,

where the supremum is taken over all chains of prime ideals.

Example 1.3.3. (1) A ring A is zero-dimensional iff every prime ideal is maximal. This is the
case if A is a field or, more generally, if A is an Artinian ring (see [Stacks, Tag 00JA]; in fact
the Artinian rings are precisely the zero-dimensional Noetherian rings [Stacks, Tag 00KH]). In
particular, if A is a k-algebra that is finitely generated as a k-vector space (as opposed to being
finitely generated as a k-algebra!), we have dimA “ 0. We will give a complete description of
reduced 0-dimensional rings in Lemma 1.4.9.

(2) For a principal ideal domain A that is not a field, such as A “ Z or A “ krts, we have
dimA “ 1: the chain of prime ideals are p0q Ĺ pfq (with f being irreducible elements of A).
Note that p0q is the generic point, and the ideals pfq are the closed points.

(3) For A “ krt1, . . . , tns we have the chain of prime ideals

p0q Ă pt1q Ă pt1, t2q Ă ¨ ¨ ¨ Ă pt1, . . . , tnq,

so dimA ě n. We will see below that there are no longer chains of prime ideals, i.e.,
dim krt1, . . . , tns “ n (Corollary 1.9.3).

http://stacks.math.columbia.edu/tag/00JA
http://stacks.math.columbia.edu/tag/00KH
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(4) We have dimZrts “ 2, cf. Exercise 1.3.7.

(5) By definition, the dimension only “sees” the underlying topological space of SpecA. In par-
ticular, we have dimA “ dimAred, cf. (1.1.23).

Despite its simplicity, the dimension of a ring is actually not always harmless to work with. We
will use the following properties, which are non-trivial to prove.

Theorem 1.3.4. Let A be a Noetherian local ring, with m its maximal ideal.
(1) [Stacks, Tag 00KD] If m is generated by, say, n elements, then

dimA ď n.

In particular,

dimA ă 8.

(2) [Stacks, Tag 00KW] For x P m we have

dimA{x ě dimA ´ 1.

If x not contained in a minimal prime ideal of A (for example x a non-zero divisor) we have

dimA{x “ dimA ´ 1.

(I.e., modding out x causes the dimension to drop at most by 1, and it does drop if x is not a
zero-divisor.)

For a Noetherian, but non-local ring, we may have dimA “ 8 (despite all its localizations having
finite dimension), see [Stacks, Tag 02JC] for an example of the form A “ krx1, x2, . . . srS

´1s.

Theorem 1.3.5. For a Noetherian ring A,

dimArts “ dimA ` 1.

(I.e., one side is finite iff the other is, and equality holds in that case.)

This theorem is originally due to Krull. The theorem also holds if A is a valuation ring. See
[Bre+73] for a uniform proof of both statements.

Warning 1.3.6. For an arbitrary ring, a theorem due to Seidenberg1 asserts that if dimA “ d,
then

d ` 1 ď dimArts ď 2d ` 1,

and (for appropriate non-Noetherian rings), each value in between d`1 and 2d`1 can be attained.
See [Bou06, Chapter VIII, §2, Corollaire 2]. Because of that, we will consider the dimension of
(local) rings only in the context of Noetherian rings in this course. As an outlook, we just mention
the existence of valuative dimension of a ring, introduced by Jaffard [Jaf60] and denoted dimvA.
See, e.g., [WK24, §5.4.3] for a textbook account. It has the following properties:

• One has dimA ď dimvA.

• If A is Noetherian or a valuation ring, then dimA “ dimvA.

• For any ring A, we have dimvArts “ dimvA.

1https://msp.org/pjm/1954/4-4/pjm-v4-n4-p09-p.pdf

http://stacks.math.columbia.edu/tag/00KD
http://stacks.math.columbia.edu/tag/00KW
http://stacks.math.columbia.edu/tag/02JC
https://msp.org/pjm/1954/4-4/pjm-v4-n4-p09-p.pdf
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Exercises

Exercise 1.3.7. (Solution at p. 106)
(1) Prove that the prime ideals of Zrts are precisely the following:

• The zero ideal p0q.

• A principal ideal of the form pZrts, for a prime number p.

• A principal ideal of the form pfq, where f P Zrts is an irreducible polynomial of degree ą 0
whose coefficients have no common prime divisor (equivalently, the ideal I Ă Z generated
by the coefficients of f satisfies I “ Z).

• An ideal of the form pp, fq, where p is a prime, f is again an irreducible polynomial such
that its image in Fprts is still irreducible.

Hint: any ideal is of the form pa1, . . . , an, f1, . . . , fmq with ai P Z and fj polynomials of positive
degree. The above four cases correspond to m,n “ 0, 1 respectively.

(2) Prove that the first is the generic point, the latter type of ideals the maximal ideals. Deduce

dimZrts “ 2.

For this reason, on refers to A1
Z “ SpecZrts as an arithmetic surface.

(3) Discuss the relation of this fact with dimFprts “ 1 and dimQrts “ 1.

Exercise 1.3.8. (Solution at p. 106)
(1) Give an example of a ring A with 5 prime ideals, of which 4 are maximal and 1 is not maximal.

(2) What is the dimension of A?

1.4 Flatness

Recall that for a ring A, an A-module M is called flat (or flat over A to emphasize the ring A) if

M bA ´ : ModA Ñ ModA

is an exact functor. (For anyM , this functor is right exact, so the actual condition is thatMbAN
is a submodule of M bA N

1, for any submodule N Ă N 1.) If f : A Ñ B is a ring homomorphism,
we say that f is flat (or that B is flat over A) if B is flat as an A-module.

A flat module (or algebra) is called faithfully flat if M bA ´ is conservative (i.e., M bA N Ñ

M bAN
1 is an isomorphism (if and) only if N Ñ N 1 is an isomorphism); equivalenty M is flat and

M bA N “ 0 (if and) only if N “ 0.

Example 1.4.1. (1) Any free A-module M –
À

iPI A is flat (and it is faithfully flat iff M ‰ 0 or
equivalently I ‰ H). Indeed, M bt hAN “

À

iPI N .

• As a special case: Arts and more generally Arti, i P Is is a faithfully flat A-algebra.

• Another special case: if A “ k is a field, any k-module is free (i.e., has a basis), and in
particular any module or algebra over a field k is flat.

(2) Unlike the inclusion A Ă Arts, the unique ring homomorphism Arts Ñ A satisfying t ÞÑ 0 is not
flat: the multiplication by t : Arts Ñ Arts is injective, but after applying AbArts´, i.e., applying
p´q{t, we get the map t “ 0 : A “ Arts{t Ñ A, which is no longer injective. We will see in
Proposition 1.8.7 that any flat ring map A Ñ B often induce open maps SpecB Ñ SpecA
(i.e., images of open subsets are open). However, the image of SpecA Ñ SpecArts is closed.
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(3) Filtered colimits of flat A-modules are flat. This is true since colimMibA´ “ colimpMibA´q

and taking a filtered colimits of exact sequences of A-modules gives an exact sequence.

In fact, this is not just an example, but all flat modules arise this way. More precisely,
Lazard’s theorem asserts that M is flat iff it is a filtered colimit of finite free A-modules
[Stacks, Tag 058G].

(4) As a special case of filtered colimits, we have that any localization Arf´1s or ArS´1s of a ring

is flat. (There is an isomorphism of A-modules Arf´1s “ colimpA
f

Ñ A
f

Ñ . . . .) It is typically
not faithfully flat though: we have Arf´1s bA A{f “ pA{fqrf´1s “ 0, but A{f ‰ 0 (unless f
is a unit).

(5) If A Ñ B is a ring homomorphism andM is a flat A-module, thenM bAB is a flat B-module.
Indeed

M bA B bB ´ “ M bA ´

is an exact functor. This property is referred to by saying that “flatness is preserved under
base change”.

Lemma 1.4.2. Suppose M is a flat A-module. The following are equivalent:
(1) M is faithfully flat,

(2) M{IMp“ A{I bAMq ‰ 0 for any ideal I Ĺ A,

(3) M{pMp“ A{p bAMq ‰ 0 for any prime ideal p Ă A,

(4) M{mMp“ A{m bAMq ‰ 0 for any maximal ideal m Ă A.

Proof. Clearly we have (1) ñ (2) ñ (3) ñ (4).
(2) ñ (1): suppose N is an A-module such that M bAN “ 0. Any element n P N gives rise to

an exact sequence
0 Ñ I :“ AnnNn Ñ A

n
Ñ N,

which (using that M is flat!) then gives

0 Ñ I bAM Ñ M Ñ N bAM.

By assumption the right hand term vanishes, so that the left map is an isomorphism, which by (2)
implies I “ A, i.e., n “ 0.

(4) ñ (2): any proper ideal I is contained in some maximal ideal m, i.e., there is a surjection
A{I Ñ A{m. Applying ´ bAM gives a surjection M{IM Ñ M{mM . Thus, if M{mM ‰ 0, then
also M{IM ‰ 0.

Lemma 1.4.3. Let f : A Ñ B be a flat ring map.
(1) Then f is faithfully flat if and only if f induces a surjective map φ : SpecB Ñ SpecA.

(2) If f is a (flat) local map of local rings, it is faithfully flat.

Proof. (1): Let p Ă A be a prime ideal. Then φ´1ppq “ SpecpBp{pBpq (Lemma 1.2.6). This is
empty iff Bp{pBp “ pB{pBqp “ 0 iff B{pB “ 0. (For the latter equivalence we use that for a ring
C and a multiplicatively closed subset S Ă C, 0 R S we have C “ 0 iff CrS´1s “ 0.) We conclude
by Lemma 1.4.2.

(2): since the map is local, we have fpmAq Ă mB, so that we have a natural map A{mA Ñ

B{mAB Ñ B{mB, which is a ring homomorphism between fields and therefore injective; in partic-
ular B{mAB ‰ 0.

Example 1.4.4. Let f1, . . . , fn P A. The following are equivalent:

http://stacks.math.columbia.edu/tag/058G
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(1) The A-algebra
n
ź

i“1

Arf´1
i s

is faithfully flat.

(2) The fi generate the unit ideal.

(3) SpecA “
Ťn
i“1Dpfiq “

Ťn
i“1 SpecArf´1

i s.
Indeed, the equivalence (2) ô (3) was already shown in Lemma 1.1.10.

Corollary 1.4.5. An A-module M is flat iff all the localizations Mp (for all prime ideals p Ă A)
are flat over Ap.

Proof. Note that Mp “ M bA Ap for any M and A. Thus the direction “ñ” holds by stability of
flatness under base change (Example 1.4.1(5)).

The direction “ð” holds since the map A Ñ
ś

pAp is faithfully flat by Lemma 1.4.3: given
an injection N Ñ N 1 of A-modules, the injectivity of M bA N Ñ M bA N

1 can be checked after
applying ´ bA Ap (for all p).

Having these preliminary technical properties of flatness at our disposal, we now come to a key
reason why flatness is important in commutative algebra and algebraic geometry.

Lemma 1.4.6. If B is a faithfully flat A-algebra, and M is an A-module, then there is an exact
equence (of A-modules), called the Amitsur complex

0 Ñ M Ñ B bAM Ñ pB bA Bq bAM

where the first map is m ÞÑ 1bm and the second map is given by bbm ÞÑ bb 1bm´ 1b bbm.
(The key case to consider is M “ A, in which case this simplifies to

0 Ñ A
f

Ñ B
fb1´1bf

Ñ B bA B.q (1.4.7)

Proof. For simplicity of notation, we spell out the proof forM “ A; in general one simply appends
the functor ´ bAM to all the arguments in the proof below.
(1) We first prove it if f admits a section, i.e., an algebra map s : B Ñ A such that s ˝ f “ id.

Clearly the map f is injective then, so the sequence (1.4.7) is exact at the left. To check the
exactness in the middle, consider the map k : B bA B Ñ B satisfying kpb b b1q “ bfspb1q. It
satisfies kpb b 1 ´ 1 b bq “ b ´ fspbq, so if b b 1 ´ 1 b b “ 0, then b “ fspbq P fpAq. (To
demystify what might look an unmotivated trick above see Exercise 1.5.9.)

(2) Suppose A Ñ A1 is faithfully flat. Then we prove the claim for A1 Ñ A1 bA B implies the one
for A Ñ B. Indeed, the complex (1.4.7) for A1 Ñ A1 bAB is obtained from the one for A Ñ B
by applying ´ bA A

1 and this functor is exact (by flatness) and conservative (by faithfulness).

(3) The map idb 1 : B Ñ B bA B arises from f by applying B bA ´. In addition, the map idb 1
has a section given by the multiplication, so the asserted exactness holds by the first step. By
the second step, it then holds for f .

Definition 1.4.8. A ring A is called absolutely flat if any A-module M is flat.

We have noted above that any field is absolutely flat. Most rings are not absolutely flat, for
example Z is not absolutely flat since Z{p is not a flat Z-module. The following characterization
of absolutely flat rings is due to Olivier [Oli78]. Part (2) appears in [BSY22, Proposition 4.41].
We will later use this notion to prove Chevalley’s theorem on images of constructible sets.
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Lemma 1.4.9. The following are equivalent:
(1) A is absolutely flat.

(2) Any ring homomorphism Zrts Ñ A factors uniquely as shown below:

Zrts
tÞÑa //

tÞÑp0,tq
��

A

Z ˆ Zrt˘1s

D!

:: (1.4.10)

(3) Any a P A can be written as
a “ eu

for an idempotent e and a unit u.

(4) A is reduced and SpecA is Hausdorff.

(5) A is reduced and satisfies dimA “ 0.

(6) All its local rings Ap are fields.

Proof. Independently of the property of being absolutely flat etc., recall the category-theoretic fact
that (2) admits a unique lift if the right hand-vertical map h in the pushout diagram below is an
isomorphism:

Zrts

��

tÞÑa // A

h
��

Z ˆ Zrt˘1s // A bZrts pZ ˆ Zrt˘1sq

(1.4.11)

In more plain terms, this just means that the following map is a ring isomorphism:

A Ñ A{a ˆ Ara´1
s, x ÞÑ px,

x

1
q. (1.4.12)

We prove (1) ñ (2) by showing that h is an isomorphism provided that A is absolutely flat.
Since A is absolutely flat, the map h is flat. It is also surjective on the level of spectra (in fact
a bijection V paq \ Dpaq Ñ SpecA) and therefore faithfully flat. By faithful flatness we have an
exact Amitsur complex (1.4.7), cf. Lemma 1.4.6:

0 Ñ A
h

Ñ B
b ÞÑbb1´1bb

ÝÑ B bA B.

This complex arises from the similar complex for g : Zrts Ñ ZˆZrt˘1s by applying AbZrts ´. The
(non-exact) Amitsur complex for the (non-flat) map g is

0 Ñ Zrts Ñ Z ˆ Zrt˘1
s Ñ pZ ˆ Zrt˘1

sq bZrts pZ ˆ Zrt˘1
sq.

We claim the right hand map is zero. Indeed, Z bZrts Zrt˘1s “ 0 (geometrically this corresponds
to the fact that 0 X Gm “ H), so we only have to consider

Z Ñ Z bZrts Z,

Zrt˘1
s Ñ Zrt˘1

s bZrts Zrt˘1
s.

In both cases, for an element f in the domain, we have f b 1 “ 1 b f in the target, so the map
f ÞÑ f b 1 ´ 1 b f is zero in the Amitsur complex for g and hence this is also the case for the
Amitsur complex for h. Hence h is an isomorphism, confirming (2).

(2) ô (3) is left as Exercise 1.4.17.
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(3) ñ (4): suppose an “ 0 for some a P A. Writing a “ eu with an idempotent e and a unit u,
we have an “ enun “ 0, so 0 “ en “ en´1 “ ¨ ¨ ¨ “ e, so that a “ 0. We prove SpecA is Hausdorff:
consider two distinct prime ideals, say p Ĺ q (i.e., p⇝ q). Pick an element a P qzp. Again, writing
a “ eu as before, we have e “ u´1a P q, but e R p. For any idempotent e, we have a decomposition
into two clopen (closed and open) subsets SpecA “ V peq \ Dpeq. (Indeed, for an idempotent e,
one has V p1 ´ eq “ Dpeq, as one checks readily. Another approach to seeing this is offered by
Exercise 1.5.7.) This gives two open subsets separating p and q.

(4) ñ (5): if we had p Ĺ q then q P tpu, so p and q could not be separated by two open subsets.
(5) ñ (6): For p P SpecA, SpecAp “ tpu. Like A, Ap is reduced. Such rings are fields.
(6) ñ (1): An A-module M is flat iff all the Mp are flat over Ap (Corollary 1.4.5), and fields

are absolutely flat.

Remark 1.4.13. As a forecast to the upcoming notion of morphisms of affine schemes, condition
(2) above is equivalent to the existence and unicity of a map of affine schemes as pictured below
(where at the right we have the map SpecZ Ñ A1 induced by Zrts Ñ Z, t ÞÑ 0), and the standard
inclusion (1.6.33)):

0 \ Gm

��

SpecA

D!
99

a //A1.

(1.4.14)

Exercises

Exercise 1.4.15. If B is as in Example 1.4.4, prove the exactness of the Amitsur complex

0 Ñ A Ñ

n
ź

i“1

Arf´1
i s Ñ

n
ź

i,j“1

Arf´1
i f´1

j s

by hand (cf. Lemma 1.4.6). Explain how the complex fails to be exact if the fi do not generate
the unit ideal in A.

Exercise 1.4.16. Suppose f : A Ñ B is faithfully flat and an epimorphism (in the category of

rings, i.e., for B
g2
Ñ
g1
C with g1f “ g2f , we have g1 “ g2.) Show that f is an isomorphism.

Give an example of a (non-faithfully) flat epimorphism that is not an isomorphism.

Exercise 1.4.17. (Solution at p. 106)
(1) Prove the equivalence of (3) and (2) in Lemma 1.4.9.

Hint: recall or prove that there is a bijection HomRingspZrts, Aq “ A (given by f ÞÑ fptq).
Establish a related description of HomRingspZ ˆ Zrts, Aq and then HomRingspZ ˆ Zrt˘1s, Aq.

(2) Also prove that the map Zrts Ñ Z ˆ Zrt˘1s is an epimorphism (in the category of rings).
Conclude that in (2) one may equivalently drop the unicity of the lift (and only demand its
existence).

1.5 The structural sheaf on SpecA

As a mere set and also as a topological space, the spectrum of a ring does not distinguish between
a ring A and its associated reduced ring Ared :“ A{

?
0 (Exercise 1.1.22). Possibly even more

dramatically, the spectrum does not distinguish between fields: SpecFp and SpecQ are both
the one-point topological space. Thus, one needs to refine this topological space SpecA with an
additional datum, namely the structural sheaf. The purpose of the structural sheaf is to record
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the “allowed” functions on the open subsets of SpecA. This will in particular allow to recover the
ring A.

We begin by recalling some basic notions pertaining to sheaves. See, e.g., [Har83, §II.1], [GW20,
§II] or [Bre97, §§I.1–3] for more in-depth textbook accounts. A presheaf F on a topological space
X is a functor

F : OpenpXq
op

Ñ Set.

I.e., for any open U Ă X there is a set F pUq and whenever U Ă V are two open subsets of X,
there is a map (often called restriction map) resUV : F pV q Ñ F pUq that is compatible with further
restriction maps in the obvious sense. Note that the restriction map goes in the “wrong” way, i.e.,
F is a contravariant functor.

A morphism of presheaves F Ñ G is just a natural transformation of functors. Equivalently, it
is a collection of maps F pUq Ñ GpUq that commute with the restriction maps of F and G. This
defines the category PShpXq of presheaves. More succinctly, PShpXq :“ FunpOpenpXqop, Setq.

Of particular importance is the functor, called the global sections functor

Γ : PShpXq Ñ Set, F ÞÑ ΓpX,F q :“ ΓpF q :“ F pXq.

A presheaf is called a sheaf if for any open subset U Ă X and any covering U “
Ť

iPI Ui, the
natural map

F pUq

ś

resUUi
Ñ eq

˜

ź

iPI

F pUiq Ñ
ź

i,jPI

F pUi X Ujq

¸

is an isomorphism. (Here the two maps in the equalizer are the following: given a collection pfiqi
with fi P F pUiq, its image in the pi, jq-component in the right hand product is a) resUi

UiXUj
pfiq,

respectively b) res
Uj

UiXUj
pfiq. In other words, the equalizer consists of those collections pfiq that

restrict to the same elements in F pUi X Ujq. A morphism of sheaves is, by definition, just a
morphism of presheaves. In other words, we define the category ShvpXq of sheaves to be the full
subcategory of PShpXq consisting of the presheaves satisfying the above condition.

A noteworthy consequence of the definition is that

F pHq “ t˚u

for any sheaf, by applying the sheaf condition to the covering of H consisting of no open sets, i.e.,
ś

H
“ t˚u.

A (pre)sheaf of abelian groups or rings is defined similarly, i.e., F pUq are abelian groups (or
rings) and the restriction maps are group (or ring) homomorphisms. Note that for abelian groups
the sheaf condition can be rephrased as saying that the sequence

0 Ñ F pUq Ñ
ź

i

F pUiq
res

Ui
UiXUj

´res
Uj
UiXUj

Ñ
ź

i,j

F pUi X Ujq (1.5.1)

is an exact sequence.
A typical example of a sheaf (on some fixed topological space X) is given by

F pUq :“ tf : U Ñ R continuousu.

Indeed, this is a sheaf (actually a sheaf of rings) since a collection of continuous functions on Ui can
be glued to a function on U “

Ť

i Ui precisely if fi|UiXUj
“ fj|UiXUj

. Similarly, if, say X “ Rn or
if X is a differentiable manifold, one may consider the sheaf F pUq :“ tf : U Ñ R differentiableu.
The structural sheaf O on SpecA constructed below is similar in spirit, except that instead of
continuous or differentiable functions, we consider functions that are–in a sense made precise by
(1.5.4)–algebraic.
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The structural sheaf O and most of the sheaves (and morphisms of sheaves) we will consider
actually arise by knowing what they do on a basis of the topology, by means of the following
lemma.

Lemma 1.5.2. Let X be a topological space. Let B be a basis of the topology on X. Then
restricting a sheaf to its restriction on B yields an equivalence of categories

ShvpXq
–
Ñ ShvpB, Setq,

where ShvpB, Setq Ă PShpB, Setq :“ FunpBop, Setq denotes the full subcategory consisting of those
presheaves satisfying the sheaf condition for any U “

Ť

Ui where all Ui and U are elements of B.

Proof. Clearly, restricting a sheaf to B Ă OpenpXq gives a sheaf on B. Conversely, given some
F P ShvpB, Setq, define a sheaf G by declaring for each open V Ă X:

GpV q :“ tpfUqUĂV,UPB P GpUq | resU
1

U pfU 1q “ fUu.

(More succinctly, GpV q “ limptU P B, U Ă V uop
G
Ñ Setq.) One checks that these two functors are

inverse to each other essentially by repeatedly applying the sheaf condition, cf. [Stacks, Tag 009O].

Lemma 1.5.3. Let A be a ring. Then there is a unique sheaf, called the structural sheaf and
denoted OA or O on SpecA satisfying

OApDpfqq “ Arf´1
s (1.5.4)

(and restriction maps given by the natural maps Arf´1s Ñ Arpfgq´1s between localizations). In
particular,

OpSpecAq “ A.

More generally, if M is an A-module, there is a unique sheaf denoted ĂM satisfying

ĂMpDpfqq “ M rf´1
sp“ M bA Arf´1

sq. (1.5.5)

Proof. We define a presheaf on the basis B of fundamental opens by taking (1.5.5) as a definition.
This is well-defined, i.e., independent of the choice of f , by (1.1.11). Also note that the restriction
maps for Dpfq Ă Dpgq exist by Lemma 1.1.10(3).

We prove that this defines a sheaf on B in two steps: First, we first check the sheaf condition if
some U “ Dpfq is covered by finitely many Ui “ Dpfiq. For simplicity of the notation, we replace
SpecA by U “ SpecAr1{f s, noting that Dpfiq inside SpecA agrees with Dpfiq inside SpecAr1{f s.
Thus, we are in the situation that Ui “ Dpfiq are a finite open covering of SpecA. In this case the
exactness of

0 Ñ M Ñ
ź

i

M rf´1
i s Ñ

ź

i,j

M rpfifjq
´1

s (1.5.6)

is exactly the content of Lemma 1.4.6, given that M rr´1s “ M bA Arr´1s.
Second, we check that the sheaf condition also holds if U “ Dpfq is covered by infinitely many

Ui “ Dpfiq, i P I. The key here is that U “ SpecArf´1s is quasi-compact (Lemma 1.1.10(4)).
Thus, there is a finite subset K Ă I such that the Ui for i P K already cover U . This directly
implies the exactness of (1.5.6) at the left: if m P M is mapped to zero, it is in particular zero in
all the components for i P K, and thus m “ 0 by the first step. Similarly, if pmiq P

ś

iM rf´1
i s

is mapped to zero at the right, then for the above finite subset K Ă I, there is by the first step
an element mK P M such that mK |Ui

“ mi for all i P K. Let j P IzK be any element and put
J :“ K Y tju. Again using the first step, there is an element mL P M such that mL|Ui

“ mi, this
time for all i P L. In particular, mL ´ mK “ 0 P M rf´1

i s for all i P K. Using the exactness of
(1.5.6) at the left, mL “ mK (as elements in M , and in particular also in M rf´1

j s). Since j was
arbitrary, we are done.

We finally apply Lemma 1.5.2 to obtain a sheaf defined on all open subsets of SpecA.

http://stacks.math.columbia.edu/tag/009O
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Exercises

Exercise 1.5.7. Recall that a subset of a topological space is called clopen if it is both open and
closed. Also recall that an element e P A is called an idempotent if

e2 “ e.

Show that the mapping

te P A, e idempotentu Ñ tclopen subsets W Ă SpecAu, e ÞÑ V peq

is a bijection.
Hint: what does the sheaf axiom tell about W and its complement?

Exercise 1.5.8. A topological space X is called connected if whenever

X “ U \ V

(a disjoint union of two open subsets), one has X “ U or X “ V .

• Prove that any irreducible space X is connected.

• Show that SpecZrt, us{tu is connected (but not irreducible, cf. Exercise 1.1.27).

• Prove that SpecA is connected iff the only idempotents in A are 0 and 1.

Exercise 1.5.9. Let X be a topological space and F a presheaf on X. Show that the sheaf
condition in (1.5) is automatically satisfied if Ui “ X for some i. Relate this observation to the
first step in the proof of Lemma 1.4.6.

Exercise 1.5.10. The following statement is referred to by saying that “sheaves glue”. Related
statements concerning glueing maps of locally ringed spaces and glueing schemes are discussed in
Exercise 1.6.30 and Lemma 2.1.5.

Let X be a topological space and X “
Ť

iPI Ui a (possibly infinite) open covering. Write
Uij :“ Ui X Uj, Uijk :“ Ui X Uj X Uk for i, j, k P I. Let use be given:

• for each i, a sheaf Fi P ShvpUiq,

• for each i, j P I, isomorphisms of sheaves ϕij : Fi|Uij

–
Ñ Fj|Uij

such that
ϕjk ˝ ϕij “ ϕij,

once we restrict these to Uijk. (This condition is called the cocycle condition).
Construct a sheaf F P ShvpXq and isomorphisms F |Ui

– Fi.
Hint: this can be deduced from Lemma 1.5.2. Note that applying the cocycle condition to

i “ j “ k implies ϕii “ id.

Remark 1.5.11. Along similar lines, one may observe that given another such collection F 1
i , ϕ

1
ij,

and morphisms fi : Fi Ñ F 1
i pP ShvpUiqq that are compatible with the ϕij, ϕ

1
ij there is naturally a

morphism F Ñ F 1. Yet more comprehensively, one can consider the natural restriction functor

ShvpXq Ñ lim

˜

ź

i

ShvpUiq Ñ
ź

i,j

ShvpUijq Ñ
ź

i,j,k

ShvpUijkq

¸

,

where the category at the right consists of objects as above; and morphisms are defined as alluded
to above. The assertion of the exercise above is that this functor is essentially surjective; one may
also check it is fully faithful, and therefore an equivalence of categories.
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1.6 Affine schemes

We have seen above that the structural sheaf O on SpecA recovers the ring A (and all its local-
izations). We will now isolate a key condition on morphisms the spectra of these rings, in such a
way that we precisely recover ring homomorphisms. To do so, we need another concept from sheaf
theory.

Definition 1.6.1. If F is a presheaf on a topological space X, and x P X, the stalk of F is defined
as

Fx :“ colimxPU F pUq.

Here the colimit runs over all open subsets U containing x, and for a smaller open neighborhood
U Ą V , the transition maps are the restriction maps F pUq Ñ F pV q (which are part of the datum
of a presheaf).

Remark 1.6.2. • More concretely, one can say that

Fx “
ğ

UQx

F pUq{ „,

where „ is the equivalence relation generated by the relation that identifies f P F pUq with
g P F pV q iff there is an open neighborhood W Ă U X V , x P W such that

f |W “ g|W .

In prose: the stalk consists of sections of small open neighborhoods of x, where we identify
two sections iff they agree on a possibly smaller neighborhood of x.

• It is also worth noting that if F is a presheaf (or sheaf) of rings, then Fx is a ring, too.

• A conceptual reason for this definition of the stalk is given by Exercise 1.6.27.

Example 1.6.3. If M is an A-module, we compute the stalks of the sheaf ĂM (which includes as

a special case the structural sheaf rA “ OSpecA) at a point p P SpecA. Since any open subset is a
union of Dpfq, we have

pĂMqp “ colimpPDpfq
ĂMpDpfqq “ colimf,fRpM rf´1

s “ Mp p:“ M rpAzpq
´1

sq.

To see the right hand identification, note that Dpfq Ă Dpgq holds iff g is a unit in Arf´1s (equiv-
alently, the natural ring homomorphism A Ñ Arf´1s factors through Arg´1s; Lemma 1.1.10(3)),
the transition maps are the natural maps M rg´1s Ñ M rf´1s in this event. In particular, we have

OSpecA,p “ Ap.

Definition 1.6.4. A ringed space is a pair pX,OXq consisting of a topological space X and a sheaf
of rings OX on X. Here, sheaf “of rings” means a sheaf such that for each U Ă X, OXpUq is a
(commutative) ring, and the restriction maps OXpUq Ñ OXpV q are ring homomorphisms.

A locally ringed space is a ringed space such that the stalk OX,x of the structural sheaf is a local
ring, for each x P X.

By Example 1.6.3, pSpecA,OSpecAq is a locally ringed space. Exercise 1.6.25 offers an approach
to define this notion without using stalks.

Example 1.6.5. Locally ringed spaces are an extremely broad notion. For example, if X is a
topological space, then we may consider, for U Ă X open:

OXpUq :“ tf : U Ñ R continuousu.
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This clearly defines a sheaf of rings, and pX,OXq is a locally ringed space. One checks this either
directly from the definition (the maximal ideal in OX,x consists of functions f : V Ñ R such that
fpxq “ 0). Alternatively, using Exercise 1.6.25: if f : U Ñ R is continuous, then V :“ f´1pRzt0uq

and W :“ f´1pRzt1uq are open subsets and U “ V Y W .

Definition 1.6.6. Fix a continuous map of topological spaces f : X Ñ Y . The direct image
functor

f˚ : ShvpXq Ñ ShvpY q

is the functor given by precomposition with f´1, i.e., for a sheaf F on X, f˚F is the sheaf defined
by

f˚F pV q :“ F pf´1
pV qq for V Ă Y open.

(One immediately checks that f˚F , defined in this way, is indeed a sheaf, and that this construction
of f˚F is functorial in F .)

Definition 1.6.7. A morphism of ringed spaces f : pX,OXq Ñ pY,OY q is a continuous map
f : X Ñ Y together with a map of sheaves of rings on Y

f 7 : OY Ñ f˚OX .

Thus, by the definition of f˚, this means that for any open subset V Ă Y , there is a ring homo-
morphism

OY pV q Ñ OXpf´1
pV qq,

which is required to be compatible with the restriction maps of OY and OX .

Example 1.6.8. The idea of the map f 7 is that it takes a function that is defined on (an open
subset V of) Y and in some sense composes that function with f in order to produce a function
on (the open subset f´1pV q of) X.

To give more content to this idea, let f : X Ñ Y be a continuous map between topological
spaces, and consider the ringed spaces given by continuous functions (Example 1.6.5). Then there
is a map (of sheaves on Y )

OY Ñ f˚OX

whose evaluation at an open V Ă Y is

OY pV q Q pg : V Ñ Rq ÞÑ pg ˝ f : f´1
pV q Ñ Rq P OXpf´1

pV qq “ pf˚OXqpV q.

For a morphism of ringed spaces f as above, and any x P X, and y :“ fpxq P Y , we in particular
have a map

OY,y Ñ OX,x,

Using the description of Remark 1.6.2, it takes a function f P OY pV q for some neighborhood V Q y,
and takes its image under f 7, which is a function in OXpf´1pV qq. (Note that f´1pV q is an open
neighborhood of x.) If f is agrees with some other function g P OY pUq on a possibly smaller
neighborhood W Ă U X V , then their images under f 7 will agree on f´1pW q.

Definition 1.6.9. Amorphism of locally ringed spaces is a morphism of ringed spaces f : pX,OXq Ñ

pY,OY q such that the map
OY,fpxq Ñ OX,x (1.6.10)

is a local map (Definition and Lemma 1.2.3) between the stalks (which are local rings by Defini-
tion 1.6.4). The category of locally ringed spaces with these morphisms is denoted by LocRingedSpace.

The motivation behind requiring the map (1.6.10) to be a local map is this: if we think of OY,fpxq

to be of germs of functions, then the maximal ideal mfpxq corresponds to (germs of) functions that
vanish at fpxq. The map f 7 should send those (germs of) functions to ones that vanish at x.
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Example 1.6.11. Given a ring homomorphism f : A Ñ B, we define a map

φ : pSpecB,OSpecBq Ñ pSpecA,OSpecAq

on the level of the underlying spaces as in Lemma 1.1.3, and given on the level of sheaves by

OSpecA Ñ φ˚OSpecB

by using Lemma 1.5.2, which requires us to specify the map only on basic open subsets, where we
define it to be the natural map

OSpecApDpaqq “ Ara´1
s Ñ pφ˚OSpecBqpDpaqq “ OSpecBpφ´1

pDpaqqq “ OSpecBpDpfpaqqq “ Brpfpaqq
´1

s

(i.e., x
an

ÞÑ
fpxq

fpaqn
). Passing to stalks at a prime ideal q Ă B induces the map

Af´1pqq Ñ Bq,

which is a local map (since f maps the maximal ideal of Af´1pqq to the maximal ideal of Bq).

Non-example 1.6.12. Let p be a prime number and consider the map

f : pSpecQ,OSpecQq Ñ pSpecZ,OSpecZq

given on the level of the underlying spaces by SpecQ Q p0q ÞÑ ppq and on the level of functions by

OZ Ñ f˚OQ

the map whose evaluations on the fundamental open subsets Dpnq, for n P Z, is given by the
obvious map

Zrn´1
s Ñ

"

Q p ∤ n
0 p|n

Passing to stalks at the prime ideal p “ ppq, i.e., taking the colimit over all n such that p ∤ n gives

Zppq Ñ Q.

This is not a local map: since p is not mapped to the maximal ideal in Q (which is the 0-ideal).

Example 1.6.11 establishes a functor

Spec : Ringsop Ñ LocRingedSpace,

which is on objects given by A ÞÑ pSpecA,OSpecAq and on morphisms by the above. We will
henceforth abbreviate SpecA :“ pSpecA,OSpecAq, i.e., unless otherwise mentioned we will always
regard SpecA as a locally ringed space (as opposed to its underlying topological space).

Proposition 1.6.13. The functor Spec is fully faithful. That is, there is a bijection

HomRingspB,Aq
–
Ñ HomLocRingedSpacepSpecA, SpecBq.

This is the special case X “ SpecA of the next statement:

Theorem 1.6.14. There is an adjunction

Γ : LocRingedSpace Õ Ringsop : Spec,

where the global sections functor Γ sends a locally ringed space X to the ring ΓpX,OXq :“ OXpXq

and a map pf, f 7q : pX,OXq Ñ pY,OY q to its evaluation on global sections, i.e., to f 7pY q :
OY pY q Ñ OXpf´1pY qq “ OXpXq.
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Proof. For a ring B and a locally ringed space pX,OXq we have to establish a bijection of Hom-sets
as follows:

HomLocRingedSpacepX, SpecBq Ñ HomRingsoppOXpXq, Bq “ HomRingspB,OXpXqq (1.6.15)

This may be paraphrased by saying that a map (from any locally ringed space) to an affine scheme
is determined by its value on global sections. Let us write Y :“ pSpecB,OSpecBq.

(1) Our first step is to prove the map is injective. Pick two elements pf, f 7q and pg, g7q in the left
hand set, such that the induced map B :“ OY pY q Ñ OXpXq is the same. Denote this map by
ϕ.

(a) We prove that f “ g (as a map of the underlying sets). Pick x P X and consider the
diagram

B “ OY pY q

��

ϕ
// OXpXq

��

Bq “ OY,fpxq

f 7
x // OX,x.

(1.6.16)

Here q Ă B corresponds to fpxq P Y . (The diagram is commutative by the functoriality
of f 7.) Let mx be the maximal ideal of OX,x. Since f 7

x is a local map, its preimage in Bq

is the maximal ideal of Bq, and so its preimage in B is q. If we replace f by g in there,
the map ϕ and the right vertical map don’t change, which shows that fpxq “ q “ gpxq.

(b) We now prove that f 7 “ g7. By Lemma 1.5.2, it is enough to check these two morphisms of
sheaves OY Ñ f˚OX agree on the basic open subsets U “ Dpbq for b P B. Again, consider
a similar commutative diagram as above:

B “ OY pY q
ϕ

//

res
��

OXpXq
– //

res
��

pf˚OXqpY q

res

��

Brb´1s “ OY pUq
f 7pUq

?
“g7pUq

// OXpf´1pUqq
– // pf˚OXqpUq.

(1.6.17)

Note that at the right we have f˚OX “ g˚OX since we already know f “ g. To see that
the bottom left maps agree, observe that a ring homomorphism out of Brb´1s is uniquely
determined by its composition with B Ñ Brb´1s, i.e., the left hand restriction map. This
confirms f 7 “ g7 and therefore that the map in (1.6.15) is injective.

(2) We now prove that the map in (1.6.15) is surjective. Given a ring homomorphism ϕ : B Ñ

OXpXq, we need to construct a map pf, f 7q : pX,OXq Ñ pSpecB,OSpecBq of locally ringed
spaces (whose global sections give back ϕ).

(a) Taking our cue from the above part of the proof, we define f : X Ñ Y like so. Pick x P X,

consider B
ϕ

Ñ OXpXq Ñ OX,x. The preimage of mx in B is a prime ideal q. We define
fpxq :“ q.

(b) We check that the map f so defined is continuous. For a function t P OXpXq, define a
subset

Dptq :“ tx P X | t P Oˆ
X,xu Ă X.

This is an open subset: if x P Dptq, then t is invertible when restricted to an open
neighborhood U Q x, so that U Ă Dptq. Note that if X happens to be affine, this precisely
agrees with the previous definition of basic open subsets. The continuity of f is now easy:
it suffices to check that f´1pDpbqq is open for any b P B. Indeed,

f´1
pDpbqq “ tx P X | ϕpbq P Oˆ

X,xu “ Dpϕpbqq.
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(c) Given the continuous map f , we define a homomorphism of sheaves OY Ñ f˚OX , which
again is enough to do on Dpbq, b P B. Consider again the diagram (1.6.17) above. We are
required to provide the bottom left horizontal map. Again using the universal property of
the localization Brb´1s, there is a unique map making the diagram commute iff ϕpbq is an
invertible element in OXpDpϕpbqqq. We have just checked that this is indeed the case.

(d) We finally check that the map pf, f 7q of ringed spaces constructed so far is a map of locally
ringed spaces. By our construction, the diagram (1.6.16) commutes. We need to see the
map f 7

x is a local map, i.e., pf 7
xq´1pmxq “ qBq. This preimage is certainly some prime ideal

in Bq, and the map SpecBq Ñ SpecB is injective. So the commutativity of the diagram
(1.6.16) and the definition of q above finishes the job.

Definition 1.6.18. We let the category AffSch of affine schemes be the essential image of the
functor Spec. In other words, it is the full subcategory of LocRingedSpace consisting of those
locally ringed spaces that are isomorphic to SpecA, for some ring A.

Example 1.6.11 then asserts an equivalence of categories

Spec : Ringsop
–

Õ AffSch : Op?q, (1.6.19)

where the right hand functor sends an affine scheme X to the ring OXpXq.

Thus, affine schemes are “nothing but” commutative rings. The full power of Proposition 1.6.13
will become visible once we introduce (non-affine) schemes, which are locally ringed spaces that
are glued together from affine schemes. For now, the effect of Proposition 1.6.13 is that it gives
us a way to interpret statements about commutative rings in a more geometric fashion: it allows
us to switch back and forth between rings (and homomorphism between them) and their spectra
(regarded, crucially, as locally ringed spaces, and morphisms of locally ringed spaces).

Definition 1.6.20. For a ring A and n ě 0, the affine n-space or just affine space over A is
defined as

An
A :“ SpecArt1, . . . , tns.

For n “ 1, we speak of the affine line. We usually abbreviate An :“ An
Z.

Recall that there is a bijection

HomRingspZrts, Aq
–
Ñ

f ÞÑfptq
A.

Indeed, a ring homomorphism Zrts Ñ A is uniquely determined by its value on t, and this element
of A can be chosen freely. Reinterpreting this in light of Proposition 1.6.13, there is a bijection

HomAffSchpSpecA,A1
q “ A.

Thus, functions (in the sense of algebraic geometry) on SpecA are just the elements of A. Similarly,
n-tuples pa1, . . . , anq of elements of A are nothing but maps SpecA Ñ An. We will use this insight
to phrase conditions about elements in A in geometric terms, such as Exercise 1.6.23 which gives
a(n obvious) geometric reinterpretation of the condition of being an integral domain.

Definition 1.6.21. For a ring A, we define

Gm,A :“ SpecArt˘1
s,

and again write Gm :“ Gm,Z. For reasons explained in Exercise 1.6.33, this is referred to as the
multiplicative group.
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Note that
Gm “ Dptq Ă A1 (1.6.22)

is an open subscheme, namely the complement of V ptq, which we will refer to as the origin of A1.
Similarly to the above, there are bijections

HomAffSchpSpecA,Gmq “ HomRingspZrt˘1
s, Aq

–
Ñ

f ÞÑfptq
Aˆ.

Exercises

Exercise 1.6.23. Let C “ SpecZrt, us{tu. Recall the two irreducible components C1, C2p– A1q

of C (Exercise 1.1.27). Recall that a domain is a (commutative) ring A such that ab “ 0 implies
a “ 0 or b “ 0. Let A be a commutative ring such that SpecA is connected.

Prove that A is a domain iff for any horizontal arrow there is a diagonal arrow making the
triangle commute (the right vertical map is the natural map induced by the inclusions Ci Ă C):

C1 \ C2

��

SpecA

99

// C.

Here C1 \ C2 is the coproduct in the category AffSch; by Proposition 1.6.13 finite coproducts of
affine schemes correspond to finite products of rings, i.e., we have C1 \ C2 “ SpecpZrus ˆ Zrtsq.

Remark 1.6.24. The assumption that SpecA be connected can be removed if one considers the
category AffSch – Ringsop

y
Ñ FunpRings, Setq, where y is the Yoneda embedding that takes any

ring R to the functor ypRq : Rings Ñ Set given by S ÞÑ HomRingspR, Sq (but y does not respect
coproducts). By general category theory, y is a fully faithful functor. Now, prove that A is a
domain iff the lifting condition below is satisfied:

ypC1q \ ypC2q

��

ypSpecAq

66

// ypCq

Exercise 1.6.25. Let pX,OXq be a ringed space. Prove that the following are equivalent:
(1) All stalks OX,x are local rings, i.e., it is a locally ringed space.

(2) The following two conditions are satisfied:

(a) The only open U Ă X such that OXpUq “ 0 is U “ H.

(b) If f P OXpUq then U “ V YW with two open subsets V,W Ă U (it is allowed that one of
them is empty) such that f |V is invertible and p1 ´ fq|W is invertible.

(Hint: it is convenient to use the characterization of local rings in Definition and Lemma 1.2.1(4).)

Exercise 1.6.26. Use Exercise 1.6.25 to give another proof of the fact that pSpecA,OSpecAq is a
locally ringed space.

Exercise 1.6.27. LetX be a topological space and x P X. Consider the obvious map ix : t‹u Ñ X
sending ‹ to x. Prove that the functor ShvpXq Ñ Set, F ÞÑ Fx is left adjoint to the direct image
functor (along the map i˚):

Set “ Shvpt˚uq
pixq˚
Ñ ShvpXq.
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Exercise 1.6.28. Let φ : F Ñ G be a map of sheaves on a topological space X. Prove that φ is
an isomorphism (i.e., F pUq Ñ GpUq is an isomorphism for all open U Ă X) iff for all x P X the
induced map on stalks, Fx Ñ Gx, is an isomorphism.

Exercise 1.6.29. Let pX,OXq be a locally ringed space and U Ă X an open subset of the under-
lying topological space X.
(1) Show that pU,OX |Uq is naturally locally ringed space as well.

(2) Let pY,OY q be another locally ringed space. Prove that a morphism pf, f 7q : pY,OY q Ñ

pX,OXq factors uniquely (as a morphism of locally ringed spaces!) over pU,OX |Uq provided
that fpY q Ă U . (In more formulaic terms,

HomLocRingedSpaceppY,OY q, pU,OX |Uqq “ HomLocRingedSpaceppY,OY q, pX,OXqqˆHomToppY,XqHomToppY, Uq.q

Exercise 1.6.30. The following foundational statement, which is in a sense complementary to the
characterization of maps into an open subspace offered by Exercise 1.6.29(2), is often referred to
by saying that maps (of locally ringed spaces) glue.

Let pX,OXq be a locally ringed space and X “
Ť

i Ui a cover by open subsets. Put Uij :“ UiXUj
Consider the induced locally ringed spaces pUi,OUi

q as in Exercise 1.6.29, and similarly for Uij.
Hereafter we write X :“ pX,OXq etc. For any locally ringed space pY,OY q, establish a bijection

HomLocRingedSpacepX, Y q “ tpfiq P HomLocRingedSpacepUi, Y q |fi|Uij
“ fj|Uij

u.

Note that this is saying that X is a colimit (in the category of locally ringed spaces) of the diagram
ğ

i,j

Uij Ñ
ğ

i

Ui,

where the two maps are the inclusion of Uij into Ui and Uj, respectively.

Exercise 1.6.31. Let f : pX,OXq Ñ pY,OY q be a map of ringed spaces. Prove that the following
are equivalent:
(1) For all x P X, the maps φ : OY,fpxq Ñ OX,x induced by f are local ring homomorphisms in the

sense that φ´1pOˆ
X,xq “ Oˆ

Y,fpxq
.

(2) f is a map of locally ringed space in the sense of Definition 1.6.9.

Exercise 1.6.32. Let X “ A2 “ SpecZrt1, t2s. Let U Ă X be the punctured plane, i.e., the
complement of the origin, which is the closed point (equivalently, maximal ideal) pt1, t2q P A2. Yet
another way to say this is U “ Dpt1q Y Dpt2q. Show that the restriction map

pZrt1, t2s “q OXpXq
resUX
Ñ OXpUq

is an isomorphism.
In other words, every regular function on U can be (uniquely) extended to one on X. This

situation is identical to Hartog’s theorem in complex analysis which states that a holomorphic
function on C2ztp0, 0qu can be extended to a holomorphic function on C2; in contrast to what
happens on Czt0u.

Hint: let U1 “ Dpt1q “ SpecZrt˘1
1 , t2s and define U2 similarly. Inspect the exact sequence

(1.5.1).

Exercise 1.6.33. (1) Show that for any affine scheme X, there are natural bijections

HomAffSchpX,A1
q

–
Ñ ΓpX,OXq.

HomAffSchpX,Gmq
–
Ñ ΓpX,Oˆ

Xq.
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(2) Deduce from the Yoneda lemma that A1 has the structure of a ring (and Gm the structure
of an abelian group object) in AffSch (i.e., there is a “sum” and a “multiplication” map
A1 ˆ A1 Ñ A1, and a “negative” map A1 Ñ A1 satisfying the usual ring axioms). One refers
to this by saying that A1 (which is in this context also denoted by Ga for additive group) and
Gm are (abelian) affine group schemes .

(3) Describe concretely the ring homomorphisms

Zrts Ñ Zrts b Zrts, (resp. Zrt˘s Ñ Zrt˘s b Zrt˘sq,

that correspond to the addition on A1 (respectively the multiplication on Gm)?

(4) Alternatively, construct the group structure on Gm,A
1 P AffSch by proving an adjunction

Zr´s : AbMon Õ Rings : p´q
ˆ,

where the left adjoint sends an abelian monoid to the group ring, and the right adjoint sends
a (commutative) ring to its group of units. Observe that Zrts “ ZrNs, Zrt˘1s “ ZrZs.

1.7 Integrality and valuation rings

Definition 1.7.1. We say that an A-module M is finite (or A-finite if we want to emphasize the
ring A) if it is generated by finitely many elements m1, . . . ,mn P M . (I.e., there is a surjection of
A-modules,

Àn
i“1A Ñ M .)

We say that an A-algebra B is finite if it is finite as an A-module. We also say that A Ñ B is
a finite map in this case.

Remark 1.7.2. Note that this is much stronger than requiring B to be finitely generated as an
A-algebra: the polynomial ring Arts is a finitely generated A-algebra, but not finitely generated
as an A-module; see Exercise 1.7.28 for a precise assertion pinpointing the difference between the
two.

Definition and Lemma 1.7.3. Let B be a ring, A Ă B a subring and b P B an element. The
following conditions are equivalent; if they are satisfied we say that b is integral over A.
(1) Arbs is contained in an subalgebra B1 Ă B that is finite over A. Here and below, Arbs denotes

the A-subalgebra of B generated by b, i.e., the image of the map Arts Ñ B, t ÞÑ b.

(2) b is the zero of a monic polynomial with coefficients in A, i.e., there are a0, . . . , an´1 P A such
that

bn ` an´1b
n´1

` ¨ ¨ ¨ ` a0 “ 0.

(3) Arbs is a finite A-module.

Proof. (1) ñ (2): let B1 be as stated, with y1 “ 1, y2, . . . , yn being finitely many generators of B1

(as an A-module). For all i, we have B1 Q byi “
ř

j aijyj for some aij P A, so that

yi detpbid ´ paijqq “ 0.

For i “ 1 and y1 “ 1 we get the requested monic equation for b.
(2) ñ (3) If bn ` an´1b

n´1 ` ¨ ¨ ¨ ` a0 “ 0, then Arbs is generated by 1, b, . . . , bn´1.
(3) ñ (1) is trivial.

Definition 1.7.4. An integral extension is an injective ring homomorphism A Ă B such that any
b P B is integral over A.

An integral ring homomorphism (or integral map) is a ring homomorphism f : A Ñ B such
that the induced map fpAq – A{ ker f Ă B is an integral extension.
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A cheap example of a non-injective integral map is A Ñ B :“ A{I. Geometrically this cor-
responds to a closed subscheme. We will mostly be concerned with integral extensions in the
sequel.

Corollary 1.7.5. Let A Ă B Ă C be given. If A Ă B and B Ă C are integral extensions, then so
is the composite A Ă C.

Proof. Let c P C. There is a monic polynomial pptq P Brts with ppcq “ 0. Its coefficients generate
(since A Ă B is integral) a finite A-submodule of C, denoted B1. Then B1rcs is a finite A-module,
so c is integral over A (Definition and Lemma 1.7.3(1)).

Corollary 1.7.6. If A Ă B as above, then the subset

rA :“ tb P B |b is integral over Au

forms a subring. It is called the integral closure of A in B. We say that A is integrally closed in

B if rA “ A.

Proof. If b, b1 P rA, then Arb, b1s is finite over A (by applying Definition and Lemma 1.7.3 twice).
Thus bb1, b ` b1 are contained in an A-finite subalgebra, so they are integral, again by Definition
and Lemma 1.7.3.

Example 1.7.7. The integral closure is of paramount importance in number theory: given a finite
extension K{Q, one studies there the ring OK , the integral closure of Z in K.

Lemma 1.7.8. For a subring A Ă B the following are equivalent:

(1) It is an integral extension (i.e., any b P B is integral over A or rA “ B).

(2) B is a filtered colimit of A-subalgebras that are finite A-modules.

Proof. For any A Ă B, we have
B “ colimSĂB finiteArSs,

where the (filtered) colimit runs over all the finite subsets of B, and ArSs denotes the A-subalgebra
generated by S. Moreover, any b P B lies in the subalgebra Arbs. Given these prerequisites, the
statement is now an immediate consequence of Definition and Lemma 1.7.3: if any b is integral,
i.e., Arbs is finite, then by induction ArSs is finite for any finite subset S Ă B. Conversely, if
B “ colimBi for some A-finite subalgebras, then any b P B (and therefore Arbs) lies in some Bi.
That is, b is integral over A.

Definition and Lemma 1.7.9. Let A be a ring, with A ‰ t0u. For an ideal I Ă A, the following
conditions are equivalent:
(1) for all f P I, 1 ` f P Aˆ,

(2) for all finite A-modules M we have IM “ M (equivalently M{IM “ 0) if and only if M “ 0,

(3) I is contained in every maximal ideal.
There is a largest ideal satisfying these equivalent conditions, it is called the radical or Jacobson
radical (not to be confused with the nilradical or the radical of an ideal in A, cf. (1.1.4)), and
denoted by radA.

Proof. (1) ñ (2): Assume M ‰ 0 and pick a minimal system of generators m1, . . . ,mn. By
assumption m1 “

ř

aimi for ai P I, so p1´ a1qm1 lies in the span of m2, . . . ,mn. But 1´ a1 P Aˆ,
hence the system was not minimal, giving a contradiction.

(2) ñ (3): If m Ă A is a maximal ideal, the A-moduleM :“ A{m is a field and therefore simple,
i.e., any submodule is either 0 or equal to M . Since A ‰ 0 we have M ‰ 0 and therefore, by (2),
IM Ĺ M , so IM “ 0, i.e., I Ă m.

(3) ñ (1): If f P I was such that 1`f R Aˆ, then the principal ideal p1`fq would be contained
in some maximal ideal m, so f R m, contradicting (3).
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Note that for a local ring A, we have radA “ m (the maximal ideal). The statement (2) is then
a bread-and-butter result in commutative algebra, known as the Nakayama lemma:

Lemma 1.7.10. For a local ring A, a finite A-moduleM is zero iffM{mMp“ MbAkq “ 0 (where
k “ A{m is the residue field of A).

The next two statements will be used in the next section on valuation rings.

Lemma 1.7.11. Let A Ă B be an integral extension. Then radA Ă radB.

Proof. By Definition and Lemma 1.7.9(1), we have to show that for (finitely many) ai P radA and
bi P B we have 1 `

ř

i aibi P Bˆ. Let B1 :“ Arb1, . . . , bns. By integrality, it is a finite A-module,
and it is enough to show 1 `

ř

aibi P B1ˆ. We can therefore replace B by B1 and suppose B is a
finite A-module.

Let I :“ pradAq ¨ B. In order to show I Ă radB we use Definition and Lemma 1.7.9(2): it is
enough to show that for a finite B-module M , M “ IM implies M “ 0. But IM “ pradAqM ,
where here at the right M is regarded as an A-module. M is (since B is finite over A) a finite
A-module, so again using the characterization of the radical (this time of A), we have M “ 0, as
desired.

Lemma 1.7.12. Let again A Ă B and b P B. If 1 P pradAqArbs (the ideal in Arbs generated by
radA), then b is invertible in Arbs, and this inverse b´1 is integral over A.

Proof. Let 1 “ a ` rb with a P radpAq and r P Arbs. Since 1 ´ a P Aˆ, say a1p1 ´ aq “ 1 we have
1 “ a1rb, so b is invertible in Arbs with b´1 “ a1r “

řn
i“0 aib

i, so that b´pn`1q “
ř

aib
´pn´iq, so b´1

is indeed integral over A.

1.7.1 Valuation rings

Recall from Definition and Lemma 1.2.3 the definition of a local map between local rings. In the
sequel we will be considering injective homomorphisms A Ă B (between local rings). Such an
inclusion is local if
(1) mB X A “ mA or, equivalently,

(2) mA Ă mB or, yet equivalently,

(3) 1 R mAB.

Proposition 1.7.13. Let A Ă K be a ring contained in a field K. The following statements are
equivalent; if they hold we call A a valuation ring .
(1) For any x P K we have x P A or x´1 P A (or both).

(2) A is a local ring and is maximal among the local subrings of K in the sense that if A Ă B Ă K,
with B a local ring and the inclusion A Ă B a local homomorphism, then A “ B.

(3) A is local and for any intermediate ring A Ĺ C Ă K, mAC “ C (i.e., 1 lies in the ideal (in C)
generated by mA).

Proof. We first prove (3) ô (2). The implication ñ is trivial in view of the above discussion of
injective local homomorphism. Conversely, we prove (2) ñ (3): If mAC Ĺ C, then there would be
a prime ideal p in C with mAC Ă p. We would then have a proper inclusion A Ĺ Cp into a larger
local ring.

(2) ñ (1): let x P KzA. The subring Arxs Ă K generated by x is larger than A. By (3),
1 P mAArxs “ pradAqArxs. By Lemma 1.7.12, x´1 is integral over A. By Lemma 1.7.11 (applied
to A Ă Arx´1s), 1 R mAArx´1s, so again using (2) ô (3), we have Arx´1s “ A, so x´1 P A.

(1) ñ (2): to see that A is local, let a P A. If x :“ p1 ´ aq{a “ a´1 ´ 1 P A then a is invertible.
Otherwise x´1 “ a

1´a
P A so, by symmetry, 1 ´ a is invertible.

If A Ĺ B Ă K, we pick b P BzA. Then b´1 P A and therefore b´1 P mA, then 1 “ bb´1 “ mA¨B.
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Note that in the event that (1) holds, K “ QpAq (the quotient field of A). The following
statement yields a rich supply of valuation rings.

Proposition 1.7.14. Let A Ă K be a local subring of a field K. There is a valuation ring V such
that

A Ă V Ă K

and the inclusion A Ă V is local (one also says that V dominates A).

Proof. Consider the set of such factorizations

A Ă B Ă K

with B being local and A Ă B a local inclusion.
If pBiqiPI is a totally ordered family of such intermediate local subrings of K, then B :“

Ť

iPI Bi

is again a local subring of K (any element b P B lies in one of the Bi’s, so b P Bˆ
i or 1 ´ f P Bˆ

i ,
and hence similarly in B). Also, the inclusion A Ă B is local: if a P A becomes a unit in B, then
it is a unit in one of the Bi, so a P Aˆ.

Zorn’s lemma implies the existence of a maximal element among such factorizations; by Propo-
sition 1.7.13, this is nothing but a valuation ring.

This construction implies the following geometric key property of valuation rings. Recall that
valuation rings V are local domains, so that p0q is a prime ideal; also there is unique maximal
ideal mV . These ideals correspond to the generic point, denoted η, and the unique closed point,
denoted s, respectively.

Corollary 1.7.15. [Stacks, Tag 01J8] Let A be a ring and p Ă q a containment of prime ideals
(i.e., p⇝ q a specialization in SpecA). Then there is a valuation ring V and a map as displayed:

η //
_

��

s_

��

P SpecV

��

p // q P SpecA.

In addition, if kppq Ă k1 is a field extension, we may find V in such a way that kpηq “ k1 (more
precisely, the field extension kppq Ă kpηq of the residue fields induced by our map is isomorphic to
the given extension).

Proof. The given data yields a map

Aq Ñ Ap Ñ kppq Ă k1.

According to Proposition 1.7.14, we can obtain a commutative diagram

Aq � o

f 1
��

� � // k1

V
/� f2

??

where

• f 1 is local: by the discussion at the beginning of §1.7.1, this means f 1´1pmV q “ mAq , i.e., that
mV ÞÑ q.

• f2 is injective: this is equivalent to f2´1p0q “ p0q. Thus, SpecQpAq Ñ SpecV maps the
unique point to the generic point of SpecV , which is therefore mapped to the generic point
of SpecAq, i.e., to q.

http://stacks.math.columbia.edu/tag/01J8
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Let us inspect some basic properties of valuation rings.

Lemma 1.7.16. The following are equivalent:
(1) A is a valuation ring.

(2) A is a local domain, and every finitely generated ideal is principal (i.e., generated by a single
element).

Proof. (1) ñ (2): To show A is local, we use the characterization in Definition and Lemma 1.2.1(4):
let f P A. Then f |1´ f or 1´ f |f . By symmetry we may assume f |1´ f , i.e., there is some a P A
with af “ 1 ´ f . Thus p1 ` aqf “ 1, so f is a unit.

If I “ pf1, . . . , fnq we have f2|f1 (in which case I “ pf2, . . . , fnq) or f1|f2 (in which case
I “ pf1, f3, . . . , fn) etc.

(2) ñ (1): Let a, b P A. The ideal pa, bq is principal, say, pa, bq “ pxq, i.e., a “ αx, b “ βx and
x “ ea ` fb for α, β, e, f P A. Then eαx ` fβx “ x, i.e., eα ` fβ “ 1 since A is a domain. Since
A is local we have, say, eα P Aˆ, so α P Aˆ and b “ βα´1a.

Corollary 1.7.17. Let A be a Noetherian integral domain. Then A is a valuation ring iff it is a
local principal ideal domain (abbreviation: PID). If it is not a field, such a ring is called a discrete
valuation rings (abbreviation: DVR).

For example, for a field k, the localizations krtsp are DVRs. The ring Zppq above is also a DVR,
as is Zp, the ring of p-adic numbers , for example. For a DVR A, we have SpecA “ tη, su, where
η “ p0q is the generic point, and s is any non-zero prime ideal, which is the unique maximal ideal
(i.e., closed point in SpecA). Another example (not used in the sequel) of a discrete valuation
ring is the stalk of the sheaf of holomorphic functions on a Riemann surface X: given x P X and
a meromorphic function fpzq defined locally around x, a) f is holomorphic a given point x or b)
f has a pole of order n, so that f is non-zero in a neighborhood of x, so that 1

f
is holomorphic in

a neighborhood of x.
Another perspective on this remark is that a valuation ring is either a principal ideal domain

or non-Noetherian! This also explains to an extent why the construction of valuation rings in
Proposition 1.7.14 is somewhat indirect.

Lemma 1.7.18. Any valuation ring A is integrally closed in its field of fractions QpAq, i.e., any
c P QpAq that satisfies a monic polynomial equation

cn ` an´1c
n´1

` ¨ ¨ ¨ ` a0 “ 0pP QpAqq,

for appropriate ai P A, already lies in A.

Proof. Since A is a valuation ring, we have c P A or c´1 P A, cf. Proposition 1.7.13(1). In the
latter case, we divide the given equation by cn´1 so that

´c “ an´1 ` an´2c
´1

` ¨ ¨ ¨ ` a0c
´n`1

lies in A.

For example, any unique factorization domain (abbreviation: UFD) is integrally closed (Exer-
cise 1.7.25).

The following characterization of universally closed morphisms is a first stepping stone towards
the notion of proper morphisms between (not necessarily affine) schemes that we will study later
on.

Lemma 1.7.19. For a map φ : SpecB Ñ SpecA (induced by a ring homomorphism f : A Ñ B),
consider T :“ imφ. If T is stable under specialization, then T is closed.
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Proof. Let I :“ ker f . We may replace A by A{I (since SpecA{I is closed in SpecA), so we may
assume f is injective. We claim that φ is surjective then.

In general, for f injective, imφ contains the minimal primes of A (for such a prime p, SpecAp

is a singleton. Its preimage, φ´1ppq “ SpecBp (Lemma 1.2.6), is non-zero, since it arises from the
injection A Ă B by localization, which is an exact functor).

Now if T is stable under specialization, it contains with all the minimal primes all prime ideals.

Theorem 1.7.20. Consider a ring homomorphism f : A Ñ B and denote by φ : SpecB Ñ SpecA
the induced map on spectra. The following are equivalent:
(1) f is an integral map (not necessarily injective, i.e., fpAq Ă B is an integral extension),

(2) f satisfies the lifting property as shown, i.e., for each valuation ring V (and its quotient field
QpV q) and each commutative outer square there is a diagonal map such that the two triangles
commute:

A

f
��

// V � _

��D
||

B // QpV q

Equivalently, in the category of affine schemes, φ satisfies the lifting property as shown:

SpecQpV q //

��

SpecB

φ

��

SpecV

D

88

// SpecA

(3) φ : SpecB Ñ SpecA is universally closed, i.e., for any algebra map A Ñ A1, the induced map
SpecpB bA A

1q Ñ SpecA1 is closed.

(4) A1
B “ SpecBrts Ñ A1

A “ SpecArts is closed,

Proof. (1) ñ (2): Contemplate the following diagram:

QpV q Bφ
oo

D
||

V
?�

OO

A

f

OO

ψ
oo

Since any b P B satisfies a monic equation (with coefficients in (the image of) A), c :“ φpbq satisfies
a monic equation (with coefficients in V ). Since V is integrally closed in QpV q (Lemma 1.7.18),
c P V , so the diagonal arrow exists.

(2) ñ (3): since morphisms satisfying the lifting property are stable under pullbacks (of affine
schemes), it is enough to show that a map A Ñ B satisfying (2) is closed (on spectra). Let
Z Ă SpecB be closed. We have to check that φpZq is closed. By Lemma 1.7.19, it is enough
to show fpZq is stable under specialization. Let z P Z and φpzq “ p ⇝ q be a specialization.
By Corollary 1.7.15 there is a valuation ring V with fraction field QpV q “ kpzq and the depicted
bottom horizontal map satisfying ηV ÞÑ p, sV ÞÑ q

Spec kpzq

��

// SpecB

φ

��

SpecV //

ψ
88

SpecA
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By (2), there is the diagonal dotted map ψ, so the closed point η ⇝ s in SpecV lifts to a
specialization z “ ψpηq⇝ ψpsq, which in turn maps to the given specialization p⇝ q. Therefore,
q P imφ.

(3) ñ (4) is trivial: take A1 “ Arts.
(4) ñ (1) (following [Oli83, Theorem 3.2]) pick b P B and consider the map Brts Ñ Brb´1s

sending t to b´1. Let C be the image of the composite Arts Ñ Brts ↠ Brb´1s. We have a
commutative diagram

SpecBrb´1s :“ SpecBrts{bt ´ 1 //

��

A1
B

��

SpecC //A1
A

where the two horizontal maps are closed embeddings (since Arts ↠ C). By (4), the right hand
and therefore also the left hand vertical map is closed. In addition, C Ñ Brb´1s is injective. By
Lemma 1.7.22, the map is therefore conservative, so that t, which is invertible in Brb´1s, is already
invertible in the subring C Ă Brb´1s. That is, its inverse t´1 “ b is of the form b “

řn
i“0 aipb

´1qi

for some ai P A. Multiplying with bn shows that b satisfies a monic polynomial equation with
coefficients in A.

Remark 1.7.21. The proof of (1) ñ (2) actually shows that the (1) implies the existence and
unicity of the diagonal map. We have refrained from stating this above, since for maps between
general schemes the condition of being universally closed will turn out to be equivalent to (only)
the existence of the lift.

Lemma 1.7.22. Let f : A Ñ B be an injective ring homomorphism such that φ : SpecB Ñ

SpecA is closed. Then f is conservative, i.e., it satisfies the lifting property as shown (equivalently,
any a P A such that fpaq P Bˆ already satisfies a P Aˆ:

SpecB

φ

��

//Gm

��

SpecA

D!
;;

//A1.

Proof. If f is injective then φ has dense image (Lemma 1.1.12); thus by closedness φ is surjective.
Thus the lifting exists by Exercise 1.6.29 (taking into account that morphism of affine schemes are
the same as morphisms of locally ringed spaces, Proposition 1.6.13).

Proposition 1.7.23. Let f : A Ñ B be an integral ring map. Then

dimA ě dimB.

If f is an integral extension (i.e., injective), then

dimA “ dimB.

Proof. To prove the first claim we take a chain of prime ideals in B and produce a chain of
prime ideals in A of the same length. We reduce this claim to the case where A is a field: if
q0 Ĺ q1 Ĺ ¨ ¨ ¨ Ĺ qn is a chain of prime ideals in B then the prime ideals pi “ f´1pqiq form a chain
in A. If, say, p :“ pi “ pi`1, then qi Ĺ qi`1 is a strict inclusion of prime ideals in Bqi`1

{qiBqi`1
.

However, kppq “ Ap{pAp Ñ Bqi`1
{qiBqi`1

is an integral map as well, so we have reduced to A being
a field, say A “ k.

We have reduced the first claim to showing this: if k Ñ B is an integral map, then dimB ď 0.
If SpecB ‰ H, pick a prime q Ă B. Then C :“ B{q is a domain, and (as B) integral over k. We
claim that C is a field. For c P C, there is a (monic) polynomial ppxq P krxs such that ppcq “ 0. If
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we write ppxq “
ř

i eix
i, then we have e0 ‰ 0 (since C is a domain), therefore c ¨

ř

ią0 ´eic
i´1

e0
“ 1,

so c is a unit in C.
If f is injective then φ is dominant (Lemma 1.1.12). Since it is also closed, φ is surjective.

Given a specialization x ⇝ x1 in SpecA we can lift it to a specialization in SpecB. (This was
shown in the proof of (2) ñ (3) above.) Thus dimB ě dimA.

Proposition 1.7.24. (Noether normalization) Let A “ krt1, . . . , tns{I be a finitely generated k-
algebra with dimA “ d. Then there are d elements a1, . . . , ad P A such that the map

kru1, . . . , uds Ñ A, ui ÞÑ ai

is injective and turns A into a finite kru1, . . . , uds-algebra. In other words, the map SpecA Ñ Ad
k

is finite.

Proof. See, e.g., [Stacks, Tag 00OY] or [Eis95, §8.2.1, Theorem A1] for a proof.

Exercises

Exercise 1.7.25. Recall that a ring A is a unique factorization domain (abbreviation: UFD) if it
is a domain and if any x P R, x ‰ 0, x R Rˆ is a (finite) product of irreducible elements, and any
two such factorizations

x “ a1 ¨ ¨ ¨ ¨ ¨ am “ b1 ¨ ¨ ¨ ¨ ¨ bn

implies n “ m and the ai equal the bj up to a permutation. (For example, Z and fields are UFDs;
if A is a UFD, then so is Arts; localizations of UFDs are again UFDs).

Prove that any UFD is integrally closed.

Exercise 1.7.26. Let A be a domain that is integrally closed in its fraction field QpAq. Let S Ă A
be a submonoid (for the multiplication; also known as a multiplicatively closed subset), 0 R S.
Prove that the localization ArS´1s is an integrally closed domain as well.

Exercise 1.7.27. Let A be an integral domain. Prove that the following are equivalent:
(1) A is integrally closed,

(2) Ap is integrally closed for all prime ideals p Ă A,

(3) Am is integrally closed for all maximal ideals m Ă A.
Hint: for (3) ñ (1): if an element s P QpAqzA satisfies a monic equation, consider the ideal

I :“ tr P A | rs P Au Ĺ A.

Exercise 1.7.28. Fix an inclusion of commutative rings A Ă B. Prove that B is a finite A-module
iff B is integral over A and if it finitely generated as an A-algebra.

Exercise 1.7.29. Let φ : SpecB Ñ SpecA be a finite morphism, i.e., such that B is finite as an
A-module. For any p P SpecA, prove that φ´1ppq is homeomorphic to a disjoint union of finitely
many copies of a singleton.

Exercise 1.7.30. Let K Ă L be a field extension. Prove: the extension is algebraic (in the sense
of field theory) iff it is integral. Use this to give an example of an integral, but not finite ring map
A Ă B.

Exercise 1.7.31. Recall that the support of an A-module M is defined as

SuppM :“ tp P SpecA | Mp ‰ 0u.

We now suppose M is a finite A-module.

http://stacks.math.columbia.edu/tag/00OY
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(1) Prove that
SuppM “ V pAnnMq,

where AnnM :“ ta P A | aM “ 0u is the annihilator of M . In particular, the support of M is
closed.

(2) Also prove
SuppM “ tp P SpecA | Mp{pMp ‰ 0u. (1.7.32)

Hint: use the Nakayama lemma.

Exercise 1.7.33. Let A Ñ B be a finite ring homomorphism. Use Exercise 1.7.31 to give another
proof of the fact that SpecB Ñ SpecA is closed.

Exercise 1.7.34. Let A “ krx, ys{y2 ´ x3 and B “ krts, and consider the map f : A Ñ B given
by x ÞÑ t2, y ÞÑ t3. Prove the following

• f is injective, so that A is a domain.

• f is finite.

• A is not integrally closed in B, and therefore not integrally closed in QpAq.

• dimA “ 1.

• Prove that the map SpecB Ñ SpecA is bijective (on the level of the underlying sets). Deduce
that it is a homeomorphism (on the level of the underlying topological spaces).

Hint: prove that the localization Arx´1s Ñ Brt´1s is an isomorphism.

• Let A1 be the localization of A at the prime ideal px, yq and m Ă A1 its maximal ideal. Prove
that the residue field A1{m is isomorphic to k and prove dimkm{m2 “ 2.

The ring A (or SpecA) is referred to as the cusp. The map A1
k “ SpecB Ñ SpecA is referred to

as the normalization of the cusp. Given that dimA1 “ 1 ă dimkm{m2, the local ring A1 is called
singular .

1.8 Chevalley’s theorem on constructible subsets

By design, all ring homomorphisms A Ñ B induce continuous maps φ : SpecB Ñ SpecA; i.e.,
φ´1pUq is open for any open U . Images of open (resp. closed) subsets need in general not be open
(resp. closed), as the following examples show.

Example 1.8.1. Consider the inclusionA “ Zrxs Ñ B “ Zrx, ys{xy. Geometrically φ : SpecZrx, ys{xy Ñ

A1 “ SpecZrxs corresponds to the projection of a coordinate cross to the x-axis. One checks that
the image of Dpyq is the origin in A1, which in particular shows that the image of an open subset
may be closed.

Example 1.8.2. Consider the canonical inclusion Zrxs Ñ Zrx, ys. Passing to spectra, we obtain
the projection A2 Ñ A1. The closed subset Z :“ V pxy ´ 1q Ă A2 is the hyperbola. One checks
that its image in A1 is φpZq “ A1

Zzt0up“ SpecZrx, x´1sq. In particular, the image of the closed
subset Z is open.

These two examples suggest considering a combination of open and closed subsets.

Definition 1.8.3. A subset of SpecA is called constructible if it is a finite union of subsets of the
form

Dpfq X V pg1, . . . , gnq,

for f, g1, . . . , gn P A.
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Remark 1.8.4. There is a definition of constructible subsets of arbitrary topological spaces [Stacks,
Tag 005G]. The definition above agrees with that one by [Stacks, Tag 00F6].

Theorem 1.8.5. (Chevalley’s theorem on constructible sets) Let B be a finitely presented A-
algebra, i.e., B “ Arx1, . . . , xns{pf1, . . . , fmq and consider the map φ : SpecB Ñ SpecA. If
Z Ă SpecB is constructible, then φpZq Ă SpecA is also constructible.

We defer the proof of this theorem to §1.10. To see that Chevalley’s theorem imposes an actual
restriction, here is an example of a non-constructible subset:

Lemma 1.8.6. Consider tηu Ă A1
k, where η “ p0q is the generic point. This subset is not

constructible (for any field k).

Proof. If it was constructible, then its complement, which consists of all the closed points, would
be constructible as well by Exercise 1.8.11, i.e., a finite union of closed points. However, there are
infinitely many closed points (even if k is finite), as one sees by adapting Euclid’s classical proof
showing that there are infinitely many prime numbers: the closed points are of the form pfq, with
f P krts monic and irreducible polynomials. If there were only finitely many, say, f1, . . . , fn, then
the irreducible factors of

śn
i“1 fi ` 1 are distinct from the fi, giving a contradiction.

Proposition 1.8.7. Let f : A Ñ B be a finitely presented flat map. Then φ : SpecB Ñ SpecA
is an open map (i.e., φpUq is open for any open U Ă SpecB).

Proof. [Stacks, Tag 00I1] This is basically a consequence of Chevalley’s theorem (Theorem 1.8.5).

It is enough to prove that φpDpbqq is open, where b P B. Since Dpbq – SpecBrb´1s
j

Ñ SpecB
is flat and finitely presented, it is enough to show that φpSpecBq is open. By Theorem 1.8.5 it
is constructible. By Exercise 1.8.10 it is enough to show φpSpecBq is stable under generization,
i.e. given q P SpecB and p “ φpqq and a generization p1 ⇝ p, we need to find some q1 “? in the
diagram below:

? //
_

��

q
_

��

p1 // p

We have the map SpecBq Ñ SpecAp “ tp1, p1 ⇝ pu. This is a local map of local rings. It is flat,
being the composition of Ap Ñ Ap bA B Ñ Bq. Being a flat local map between local rings it is
faithfully flat (Lemma 1.4.3).

Exercises

Exercise 1.8.8. Confirm the claims made about the images in Example 1.8.1 and Example 1.8.2.

Exercise 1.8.9. Prove the following converse to Chevalley’s theorem: for any constructible subset
S Ă SpecA there is a finitely presented A-algebra B such that S “ impSpecB Ñ SpecAq.

Exercise 1.8.10. (Solution at p. 108) Let S Ă SpecA be a subset.
(1) Suppose S is open. Prove that S is stable under generization (i.e., for x P S, y ⇝ x one has

y P S).

(2) Conversely, prove that S is open provided that S is stable under generization and S is con-
structible.

Exercise 1.8.11. Show that complements and finite intersections of constructible subsets (inside
SpecA, for a fixed ring A) are again constructible.

http://stacks.math.columbia.edu/tag/005G
http://stacks.math.columbia.edu/tag/00F6
http://stacks.math.columbia.edu/tag/00I1
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The statements proved in the exercises Exercise 1.8.13 and Exercise 1.8.14 are key special cases
of the openness of finitely presented flat maps (Proposition 1.8.7). We will use them in the proof
of Chevalley’s theorem, cf. p. 45. In a similar vein, Exercise 1.8.12 is a step in that proof.

Exercise 1.8.12. Let A Ñ B be one of the following:
(1) B “ A{I, for a finitely generated ideal I Ă A,

(2) B “ Arf´1s, for some f P A.
Prove that the induced map φ : SpecB Ñ SpecA preserves constructible subsets. I.e., if S Ă

SpecB is constructible, prove that S is also constructible as a subset of SpecA.
Hint for B “ A{I: for b P B, prove that SpecAzDSpecBpbq is constructible and use Exer-

cise 1.8.11.
Prove that the assertion fails for B “ A{I if I is not finitely generated: prove that the origin

in the infinite-dimensional affine space A8
k :“ Spec krt1, t2, . . . s is not a constructible subset.

Exercise 1.8.13. (Solution at p. 108) (Moret-Bailly https://mathoverflow.net/q/481465) Let
A Ñ B be a ring homomorphism such that B is a finitely generated free A-module, i.e., B – Ad

(as a module). Consider the map φ : SpecB Ñ SpecA.
(1) Let bd “ pa1, . . . , adq (in a basis of B). Prove that SpecAzfpDpbqq “ V pa1, . . . , adq.

(2) Deduce that φ is an open map.

Exercise 1.8.14. (Solution at p. 108) Let A be a ring, and consider the canonical map φ : A1
A “

SpecArxs Ñ SpecA.

(1) For any f “
řd
n“0 anx

n P Arxs, prove that φpDpfqq “
Ť

nDpanqpĂ SpecAq.

(2) Deduce that φ is an open map.

Exercise 1.8.15. (Solution at p. 108) Let A be absolutely flat. Prove that a subset S Ă SpecA
is constructible iff it is clopen (i.e., closed and open).

1.9 Hilbert’s Nullstellensatz

Proposition 1.9.1. (Hilbert’s Nullstellensatz ) Let A “ krt1, . . . , tns{I be a finite type k-algebra,
where k is a field. Let x P SpecA. Then x is a closed point (i.e., a maximal ideal) if and only if
the residue field kpxq is a finite extension of k.

There are many proofs of this theorem, for example [Eis95] contains five of them. The one
below follows [MO15, Corollary II.2.11] and [Stacks, Tag 00FV].

Proof. We begin with the trivial direction “ð”: we have k Ă A{p Ă pA{pqp “ kpxq, so if
dimkpA{pq ď dimk kpxq ă 8, so A{p is a field. (Recall, as was shown in the proof of Propo-
sition 1.7.23, that a domain that is also a finite-dimensional k-vector space is necessarily a field.)
We therefore obtain that p is maximal.

“ñ”: We first treat the case n “ 1 (and I “ 0). In this case a closed point x P A1
k is generated

by a non-zero monic irreducible polynomial f P krxs, and kpxq “ krts{f is indeed a finite extension
of k.

For n ą 1, consider the map

pi : SpecA Ă An
k

pri
Ñ A1

k,

where the right hand map is the projection onto the i-th coordinate, i.e., on the level of rings given
by

krtis Ă krt1, . . . , tns Ñ A.

By Chevalley’s theorem (Theorem 1.8.5), pipxq is constructible, so, by Lemma 1.8.6 it is not the
generic point, but a closed point. By the case n “ 1, the residue field kppipxqq is a finite extension

https://mathoverflow.net/q/481465
http://stacks.math.columbia.edu/tag/00FV
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of k. The field kpxq is generated by the subfields kppipxqq (since the krtis for i ď n generate
krt1, . . . , tns as a k-algebra). Thus, kpxq is also finite over k.

The following consequence explains why the above theorem is referred to as “Nullstellensatz”
(“Null” = zero, “Stelle” = locus, “Satz” = theorem).

Corollary 1.9.2. If k is an algebraically closed field, the closed points of An
k “ Spec krt1, . . . , tns

are in bijection to kn. More precisely these are the prime ideals

pt1 ´ a1, . . . , tn ´ anq, ai P k.

More generally, the closed points of V ppf1, . . . , fmqq “ Spec krt1, . . . , tns{pf1, . . . , fmq are precisely
the prime ideals above, where for all i

fipa1, . . . , anq “ 0.

Corollary 1.9.3. For a field k, dimAn
k “ dim krt1, . . . , tns “ n.

Proof. Assume first that k is algebraically closed. Let m “ pti ´ ai, i ď nq be a maximal ideal. We
have the chain

p0 “ p0q Ĺ p1 “ pt1 ´ a1q Ĺ ¨ ¨ ¨ Ĺ pn “ pt1 ´ a1, . . . , tn ´ anq “ m.

Thus, dim krt1, . . . , tns ě n. On the other hand, by Theorem 1.3.4(1), we have dim krtism ď n,
since m is generated by n elements. Then dim krtis “ supm maximal dim krtism “ n.

For a general field k, the claim follows from Lemma 1.9.4. Alternatively, one can use a similar,
but more elaborate argument along the lines above [Stacks, Tag 00OP].

Lemma 1.9.4. Let k be a field, k1 an algebraic field extension (but not necessarily finite, so k1 “ k
is allowed) and A a k-algebra. Then dimA “ dimA bk k.

This statement fails if k1 is transcendental over k, cf. Exercise 1.9.7.

Proof. The map k Ñ k1 is integral. By Theorem 1.7.20 so is its base changeA Ñ Abkk
1. The map is

injective since A is flat over k (Example 1.4.1). Thus their dimensions agree (Proposition 1.7.23).

Exercises

Exercise 1.9.5. Let k be an algebraically closed field.
(1) For i “ 1, 2, let Ai be a finitely generated k-algebra. Let Xi :“ SpecAi and write X :“

SpecpA1bkA2q. (In the language of Proposition 2.4.2, this is the fiber productX “ SpecA1ˆSpec k

SpecA2.) Prove that there is a bijection

Xcl
“ Xcl

1 ˆ Xcl
2 ,

where the superscript cl denotes the set of closed points (and at the right we have the products
of these two sets).

(2) Exhibit (non-closed) points in A2
k “ A1

kˆSpec kA
1
k that are not pairs of points in the two copies

of A1
k.

(3) Show that the assumption of k being algebraically closed cannot be dropped: prove that

SpecpQr
?
2s bQ Qr

?
2sq consists of two points, for example.

(4) (bonus, for those with knowledge of Galois theory): For an arbitrary field k and a separable
closure ksep, establish a homeomorphism where at the left we have the absolute Galois group

Galpksep{kq
–
Ñ Specpksep bk k

sep
q.

(Hint: first prove the statement if ksep is replaced by a finite Galois extension.)

http://stacks.math.columbia.edu/tag/00OP
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Exercise 1.9.6. (Solution at p. 109) In Corollary 1.9.2, why is it necessary to require k to be
algebraically closed?

Exercise 1.9.7. Let k be a field. Prove that (in contrast to Lemma 1.9.4)

dimpkptq bk kpuqq “ 1.

Hint: Spec kptq is the generic point of A1
k “ Spec krts. Compare Specpkptq bk kpuqq with

Specpkrts bk krusq.

Exercise 1.9.8. Let x P An
Z “ SpecZrt1, . . . , tns. Show that x is a closed point if and only if its

residue field kpxq is a finite field.

1.10 Proof of Chevalley’s theorem

In this section, we prove Chevalley’s Theorem 1.8.5 with the method due to Olivier [Oli78]. Given
the map SpecB Ñ SpecA, the proof will proceed as follows:
(1) A series of relativy easy reduction steps shows that it is enough to consider B “ Arts, i.e.,

geometrically the projection A1
A Ñ SpecA.

(2) We will reduce to the case of A being an absolutely flat ring (Definition 1.4.8). Roughly
speaking, this amounts to tearing SpecA apart. This reduction step will use as an input that
Chevalley’s theorem holds true for maps of the form

Dpaq \ V paq Ñ SpecA,

cf. Exercise 1.8.12.

(3) In the case when A is absolutely flat, we will be able to inspect the statement basically by
hand. As it turns it is then enough to show that Chevalley’s theorem holds for maps of the
following two types:

• SpecB Ñ SpecA, where B is a finite free A-module (Exercise 1.8.13),

• A1
A Ñ SpecA (cf. Exercise 1.8.14).

A category-theoretic interlude

The following category-theoretic statement is known as the small object argument . It plays an
outsize rôle in homotopy theory, a branch of algebraic topology. It can also be used to systematize
various ring-theoretic constructions in algebraic geometry. We will employ it in order to perform
the reduction step (2) alluded to above.

Lemma 1.10.1. Let C be a compactly generated category that admits all (small) colimits. Let
gi : Ai Ñ Bi be a set of maps (indexed by i P I), and assume that the objects Ai are compact.
Then, for any map f : X Ñ Z in C, there is a factorization

X
f

//

f 1

  

Z

Y

f2
??

where f2 satisfies the right lifting property with respect to the maps gi and f
1 lies in the saturation

of the set tgiu, i.e., it is obtained from the maps gi by taking coproducts, pushouts and transfinite
compositions.
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Proof. See, e.g. [Lur09, Proposition A.1.2.5]. The heuristic idea of the proof is simple: consider
the question whether f satisfies the right lifting property relative to the gi:

Ai

gi
��

h // X

f
��

Bi

?

>>

// Z

If these lifts do exist, there is nothing to be done. To account for the possibility that such a
lift does not exist, consider the set, denoted Apfq, of commutative squares as above (without the
dotted arrow). Note this is a set, since the gi are indexed by a set and since morphisms between
any two fixed objects also form a set. Consider the factorization

Ů

aPApfq
Ai

��

// X

f 1
1

��
Ů

aPApfq
Bi

// X1 :“ X \Ů

Ai

Ů

Bi

v1

��

Z.

By construction, f1 is a pushout of a coproduct of maps gi, i.e., in the saturation. The map v1,
however, may not satisfy the right lifting property relatively to the gi. (It does satisfy it if we
only allow maps Ai Ñ X 1 factoring over X as in the diagram above, though.) We can repeat the
construction with v1 in place of f , and construct a refined factorization

X Ñ X1 Ñ X2 Ñ Z.

Repeating this (countably many times) and setting Y :“ colimXn gives a factorization X
f 1

Ñ Y
f2

Ñ

Z. By construction, f 1 is a transfinite composition of maps in the saturation of the gi. We check
that f2 satisfies the right lifting property:

Ai
**

gi
��

// Xn
// Xn`1

// Y

f2

��

Bi
//

66

Z

Since Ai is compact, the map Ai Ñ Y “ colimXn factors over some Xn, as shown. (This step
is why the lemma is called small object argument). By construction, the map Ai Ñ Xn Ñ Xn`1

factors through gi as shown, in such a way that the top left triangle and the bottom right part
commutes.

Lemma 1.10.2. If the maps gi above are epimorphisms, then the factorization above is unique
up to unique isomorphism. That is, given two factorizations of f “ f2

1 ˝ f 1
1 “ f2

2 ˝ f 1
2, there is a

unique isomorphism Y Ñ Y 1 making the entire diagram commutative:

X
f 1
1 //

f 1
2
��

Y 1

f2
1
��

Y

φ
–

>>

f2
2 // Z

Proof. First, there is some morphism φ : Y 1 Ñ Y making the diagram commute since f2
1 satisfies

the right lifting property against the maps gi and therefore also against the maps in the saturation
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of the gi. Similarly, there is a map ψ : Y Ñ Y 1 going the other way (not depicted). It suffices to
check their composites are the identity maps, which reduces us to considering in the above diagram
the case Y 1 “ Y , and the composite ψ ˝ φ and idY . The composite of these two maps with f 1

1

is the same. But any map in the saturation of the gi is an epimorphism, since the gi are. Hence
ψ ˝ φ “ idY and likewise for φ ˝ ψ.

Example 1.10.3. For any fixed ring A, the small object argument is applicable to the category
C “ AlgA (of A-algebras and A-algebra morphisms). Indeed, it has all colimits: by general theory,
it is enough to check the existence of pushouts and filtered colimits. Pushouts R\S T are precisely
the tensor products R bS T . The filtered colimit colimiRi of a system of A-algebras is just the
ring R :“

Ů

iRi{ „, where Ri Q ri „ rj P Rj iff there is some k ą i, k ą j such that ri and rj
map to the same element in Rk (under the transition maps Ri Ñ Rk Ð Rj). The addition and
multiplication are defined in the natural manner (which is well-defined since the transition maps
are ring homomorphisms.)

Any A-algebra R is a filtered colimit of finitely presented A-algebras. Indeed, R is first the
filtered colimit of its finitely generated A-algebras, namely the subalgebras of R generated by
finitely many elements r1, . . . , rn. These subalgebras might not be finitely presented, but a finitely
generated algebra R “ Art1, . . . , tns{pfi, i P Iq is the filtered colimit of the finitely presented
algebras Art1, . . . , tns{pfi, i P Jq for increasingly large finite subsets J Ă I.

An A-algebra R is a compact object in AlgA iff it is a finitely presented A-algebra.

The weak saturation of 0 \ Gm Ă A1

In order to get mileage out of the small object argument, one needs to understand a) the saturation
of a set of maps and b) the maps satisfying the lifting property relative to those maps. To warm
up for Olivier’s proof of Chevalley’s theorem, we consider a slightly more basic example first.

Lemma 1.10.4. Consider the map g : Zrts Ñ Zrt, t´1s. The saturation of this map consists
precisely of the ring homomorphisms of the form A Ñ ArS´1s, i.e., localizations.

A map A Ñ B satisfies the right lifting condition

Zrts //

g

��

A

f

��

Zrt˘1s //

<<

B

iff it is conservative, i.e., if for any element a P A such that fpaq P Bˆ we already have a P Aˆ.
(If A and B are local rings, this is precisely the condition of being a local map in the sense of
Definition and Lemma 1.2.3).

Proof. Indeed, ArS´1s “ colimArts1, . . . , snu´1s, and the terms in the colimit agree with
Ân

i“1Ars´1
i s.

Hence we are reduced to observing the following pushout diagram:

Zrts tÞÑs //

��

A

��

Zrt˘1s // Ars´1s.

Conversely, the same reasoning shows that any morphism in the saturation of g is a localization.
The second statement is clear by HomRingspZrt˘1s, Aq “ Aˆ etc.

The map g is an epimorphism (even though it is not surjective!), so Lemma 1.10.2 supplies a
unique factorization of any ring homomorphism A Ñ B as

f “ f2
˝ f 1 : A

f 1

Ñ ArS´1
s
f2

Ñ B
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with f 1 being a localization and f2 being conservative. The latter can be made concrete by
observing that we have a factorization

A Ñ Arpf´1
pBˆ

qq
´1

s Ñ B

where the second map is conservative. By unicity (up to unique isomorphism) of the factorization
(Lemma 1.10.2), we see that the abstractly supplied factorization is this one.

A subexample of the above: if B “ kppq is the residue field of a prime ideal p Ă A, this
factorization is

A Ñ Ap Ñ kppq.

Lemma 1.10.5. Let g : Zrts Ñ ZˆZrt˘1s be given by t ÞÑ p0, tq and write φ : SpecZ\Gm Ñ A1

for the induced map on spectra. Let g1 be a map in the saturation of g. Then

• g1 is bijective on the level of the maps of spectra (we do not assert these maps are homeomor-
phisms of the underlying topological spaces).

• g1 preserves constructible subsets.

Proof. Indeed, the bijectivity holds true for φ and finite products φn : pSpecZ\Gmqˆn Ñ An and
also for any pullback of such maps:

SpecA1 //

g1

��

pSpecZ \ Gmqˆn

φn

��

SpecA
pf1,...,fnq

//An

Indeed, SpecA1 is the disjoint union of spectra of SpecA{pfi, i P IqXSpecArf´1
i , i R Is, where I runs

through the (finite) subsets of t1, . . . , nu. This is nothing but V pfi, i P Iq XDp
ś

fi, i R Iq, and the
union of these is SpecA. Similarly, g1 as above preserves constructible subsets by Exercise 1.8.12.

We claim that for a diagram of rings (indexed by n P N)

A0 Ñ A1 Ñ . . . Ñ A8 :“ colimAn

with each map inducing a bijection SpecAn`1 Ñ SpecAn, the map SpecA8 Ñ SpecA0 also is a
bijection. (Similarly, if each of these former maps preserves constructible subsets, then so does the
latter.) This will imply the lemma.

We use that as a set SpecA consists of maps A Ñ k, for fields k, up to the identification
pf : A Ñ kq „ pf 1 : A Ñ k1q iff there is a field k2 containing k and k1 such that f “ f 1 when
regarded as maps A Ñ k2 (Exercise 1.2.9). Given a point in SpecA0, i.e., a map A0 Ñ k0, there
is a field extension k1{k0 such that A0 Ñ k0 Ă k1 factors through A1 as shown below:

A0
//

��

A1

��

// . . . // A8 “ colimAi

��

k0
� � // k1

� � // . . . �
�

//
Ť

ki

The filtered colimit of these fields,
Ť

i ki, is also a field and this gives a point in SpecA8; showing
the surjectivity of SpecA8 Ñ SpecA0. The injectivity is similar: given two points colimAi Ñ k
whose composite with A0 agree, then its restriction to A1 agrees etc.

The argument about constructibility is similar, since constructible subsets in SpecA8 are finite
unions of subsets of the form V pf1, . . . , fnq X Dpfq. Then one uses that the elements f, fi P A8

arise from some An.
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The proof

Proof of Theorem 1.8.5. We begin with a (standard) reduction step: it is enough to prove the
theorem for B “ Arxs. Indeed, a constructible subset in SpecB “ SpecArx1, . . . , xns{pf1, . . . , fmq

is also constructible in SpecArx1, . . . , xns (Exercise 1.8.12; this step uses that B is finitely presented,
as opposed to finitely generated over A), so we may assume B “ Arxis. Then by induction, it
suffices to consider a single variable.

By the definition of constructible sets, we have to consider a finitely generated ideal I Ă B, and
f P B and show that the image of W :“ V pIq X Dpfq in SpecA is constructible.

We apply the small object argument (Lemma 1.10.2) to the map g : 0 \ Gm Ñ A1 (which is
a monomorphism of affine schemes, cf. Exercise 1.4.17(2)). The map H Ñ SpecA thus factors
uniquely (up to unique isomorphism) as

H Ñ Spec rA Ñ SpecA,

where the map H Ñ Spec rA satisfies the (unique) left lifting property against g. In other words,
rA is absolutely flat by Lemma 1.4.9.

Consider the absolutely flat ring rA and the associated pullback diagram

ĂW //

g

��

Spec rArts{I
ri //

��

A1
rA

rπ //

��

Spec rA

f

��

W // SpecArts{I
i //A1

A
π // SpecA.

By Lemma 1.10.5, the map f and all the vertical maps in the above diagram are bijections. Thus

the image of W in SpecA is the image of W 1 in Spec rA. Also by Lemma 1.10.5, f preserves
constructible subsets.

We can therefore replace A by rA in the sequel and assume A is absolutely flat. We claim that
for our absolutely flat ring A, and I Ă Arts finitely generated, SpecA decomposes into a disjoint
union of SpecA “

Ůn
i“1 SpecAi, such that the fibers of π ˝ i are either A1

Ai
or V pgiq Ă A1

Ai
, where

gi P Airts is a monic polynomial. Indeed, for any p P SpecA, the IbAkppq is (by absolute flatness of
A) a submodule (i.e., an ideal) of kppqrts. It is generated by a monic polynomial (here we consider
0 to be a monic polynomial as well), say f . There is a some fundamental open neighborhood
Dpbq Q p such that f extends to an element in Arb´1srts, for some b P A. By Exercise 1.8.15, the
constructible subsets are the clopen subsets in SpecA, so the claim is true on a clopen neighborhood
of any point, as requested.

Using that claim, it suffices to check the constructibility claim for I “ 0 and for I “ pgq with g
monic:

• The former case holds by Exercise 1.8.14 (for any ring E, the map A1
E Ñ SpecE is open).

• For the latter case we use that for any ring E, and any monic polynomial g P Erts, then F :“
Erts{g is finite free as an E-module, so that by Exercise 1.8.13, the image of Dpfq Ă SpecF
is constructible for any f P F .

Exercises

Exercise 1.10.6. Let A be a discrete valuation ring with residue field k and quotient field K. (If
you prefer taking a more concrete example you can pick A “ Zp with k “ Fp and K “ Qp or
alternatively A “ krtsptq, with residue field being k and K “ kptq.) Show that the absolutely flat
ring constructed in the proof above is given by

rA “ k ˆ K.
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Hint: show that a proper field extension E Ĺ F never induces a bijection A1
F Ñ A1

E. I.e., E Ñ F
is not in the weak saturation of the map 0 \ Gm Ñ A1.

Exercise 1.10.7. With A a discrete valuation ring, use Exercise 1.10.6 to illustrate all the steps
in Olivier’s proof of Chevalley’s theorem for B “ Arts{t2 ´ ϖ, where ϖ is a uniformizer, i.e., a
generator of the maximal ideal m Ă A.



Chapter 2

Schemes

Definition 2.0.1. A scheme is a locally ringed space that locally looks like an affine scheme.
More formally, it is a locally ringed space pX,OXq such that for every point x P X there is a
(commutative) ring A (depending on x) and an open neighborhood U and an isomorphism (of
locally ringed) spaces

pU,OUq – pSpecA,OSpecAq.

(Here pU,OUq :“ pU,OX |Uq carries the induced structure of a locally ringed space, cf. Exer-
cise 1.6.29). The full subcategory of LocRingedSpace consisting of schemes is denoted by Sch.

To simplify the notation, we will usually only denote a scheme by X, leaving the structural
sheaf OX implicit.

Of course, by definition, any affine scheme is a scheme in this sense, so that we have an inclusion
of full subcategories

Ringsop – AffSch Ă Sch Ă LocRingedSpace.

Definition 2.0.2. If S is a scheme, the category of S-schemes SchS is the overcategory of S P Sch.
That is, objects of SchS are morphisms of schemesX Ñ S, and morphisms in SchS are commutative
triangles

X //

��

Y

��

S

We refer to objects in SchS also as “schemes over S”.

This definition is often applied when S “ SpecA is affine. Given some X P SchS, fix any open
affine covering X “

Ť

Ui by affines Ui “ SpecBi. Then Bi are A-algebras. Similarly, morphisms
X Ñ Y over S are locally of the form SpecB Ñ SpecC, with C Ñ B being an A-algebra map.

Exercises

In the following exercises we use the following notation for a scheme X and a ring A:

XpAq :“ HomSchpSpecA,Xq.

We refer to the set XpAq as the set of A-valued points . (If X “ SpecB is affine, then we have

XpAq “ HomRingspB,Aq.

Even more specifically, if B “ Zrt1, . . . , tns{pf1, . . . , fmq we have

XpAq “ tpa1, . . . , anq | fipa1, . . . , amq “ 0u.

47
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In other words, the set XpAq encodes the solutions in the given ring A of the system of polynomial
equations. Of course, this depends dramatically on the ring A. The famous Fermat curve

xn ` yn “ 1

has certainly infinitely many solutions in R, say, but according to the so-called Fermat’s last
theorem (proved by Wiles in 1995) the only solutions in Z for n ě 3 are the “trivial” solutions,
where at least one of the three variables is 0. Going back to the case of a general scheme we
retain the observation that X determines the sets XpAq for all rings A, i.e., X “knows” about the
solutions of polynomial equations in all rings at the same time.)

Exercise 2.0.3. Let X be a scheme. Construct a bijection between the set X (i.e., disregarding
the topology and the structural sheaf) and the set

ğ

k

HomSchpSpec k,Xq{ „,

where the coproduct runs over all fields k, and we identify f : Spec k Ñ X with g : Spec k1 Ñ X
(for another field k1) iff there is a commutative diagram

Spec k
f

//

��

X

Spec k1

g
;;

In particular, deduce a bijection for the k-points

Xpkq “ tx P X, kpxq Ñ ku.

Hint: reduce to the assertion in Exercise 1.2.9.

Exercise 2.0.4. Let A be a local ring and X a scheme.
(1) Let f : SpecA Ñ X be a morphism of schemes. Prove that its set-theoretic image fpSpecAq

is contained in any affine neighborhood U Ă X of the point fpmAq, where mA is the unique
maximal ideal of A.

(2) Deduce the following description of the A-points of X:

XpAq “ tx P X,OX,x Ñ A(local map of local rings)u.

Exercise 2.0.5. Let X be a quasi-compact scheme (i.e., its underlying topological space satisfies
the condition in Definition 1.1.7). Prove that any non-empty closed subset Z Ă X contains closed
point of X. In particular, X itself has a closed point. (This statement fails if X is not quasi-
compact, see [Liu02, Exercise 3.27] for a counter-example of the form X “ SpecV ztmV u where V
is a certain (non-Noetherian) valuation ring.)

2.1 Open subschemes and glueing

Lemma 2.1.1. Let pX,OXq be a scheme and U Ă X an open subset of the topological space X.
Then pU,OX |Uq is a scheme as well.

Proof. Pick a covering X “
Ť

iPI Xi, with Xi “ SpecAi being affine. For all x P U , pick some i P I
such that x P Xi. Then U X Xi is an open neighborhood of x in the affine scheme Xi, so there is
some a P Ai such that x P DSpecAi

paq Ă U X Xi. Note that Dpaq is an affine scheme, so we have
produced an open affine neighborhood of x in U .



2.1. OPEN SUBSCHEMES AND GLUEING 49

Despite its simplicity, the statement is not completely harmless. More precisely, the statement
would fail if we were to replace “scheme” by “affine scheme”, as the following example shows.

Example 2.1.2. Let X “ A2 (or, in the same vein, An for n ě 2) and consider the punctured
plane U “ A2ztp0, 0qu, where we remove the origin, i.e., the closed point given by the maximal
ideal pt1, t2q. We claim that U is not an affine scheme. Indeed, by Exercise 1.6.32, we have
OUpUq “ Zrt1, t2s. Given the equivalence of categories (1.6.19), the natural map

U Ñ SpecpOUpUqq “ SpecZrt1, t2s “ A2

would be an isomorphism. This map is the canonical inclusion U Ă X, which however is not an
isomorphism since it is not bijective on the level of the underlying topological spaces.

The scheme U is an example of a quasi-affine scheme, i.e., an open subscheme of an affine
scheme.

Recall from topology the glueing of topological spaces: given a (possibly infinite) family of
topological spaces Xi, i P I and open subsets Xij Ă Xi (for each j P I), where Xii “ Xi, and
homeomorphisms

φij : Xij
–
Ñ Xji

satisfying the so-called cocycle condition

φjk|XjiXXjk
˝ φij|XijXXik

“ φik|XijXXik

there is a unique topological space X that is glued together from the Xi and the above data,
namely

X :“
ğ

i

Xi{ „,

where the relation is the equivalence relation generated by identifying, for any xij P Xij, xijpP Xiq

with φijpxijq P Xji. In addition, we have the following universal property of X: for any topological
space Y , we have

HomToppX, Y q “ tpfi : Xi Ñ Y q|fi|Xij “ fj|Xji ˝ φiju. (2.1.3)

In categorical terms,

X “ colim

˜

ğ

i,j

Xij Ñ
ğ

i

Xi

¸

. (2.1.4)

The following statement is referred to by saying that schemes glue (along open subschemes).

Lemma 2.1.5. Using the above notation, assume that each Xi is a scheme, and the isomorphisms
φij are isomorphisms of schemes. Then X is naturally a scheme in such a way that for any scheme
Y , the formula (2.1.3) (with morphisms of schemes) holds.

Proof. We endow the topological spaceX discussed above with the structural sheafOX constructed
in Exercise 1.5.10 (given the isomorphisms OXi

|Xij
– φji,˚OXj

|Xji etc. that are part of the isomor-
phism of schemes φij). The resulting pair pX,OXq is a locally ringed space; note that the stalks
OX,x for x P X identify with OXi,x, provided x P Xi. Finally, any x P XipĂ Xq has an open affine
neighborhood inside Xi, and therefore also inside X.

Remark 2.1.6. Lemma 2.1.5 says that (2.1.4) holds verbatim for schemes. In topology, one shows
that any diagram of topological spaces admits a colimit. By contrast, more general colimits in the
category of schemes do not usually exist.

The next statement, called affine communication lemma in [Vak17, p. 5.3.2] will help us orga-
nize various local-to-global arguments (i.e., extending statements from affine schemes to arbitrary
schemes).
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Proposition 2.1.7. Let P be a property of affine schemes (or, equivalently, of rings). We write
P pUq if P holds for U . Suppose:
(1) P pSpecAq (for U “ SpecA Ă X) implies P pSpecArf´1sq,

(2) if U “ SpecApĂ Xq is covered by Ui :“ SpecArf´1
i s, for fi P A, i “ 1, . . . , n, then P pUiq for

all i implies P pUq.
We call such a property affine-local . Now, if X “

Ť

SpecAi with P pSpecAiq, then P pUq holds for
any open affine subscheme U Ă X.

To prove this statement, we will use the following argument about “well-placed” basic open
neighborhoods.

Lemma 2.1.8. If SpecA and SpecB are open affine subschemes of a scheme X, then SpecA X

SpecB is a union of open subsets that are at the same time basic open subsets (in the sense of
Definition 1.1.1) inside SpecA and also inside SpecB.

Proof. Pick a point x P SpecA X SpecB. We can find a basic open subset DApfq “ SpecArf´1s

that is contained in SpecAXSpecB, and that contains x. LetDBpgq “ SpecBrg´1s be a basic open
subset contained in DApfq and containing x. We have the restriction map B “ OXpSpecBq Ñ

OXpSpecArf´1sq “ Arf´1s, and we denote by g1 “
g2

fn
the image of g under that map (with

g2 P A). We have

DBpgq “ SpecBrg´1
s “ tp P SpecArf´1

s, g1
R pu “ SpecpArf´1

sqrg1´1
s “ SpecArpfg2

q
´1

s.

This is therefore a basic open subset in both SpecB and SpecA containing x.

Proof of Proposition 2.1.7. Let SpecA Ă X. By Lemma 2.1.8 and the quasi-compactness of SpecA
(Lemma 1.1.10), we can find a finite covering of SpecA by basic open subsets SpecArg´1

i s which
are also basic open subsets of SpecAi. Then, using our two assumptions on the property P :

P pAiq ñ P pArg´1
i sq @i ñ P pAq.

A quick way to obtain an affine-local property of schemes is to demand some property of the
stalks at all points inside the given affine subset.

Definition 2.1.9. A schemeX is called normal (resp. factorial) if all the stalks OX,x are integrally
closed domains (resp. unique factorization domains).

By Exercise 1.7.27, an integral scheme X is normal iff all OXpUq (for affine U Ă X) is integrally
closed. By Exercise 1.7.25, any factorial scheme is normal. The converse does not hold: an example
studied in number theory is SpecOK , the integral closure of Z inside a number field K, i.e., a finite
extension K{Q. This is always normal, but not necessarily a UFD. A prototypical example from
number theory is Zr

?
´5s.

Definition 2.1.10. A scheme X is called locally Noetherian if it admits an open covering X “
Ť

i Ui with Ui “ SpecAi and Ai is a Noetherian ring. X is called Noetherian if it is locally
Noetherian and quasi-compact (Definition 1.1.7).

Again, this definition is sensible in view of the fact (proved in Exercise 2.1.11) that being
Noetherian is an affine-local property. Thus, X is locally Noetherian iff for any open affine SpecA Ă

X, A is Noetherian.

Exercises

Exercise 2.1.11. Prove that the property P pAq :““A is Noetherian” is an affine-local property.



2.2. IRREDUCIBLE AND INTEGRAL SCHEMES 51

2.2 Irreducible and integral schemes

Definition 2.2.1. Let X be a scheme.
(1) X is called connected (resp. irreducible) if its underlying topological spaces is connected

(resp. irreducible) in the sense of Exercise 1.5.8 and Definition 1.1.16.

(2) X is called reduced if for any open U Ă X, the ring OXpUq is reduced, i.e., has no non-zero
nilpotent elements.

(3) X is called integral if it is reduced and irreducible.

Lemma 2.2.2. A scheme X is integral iff OXpUq is an integral domain for all open U Ă X.

Proof. Let X be integral. By definition and by Exercise 1.1.20, open subschemes of X are again
integral. So it is enough to prove A :“ OXpXq is a domain. Suppose that f, g P A satisfy fg “ 0.
Then X “ V pfq YV pgq, so X “ V pfq say (by irreducibility). We claim that f “ 0. To check this,
we may replace X by an affine open subscheme and assume X is affine. Then X “ SpecA “ V pfq

means fn “ 0 for some n " 0 (Exercise 1.1.22(4)), so that f “ 0 since X is reduced.
Conversely, we use Exercise 1.1.20 to show X is irreducible. Let U, V Ă X be open. If they do

not intersect then

OXpU Y V q “ OXpUq ˆ OXpV q

by the sheaf property, but if this ring is a domain then one of the factors must be 0, i.e., U or V
must be empty.

Exercises

Exercise 2.2.3. Prove that a scheme X is reduced iff all the stalks OX,x are reduced (local) rings.
Prove that if X is integral, then all the stalks OX,x are domains. Show by (a quite primitive)

example that the converse fails. In other words, being integral is not a local but a global property
of a scheme.

Exercise 2.2.4. Suppose X is an integral scheme. Show that for any inclusion of open subsets
H ‰ V Ă UpĂ Xq the restriction map OXpUq Ñ OXpV q is injective. Deduce that the natural
maps OXpUq Ñ OX,x (for x P U) are injective.

Exercise 2.2.5. Consider the natural mapQrxs Ă Qrx, ys{y2´x, and let f : X :“ SpecQrx, ys{y2´
x Ñ Y :“ A1

Q “ SpecQrxs be the induced map of affine schemes. For each of the following points

p P Y , describe f´1pyq, i.e., describe whether it is connected and whether it is reduced:

• p “ px ´ 1q

• p “ px ` 1q

• p “ pxq

• p “ p0q.

2.3 The Proj construction

Recall that the n-dimensional complex projective space is defined as

CPn :“ Cn`1
zt0u{px0, . . . , xnq „ pλx0, . . . , λxnq for all λ P Cˆ (2.3.1)
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It is known that this is a compact complex n-dimensional manifold. For example, CP1 is home-
omorphic to the 2-sphere. Our goal in this section is to construct a scheme denoted Pn whose
C-points can be identified with CPn. The above definition suggests to consider a quotient

An`1
zt0u{Gm,

where the multiplicative group Gm (Exercise 1.6.33) acts on An`1zt0u Ă An`1 by multiplication.
The handling of quotients of schemes by actions of group schemes is in general much more subtle

than, say, the quotient of a topological space by the action of a topological group. The Gm-action
on Anzt0u is a free action, and in this case one can confirm the existence of the above quotient by
hand; cf. Exercise 2.3.19 for further an explanation of the appearance of the gradings below.

Definition 2.3.2. (1) A graded ring (it would be more precise to call it an N-graded ring) is
a ring of the form A “

À

ně0An satisfying the condition that the multiplication satisfies
Am ¨ An Ă Am`n.

(2) A graded ring homomorphism f : A Ñ B is a ring homomorphism such that fpAnq Ă Bn for
all n.

(3) An element a P A is called homogeneous of degree n if a P An. In this event we write deg a “ n.
It is called homogeneous if it is homogeneous of degree n for some n. (Note this implies that
0 P A is considered to be homogeneous of any degree.)

(4) A graded ideal I Ă A is an ideal such that I is generated by its homogeneous elements.

(5) The irrelevant ideal is

A` :“
à

ną0

An.

(It is a graded ideal in A.)

For a graded ring A “
À

nAn, we note that A0 Ă A is a subring. Also, A` is a graded ideal.
If, above, we replace “n ě 0” by “n P Z2, we obtain the notion of a Z-graded ring.

Example 2.3.3. For a ringB (not equipped with a grading), the polynomial ringA “ Brt0, . . . , tns

is a graded ring if we declare An to consist of homogeneous polynomials of degree n. The irrelevant
ideal is A` “ pt0, . . . , tnq. In other words, SpecA “ An`1

B and V pA`q is the origin in this n ` 1-
dimensional affine space (over SpecB).

Definition 2.3.4. The Proj construction is

ProjA :“ tp P SpecAzV pA`q | p is gradedu.

We endow it with the topology coming from the Zariski topology of SpecA.
For a ring B (not carrying a grading), we define (using the grading discussed in Example 2.3.3)

the projective space (of dimension n, over SpecB):

Pn
B :“ ProjBrt0, . . . , tns.

We now elucidate the topology of ProjA.

Lemma 2.3.5. A basis of the topology on ProjA is given by the subsets

D`pfq :“ tp P ProjA, f R pu “ Dpfq X ProjA.

where f is an arbitrary homogeneous element such that f P A`.
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Proof. A priori, we have to consider DpfqXProjA for any element f P A. However, if f “
ř

dě0 fd
is a decomposition into its homogeneous components, then a graded prime ideal p Ă A satisfies
f R p iff fd R p for some d. Thus, it is enough to consider f homogeneous. We show it suffices
to consider f homogeneous and of positive degree. Given a p P D`pfq, we will show there is a
homogeneous g P A` such that p P D`pgq Ă D`pfq. Since p does (by definition of Proj) not
contain A`, there is some h P A`, h R p. Then f R p implies fh R p, and fh is homogeneous,
degpfhq “ deg f ` deg h ą 0. So, we can put g “ fh above.

For f P A` homogeneous, we consider the localization Arf´1s, which has a Z-grading given by

degp
a

fn
q “ deg a ´ n deg f.

We let Arf´1s0 be the degree 0 part of this ring, i.e.,

Arf´1
s0 “ t

a

fn
| deg a “ n deg fu.

Proposition 2.3.6. For f homogeneous of positive degree, the ring homomorphisms

A Ñ Arf´1
s Ą Arf´1

s0

induce homeomorphisms

D`pfq
–
Ð tZ-graded prime ideals in Arf´1

su
–
Ñ SpecpArf´1

s0q.

Proof. We abbreviate S :“ Arf´1s Ą S0 :“ Arf´1s0. By definition, D`pfq “ Dpfq X ProjA is
a subspace (with the induced topology) of Dpfq “ SpecS. We note that Z-graded ideals and
N-graded ideals in S agree, which proves the left hand bijection.

Let us write φ for the right hand map. As usual, it is given by taking preimages under the
inclusion S0 Ă S, i.e., p ÞÑ φppq “ p X S0.

We show that φ is injective. Indeed, for two Z-graded prime ideals, p and q not containing f ,
we have φppq Ă φpqq iff p Ă q. Clearly, we have “ð”. Conversely, given a homogeneous element

a P p, we will show a P q. Let n :“ deg a ě 0, d :“ deg f ą 0. Then ad

fn
P pS X S0 “ φppq Ă φpqq,

so there is some homogeneous x P q such that ad

fn
“ x

fm
pP Sq, where md “ deg x. Therefore, for

e " 0, we have f epfmad ´ fnxq “ 0 P q Ă A, so that fmad ´ fnx P q, and therefore, since x P q,
fmad P q, and again using that f R q and d “ deg f ą 0, we see a P q.

We show that φ is surjective. Given a prime ideal p0 Ă S0, we define a subset (already

suggestively denoted) p :“
À

ně0Mn, where Mn :“ ta P Sn,
ad

fn
P p0u. We have p X S0 “ p0, so p

will be a preimage under φ once we show it is a graded prime ideal. We have a P Mn iff a2 P M2n

(“ñ” is clear; “ð”: if a2d

f2n
“ p a

d

fn
q2 P p0, then

ad

fn
P p0.) For a, b P Mn we have a2 ` 2ab` b2 P M2n.

Indeed, this follows from expanding pa2 ` 2ab ` b2qd into monomials and using identities such

as pabqd

f2n
“ ad

fn
bd

fn
P p0. Therefore, a ` b P Mn, so p is an ideal. It is a graded ideal since by

definition it is generated by homogeneous elements. Finally, it is a prime ideal. It suffices to check
that for two homogeneous elements a P Sn, b P Sm with ab P p we have a P p or b P p. From

ab P p X Sn`m “ Mn`m, so again p0 Q
pabqd

fn`m “ ad

fn
bd

fm
and the primality of p0 we obtain our claim.

We have proved that φ is a bijection.
To see that both maps are in fact homeomorphisms it suffices to use Lemma 2.3.5 according to

which a basis for the topology onD`pfq is given byD`pfqXD`pgq “ D`pfgq, where g is a homoge-
neous element of positive degree. Under the above bijections, this corresponds to SpecpArpfgq´1s0q.
We claim that this identifies with the basic open subset Dpgq inside SpecArf´1s0. Indeed, this fol-
lows from the following equality (which is readily confirmed, note both are subrings of Arpfgq´1s):

pArf´1
s0qrp

gdeg f

fdeg g
q

´1
s “ Arpfgq

´1
s0. (2.3.7)
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Definition 2.3.8. We let ProjA be the scheme that is obtained by glueing (in the sense of
Lemma 2.1.5) the SpecpArf´1s0q, where f P A` is an arbitrary homogeneous element.

Example 2.3.9. We continue exploring Pn “ ProjZrt0, . . . , tns. The irrelevant ideal A` is given
by A` “ pt0, . . . , tnq, so that Pn is covered by D`ptiq, 0 ď i ď n. We observe that there is a ring
isomorphism

Zru0, . . . , pui, . . . , uns
–
Ñ Zrt0, . . . , tn, t

´1
i s0, uj ÞÑ

tj
ti

(as usual, the notation pui means that ui is missing). According to the above definition of the
scheme structure, we then have isomorphisms of schemes

D`ptitjq “ SpecZrt0, . . . , tn, ptitjq
´1s0

– //
� _

��

SpecZru0, . . . , pui, . . . , un, u
´1
j s

� _

��

D`ptiq “ SpecZrt0, . . . , tn, t
´1
i s0

– // SpecZru0, . . . , pui, . . . , uns “ An.

(2.3.10)

Here, the top right subspace is the open subspace Dpujq Ă An. In other words, Pn is covered
by n ` 1 open affine subschemes Ui that are each isomorphic to An. Their pairwise intersections
Ui X Uj (for i ‰ j) are isomorphic to Gm ˆ An´1.

This shows that the construction of Pn recovers the topological structure of CPn, which is
covered by the subsets of cosets of elements of the form px0, . . . , xi´1, 1, xi`1, . . . , xnq (for i “

0, . . . , n). In complex analysis, Liouville’s theorem asserts that any holomorphic function f :
CPn

Ñ C is constant. The following statement is the algebro-geometric incarnation thereof.

Lemma 2.3.11. Let B be a ring and A “ Brt0, . . . , tns be equipped with its standard grading, as
before, and put X :“ ProjA “ Pn

B. There is a ring isomorphism

B – OXpXq.

Proof. We compute the ring of global sections using the sheaf condition for the covering Pn
B “

Ťn
i“0D`ptiq.

OXpXq “ eq

˜

ź

i

OXpD`ptiqq Ñ
ź

i,j

OXpD`ptitjqq

¸

.

Thus we consider fi P Art´1
i s0 (for each i ď n) such that fi “ fj P Arptitjq

´1s0. This latter
condition enforces that fi P A0 (as opposed to the localization).

The following statement recovers the set-theoretical description of CPn alluded to above. The
statement below does generally not hold for non-local rings; this will be adressed by the introduc-
tion of line bundles in ?? below.

Lemma 2.3.12. For any local ring A, we have the following description of the A-points

Pn
pAq :“ HomSchpSpecA,Pn

q “ tpa0, . . . , anq P An`1, ai P Aˆ for some iu{ „ (2.3.13)

“ tAn`1 ↠ Au (2.3.14)

with „ being defined as in (2.3.1) and in the second line we have the set of surjections of A-modules
as indicated.

Proof. We use Exercise 2.0.4: any map SpecA Ñ Pn factors through D`ptiq for 0 ď i ď n.
A morphism of (affine) schemes

SpecA Ñ D`ptiq “ SpecZrt0, . . . , tn, t
´1
i s0 “ SpecZru0, . . . , pui, . . . , uns
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is a collection of elements a‚ :“ pa0, . . . , pai, . . . , an P Aq; in fact ak is the image of tk
ti

(for k ‰ i).

Such a morphism will be identified with a morphism SpecA Ñ D`ptjq iff it factors through their
intersection, D`ptitjq, as shown below. In view of the above discussion, we denote the above
element uk by tk

ti
at the bottom right below, and likewise for the bottom left:

SpecA

��

a‚

vv

b‚

((

D`ptiq

–

��

D`ptitjqoo // D`ptjq

–

��

SpecZr tn
ti
, n ‰ is SpecZr tn

tj
, n ‰ js

If we denote the collection of elements corresponding to the map SpecA Ñ D`ptjq by b0, . . . , pbj, . . . , bn P

A, with bi P Aˆ this means that ai and bj have to be invertible, and for the remaining indices we
have ak “ bk

ai
bj
. One then confirms that this induces an identification of PnpAq with the set as

stated above, by sending a‚ to pa0, . . . , 1, . . . , anq, where 1 is in the i-th spot.
The description in (2.3.14) is equivalent to the one above, since a0, . . . , an in the local ring A

generate A iff one of the ai is a unit.

The Proj construction is also the basis of the following fundamental construction.

Definition 2.3.15. Let X “ SpecB be affine and Z “ SpecB{I a closed subscheme. The blow-up
of Z in X is defined as

BlZX :“ Proj
à

ně0

In “ ProjpB ‘ I ‘ I2 ‘ . . . q.

Example 2.3.16. Consider B “ Zrt1, . . . , tns, so X “ An, and I “ pt1, . . . , tnq, so Z is the origin
in An. Let us write A “

À

ně0 I
n. In order to understand Bl0A

n “ ProjA, we use the surjection
Brx1, . . . , xns Ñ A, xi ÞÑ ti. One checks that its kernel is generated by tixj ´ tjxi for 1 ď i, j ď n.
In other words, Bl0A

n is the closed subscheme of Pn´1 ˆ Anp“ ProjZrxis ˆ SpecBq defined by
the homogeneous equations tixj ´ tjxi. We analyze the fibers of the map φ : Bl0A

n Ñ An:

• The fiber φ´1p0q is ProjA{ptiq “ ProjZrxjs “ Pn´1.

• The restriction to the complement of the origin, U :“ Anzt0u, is an isomorphism. Indeed, it
is enough to check that the fiber on each Dptiq is an isomorphism, but

ProjZrx1, . . . , t1, . . . , t
´1
i s{tixj ´ tjxi “ SpecZrt1, . . . , t

´1
i s

since xj “ t´1
i tjxi, so the preceding Proj-scheme is isomorphic to ProjZrx1, t1, . . . , tn, t

´1
i s

(with x1 in graded degree 1).

In other words, we have a diagram whose two squares are cartesian:

Pn´1 //

��

Bl0A
n

φ

��

Anzt0uoo

0 //An Anzt0uoo

(2.3.17)

Exercises

Exercise 2.3.18. Prove that ProjZrt1, t2, . . . s (infinitely many variables) is not quasi-compact.
(This is in contrast with Lemma 1.1.10, which shows that affine schemes are always quasi-compact.)
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Exercise 2.3.19. Recall from Exercise 1.6.33 that Gm “ SpecZrt˘1s is the multiplicative group
whose multiplication µ : Gm ˆGm Ñ Gm, inverse ι : Gm Ñ Gm, and neutral element 1 : SpecZ Ñ

Gm are obtained by applying Spec to

Zrt˘1
s Ñ Zru˘1

s b Zrv˘1
s “ Zru˘1, v˘1

s, t ÞÑ u b v,

Zrt˘1
s Ñ Zrt˘1

s, t ÞÑ t´1,

Z Ñ Zrt˘1
s.

Let X “ SpecA be an affine scheme. Similarly to the case of a group acting on a set, we say
that a Gm-action on X is a map (of affine schemes)

act : Gm ˆ X Ñ X

satisfying the usual axioms of a group action such as the commutativity of the diagram

Gm ˆ Gm ˆ X
idGmˆact

//

µˆidX
��

Gm ˆ X

act
��

Gm ˆ X
act // X.

Prove that Gm-action on X is equivalently a Z-grading of A, i.e. A “
À

nPZAn.
Hint: applying O to the above action map gives a map A Ñ AbZrt˘1s “

À

nPZA. What does
the commutativity of the diagram mean in terms of this map?

Exercise 2.3.20. Let A “ Brt0, . . . , tns be as in Example 2.3.3.
(1) Check that the Gm-action on SpecA “ An`1

B given by scaling restricts to a Gm-action on
SpecAzV pA`q.

(2) Let T be a scheme. We equip it with the trivial Gm-action. For any Gm-equivariant map f
prove that there is a unique scheme homomorphism like so:

ProjA

��

SpecAzV pA`q

77

f
// T

This confirms that ProjA is (in the category of schemes) a quotient of pSpecAzV pA`qq{Gm.

2.4 Fiber products

Lemma 2.4.1. The category Sch has a final object, namely SpecZ. That is, for any scheme X
there is exactly one map X Ñ SpecZ.

Proof. By Theorem 1.6.14, we have HomSchpX, SpecZq “ HomRingspZ,OXpXqq, and for any ring
R, there is exactly one ring homomorphism Z Ñ R.

Proposition 2.4.2. The category Sch of schemes has fiber products. That is, for any two maps
X 1 Ñ X and Y Ñ X there is a scheme Y 1 with the following universal property: for any scheme T
and maps T Ñ X 1 and T Ñ Y making the outer diagram commute there is a unique map T Ñ Y 1

making the remainder of the diagram commute:

T
D!

  
((

��

Y 1 //

��

X 1

��

Y // X.
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Proof. We only prove this in the case where X 1 “ SpecA1, X “ SpecA and Y “ SpecB are
affine. We claim that in this case the affine scheme Y 1 “ SpecpBbAA

1q is a fiber product. Indeed,
the universal property as above does hold if T “ SpecR is also an affine scheme: passing to the
opposite category of rings, cf. (1.6.19), this is just the assertion that BbAA

1 is the pushout of the
diagram

R

B bA A
1

dd

A1

r

ii

oo

B

OOs

ZZ

Aoo

OO

This holds by the very definition of the tensor product: the diagonal dotted arrow is the unique
map sending b b a1 to spbq ¨ rpa1q. If T is any scheme, then we have HomSchpT, SpecEq “

HomAffSchpSpecOT pT q, SpecEq by Theorem 1.6.14, i.e., we may replace T by SpecOT pT q and
reduce to the case of T being affine.

The case of not necessarily affine X,X 1, Y is reduced in several steps to the affine case. See,
e.g., [Stacks, Tag 01JM] and [Stacks, Tag 01JS].

Example 2.4.3. For a ring A, we have

An
A “ An

Z ˆSpecZ SpecA,

Pn
A “ Pn

Z ˆSpecZ SpecA,

where SpecA Ñ SpecZ is the unique map (corresponding to the unique ring homomorphism
Z Ñ A).

Warning 2.4.4. The underlying set of a (fiber) product of schemes X ˆY Z is not in general the
(fiber) product of the underlying sets. This issue already manifests itself for affine schemes. Here
are two concrete examples:
(1) For an algebraically closed field k, consider A2

k
“ A1

k
ˆSpec k A

1
k
. In A2

k
“ Spec krt1, t2s, we

have closed subsets such as ∆ :“ V pt1 ´ t2q, i.e., the diagonal. Its generic point is not of the
form A1

k
ˆ txu (for some point x P A1

k
).

(2) If k is a field and k1{k is a field extension then X :“ Spec k1 ˆSpec k Spec k
1 “ Specpk1 bk k

1q is
rarely consisting of a single point. If, say, the extension is a finite Galois extension, generated
by an element x1 P k1 with minimal polynomial pptq P krts, then

k1
bk k

1
“ krts{pptq bk k

1
“ k1

rts{pptq “

deg p
ź

i“1

k1,

where the right hand isomorphism is using the splitting of p in k1 into linear factors. Thus X
consists of deg p points in this case.

If k1 “ kptq, then dimX “ 1 (Exercise 1.9.7).

(3) On the positive side, though, if k is an algebraically closed field and X1, X2{ Spec k are schemes
of finite type (Definition 2.7.2), then we have

pX1 ˆSpec k X2q
cl

“ Xcl
1 ˆ Xcl

2 ,

where the superscript cl denotes the subset of closed points. Indeed, this assertion reduces to
the case where Xi are affine, which is discussed in Exercise 1.9.5.

Corollary 2.4.5. The category Sch has finite products: X ˆ Y “ X ˆSpecZ Y .

http://stacks.math.columbia.edu/tag/01JM
http://stacks.math.columbia.edu/tag/01JS
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Definition 2.4.6. Let P be a property of morphisms of schemes. We say “P is stable under
pullback” if for any pullback diagram

X ˆY Y
1 //

f 1

��

X

f
��

Y 1 g
// Y

(2.4.7)

we have the implication
P pfq ñ P pf 1

q.

This turns out to be a very important organizational principle. We will meet many more (and
more meaningful) examples of this soon.

Example 2.4.8. The condition “f is surjective” is stable under pullback. Indeed, a point in
y1 P Y 1 in the diagram 2.4.7 yields a map Spec k Ñ Y 1 (with k being the residue field of y1). By the
surjectivity, there is some x P X such that fpxq “ gpy1q. Using Exercise 2.0.3 we see that there is
a field extension k Ą kpy1q and a map Spec k Ñ X as indicated below, whose image is x, making
the outer part of the diagram commutative:

Spec k

**
''

��

X ˆY Y
1 //

f 1

��

X

f

��

Spec kpy1q // Y 1 g
// Y

Since the right hand square is cartesian, there is a unique dotted map making everything commu-
tative; in particular this produces a point in X ˆY Y

1 that maps to y1.

Non-example 2.4.9. • The condition “f is injective” is not stable under pullback, as the
example in Warning 2.4.4(2) shows.

• The condition “f has finite fibers” is not stable under pullback: one can show that for a
field k and an algebraic closure k, Specpk bk kq is homeomorphic to the (absolute) Galois
group Galpk{kq (which is usually infinite); but of course Spec k Ñ Spec k is a bijection (of a
singleton). A remedy for this is discussed in Exercise 2.8.4.

2.5 Affine morphisms

Definition 2.5.1. A morphism f : X Ñ Y of schemes is called affine if there is an open covering
of Y by open affines V Ă Y for which the preimages f´1pV q :“ V ˆY X are again affine schemes.

For example, a morphism SpecB Ñ SpecA between affine schemes is affine. By contrast, for
n ě 1, the structural map Pn Ñ SpecZ is not affine: its pullback to V “ B, B “ Zr1{ns is given
by Pn

B, but the natural map
Pn
B Ñ SpecOPn

B
pPn

Bq “ SpecB

(cf. Lemma 2.3.11) is not an isomorphism.

Lemma 2.5.2. A morphism f : X Ñ Y is affine iff for any open affine V Ă Y , f´1pV q is affine.

One can prove this using the affine communication lemma (Proposition 2.1.7) and Exercise 2.5.3,
see [Vak17, Proposition 7.3.4] (or [Har83, Exercise II.2.17] for a slightly different, but essentially
equivalent approach).
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Exercises

Exercise 2.5.3. Let X be a quasi-compact and quasi-separated scheme. The latter means that
for any two open affine subschemes U “ SpecA, V “ SpecB Ă X, their intersection U X V is
quasi-compact.

Let f : X Ñ A1 be a morphism of schemes (equivalently, by Theorem 1.6.14, an element
f P OXpXq). Denote by Xf :“ Gm ˆA1 X (where the pullback is formed using f). Prove that
there is an isomorphism

OXpXqrf´1
s

–
Ñ OXf

pXf q.

2.6 Open and closed embeddings

Let f : X Ñ Y be a map of schemes.

Definition 2.6.1. • f is called a locally closed embedding iff the following two conditions hold:

(1) The underlying map of topological spaces of f is a homeomorphism X – fpXq and, again

on the level of the underlying spaces, fpXq is open in its closure fpXq.

(2) For each x P X and y :“ fpxq, the induced map on stalks

OY,y Ñ OX,x (2.6.2)

is surjective.

• f is called an open embedding if it satisfies these two conditions and fpXq is open and (2.6.2)
is an isomorphism.

• f is called a closed embedding if it satisfies these two conditions and fpXq is closed.

If X is homeomorphic to an open subset fpXq Ă Y , then the maps (2.6.2) are isomorphisms if
and only if OY |fpXq Ñ OX is an isomorphism. This follows from Exercise 1.6.28.

Lemma 2.6.3. For a map f : X Ñ Y , the following are equivalent:
(1) f is a closed immersion,

(2) f is affine, and if for any SpecB Ă Y , the preimage f´1pSpecBq, which is of the form SpecA
(since f is affine) is such that the induced map B Ñ A is surjective.

Proof. The main idea for (1) ñ (2) is this: if X Ñ Y is a closed immersion, then so is XXU Ñ U ,
for any open U Ă Y . Indeed, we have OY,y “ OU,y for y P U etc. So we may assume Y “ SpecB
is affine. If we put A :“ OXpXq, we get a canonical map γ : X Ñ SpecA (adjoint to the
identity of OXpXq under the adjunction established in Theorem 1.6.14). More precisely, there is
a commutative diagram

X

f
%%

γ
// SpecA

δ
ww

Y “ SpecB.

One then shows that γ is an isomorphism; cf. [Stacks, Tag 01IN] for an argument involving the con-
cept of a quasi-coherent sheaf or alternatively [GW20, Theorem 3.42] for a slightly more involved,
but completely elementary argument.

In particular, for a closed immersion into an affine scheme Z Ñ SpecA, Z is again affine (in
contrast to the case of open subschemes, cf. Example 2.1.2).

http://stacks.math.columbia.edu/tag/01IN
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Exercises

Exercise 2.6.4. Show that a surjective closed embeddingX Ñ Y need not be an isomorphism. At
least if Y is affine, name an appropriate additional condition on Y that ensures that any surjective
closed embedding with target Y is an isomorphism.

Exercise 2.6.5. For a scheme X and two closed subschemes Z1, Z2 Ă X, the scheme-theoretic
intersection is defined as the fiber product

Z1 X Z2 :“ Z1 ˆX Z2.

(1) For X “ A2 “ SpecZrx, ys, and Z1 “ V py ´ x2q, Z2 “ V pyq compute Z1 X Z2. Is it reduced?

(2) Compute the scheme-theoretic intersection of V py2 ´ x2q and V pyq in A2.

Exercise 2.6.6. Let f : A Ñ B be a ring homomorphism. Prove that φ : SpecB Ñ SpecA is
an open immersion if and only if φ is locally an isomorphism in the sense that there are fi P A
(without necessarily

Ť

Dpfiq “ SpecA) such that SpecBrf´1
i s Ñ SpecArf´1

i s is an isomorphism.

2.7 Finiteness conditions

In this entire section, let f : X Ñ Y be a morphism of schemes.

Definition and Lemma 2.7.1. The following conditions are equivalent; if they hold we call f
quasi-compact :
(1) for any quasi-compact open U Ă Y , f´1pUq is quasi-compact,

(2) for any affine U “ SpecB Ă Y , f´1pUq is quasi-compact.

Proof. Any quasi-compact U Ă Y admits a cover by finitely many affines U “
Ťn
i“1 SpecBi, and

f´1pUq “
Ť

i f
´1pSpecBiq.

Therefore, a scheme X is quasi-compact iff the unique map X Ñ SpecZ is quasi-compact in
this sense. If X is Noetherian (Definition 2.1.10) then f : X Ñ Y is automatically quasi-compact.
Indeed, X is then a Noetherian topological space (Definition 1.1.14), and any open in X is quasi-
compact (Exercise 1.1.18). Examples of non-quasi-compact morphism include

•
Ů

iPI Spec k Ñ Spec k, for an infinite set I,

• The inclusion of infinite-dimensional affine space X :“ A8p:“ SpecZrt1, t2, . . . sq into the
infinite-dimensional affine space with doubled origin, i.e., Y is obtained by glueing two copies
of X along the open subscheme given by the complement of the origin, cf. Exercise 1.1.18.

Definition 2.7.2. A morphism f : X Ñ Y of schemes is called locally of finite type (resp. lo-
cally of finite presentation), if for any affine open SpecB Ă Y and any affine open SpecA Ă

f´1pSpecBqpĂ Xq the induced map B Ñ A is such that A is a finitely generated B-algebra
(resp. finitely presented).

We say f is of finite type if it is locally of finite type and quasi-compact.

Example 2.7.3. For any ring A, the structural map Pn
A Ñ SpecA (obtained by glueing the maps

D`ptiq Ñ SpecA induced by the inclusion A Ă Art0, . . . , tn, t
´1
i s0) is of finite type. Indeed, Pn

A is
quasi-compact since it is covered by finitely many affine schemes, which are quasi-compact, and
the D`ptiq – An

A are of finite type.

Definition 2.7.4. We say f : X Ñ Y is finite if for any open affine SpecB Ă Y the preimage
f´1pSpecBq “ SpecA is affine (i.e., f is affine) and the induced ring homomorphism B Ñ A is
such that A is a finite B-module.

Reiterating the comment in Remark 1.7.2, being finite is a much stronger condition than being
finitely presented. By definition, a closed embedding is finite.
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2.8 Permanence properties of morphisms

Definition 2.8.1. Let P be a property of a morphism of schemes. We write P pfq if some morphism
f : X Ñ Y has the property P .

• We say “P is stable under composition” if P pgq and P pfq implies P pg ˝ fq (for any two
composable morphisms g and f).

• We say “P is local on the target” if for any open covering Y “
Ť

Ui we have

P pf´1
pUiq

f
Ñ Uiq@i ñ P pfq.

(Note that the converse holds if P is stable under base change.) Here and throughout below,
f´1pUiq :“ Ui ˆY X.

• We say “P is local on the source” if for any open covering X “
Ť

Ui, we have

P pUi Ă X Ñ Y q@i ñ P pX Ñ Y q.

Lemma 2.8.2. The following properties are stable under composition, stable under pullback and
local on the target:
(1) locally closed immersion,

(2) open immersion,

(3) closed immersion,

(4) affine,

(5) quasi-compact,

(6) locally of finite type (*),

(7) of finite type,

(8) finite
The properties marked (*) are also local on the source (but the others are not).

Proof. To illustrate the technique, we discuss this for closed immersions. The stability under
composition and the locality on the target is straightforward from Lemma 2.6.3. To see it is stable
under base change, consider a pullback diagram with f a closed immersion

X 1 //

f 1

��

X

f
��

Y 1 // Y

To show that f 1 is a closed immersion if f is one, we may by locality on the target assume Y 1

is affine. Then, by stability of affine maps under base change, X 1 is also affine and the map
OY 1pY 1q Ñ OX 1pX 1q “ OY 1pY 1q bOY pY q OXpXq is surjective since it is the tensor product of the
surjection OY pY q Ñ OXpXq with OY 1pY 1q.

The map SpecZ \ SpecZp“ SpecpZ ˆ Zqq Ñ SpecZ is locally on the source an isomorphism,
but not an open (or closed) immersion.

The proofs for the remaining properties are similar; see Exercise 2.8.5 for an approach to the
claims for morphisms that are locally of finite type.
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Exercises

Exercise 2.8.3. (Solution at p. 109) Suppose f : X Ñ SpecZ is of finite type such that X ˆSpecZ

SpecFp is non-empty for infinitely many primes p. Prove that X ˆSpecZ SpecQ is also non-empty.

Exercise 2.8.4. Show that the condition “f is of finite type and f has finite fibers” is stable under
pullback.

Exercise 2.8.5. (1) The following statement can be regarded as a relative version of Exercise 2.1.11:
fix a ring B. For an B-algebra A, consider the property P pAq :“ “A is finitely generated as a
B-algebra”. Prove that this property is affine-local in the sense of Proposition 2.1.7.

Hint: if bi P B are such that
Ť

iDpbiq “ SpecB, how can one take advantage of the faithful
flatness of B Ñ

ś

iBrb´1
i s?

(2) Deduce that a map f : X Ñ Y (of schemes) is locally of finite type if for each SpecB Ă Y ,
the preimage f´1pSpecBq admits a covering by open affines SpecAi with Ai being a finitely
generated B-algebra.

Exercise 2.8.6. Let X, Y be schemes that are of finite type (resp. locally of finite type) over
SpecA. Prove that X ˆSpecA Y then has the same property.

Exercise 2.8.7. Taking Lemma 2.8.2(8) for granted, prove that any finite morphism f is univer-
sally closed , i.e., that for any pullback diagram as in (2.4.7), the pullback f 1 is a closed map.

2.9 Separated and proper maps

In topology, compact Hausdorff spaces have several enjoyable features. In this section we are going
to explore the algebro-geometric analogues of this concept.

Recall that a topological space is Hausdorff X if for any x ‰ y P X there are open neighborhoods
U Q x, V Q y such that U X V “ H. One checks that this is equivalent to requiring the diagonal
∆X “ tpx, xqu Ă X ˆ X to be a closed subset. This motivates the next definition.

Definition 2.9.1. A morphism of schemes f : X Ñ Y is separated if the diagonal map

∆ : X Ñ X ˆY X

is a closed immersion (Definition 2.6.1). A scheme X is called separated if the unique map X Ñ

SpecZ is separated.

Here, the map ∆ :“ ∆f is the unique map such that the composition with the two projections
pr1, pr2 : X ˆY X Ñ X is the identity idX . For any map f , ∆f is a locally closed immersion
(Exercise 2.9.18).

Example 2.9.2. Any map f : SpecB Ñ SpecA is separated. Indeed, the diagonal corresponds
to the multiplication map BbAB Ñ B, which is surjective, and therefore a closed immersion after
passing to spectra.

Lemma 2.9.3. If X is separated, U, V Ă X are affine open subschemes, then U X V is also affine
and the map

OXpUq bZ OXpV q Ñ OV pU X V q, f b g ÞÑ f |UXV ¨ g|UXV

is surjective.
Conversely, if X “

Ť

Ui is a cover by open affines such that Ui XUj is affine for all i, j and the
maps

OXpUiq bZ OXpUjq Ñ OV pUi X Ujq (2.9.4)

are surjective, then X is separated.
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Proof. We have a pullback diagram

U X V //

��

U ˆ V

��

X
∆ // X ˆ X,

so if ∆ is a closed embedding, so is the top horizontal map, so that UXV is affine and the requested
surjectivity holds.

Conversely, X ˆ X “
Ť

i,j Ui ˆ Uj. By Lemma 2.8.2, ∆ is a closed embedding iff its pullback

Ui X Uj Ñ Ui ˆ Uj is a closed embedding (for each i, j), but for Ui “ SpecAi our condition above
means that

Ui X Uj “ SpecpAi b Ajq{I

for some ideal I.

Non-example 2.9.5. Consider the scheme X obtained by glueing U1 “ A1 and U2 “ A1 along
the Gm Ă A1. This scheme is called the affine line with doubled origin. It is not separated (which
is in line with the observation that, say, R \Rzt0u R is not Hausdorff): the map (2.9.4) is the
multiplication

Zrts b Zrts Ñ Zrt˘1
s,

which is not surjective.

Example 2.9.6. Pn is separated, since the covering by the affine subspaces D`ptiq – An satisfies
the condition in (2.9.4). The map reads

Zrt, t´1
i s0 bZ Zrt, t´1

j s0 Ñ Zrt, ptitjq
´1

s0.

It is surjective (here t is a shorthand for t0, . . . , tn). Indeed this the right hand side identifies, as
noted in (2.3.7) with

Zrt, t´1
i s0rp

tj
ti

q
´1

s “ Zrt, t´1
j s0rp

ti
tj

q
´1

s.

Lemma 2.9.7. Separated morphisms are stable under composition and stable under pullback.
Also, the condition of being separated is local on the target.

Proof. Using the same permanence properties for closed embeddings, this can be shown by purely
categorical considerations. We illustrate this for the composition: let f : X Ñ Y and g : Y Ñ Z
be separated. Write h :“ gf : X Ñ Z. We can factor the diagonal ∆h like so, where the right
hand square is cartesian:

X
∆f
//

∆h

**

X ˆY X “ pX ˆZ Xq ˆY ˆZY Y

idˆ∆g

��

// Y

∆g

��

X ˆZ X “ pX ˆZ Xq ˆY ˆZY pY ˆZ Y q // Y ˆZ Y

By stability of closed immersions under pullback and under composition, ∆h is a closed embed-
ding.

Definition 2.9.8. A map f : X Ñ Y is called proper if it is of finite type (Definition 2.7.2),
separated and universally closed (i.e., any pullback f 1 of f is a closed map).

Lemma 2.9.9. Proper morphisms are stable under composition, stable under pullback. Also,
properness is local on the target.
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Proof. This is a consequence of the same permanence properties for separated, resp. finite type,
resp. universally closed maps.

Proposition 2.9.10. (Valuative criterion for universally closed maps) For a quasi-compact mor-
phism f , the following are equivalent:
(1) f is universally closed,

(2) for any pullback f 1 : X 1 :“ X ˆY Y 1 Ñ Y 1 of f , specializations lift along f 1, i.e., i.e., if
Y 1 Q y1 :“ fpx1q⇝ y2, then we can find x2 P X 1 such that fpx2q “ y2.

(3) for any commutative square as shown below, where V is a valuation ring and QpV q its fraction
field, there is a diagonal map as shown such that the two triangles are commutative:

SpecQpV q //
� _

η

��

X

f

��

SpecV //

D

::

Y.

(2.9.11)

Proof. This proof follows essentially the same pattern as its affine analogue Theorem 1.7.20.
We prove (2) ô (3) (this does not use that f is quasi-compact). This was shown in the special

case where X and Y are affine in (the proof of) Theorem 1.7.20, in this case we can find V such
that the specialization y ⇝ y1 is the image of the specialization η “ p0q⇝ mV in SpecV .

In general, if X and Y are not necessarily affine, we obtain (3) ñ (2): we pick an open affine
neighborhood SpecB Ă Y of y1 (which also contains y), and an affine neighborhood SpecA Ă

f´1pSpecBq Ă X of x and apply the preceding case. Conversely, for (2) ñ (3) we can do this
same reduction since the image of SpecV in Y is contained in an affine neighborhood of the image
of the closed point (Exercise 2.0.4(1)).

(2) ô (1): we have to show that if is f quasi-compact then specializations lift along f iff f is
closed. Elementary arguments of point-set topology (see, e.g. [Stacks, Tag 01K9]) can be used to
reduce this to the following claim (for f quasi-compact):

fpXq is closed ô fpXq is stable under specializations.

The direction ñ is a simple generality of point-set topology [Stacks, Tag 0062]. The converse is
exactly the content of Lemma 1.7.19 if X and Y are affine. If Y is affine and X “

Ťn
i“1 SpecAi

(the covering is finite since f is quasi-compact!), then fpXq is the image of SpecpA1 ˆ . . .ˆAnq “
Ů

i SpecAi Ñ Y , so this is closed by the previous case. The case of non-affine Y is reduced to the
affine case again using basic point-set topology: being closed and being stable under specializations
are conditions that can be checked locally on an affine open subset of Y (cf. also Exercise 1.8.10).

Proposition 2.9.12. For a map f : X Ñ Y , the following are equivalent:
(1) f is finite,

(2) f is affine and proper.

Proof. All three conditions are local on the target, so we may assume Y is affine. In both cases
this implies that X is affine, as well.

(2) ñ (1): if f : SpecB Ñ SpecA is universally closed, then in particular its pullback along
the projection A1

A Ñ SpecA is closed, so that f is integral (Theorem 1.7.20). Since f is also of
finite type, i.e., B is a finitely generated A-algebra, we see that B is actually finite We conclude
by Lemma 1.7.8.

(1) ñ (2): any finite map is affine and therefore separated (Example 2.9.2). It is also of
finite type. Finally, a finite map is integral, and therefore universally closed (this was checked in
Theorem 1.7.20 for pullbacks along an affine map SpecA1 Ñ SpecA; the case of a general pullback
reduces to this since the condition of being a closed map local on the target).

http://stacks.math.columbia.edu/tag/01K9
http://stacks.math.columbia.edu/tag/0062
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Non-example 2.9.13. The projection A1 Ñ SpecZ is not proper: its pullback along A1 Ñ

SpecZ is the canonical projection A2 Ñ A1, which is not a closed map (Example 1.8.2).

The following theorem is the algebro-geometric analogue of the fact that CPn is compact.

Theorem 2.9.14. The structural map π : Pn
A Ñ SpecA is proper for any ring A.

(More generally, one can define for any scheme X, Pn
X :“ PnˆSpecZX; then the structural map

to X is proper as well.)

Proof. Since properness is stable under taking pullbacks (Lemma 2.9.9), it suffices to consider the
case X “ SpecZ. The map is of finite type (Example 2.7.3) and separated (Example 2.9.6). To
show it is universally closed we use Proposition 2.9.10:

SpecQpV q //
� _

η

��

Pn

π

��

SpecV //

D

88

SpecZ.

(2.9.15)

We will give two independent arguments for the existence of such a lift. The first proof uses
that the structural map π is the pullback of the map φ : Bl0A

n`1 Ñ An`1 (along the inclusion of
the origin), cf. (2.3.17). (This argument essentially appears in [GL01, Proposition 2.1] and [Kel24,
Proposition 4.3].) We prove that φ satisfies the lifting property, which implies the same property
for π:

SpecQpV q
d //

� _

η

��

Bl0A
n`1

φ

��

SpecV a //

Dl

88

An`1.

The map a is nothing but a collection of elements a0, . . . , an P V . Since V is a valuation ring, one
sees by induction that one of the ai divides all the other aj’s (cf. the proof of Lemma 1.7.16). For
simplicity of notation, let us say that a0 divides a1, . . . , an. This means that the map a factors
through φ ˝ j as shown, i.e., a “ φjb:

SpecZrt0,
t1
t0
, . . . , tn

t0
s

� _

j

��

SpecQpV q
d //

e
55

� _

η

��

Bl0A
n`1

φ

��

SpecV a //

l

55

b

::

An`1 “ SpecZrt0, . . . , tns.

(Concretely, b parametrizes a0,
a1
a0
, . . . .) Putting l :“ jb we have φ ˝ l “ a. To check the commuta-

tivity of the other triangle above, i.e. d “ l ˝ η, we note that the divisibility a0|a1 etc. also holds
in QpV q, so the map d factors through j, i.e., d “ je. Then

aη “ φlη “ φjbη “ φd “ φje.

We observe that in the category of integral domains, the map

ι : Zrtis Ñ Zrt0,
t1
t0
, . . . s

is an epimorphism. Indeed, a map f from the target to some domain R is determined by r0 :“ fpt0q,

rj :“ fp
tj
t0

q for j ě 1. The composition with the above inclusion ι determines r0 and fptjq “ r0rj.
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Thus, if we are given a second map f 1 to R, with fι “ f 1ι, and write r1
0 :“ f 1pt0q etc., we have

r0 “ r1
0 and

r0rj “ r1
0r

1
j ñ r0prj ´ r1

jq “ 0 ñ rj “ r1
j

since R is a domain.
Since QpV q is, in particular a field, the above relation φjbη “ φje implies

bη “ e

so that
lη “ jbη “ je “ d.

The second proof uses the description of the points of Pn in (2.3.14) (note that both V and
QpV q are local rings, Lemma 1.7.16). Now, the top horizontal map amounts to giving a surjection
QpV qn`1 ↠ QpV q. The composite

V n`1
Ă QpV q

n`1 ↠ QpV q

has image isomorphic to V by Lemma 2.9.16. This shows the existence of a map such that the
diagram (2.9.15) commutes (note that the right triangle commutes for any map since SpecZ is a
final object).

Lemma 2.9.16. Let V be a valuation ring and M a finitely generated torsion-free V -module.
Then M is free, i.e., M – V n.

Proof. Let V n ↠ M be a surjection, and mi the images of the basis vectors. If
řn
i“1 aimi “ 0 for

some ai P V , then there is some i such that ai divides all the other aj. Since M is torsion-free,
we can then divide the relation by ai and express xi as a linear combination of the remaining xj’s.
Repeating the argument with the remaining generators shows that, eventually, there is a basis of
M .

The following statement establishes a partial converse for the fact that projective spaces are
proper. For a proof, see [Har83, Exercise II.4.10] or [Stacks, Tag 0200].

Proposition 2.9.17. (Chow’s lemma) Let f : X Ñ Y be a proper morphism, with Y being
Noetherian. Then there is a commutative diagram

X 1

i
��

g
// X

f
��

Pn
Y :“ Pn ˆ Y // Y

where i is a closed immersion, and g is a proper map for which there is a non-empty open U Ă X
such that g|g´1pUq is an isomorphism.

Exercises

Exercise 2.9.18. Show that for any map of schemes f : X Ñ Y , the diagonal ∆f : X Ñ X ˆY X
is a locally closed embedding.

Hint: for any x P X using an appropriate open affine neighborhood x P SpecA Ă such that

SpecA
f

Ñ SpecB Ă Y , construct an open affine neighborhood of ∆pxq in X ˆY X.

Exercise 2.9.19. Let U Ă SpecA be an open subscheme of an affine scheme. Prove that U is
separated.

http://stacks.math.columbia.edu/tag/0200
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Exercise 2.9.20. (Solution at p. 109) Consider the following three conditions on a morphism of
schemes:
(1) f is proper.

(2) f is finite,

(3) f is separated,
For each 1 ď i ‰ j ď 3, state (without proof) whether the implication

piq ñ pjq

holds. If it does not hold, give a counter-example. (I.e., in total you should discuss 6 implications.)

Exercise 2.9.21. We say that a property P of morphisms of schemes is stable under left cancel-
lation if

P pg ˝ fq and P pgq ñ P pfq

for any composable morphisms (i.e., X
f

Ñ Y
g

Ñ Z). Prove that the properties “f is proper” and
“f is separated” are stable under left cancellation.

More sharply, show the following assertions:

• “g ˝ f proper” and “g separated” ñ “f proper”.

• “g ˝ f separated” ñ “f separated”.

Exercise 2.9.22. Let k be an algebraically closed field. Let X be a scheme that is connected and
proper over Spec k. Prove that any morphism f : X Ñ A1

k is constant.

Hint: using Exercise 2.9.21, what can you say about the image of the composite X
f

Ñ A1
k Ă P1

k?

Exercise 2.9.23. (Solution at p. 109) For the purposes of this exercise we call a morphism f :
Y :“ SpecB Ñ X :“ SpecA nice if the diagonal map

∆ : Y Ñ Y ˆX Y

is an open immersion.

(1) Which of the following maps are nice (and why, respectively why not)? Which of these maps
are flat (and why, respectively why not)?

• SpecArf´1s Ñ SpecA, for some f P A,

• SpecFp Ñ SpecZ,

• the structural map A1 Ñ SpecZ,

• SpecC Ñ SpecR.

(2) Prove that the composite of two nice maps is nice.

Remark 2.9.24. A morphism f as above is called étale if 1) f is locally of finite type, 2) B is
flat over A and 3) nice in the sense above. A morphism that satisfies 1) and 3) is more commonly
referred to as an unramified morphism.

2.10 Quasi-coherent sheaves

For a ring A and X “ SpecA, and an A-module M , we have constructed in Lemma 1.5.3 a sheaf
ĂM P ShvpXq. In this section, we introduce the concept of quasi-coherent sheaves on arbitrary
schemes, which can be thought of as being glued together (in the sense of Exercise 1.5.10) from

sheaves of the form ĂM . We will prove that quasi-coherent sheaves on affine schemes X “ SpecA
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are precisely these sheaves ĂM in the sense that there is an equivalence of categories between ModA
(the category of A-modules) and the category of quasi-coherent sheaves QCohpSpecAq. We start
by defining a larger “container” in which quasi-coherent sheaves live. (It is fair to say that the
consideration of this larger category is a bit of an artifact though; Exercise 2.10.24 sketches a way
to completely avoid it.)

Definition 2.10.1. Let X be a scheme (or even a ringed space). A sheaf of OX-modules is a sheaf
F such that

• F pUq is a module over the ring OXpUq, and

• the restriction maps F pUq Ñ F pV q is a map of OXpUq-modules (where F pV q is regarded as
an OXpUq-module via the natural ring map OXpUq Ñ OXpV q).

A morphism of OX-modules is a sheaf morphism such that all maps F pUq Ñ GpUq are OXpUq-
linear maps. This defines a category denoted ModOX

ShvpXq or just ModOX
.

(The notation is motivated by the fact that equivalently, one can say that OX is a ring object
in the category ShvpXq, and an OX-module is a module object over OX etc.)

Example 2.10.2. The sheaf ĂM P ShvpXq, X “ SpecAmentioned above is a sheaf ofOX-modules.
Indeed, by using the equivalent description of sheaves from Lemma 1.5.2, it suffices to check the

OXpUq-module structure for U “ Dpfq only. In this case ĂMpDpfqq “ M rf´1s is indeed an
OXpDpfqq “ Arf´1s-module etc. Also, given a map M Ñ N of A-modules, the associated map
ĂM Ñ rN is clearly a map of OX-modules. This defines a functor

r´ : ModA Ñ ModOX
.

Lemma 2.10.3. For an OX-module F , we have a natural isomorphism

HomModOX
pOX , F q

–
Ñ F pXq.

Proof. The right hand side consists of compatible collections of maps, for each open U Ă X,
OXpUq Ñ F pUq, each of which is a map of OXpUq-modules. So this is nothing but an element
fU P F pUq (namely the image of 1 P OXpUq). The compatibility amounts to resUXfX “ fU , so such
a map is uniquely specified by fX P F pXq.

In the proof of Proposition 2.10.6 we will use the following generality:

Lemma 2.10.4. For a ring homomorphism f : A Ñ B, the forgetful functor

u : ModB Ñ ModA

(i.e., a B-module M is just regarded as an A-module, by means of a ¨ m :“ fpaqm) admits a left
adjoint, given by

B bA ´ : ModA Ñ ModB,

and a right adjoint, given by
HomApB,´q : ModA Ñ ModB.

Proof. The first claim means that for any B-module N and any A-module N there is a (functorial)
bijection

HomModBpB bAM,Nq “ HomModApM,upNqq. (2.10.5)

This is precisely the universal property of the tensor product. The one for Hom (which is not used
below) also follows from such considerations, see, e.g. [Eis95, §A5.2] for more background.

Proposition 2.10.6. Let A be a ring and X “ SpecA.
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(1) There is an adjunction

r´ : ModA Õ ModOX
: Γ,

where as before Γ is the global sections functor, i.e., ΓpF q “ F pXq (which is an A-module).

(2) The functor r´ is fully faithful.

(3) For F P ModOX
, the following are equivalent:

(a) F lies in the essential image of r´.

(b) X admits an open covering X “
Ť

Dpfiq by basic opens such that there is an isomorphism
(of OX-modules)

F |Dpfiq “ ČF pDpfiqq.

(c) X admits an open covering by affine subschemes SpecB Ă X such that there exists an
isomorphism (of OX-modules)

F |SpecB – ČF pSpecBq.

Proof. (1): We have to show that applying Γ yields a bijection (for anyM P ModA and F P ModOX
)

HomModOX
pĂM,F q Ñ HomModApM,F pXqq. (2.10.7)

Applying this to F “ rN we immediately get the full faithfulness of r´, i.e., (2).
This proof is somewhat similar to the one of Theorem 1.6.14. We check the map (2.10.7) is

injective. Given two morphisms of OX-modules φ, φ1 : ĂM Ñ F such that φpXq “ φ1pXq : M Ñ

F pXq, we consider the basic open subset U “ Dpfq and the commutative diagram

M
res //

gpXq

��

M rf´1s

φpUq

��

F pXq
res // F pUq.

Recall that M rf´1s “ M bA Arf´1s, and an Arf´1s-linear map from here to F pUq (which is
an Arf´1s-module!) is uniquely determined by its composite with M Ñ M rf´1s. Therefore
φpUq “ φ1pUq. By Lemma 1.5.2, φ “ φ1.

We check that the map (2.10.7) is surjective. Fix an A-linear map φ : M Ñ F pXq. Our goal

is to extend this to a map of OX-modules ĂM Ñ F , so we pick U “ Dpfq, for f P A, and try to
define the dotted map

M res //

φ

��

M rf´1s “ M bA Arf´1s

��

F pXq
res // F pUq.

Since F is an OX-module, F pUq P ModArf´1s, so the bijection (2.10.5) ensures the existence and
unicity of the dotted map, which we denote φpUq. Given a basic open subset V “ Dpgq Ă Dpfq,
the map φpV q is compatible with φpUq under further restriction, so again invoking Lemma 1.5.2

we have succeeded in constructing the map ĂM Ñ F .

(3): generally, if for some affines V “ SpecBrb´1s Ă U “ SpecB Ă X, F |U “ ĆF pUq, then also

F |V “ ĆF pV q (by construction of the sheaves r´, cf. Lemma 1.5.3). Thus, (3)a ñ (3)b ñ (3)c. The
proof of the implication (3)c ñ (3)a hinges on the following assertion:
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Lemma 2.10.8. Let U :“ Dpfq Ă X “ SpecA. Suppose F P ModOX
satisfies the condition in

(3)c. Putting M :“ F pXq P ModA, there is an isomorphism

M rf´1
s

–
Ñ F pUq.

Proof. More precisely, we show that
(1) We have an exact sequence

0 Ñ tm P M, fnm “ 0u Ñ M “ F pXq
res
Ñ F pUq.

(2) For any t P F pUq there is some n " 0 such that fnt P im res.
By quasi-compactness (Lemma 1.1.10), we can pick a finite covering of X by affine opens

V “ SpecB with the property that F |V “ ĂM for M P ModB. By refinining these V , we may
assume they are of the form Vi “ Dpgiq for gi P A, say F pDpgiqq “ Mi. We have a commutative
diagram whose rows are exact by the definition of the left hand term, and whose columns are exact
by the sheaf property of F :

0

��

0

��

0

��

0 // ker res

��

////M “ F pXq

��

res // F pUq

��

0 //
ś

itmi P Mi, Dni " 0 : fnimi “ 0u //
ś

i F pDpgiqq “ Mi
res//

��

ś

i F pDpfgiqq “ Mirf
´1s

��
ś

i,j F pDpgigjqq // F pDpfgigjqq

Since there are finitely many i only, the bottom left kernel agrees with the collection of pmiq such
that fnmi “ 0 for n " 0. Now, if m P ker res, using the exactness of the middle row, we obtain
fnm “ 0 for n " 0.

The restriction of t P F pUq to U X Vi is an element of F pDpfgiqq “ Mirf
´1s. Again using the

finiteness of the covering, there is some n " 0 such that fnmi P Mi. The element fnpmi ´ mjq P

F pDpgigjqq may not be zero, but its restriction to F pDpfgigjqq is zero, so there is again a uniform
m " n such that fmpmi ´ mjq “ 0 by the first part. Thus fmt lies in the image of the restriction
map.

We now prove the remaining implication (3)c ñ (3)a, using Lemma 2.10.8 and the following
generality from category theory: a functor F : C Ñ D is an equivalence of categories if (and only
if) a) F admits a right adjoint G, b) F is fully faithful, c) G is conservative. (The full faithfulness
of F equivalent to the unit map u : idC Ñ GF being an isomorphism; the counit c : FG Ñ idD is
an isomorphism as well since Gpcq : GFG Ñ G agrees with uG, then use the conservativity of G).

Now, we have checked that r´ is fully faithful in (2); the conservativity of its right adjoint Γ
(on the full subcategory of OX-modules satisfying the condition in (3)c) holds by Lemma 2.10.8:
some map φ : F Ñ G in QCohpXq is an isomorphism iff φpDpfqq : F pDpfqq Ñ GpDpfqq is an
isomorphism (Lemma 1.5.2), but this map agrees with φpXqrf´1s.

Definition 2.10.9. Let X be a scheme. A quasi-coherent sheaf on X is an OX-module F with
the property that there is some covering X “

Ť

Ui “
Ť

SpecAi by open affine subschemes such
that

F |Ui
– ČF pUiq.

A morphism of quasi-coherent sheaves is, by definition, an OX-linear sheaf homomorphism.
In other words, the objects F satisfying the condition above form a full subcategory, denoted
QCohpXq, of ModOX

ShvpXq.
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Using Corollary 2.10.10, one can equivalently replace the existence of some covering with the

above property by the condition that F |SpecA “ ČF pSpecAq for any open affine SpecA Ă X. In
particular:

Corollary 2.10.10. For any ring A and X “ SpecA, there is an equivalence of categories

r´ : ModA Õ QCohpXq : Γ.

More generally, we have the following description of quasi-coherent sheaves, which avoids the
reference to the ambient category of OX-modules.

Corollary 2.10.11. Let X be a separated scheme, X “
Ť

SpecAi a covering by open affines, and
let SpecAi X SpecAj “ SpecAij (Lemma 2.9.3). Then there is an equivalence of categories

QCohpXq
–
Ñ tpMi P ModAi

, ϕij :MibAi
Aij

–
Ñ MjbAj

Aijq | ϕjk˝ϕij “ ϕij :MibAi
AijbAj

Ajk Ñ MjbAi
AijbAj

Ajku.

Proof. Given a collection of pMi, ϕijq at the right hand side (satisfying the cocycle condition), we

consider the associated quasi-coherent sheaves ĂMi P QCohpSpecAiq and Ăϕij (in QCohpSpecAijq).

By Exercise 1.5.10, there is a unique sheaf F on X whose restrictions are isomorphic to ĂMi. This

is an OX-module since the ĂMi are. It is quasi-coherent by Definition 2.10.9.
Conversely, for F P QCohpXq, Fi :“ F |SpecAi

comes equipped with isomorphisms ϕij : Fi|SpecAiXSpecAj
–

Fj|SpecAiXSpecAj
satisfying the cocycle condition. Now, Fi is quasi-coherent on SpecAi, so Fi “ ĂMi

and the isomorphisms ϕij can be expressed by what they do on the sections of SpecAiXSpecAj.

Remark 2.10.12. The separatedness above was imposed only to avoid discussing further affine
coverings of SpecAi X SpecAj.

Definition and Lemma 2.10.13. Let A be a graded ring, and consider X “ ProjA. Let M be
a graded A-module, by which we mean that M “

À

dě0Md and the A-module structure is such
that A ˆ M Ñ M restricts to Am ˆ Mn Ñ Mm`n. Morphisms of graded modules are required to
preserve the graded components. This defines a category grModA. Then there is a functor

r´ : grModA Ñ QCohpProjAq

characterized by the property (for f P A` being homogeneous)

pĂMq|D`pfq “ ČM rf´1s0,

where as before 0 denotes the elements of degree 0.

Proof. The existence of a sheaf ĂM with these properties follows from the construction of ProjA “
Ť

D`pfq. It is quasi-coherent by its definition.

For example, rA “ OProjA.

Definition 2.10.14. For a graded A-module M , the Serre twist Mpeq, where e P Z, is the graded
A-module defined by

pMpeqqd “ Me`d.

We denote by OProjApeq or just Opeq :“ ĆApeq. This sheaf is referred to as the Serre twist of the
structural sheaf O.

We have the following extension of Lemma 2.3.11.
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Lemma 2.10.15. Let A “ Brt0, . . . , tns, so that X :“ ProjA “ Pn
B. We have an isomorphism

ΓpPn
B,OXpeqq “ Brt0, . . . , tnse,

where the subscript e denotes the B-submodule consisting of homogeneous polynomials of degree
e (and deg ti “ 1). In particular:

• the global sections vanish for e ă 0,

• the global sections are a finitely generated B-module for any e (in fact finite free of rank
`

n`e
n

˘

)

Lemma 2.10.16. For any scheme X, QCohpXq is an abelian category (so, in particular, kernels
and cokernels exist). Also, there is a tensor product functor

b :“ bOX
: QCohpXq ˆ QCohpXq Ñ QCohpXq,

where pF bGq|SpecA “ ČF pAq bA GpAq, for two quasi-coherent sheaves F,G and SpecA Ă X open
affine.

This functor equips the category with the structure of a symmetric monoidal category (i.e.,
there is a unit object, namely OX for b, the tensor product is associative and commutative; see,
e.g. [Mac98, §VII] for more background).

Proof. Using general theory of sheaves, one proves that ShvpX,ModZq (the category of sheaves of
abelian groups) is abelian and has a tensor product. This formally implies the same properties for
ModOX

, see, e.g. [KS05, Theorem 18.1.6]. One then checks that for a map F Ñ G in QCohpXq Ă

ModOX
, ker f and coker f , taken in the larger category ModOX

, actually lie in QCohpXq, and are
therefore kernel and cokernel in here.

Concerning the tensor product, one can argue similarly, by first establishing a tensor product
for OX-modules. See, e.g. [KS05, §18.2]. The key point in showing that QCohpXq Ă ModOX

is
stable under tensor product is the following claim: for X “ SpecA affine, and M,N P ModA, we
have a natural isomorphism

ČpM bA Nq
–
Ñ ĂM bOX

rN.

Indeed, a map (of OX-modules) arises from the adjunction established in Corollary 2.10.10: M bA

N Ñ ΓpĂM bOX
rNq arises by observing that for pm,nq P M ˆ N “ ΓpĂM ˆ rNq, we have a global

section of the presheaf tensor product ĂM bPSh
OX

rN , and therefore of its sheafification as well. To
show the map is an isomorphism it suffices to see it induces an isomorphism on stalks, and by
general sheaf theory we have

pĂM bOX
rNqp “ pĂMqp bOX,p

p rNqp “ Mp bAp Np,

which agrees with pM bA Nqp.

Remark 2.10.17. A different (but equivalent) perspective is to use the description of QCohpXq

in Corollary 2.10.11. For example, the tensor product of quasi-coherent sheaves F bOX
F 1 just

corresponds to the tensor products Mi bAi
M 1

i etc.

Pullback and pushforward

Recall that for a continuous map f : X Ñ Y (between two topological spaces), we have the direct
image functor (also called the pushforward functor)

f˚ : ShvpXq Ñ ShvpY q.
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It is given by pf˚F qpV q “ F pf´1pV qq (for V Ă Y open, F P ShvpXq). This functor admits a left
adjoint, called the inverse image functor or pullback functor

f´1 : ShvpY q Ñ ShvpXq.

Among various characterizations, it can be described to be the unique functor that preserves
colimits, and that sends the representable sheaves (for V Ă Y open) hV : U ÞÑ HomY pU, V q to
hf´1pV q. See, e.g., [KS05, §17.5]. However, all properties of f´1 can be deduced solely from this
being the left adjoint of f˚, cf. Exercise 2.10.22 for an illustration of the principle.

Suppose now that f : pX,OXq Ñ pY,OXq is a map of ringed spaces (for example a morphism
of schemes). Then the above functors give adjoint functors

f˚ : ModOY
ShvpY q Õ ModOX

ShvpXq : f˚,

where f˚ is the functor above, which uses the OY -action on f˚F

OY ˆ f˚F
f 7

Ñ f˚OX ˆ f˚F “ f˚pOX ˆ F q
f˚pactq

Ñ f˚F.

It is a formal (i.e., category-theoretic) consequence of the setup that the left adjoint is given by

f˚F “ OX bf´1OY
f´1F.

For example,
f˚OY “ OX . (2.10.18)

Here is how to connect quasi-coherent sheaves on different schemes. We say that a map f :
X Ñ Y of schemes is quasi-separated if ∆F : X Ñ X ˆY X is a quasi-compact morphism. (This
condition can be checked locally on Y ; if Y “ SpecA is affine, then X is quasi-separated iff for
any open affines U, V Ă X, U X V admits a finite covering by affine open subschemes.)

Lemma 2.10.19. Let f : X Ñ Y be a map of schemes.
(1) The pullback functor f˚ : ModOY

Ñ ModOX
preserves quasi-coherent sheaves, i.e., it restricts

to a functor
f˚ : QCohpY q Ñ QCohpXq.

(2) Suppose f is quasi-compact (Definition and Lemma 2.7.1) and quasi-separated. (For example,
this is true whenever X is Noetherian and f and Y arbitrary.) Then the pushforward functor
f˚ : ModOX

Ñ ModOY
preserves quasi-coherent sheaves, i.e., in this case we have an adjunction

f˚ : QCohpY q Õ QCohpXq : f˚.

Example 2.10.20. Suppose f : X “ SpecB Ñ Y “ SpecA, for a ring homomorphism A Ñ B.
We claim that the adjunction

f˚ : QCohpY q Õ QCohpXq : f˚

is, under the equivalence with the categories of modules, simply given by

f˚
“ B bA ´ : ModA Õ ModB : f˚ “ forget.

Indeed, for any A-module M , there is a resolution
à

iPI

A Ñ
à

jPJ

A Ñ M Ñ 0.

(with generally infinite sets I, J). Using the equivalence Corollary 2.10.10 for Y , we have an exact
sequence

à

iPI

rA Ñ
à

jPJ

rA Ñ ĂM Ñ 0.
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The functor f˚ is right-exact. Applying f˚ gives (by (2.10.18)) an exact sequence in QCohpXq

à

iPI

rB Ñ
à

jPJ

rB Ñ f˚
pĂMq Ñ 0. (2.10.21)

However, applying B bA ´ (which is right exact) to the first exact sequence, we get

à

iPI

B Ñ
à

jPJ

B Ñ B bAM Ñ 0.

Using the equivalence ModB “ QCohpXq, we see that

f˚
pĂMq “ ČM bA B.

We conclude from this and from Lemma 2.10.4 that f˚ is the forgetful functor.

Proof. The condition of being a quasi-coherent sheaf, and the condition of being a qcqs map are
local (on Y , Lemma 2.8.2), so we may assume Y “ SpecA is affine.

(1): it is enough to show f˚pĂMq P QCohpXq for any M P ModA, but this is true by virtue of

an exact sequence as in (2.10.21), noting that f˚p rAq “ f˚OY “ OX .

(2): By assumption X is quasi-compact and quasi-separated, so X has a finite covering X “
Ť

SpecBi, i P I by open affines. Since X is quasi-separated, SpecBi X SpecBj “
Ť

kPIij
SpecBijk

is again a finite covering. As a preliminary observation, note that for any sheaf F on X and any
open U Ă X, we have an exact sequence

0 Ñ F pUq Ñ
ź

iPI

F pSpecBi X Uq Ñ
ź

i,jPI

ź

kPIij

F pSpecBijk X Uq.

Indeed, this holds since the maps from F pSpecBi X SpecBjq Ñ
ś

kPIij
F pSpecBijkq are injective

(by the sheaf condition).

Let F P QCohpXq and let M :“ Γpf˚F q “ F pXq P ModB be the global sections of f˚F . We
need to show that for any a P A and V :“ Dpaq Ă Y , there is an isomorphism

M ra´1
s “ f˚F pV q “ F pf´1

pV qq.

We apply the above exact sequence to U “ X:

0 Ñ F pXq “ M Ñ
ź

i

F pSpecBiq Ñ
ź

i,j,k

F pSpecBijkq.

These products are finite, so localizing (which is an exact functor) gives an exact sequence

0 Ñ M ra´1
s Ñ

ź

i

pF pSpecBiqra´1
sq Ñ

ź

i,j,k

pF pSpecBijkqra´1
sq.

We also apply the above exact sequence to U “ f´1pV q:

0 Ñ F pf´1
pV qq Ñ

ź

i

F pSpecBi X f´1
pV qq Ñ

ź

i,j,k

F pSpecBijk X f´1
pV qq.

We see that the terms in the two right hand products agree (SpecBi X f´1pV q is the preimage of
V under the map SpecBi Ñ Y , i.e., it is SpecBira

´1s; then use that F is quasi-coherent.)
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Exercises

Exercise 2.10.22. Let f : X Ñ Y be a continuous map. Let f ? : ShvpY,ModZq Ñ ShvpX,ModZq

be a left adjoint of f˚. (It was asserted above that f˚ is the left adjoint of f˚; the point of the
notation f ? and of this exercise is not to use anything claimed above.)

• Let Z denote the sheaf on a singleton t‹u whose global sections are Z. Let us write ZX :“ p?XZ,
where pX : X Ñ t‹u is the unique map. Prove that f ?Z is the so-called constant sheaf , which
is given by

f ?ZpUq “ Zπ0pUq.

(A direct sum of copies of Z, one for each connected component of U .)

Hint: prove that this is a sheaf on X (while the constant presheaf U ÞÑ Z is generally not a
sheaf). Then check that

HomShvpXqpf
?Z, F q “ HompZ, ppXq˚F q.

• Prove f ?ZY “ ZX .

• For a point x P X, let i : t‹u Ñ X be the map that sends ‹ to x. Show that for F P ShvpXq

(or also ShvpX,ModZq etc.) i?F “ Fx (the stalk of F ). Deduce that

pf ?F qx “ Ffpxq.

Exercise 2.10.23. Let j : Gm Ñ A1 be the standard open immersion. Consider the extension by
zero of OGm , defined as

pj!OGmqpUq “

"

OGmpUq U Ă Gm

0 else

Prove that this is an OA1-module, but that this is not a quasi-coherent sheaf.
This example pins down a decisive difference between quasi-coherent sheaves in algebraic ge-

ometry and general sheaves in algebraic topology. A beautiful fix to this issue is offered by the
recent advent of condensed mathematics [Sch19, esp. §8].

Exercise 2.10.24. This exercise can be regarded as a natural extension of the description of
quasi-coherent sheaves in Corollary 2.10.11. Generally, approaching a scheme X by the sets of
its A-points (see around Exercise 2.0.3) is known as the “functor of points approach”, and this
exercise stipulates that a quasi-coherent sheaf on a scheme X is ultimately just depending on the
points XpAq of the scheme (however, for all rings A, not just fields).

Prove that for a scheme X, there is an equivalence

QCohpXq
–
Ñ lim

SpecA
f

ÑX

ModA,

where the right hand category is the category whose objects are

pMf P ModA, φc :Mf bA B
–
Ñ Mgq

where Mf is the datum of an A-module for any map SpecA Ñ X (we do not insist SpecA to be
an open subscheme of X). At the right, for a commutative diagram

SpecB

g
##

c // SpecA

f
{{

X

.
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Finally, the φC are subject to the condition that the composite

Mf bA B bB C
φcbidC

Ñ Mg bB C
φd
Ñ Mh

should be equal to φdc, where

SpecC

h
##

d // SpecB

g
{{

X

.

Morphisms pMf , φcq Ñ pM 1
f , φ

1
cq are maps Mf Ñ M 1

f in ModA that are compatible with φc and
φ1
c in the obvious sense.
Hint: the key geometric input is the idea (for arbitrary f : SpecA Ñ X) to choose an open

covering SpecA of open affines whose images under f are contained in an affine subscheme of X.

Exercise 2.10.25. Let f : X Ñ Y be a map of schemes. Show that f˚ : QCohpY q Ñ QCohpXq

is given by the functor
lim

SpecA
y

ÑY

ModA Ñ lim
SpecA

x
ÑX

ModA

sending pMy, φcq to the collection whose component for x : SpecA Ñ X is simply Mf˝x.

Exercise 2.10.26. For a map f : X Ñ Y of schemes, prove that

• f˚ preserves colimits (i.e., the natural map colimi f
˚pFiq Ñ f˚pcolimFiq is an isomorphism),

• f˚ preserves the tensor product, i.e., there are natural isomorphisms

f˚
pM bOY

M 1
q

–
Ñ f˚M bOX

f˚M 1.

These turn out to be the critical two properties of f˚. Indeed, [BC14] proves that for two
quasi-compact quasi-separated schemes X, Y there is an isomorphism

HomSchpX, Y q
–
Ñ Funcolim,b

pQCohpY q,QCohpXqq, f ÞÑ f˚

where at the right one considers functors that preserve colimits and are compatible with the tensor
product!

Exercise 2.10.27. For a quasi-compact and quasi-separated map f : X Ñ Y and F P QCohpXq,
G P QCohpY q, establish an isomorphism

f˚F b G
–
Ñ f˚pF b f˚Gq.

This isomorphism is referred to as the projection formula.

Exercise 2.10.28. Prove the following analogue of Lemma 2.10.8 on projective space X :“ Pn
B “

ProjBrt0, . . . , tns. Let F P QCohpXq. Let us write F p‹q :“
À

ePZ F peqpP QCohpXqq and M :“
ΓpX,F p‹qq “

À

ePZ ΓpX,F peqq. Let U “ D`ptiq. Establish an isomorphism of graded Brt0, . . . s-
modules

M rt´1
i s “ pF p‹qqpUq.

In particular, for any s P F pUq Ă F p‹pUqq, there is some d " 0 such that tdi spP F pdqpUqq

extends to a global section of F pdq.

Exercise 2.10.29. Fix a scheme X and a morphism F Ñ G of quasi-coherent sheaves. For an
affine open U Ă X, let P pUq be the property “F pUq Ñ GpUq is surjective” (resp. injective,
resp. bijective). Prove that this property is affine-local (as defined in Proposition 2.1.7).
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2.11 Line bundles and vector bundles

Definition 2.11.1. A quasi-coherent sheaf F on a scheme X is called a vector bundle (resp. line
bundle) if X admits a covering by open affines SpecA such that there is an isomorphism (of
quasi-coherent sheaves)

F |SpecA – On
SpecA

(resp. F |SpecA – OSpecA).
A trivial vector bundle (resp. trivial line bundle) is one isomorphic to OX

n (resp. OX).

We denote by

VbpXq :“ tvector bundlesu{ –

the set of vector bundles up to isomorphism. This is an (abelian) monoid with respect to the
tensor product. The subset

PicpXq Ă VbpXq

consisting of the line bundles, is an abelian group: for a line bundle L, the dual line bundle

L_ :“ HompL,OXq

(cf. Exercise 2.11.12) is again a line bundle, and L bOX
L_ Ñ OX is an isomorphism.

Lemma 2.11.2. ForX “ SpecA and a quasi-coherent sheaf F “ ĂM (forM P ModA) the following
are equivalent:
(1) F is a vector bundle,

(2) M is a finite projective A-module,

(3) M is a finitely presented flat A-module,

(4) M is finitely presented and the localizations Mp are free Ap-modules, for all p P SpecA.

Proof. See, e.g. [Stacks, Tag 00NX]. The proof uses the Nakayama lemma (Lemma 1.7.10).

Lemma 2.11.3. Let A be a PID or a local ring. Then any vector bundle (and thus any line
bundle) on SpecA is trivial:

VbpSpecAq “ N,

PicpSpecAq “ t‹u.

For example, for a field k, any vector bundle on A1
k is trivial.

Proof. Our vector bundle V corresponds to a finite projective A-module. We recall from commu-
tative algebra (see, e.g., [Stacks, Tag 0ASV]) that for any PID A, any finitely generated projective
A-module is actually free. The same holds for local rings by Lemma 2.11.2.

By contrast, on Pn, we have the Serre twists OPnpeq. These are locally (namely on each D`ptiq)
isomorphic to OPn , so Opeq is a line bundle. We have

rk ΓpPn,Opeqq “

$

&

%

0 e ă 0
1 e “ 0
ą 1 e ą 0, n ě 1

(Lemma 2.10.15). Therefore, for e ‰ 0, Opeq is not trivial (see also Exercise 2.11.13). For the
projective line over a field, these are essentially the only outliers, in the following sense.

http://stacks.math.columbia.edu/tag/00NX
http://stacks.math.columbia.edu/tag/0ASV
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Theorem 2.11.4. Let k be a field, and V a vector bundle over X “ P1
k. Then there is an

isomorphism

V “

m
à

i“1

Opeiq.

Moreover, the number m and the integers ei are (up to permutation) uniquely determined by V .

In order to prove Theorem 2.11.4 we first establish the following result:

Proposition 2.11.5. There is a bijection between the set VbnpP1
kq of rank n vector bundles (up

to isomorphism) on P1
k, up to isomorphism, with the double coset space

GLnpkrt´1
sqzGLnpkrt˘1

sq{GLnpkrtsq.

Proof. Let V be a vector bundle. We use the covering P1 “ D`pt0q Y D`pt1q “: U0 Y U1.
Recall that U0 “ Spec krt0, t1, t

´1
0 s0 is isomorphic to A1

k “ Spec kr t1
t0

s and, by symmetry U1 “

Spec krt0, t1, t
´1
1 s0 “ Spec kr t0

t1
s. Their intersection, denoted U01 :“ D`pt0t1q “ Spec krt0, t1, pt0t1q

´1s0 “

Specpkrt0, t1, t
´1
1 s0rp t0

t1
q´1s is isomorphic to Gm “ Spec krv, v´1s (where v “ t0

t1
). By Lemma 2.11.3,

we can choose (for k “ 0, 1) an isomorphism φk : On
Uk

–
Ñ V |Uk

. Their restrictions to U01 give rise
to an isomorphism α:

On|U01

– φ0|U01
��

–

α // On|U01

– φ1|U01
��

V |U01 V |U01

(2.11.6)

Such an isomorphism (of quasi-coherent sheaves on Gm) is nothing but an element of GLnpkrt˘1sq.
The construction of this element depended on the choice of the isomorphisms φ0, φ1. Different
such isomorphisms are obtained by postcomposing with (the restriction to U01 of) an isomorphism
On
U1

– On
U1
, i.e., by multiplying with an element of GLnpkrtsq, and likewise with U´.

Example 2.11.7. We illustrate the above for the line bundle Opeq, with e P Z. Note that the
trivialization of Opeq on D`pt0q is given by multiplication with the unit te0:

OpD`pt0qq “ Zrt0, t1, t
´1
0 s0

te0
Ñ
–

Zrt0, t1, t
´1
0 se “ OpeqpD`pt0qq.

Therefore the diagram in 2.11.6 reads

Zrt0, t1, t
´1
0 , t´1

1 s0

te0
��

α // Zrt0, t1, t
´1
0 , t´1

1 s0

te1
��

Zrt0, t1, t
´1
0 , t´1

1 se Zrt0, t1, t
´1
0 , t´1

1 se.

Thus, α is given by multiplication with p t0
t1

qe.

This reduces the computation of VbpP1
kq to understanding the double coset space, which is

provided by the following elementary statement due to Kronecker and Weber in the 1880’s.

Lemma 2.11.8. Let M P GLnpkrt˘1sq be a matrix whose determinant is ts, for s P Z. Then there
are matrices U` P GLnpkrtsq, U´ P GLnpkrt´1sq such that

U´MU` “ diagptr1 , . . . , trnq,

where r1 ě ¨ ¨ ¨ ě rnpP Zq are uniquely determined by X.
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Proof. For n “ 1 we have GL1pkrt˘1sq “ krt˘1sˆ “ kˆ ˆ Z, since an invertible element is of the
form λtn, λ P kˆ, n P Z. By contrast, GL1pkrtsq “ krtsˆ “ k. Thus, the double coset space reads

GL1pkrt´1
sqzGL1pkrt˘1

sq{GL1pkrtsq “ kˆ
zpkˆ

ˆ Zq{kˆ
“ Z.

Under this bijection, e P Z corresponds to te P GL1pkrt˘sq. This corresponds to the line bundle
OP1peq.

For general n, a more involved, but completely elementary argument using Gaussian elimination
is used. See, e.g., [GW20, Lemma 11.50].

The above theorem hinges on the triviality of vector bundles on A1
k. For curves other than P1

k

(or A1
k), this will not carry over, but there is the following more local description of vector bundles.

If X is a smooth curve over an algebraically closed field k (i.e., irreducible, reduced, of dimension
1, and all the local rings OX,x are discrete valuation rings), and K :“ kpXq “ OX,η is the function
field, i.e., the local ring at the generic point, then one has the adeles

AK :“
restr.
ź

xPX closed

QpzOX,xq,

where zOX,x denotes the completion of OX,x at its maximal ideal, and the restricted product means

that for all but finitely many closed points x, the entry lies in zOX,x. This group of adeles contains
the integral adeles

OK :“
ź

xPX closed

zOX,x.

For any f P K, one can show that f P AK (since f has poles only at finitely many points),
and therefore K Ă AK . The following theorem, which is a foundational result in the Langlands
program, is proved along the lines above, but rather using that a vector bundle on SpecK and

also on SpeczOX,x is trival; the possible mismatch of these trivializations is accounted for by the

appearance of the adeles, with the idea that the intersection of SpecKXSpeczOX,x is SpecQpzOX,xq.

Theorem 2.11.9. (Weil uniformization theorem) There is a bijection

VbnpXq “ GLnpKqzGLnpAKq{GLnpOKq.

Definition 2.11.10. For a scheme X, the K-group KpXq (or K0pXq) is the Grothendieck group
associated to the monoid of vector bundles equipped with the direct sum. That is:

KpXq “
à

V {X

Z{rV 1
s ` rV 2

s ´ rV s,

where the direct sum runs over all vector bundles V , and a relation is imposed for any exact
sequence

0 Ñ V 1
Ñ V Ñ V 2

Ñ 0.

Thus, Theorem 2.11.4 implies
KpP1

kq “ Z ‘ Z

(one copy for the rank, another one for the twist). For general schemes (even of finite type over
k), the computation of K-groups is an open problem!

Example 2.11.11. • In number theory, on considers rings of algebraic integers OK , i.e., the
integral closure of Z inside a number field K. These rings are not in general principal ideal
domains. The group PicpOKq is known in this context as the ideal class group. It is known
to be a finite group. The class number formula uses 7PicpOF q and other data related to K
to compute certain values of the ζ-function of K.

It is also known that any finite projective module over a Dedekind domain A (such as A “ OF )
is a direct sum of a free A-module and a line bundle, which leads to KpOF q “ Z ‘ PicpOF q.
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• One can prove by elementary means, similar to the above that PicpAn
kq “ 1 and PicpPn

kq “ 1,
i.e., all line bundles on these are trivial. See [Stacks, Tag 0BCH] (a line bundle for any UFD,
such as krt1, . . . , tns [Stacks, Tag 0BC1] is trivial) and [Stacks, Tag 0BXJ].

• A much deeper result (due to Quillen and Suslin in the 1970’s) shows that any finite projective
krt1, . . . , tns-module is free. Thus VbpAn

kq “ Z. But, for Pn
k , there are non-split vector bundles

for n ě 2. However, at least KpPn
kq “ Zn`1.

Exercises

Exercise 2.11.12. (1) Let M be a finitely presented A-module and N any A-module. Prove that
HomApM,Nqrf´1s “ HomArf´1spM rf´1s, N rf´1sq.

(2) Recall (e.g., from [KS05, §17.7]) that for two OX-modules F and G, HomOX
pF,Gq is the sheaf

(actually an OX-module) defined by

pHomOX
pF,GqqpUq :“ HomModOU

pF |U , G|Uq.

Suppose F is a finitely presented quasi-coherent sheaf (i.e., X admits a cover by open affines
SpecA such that F pSpecAq is a finitely presented A-module), and G is any quasi-coherent
sheaf. Prove that HomOX

pF,Gq P QCohpXq.

Exercise 2.11.13. Show that a line bundle L on a scheme X is trivial iff there is a global section
s P LpXq such that sx P Lx – OX,x is invertible.

Hint: use Lemma 2.10.3.

The following two exercises highlight the categorical aspects of vector and line bundles. See,
e.g., [PS13] for an invitation to pervasive topic of dualizability.

Exercise 2.11.14. Prove that a quasi-coherent sheaf F is a vector bundle iff it is a dualizable
object in the category QCohpXq.

The latter means that there is another object G P QCohpXq and maps (where here and below
all tensor products are over OX , cf. Lemma 2.10.16)

coev : OX Ñ F b G, ev : G b F Ñ OX

such that the composites

F
coevbid

Ñ F b G b F
evbid
Ñ F,

G
idbcoev

Ñ G b F b G
evbid
Ñ G

are the identity maps. (Note that this only makes use of the tensor product in QCohpXq, and the
object OX , which is the monoidal unit with respect to this tensor product.)

Hints: first treat the case of X “ SpecA affine, so F corresponds to an A-module M . Use
that M being locally free of finite rank is equivalent to being finitely generated projective. If M
is dualizable and coev : A Ñ M b N sends 1 to the finite(!) sum

řn
i“1mi b ni, show that the mi

generate M . Using the second identity, prove that the surjection map An Ñ M induced by the mi

admits a splitting.

Exercise 2.11.15. Prove that a quasi-coherent sheaf F is a line bundle iff it is dualizable and
the coevaluation (or, equivalently, the evaluation) map is an isomorphism. For this reason, line
bundles are also called invertible sheaves .

http://stacks.math.columbia.edu/tag/0BCH
http://stacks.math.columbia.edu/tag/0BC1
http://stacks.math.columbia.edu/tag/0BXJ
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Cohomology of quasi-coherent sheaves

3.1 Prelude: the Koszul complex

The Koszul complex is a foundational tool in homological algebra and its applications. Textbook
accounts of this material include [Eis95, §17], [Wei94, §4.5]; or see [Stacks, Tag 0621]. We will use
it below to compute cohomology of affine and projective schemes.

Definition 3.1.1. For an A-module M , the tensor algebra is

TM :“
à

ně0

MbAn “ A ‘ M ‘ M bAM ‘ . . .

(It is a non-commutative A-algebra whose multiplication is given by juxtaposition of tensors.)
The exterior algebra

Ź

M is the non-commutative algebra obtained as the quotient of TM by
the two-sided ideal generated by tensors of the form m b m, for m P M . The image of a tensor
m1 b . . . b mn P TM in

Ź

M is denoted by m1 ^ ¨ ¨ ¨ ^ mn.
We equip TM and

Ź

M with the natural grading, i.e.,
ŹnM is the image of Mbn.

For m,n P M , the relation pm ` nq ^ pm ` nq “ 0 can be expanded into

m ^ m ` m ^ n ` n ^ m ` n ^ n “ 0,

which gives
m ^ n ` n ^ m “ 0.

Example 3.1.2. If M “ A‘r is a free A-module of rank r, then TM is the algebra of non-
commutative polynomials in r variables. If we denote these variables by e1, . . . , er we have ei^ej “

´ej ^ ei, so that
n
ľ

M “
à

a1ă¨¨¨ăan

Aea1 ^ ¨ ¨ ¨ ^ ean

is a free A-module of rank
`

r
n

˘

. In particular,

0
ľ

M “ A,
1
ľ

M “ Ar, . . . ,
r
ľ

M – A,
k
ľ

M “ 0 for k ą r.

One refers to
ŹrM as the determinant of M .

If, slightly more generally, M is a locally free A module of rank r, then the determinant
ŹrM

is locally free of rank 1, and the higher exterior powers vanish.

Definition 3.1.3. Let M be an A-module, and consider an A-module map φ :M Ñ A. (In other
words, φ P M_ :“ HomApM,Aq.) The Koszul complex Kpφq is the chain complex

. . . Ñ

n
ľ

M Ñ

n´1
ľ

M Ñ . . . Ñ M Ñ A,

81

http://stacks.math.columbia.edu/tag/0621
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where A is in degree 0 andM in (homological) degree 1 etc. The differential d is the endomorphism
of

Ź

M that is a derivation (of degree ´1) and that is given in degree 1 by dpmq “ φpmq. This
means that in degree 2 we have

dpm1 ^ m2 b nq “ dpm1q ^ m2 b n ´ m1 ^ m1dpm2q b n “ pφpm1qm2 ´ φpm1qm2q b n

and in general

dpm1 ^ ¨ ¨ ¨ ^ mn b nq “
ÿ

iďn

p´1q
i`1φpmiqe1 ^ ¨ ¨ ¨ ^ xmi ^ ¨ ¨ ¨ ^ mn b n.

Example 3.1.4. If M “ A, our map φ is given by an element f , and the complex is

Kpfq “ A
f

Ñ A

(in degrees 1 and 0). If M “ A‘2, and φ corresponds to f, g P A, the complex is given (in degrees
2, 1, and 0) by

Kpf, gq “ Ae1 ^ e2
pf,´gq

Ñ Ae1 ‘ Ae2
f,g
Ñ A

or, more briefly,

Kpf1, f2q “ A
pf2,´f1q

Ñ A‘2 f1,f2
Ñ A

We observe that H2pKpf1, f2qq “ ta P A, f1a “ f2a “ 0u, while H0pKpf1, f2qq “ A{pf1, f2q.

Definition 3.1.5. In general, if M “ A‘r is finite free, and φ is given by an ordered n-tuple
f “ pf1, . . . , frq, we also write

Kpfq :“ Kpf1, . . . , frq :“ Kpφq. (3.1.6)

We write K_pfq :“ HomApKpfq, Aq for the cochain complex obtained by taking the termwise dual
of Kpfq. We refer to it as the dual Koszul complex .

Given another A-module N , we also write

Kpf,Nq :“ Kpfq bA N

K_
pf,Nq :“ HomApKpfq, Nq

(we refer to them as the Koszul complex with coefficients in N and the dual Koszul complex with
coefficients in N).

Since Kpfq consists of finitely many, finite free A-modules, we have, for any A-module N ,

K_
pfq bA N “ HomApKpfq, Nq.

Therefore, the salient homological properties of Kpf,Nq and K_pf,Nq will follow from the ones
of Kpfq.

Lemma 3.1.7. In the situation of Definition 3.1.3, fix m P M and let a :“ φpmq P A. Then

a “ dm ` md

where m denotes the multiplication with m (on
Ź

M ; note this raises the degree by 1), while d is
the above differential (which lowers the degree by 1).

Proof. Note that dm denotes the endomorphism mapping n P
Ź

M to dpm^nq, which agrees with
dpmq ^ n ´ m ^ dpnq “ φpmqn ´ m ^ dn.
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Corollary 3.1.8. For f1, . . . , fr P A, multiplication by each element fi is null-homotopic on Kpfq

and therefore also on Kpf,Nq and K_pf,Nq, for any N P ModA. In particular, all the homology

groups HjpKpf,Nqq and the cohomology groups HjpK_pf,Nqq are annihilated by each fi and
therefore by the ideal pf1, . . . , frq. In particular, if pf1, . . . , frq “ A, then the complexes Kpf,Nq,
K_pf,Nq are exact.

Proof. The first part is immediate from the lemma. The statement about homology groups is a
generality in homological algebra. (Homotopic maps, in the above situation multiplication by fi
and by 0, induce the same maps on the homology groups; see [Wei94, Lemma 1.4.5] for the very
simple proof or [Stacks, Tag 00LO] onwards.) Applying any functor (of chain complexes) to a
null-homotopic chain complex gives again a null-homotopic chain complex, which shows that the
(dual) Koszul complex is exact also for any N .

In the following lemma, we use that a cochain complex C˚ can be regarded as a chain complex
by setting Cn :“ C´n. We apply this to the cochain complex K_pfq, and regard it as a chain
complex below. We also need the shift of a chain complex Crps, defined by Crpsn :“ Cp`n, with
differential dCrps :“ p´1qpdC , cf. [Wei94, p. 1.2.8] for further discussion.

Lemma 3.1.9. For f “ pf1, . . . , frq, there is an isomorphism (of chain complexes of A-modules)

Kpfq – K_
pfqr´rs

Therefore, for any N P ModA, there are isomorphisms

Hr´ipKpf,Nqq “ Hi
pK_

pf,Nqq.

Proof. If f consists of a single element f P A, we have

deg 1 deg 0 deg´1

Kpfq : A
f

// A

K_pfq : A
f

// A

K_pfqr´1s : A
´f

// A

So an isomorphism Kpfq Ñ K_pfqr´1s is given by multiplication with ´1 in degree 1 and by the
identity in degree 0.

In general, there is an isomorphism of chain complexesKpfq “ Kptf1uqbKptf2uqb. . .bKptfruq

and likewise for K_, so tensor products of the isomorphisms Kptfiuq
–
Ñ K_ptfiuqr´1s gives an

isomorphism Kpfq – K_pfqr´rs as requested.
The isomorphism on (co)homology follows (remembering that given a cochain complex C˚,

regarded as a chain complex C˚ as mentioned above, we have, HnpC˚q “ H´npC˚q).

Definition 3.1.10. Let N be an A-module. A sequence f “ pf1, . . . , fnq of elements of A is called
an almost N-regular sequence if for each i ď n, fi is a nonzerodivisor in N{pf1, . . . , fi´1q.

It is called a regular sequence if, in addition, N{pf1, . . . , fnq ‰ 0.

Proposition 3.1.11. If f “ pf1, . . . , fnq is an almostN -regular sequence, then the Koszul complex
Kpf,Nq is exact in positive degrees, i.e.,

HkpKpf,Nqq “

"

0 k ‰ 0
N{pfiq k “ 0

http://stacks.math.columbia.edu/tag/00LO
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In other words, we have an exact sequence

0 Ñ

n
ľ

pAnq bA N Ñ . . . Ñ Nn fi
Ñ N Ñ N{pfiq “ N bA A{pfiq Ñ 0.

In particular, if N “ A, this yields a resolution of A{pfiq by finite free A-modules. In terms of the
dual Koszul complex, the above vanishing can be restated as

HkpKpf,Nqq “

"

0 k ‰ n
N{pfiq k “ n

(3.1.12)

Proof. If n “ 1, then H1pKpf,Nqq “ kerpN
f

Ñ Nq “ 0 since f is nonzerodivisor.
If n “ 2, we observe that we have diagram

0 // 0 //

��

N
f1
//

p1,0q
��

N // 0

��

0 // N
f2,´f1

// N2 pf1,f2q
//

p1
��

N

��

// 0

0 // N
f1
// N // 0

where the vertical maps are (split) exact sequences. The top row is just Kpf1q, the bottom row is
Kpf1qr´1s. A basic result in homological algebra (e.g. [Wei94, Theorem 1.3.1]) asserts that such
a short exact sequence of complexes induces a long exact sequence

0 Ñ H2pKpf1, f2qq Ñ p0 : f1qN
δ

Ñ p0 : f1qN Ñ H1pKpf1, f2qq Ñ N{f1
δ

Ñ N{f1 Ñ H0pKpf1, f2qq Ñ 0.

Since f1 is a nonzerodivisor, we have p0 : f1qN “ 0. Since f2 is a nonzerodivisor on N{f1, and
since (by unwinding the long exact sequence above) the map marked δ is multiplication by f2, we
have H1pKpf1, f2, Nqq “ 0 as well.

A similar argument shows the claim inductively for larger n, see e.g. [Wei94, Corollary 4.5.4].
The statement for the dual Koszul complex holds by Lemma 3.1.9.

Remark 3.1.13. The Koszul complex is functorial in M in the following way: fix M and φ :
M Ñ A. Consider an A-linear map µ : M 1 Ñ M , and put φ1 :“ φ ˝ µ. Then there is a natural
map (of chain complexes)

Kpφ1
q Ñ Kpφq

obtained by observing that M ÞÑ
Ź

M is functorial.

Fixing some f as above, we write fm :“ pfm1 , . . . , f
m
n q. The functoriality of the Koszul complex

as discussed above yields a natural map Kpfm`1
q Ñ Kpfmq: the multiplication with pfiq : A

n Ñ

An yields, by passing to exterior powers, a map
Ź

pAnq Ñ
Ź

pAnq. For example, for n “ 2, the
map reads

Kpfm`1
q

��

A
fm`1
2 ,´fm`1

1 //

f1f2

��

A2
pfm`1

1 ,fm`1
2 q

//

diagpf1,f2q

��

A

id

��

Kpfmq A
fm2 ,´fm1 // A2

pfm1 ,fm2 q
// A

Passing to duals, we therefore have maps K_pfmq Ñ K_pfm`1
q.

Definition 3.1.14. We write

K_
ppfqq :“ colimp. . . Ñ K_

pfmq Ñ K_
pfm`1

q Ñ . . . q,

where the colimit (indexed by m ě 0) is taken in the category of A-modules.
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In order to describe this more explicitly, recall that for any A-module N , and f P A, there is
an isomorphism (of A-modules)

N rf´1
s

–
Ñ colimpN

f
Ñ N

f
Ñ N

f
Ñ . . . q,

under which a fraction n
fk

to n corresponds to n regarded as an element of the k-th copy of N . (If

f is a nonzerodivisor on N , i.e., if the multiplication by f is injective, then the colimit above can
also be thought of as the union N Ă 1

f
¨ N Ă 1

f2
N Ă . . . .)

Example 3.1.15. If f “ pfq consists of a single element, then K_pfmq is the chain complex

(located in degrees 0, ´1) A
fm
Ñ A, and the transition maps in the above colimit are id in degree 0

and multiplication by f in degree ´1. Therefore

K_
ppfq, Nq “ colimpN

id
Ñ N

id
Ñ N Ñ . . . q Ñ colimpN

f
Ñ N

f
Ñ N Ñ . . . q “ pN Ñ N rf´1

sq.

Similarly, for f “ pf1, f2q, we get that K_ppfq, Nq is the complex

N
p1,1q
Ñ N rf´1

1 s ˆ N rf´1
2 s

p1,´1q
Ñ N rpf1f2q

´1
s,

where the maps are essentially the canonical maps to the localiaztions, with signs as indicated.

Exercises

Exercise 3.1.16. Prove the following converse of Proposition 3.1.11. Let A be a Noetherian local
ring, N finitely generated, and f1, . . . , fn P mA. Prove that these elements form an N -regular
sequence if the Koszul complex Kpf1, . . . , fn, Nq is exact in degrees ą 0.

Hint: use the Nakayama lemma (Lemma 1.7.10).

3.2 Definition of Čech cohomology

Notation 3.2.1. Throughout the remainder of this chapter we use the following conventions,
unless explicitly stated otherwise:

• All schemes X are supposed to be quasi-compact and separated.

• U denotes a finite covering of X by affine opens:

X “

a
ď

i“1

Ui.

For a (finite) subset I Ă t1, . . . , au, we write UI :“
Ş

iPI Ui. As X is separated, the schemes
UI are affine (Lemma 2.9.3).

• F denotes a quasi-coherent sheaf on X.

Definition 3.2.2. The Čech complex (of F with respect to a fixed covering U) is the cochain
complex that in degree n ´ 1 is given by

ś

IĂt1,...,au,7I“n F pUIq. Thus, in degrees 0 and 1 the
complex consists of

ź

iďa

F pUiq and
ź

iăj

F pUi X Ujq,

respectively. The differential (from degree n ´ 1 to degree n) is the map

d :“ dn´1 :
ź

I,7I“n

F pUIq Ñ
ź

I,7I“n`1

F pUIq
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which is such that its component F pUIq Ñ F pUJq is zero unless I Ă J . If I Ă J , i.e., J “ I Y tju
for some (unique) j ď n, then the map is p´1qk`1resUJ

UI
if j is the k-th element of J . One checks

that this is indeed a complex, i.e., that dn`1 ˝ dn “ 0. We denote it by ΓpU , F q.

The next step is to construct a complex that is independent of U .

Definition 3.2.3. We put
Γ̌pX,F q :“ colimU ΓpU , F q,

where the colimit runs over all affine coverings U ; whenever V is a finer open affine covering than
U (i.e., each subset Vi is contained in some Uj), then the transition map ΓpU , F q Ñ ΓpV , F q is
induced by the restriction maps.

The colimit over the U above is filtered (given two coverings U1 and U2 one can find a covering
U that is finer than both of them, by covering the U1i X U2j by smaller open affines).

Definition 3.2.4. Finally, the n-th Čech cohomology of F (first with respect to a fixed covering
U ; then without the choice of such a covering) is defined as

Hn
UpX,F q :“ HnΓpU , F q :“ ker dn{ im dn´1,

Ȟn
pX,F q :“ HnΓ̌pX,F q.

It is a generality of homological algebra that Hn commutes with filtered colimits (Exercise 3.2.13),
so that

Ȟn
pX,F q “ colimU HnΓpU , F q.

Example 3.2.5. ConsiderX “ A2zt0u, endowed with the covering by U1 “ A1ˆGm “ SpecZrt1, t
˘1
2 s

and U2 “ GmˆA1 “ SpecZrt˘1
1 , t2s. We have U1XU2 “ GmˆGm, and therefore the Čech complex

for this covering reads

ΓUpX,OXq “ Zrt1, t
˘1
2 s ˆ Zrt˘1

1 , t2s
d

Ñ Zrt˘1
1 , t˘1

2 s. (3.2.6)

(The groups are located in degree 0 and 1, respectively). The differential d is given by dpf1, f2q “

f2 ´ f1. We have
H0

UpX,OXq “ ker d “ OXpXq “ Zrt1, t2s.

Indeed, this holds by the sheaf property of OX (cf. also Example 2.1.2). Moreover,

H1
UpX,OXq “ coker d –

à

n1,n2ă0

Ztn1
1 t

n2
2 .

All other cohomology groups vanish, since the complex ΓUpX,OXq is zero there. We will shortly
relate this computation to the cohomology groups ȞnpP1,

À

ePZOpeqq (Theorem 3.4.1). We note

that both Ui are affine; we will shortly prove that this implies Ȟ˚pX,OXq “ Ȟ˚
UpX,OXq (Proposi-

tion 3.3.4).

By the sheaf property, we have (for any X, F and U) an isomorphism

F pXq
–
Ñ H0

UpX,F qp“ ker d0q. (3.2.7)

In particular, this does not depend on U . Of course, then taking the colimit over all affine coverings
U does not do anything, so

F pXq – Ȟ0
pX,F q.

The following fact is the workhorse when it comes to computing cohomology groups in prac-
tice. Recall from Lemma 2.10.16 that QCohpXq is an abelian category, so we can consider exact
sequences

0 Ñ F 1
Ñ F Ñ F 2

Ñ 0



3.2. DEFINITION OF ČECH COHOMOLOGY 87

in this category. Concretely, given F 1, F, F 2 and maps of OX-modules F 1 Ñ F and F Ñ F 2 (whose
composition is zero), a sequence is exact if for any open affine U Ă X belonging to some fixed
covering U , the sequence

0 Ñ F 1
pUq Ñ F pUq Ñ F 2

pUq Ñ 0 (3.2.8)

is exact. Note that this is not implying that

0 Ñ F 1
pXq Ñ F pXq Ñ F 2

pXq Ñ 0

is an exact sequence. The next lemma does state that it is exact except possibly for the surjectivity
of the map F pXq Ñ F 2pXq. This map is, in general, not surjective, and the failure to be surjective
is measured by Ȟ1pX,F 1q.

Lemma 3.2.9. For an exact sequence as above, there is a long exact sequence as follows, where
ȞnpF q :“ ȞnpX,F q etc.

0 Ñ Ȟ0
pF 1

q Ñ Ȟ0
pF q Ñ Ȟ0

pF 2
q Ñ Ȟ1

pF 1
q Ñ Ȟ1

pF q Ñ Ȟ1
pF 2

q Ñ . . . (3.2.10)

In particular, the map
Ȟ0

pF q Ñ Ȟ0
pF 2

q

is surjective if and only if Ȟ1pF 1q Ñ Ȟ1pF q is injective (and this is the case if Ȟ1pF 1q “ 0, but not
necessarily in general).

Proof. Fix an affine covering U . Applying the exact sequence (3.2.8) to the multiple intersections
UI (which are all affine) we obtain an exact sequence of complexes

0 Ñ ΓpU , F 1
q Ñ ΓpU , F q Ñ ΓpU , F 2

q Ñ 0

(i.e., the terms of these complexes form exact sequences of abelian groups). The assertion then is
nothing but the long exact sequence of cohomology groups, e.g. [Wei94, Theorem 1.3.1].

Example 3.2.11. Consider X “ P1 “ ProjZrt0, t1s and i : Y :“ V pt0q Ñ X. Note that Y “

ProjZrt0, t1s{t0 “ ProjZrt1s “ P0 “ SpecZ.
There is an exact sequence of graded Zrt0, t1s-modules, where p´2q etc. denotes the Serre twist

(Definition 2.10.14):

0 Ñ Zrt0, t1sp´2q
t0
Ñ Zrt0, t1sp´1q Ñ Zrt1sp´1q Ñ 0.

We can apply the functor r´ (Definition and Lemma 2.10.13; note that by its very definition this
is an exact functor), and obtain an exact sequence

0 Ñ OXp´2q
t0
Ñ OXp´1q Ñ i˚OSpecZ Ñ 0 (3.2.12)

in QCohpXq. (Initially, it would be more appropriate to write i˚OSpecZp´1q at the right; however
note that P0 “ ProjZrt1s is isomorphic to D`pt1q, on which Op´1q – O). We inspect the above
exact sequence (3.2.10), using Lemma 2.10.15 for the two left hand groups:

0 Ñ ΓpOp´2qq
loooomoooon

“0

Ñ ΓpOp´1qq
loooomoooon

“0

Ñ Γpi˚Oq “ Z Ñ Ȟ1
pX,Op´2qq Ñ Ȟ1

pX,Op´1qq Ñ . . .

We observe that the global sections of Op´1q Ñ i˚O are not surjective. In Theorem 3.4.1, we will
compute the next groups in the long exact sequence to be

Ȟ1
pX,OXp´2qq “ Z Ñ Ȟ1

pX,OXp´1qq “ 0.

So the failure of the surjectivity on global sections for Op´1q Ñ i˚O is captured by the non-
vanishing of this first cohomology group.
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Exercises

Exercise 3.2.13. Let I be a filtered category (a useful example to keep in mind is I “ t0 Ñ 1 Ñ

2 Ñ . . . u). Let C : I Ñ Ch be a functor, i.e., for each i P I there is a chain complex Ci, and
whenever i Ñ j, there is a map (of chain complexes) Ci Ñ Cj. Let C8 :“ colimCi be the (filtered)
colimit of these chain complexes. Establish an isomorphism

colimHn
pCiq

–
Ñ Hn

pC8q.

Hint: first prove a similar claim for the kernel of the differential, and its image.

Exercise 3.2.14. Let X be quasi-compact and separated, and Fi P QCohpXq, where i P I for
some index set I.
(1) Show that the presheaf U ÞÑ

À

i FipUq is in fact a quasi-coherent sheaf. We denote it by
À

i Fi.
Prove that for any G P QCohpXq, there is a natural isomorphism HomQCohpXqp

À

i Fi, Gq “
ś

iHomQCohpXqpFi, Gq (so this is indeed the coproduct in the category QCohpXq).

(2) Prove that cohomology (on a quasi-compact separated scheme) commutes with direct sums,
i.e., establish an isomorphism

à

i

Ȟ˚
pX,Fiq

–
Ñ Ȟ˚

pX,
à

i

Fiq.

Exercise 3.2.15. For a scheme X{k, the Euler characteristic of F P QCohpXq is defined to be

χpF q :“ χpX,F q :“
ÿ

sě0

p´1q
s dimk H

s
pX,F q,

provided that each dimension in this alternating sum is finite, and provided that only finitely many
groups are nonzero.

(1) For a short exact sequence
0 Ñ F 1

Ñ F Ñ F 2
Ñ 0

prove that if χ is defined for two out of the three sheaves, then it is also defined for the third
one, and that in this event the formula

χpF 1
q ` χpF 2

q “ χpF q (3.2.16)

holds.

(2) Deduce that for an exact sequence

0 Ñ Fn Ñ Fn´1 Ñ . . . F0 Ñ 0

one has
χpF0q “

ÿ

qą0

p´1q
qχpX,Fqq.

Hint: establish exact sequences 0 Ñ kerpFq Ñ Fq´1q Ñ Fq Ñ cokerpFq`1 Ñ Fqq Ñ 0.

3.3 Čech cohomology of affine schemes

Given (3.2.7), our interest is now to understand higher cohomology groups. Here is a first such
computation. The exposition below follows [Gro61, §III.2].

Lemma 3.3.1. Let X “ SpecA, F P QCohpXq and consider a finite covering U of X by basic
open subsets Ui “ Dpfiq, i ď a. Then

Hn
UpX,F q “ 0 for n ě 1.
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Proof. Let N :“ F pXq (so that rN “ F ). For m ě 0, write fm “ pfm1 , . . . , f
m
a q.

SinceX “
Ť

Dpfiq “
Ť

Dpfmi q, we have that 1 is a linear combination of the fmi (Lemma 1.1.10(2)).
Thus multiplication by 1, i.e., the identity map on the dual Koszul complex K_pfm, Nq is null-
homotopic. Hence this is an exact complex (Corollary 3.1.8). However, this complex identifies
with the following (with the nonzero terms being in degrees 0, 1, 2 etc.)

0 Ñ N Ñ
ź

i1

N rf´1
i1

s Ñ
ź

i1ăi2

N rpfi1fi2q
´1

s Ñ . . . (3.3.2)

This is just the complex N Ñ ΓUpX, rNq, so we are done.

Corollary 3.3.3. If X “ SpecA, F “ rN (for N P ModA), we have

Ȟn
pX,F q “

"

N n “ 0
0 n ą 0

Proof. Any affine covering U of X admits a refinement by a covering consisting of basic open
subsets. When computing ȞnpX,F q “ colimU Hn

UpX,F q, it is enough to take the colimit over
those coverings. The groups at the right are, however, F pXq for n “ 0 and 0 for n ě 1 by
Lemma 3.3.1.

We now prove that Cech cohomology can be computed using any affine covering.

Proposition 3.3.4. Let X be a quasi-compact and separated (but not necessarily affine) scheme,
and U a fixed covering by affines. Then, for any F P QCohpXq there is an isomorphism

Hn
UpX,F q

–
Ñ Ȟn

pX,F q.

Proof. Given that the colimit colimU HnΓUpX,F q is filtered, it is enough to show for any open
affine covering V : X “

Ť

Vj that is finer than U , we have a quasi-isomorphism

ΓUpX,F q Ñ ΓVpX,F q.

By considering the covering “U YV”: X “
Ť

Ui Y
Ť

Vj, we may assume the subsets of U are part
of the subsets of V . By an induction it therefore suffices to show that we have a quasi-isomorphism
as above in the situation where V is of the form X “

Ť

i Ui Y U0, for some arbitrary open affine
subset U0 Ă X.

We have an exact sequence of chain complexes (i.e., each column below is exact)

0

��

0

��

. . . 0

��

0

��

F pU0q

��

//
ś

i F pU0 X Uiq

��

// . . . //
ś1

7I“n F pUIq

��

//
ś1

7I“n`1 F pUIq

��

// . . .

ś

iě0 F pUiq //

��

ś

7I“2 F pUIq

��

// . . . //
ś

7I“n F pUIq

��

//
ś

7I“n`1 F pUIq

��

// . . .

ś

i‰0 F pUiq //

��

ś2

7I“2 F pUIq //

��

. . . //
ś2

7I“n F pUIq

��

//
ś2

7I“n`1 F pUIq

��

// . . .

0 0 . . . 0 0

Here the notation
ś1 means the product over the index sets such that 0 P I, while

ś2 means 0 R I.
(The leftmost column is in cochain degree 1, the right most in degree n ` 1.) The middle row is
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just ΓVpX,F q, while the bottom row is ΓUpX,F q. The top row is comprised of F pU0q in degree 1,
and in higher degrees of ΓU0XUpU0, F q, where U0 XU is the covering of U0 given by U0 “

Ť

i U0 XUi.
By a general fact in homological algebra [Wei94, Theorem 1.3.1], the map from middle to bottom

row is a quasi-isomorphism if (and only if) the top row is an exact complex.
In other words, we have to see that ΓUXU0 is exact in degrees ě 1. In other words, we have

reduced our claim for X to the one for U0, i.e., we may henceforth assume X is affine.
We consider X “

Ť

Ui as before. Our goal is to prove that

0 Ñ F pXq
res
Ñ

ź

i

F pUiq Ñ
ź

i1ăi2

F pUi1,i2q Ñ . . .

loooooooooooooooooooomoooooooooooooooooooon

ΓU pX,F q

(3.3.5)

is an exact sequence. We first do this in the special case where one of the open subsets, say U0 is
equal to X.

In this case we observe that there is a commutative diagram of chain complexes as below,
where the middle row is the complex (3.3.5) above, and where each column is a (split) short exact
sequence:

0 // 0

��

//
ś

7I“1,0PI F pUIq

��

//
ś

7I“2,0PI F pUIq //

��

. . .

0 // F pXq

��

res //
ś

7I“1 F pUIq

��

//
ś

7I“2 F pUIq //

��

. . .

0 // F pXq
res//
ś

7I“1,0RI F pUIq //
ś

7I“2,0RI F pUIq // . . .

Writing T,M,B for top, middle and bottom row, we observe that T “ Br´1s, so that HnpT q “

Hn´1pBq, and the long exact cohomology sequence associated to this short exact sequence of
complexes then reads

Hn
pT q Ñ Hn

pMq Ñ Hn
pBq

δ
Ñ Hn`1

pT q “ Hn
pBq

and one checks that the map δ is the identity (for all n). Therefore HnpMq “ 0, i.e., M is exact.
We now prove that the exactness of the complex in (3.3.5) in the general case where X “ SpecA

is affine. We can pick a refinement of the covering U that consists of open subsets V “ Dpfq (i.e.,
each Dpfq is contained in some Ui). It suffices to prove the exactness of the complex after localizing
at any such f . Since F is quasi-coherent we have

0 Ñ F pXqrf´1
s “ F pDpfqq Ñ

ź

i

F pUiqrf´1
s “

ź

i

F pUi X Dpfqq Ñ . . .

In other words, this localization is the complex (3.3.5), but with X being replaced by Dpfq and
the covering U being replaced by its intersection with Dpfq. Since Dpfq is contained in some Ui,
the exactness in this case holds by the case handled previously.

Exercises

Exercise 3.3.6. Consider a pullback diagram

X 1 s1
//

f 1

��

X

f
��

S 1 “ SpecA1 s // S “ SpecA
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where X is quasi-compact and separated, and the bottom map s is induced by a flat map A Ñ A1.
(A typical example is when A is a field, in which case any A1 is flat.) Prove that there is a natural
isomorphism

A1
bA Hn

pX,F q
–
Ñ Hn

pX 1, s1˚F q

for any F P QCohpXq. One refers to this by saying that cohomology commutes with flat base
change.

Exercise 3.3.7. Let X be a quasi-compact and separated scheme that admits a covering by n
affine open subschemes. Prove that HkpX,F q “ 0 for k ě n for any F P QCohpXq.

3.4 Čech cohomology of projective space

We now compute the cohomology of the line bundles Opeq on projective space X :“ Pn
B (for some

ring B). Recall that X “
Ťn
i“0D`ptiq, and each D`ptiq is isomorphic to An

B. In particular X
is quasi-compact. It is also separated (Example 2.9.6). We are thus in a position to compute
Cech cohomology to begin with (cf. Notation 3.2.1), which we will do using the above affine open
covering U .

Instead of focussing on a single Opeq it will be convenient to consider

OXp‹q :“
à

ePZ

OXpeqpP QCohpXqq.

By Exercise 3.2.14, we have

Hr
pX,OXp‹qq “ Hr

pX,
à

ePZ

OXpeqq “
à

ePZ

Hn
pX,OXpeqq

so that the cohomology groups of OXp‹q are Z-graded. We write A “ Brt0, . . . , tns, which is graded
such that deg ti “ 1 (Example 2.3.3).

Theorem 3.4.1. With the above notation, we have isomorphisms of graded A-modules as follows:

• H0pX,OXp‹qq – A (so that H0pX,OXpeqq “ Ae, the degree e component of A; note this
vanishes if e ă 0)

• HrpX,OXp‹qq “ 0 for r ‰ 0, n ` 1,

• HnpX,OXp‹qq “ Arpt0 . . . tnq´1s{Arpt0 . . . tnq´1sě0 “
À

aą0Bt
´a0
0 . . . t´ann , i.e., a freeB-module

with a basis given by monomials as indicated, where the multiindex a “ pa0, . . . , anq P Zn`1

is such that ai ą 0 for all i. (The subscript “ě 0” indicates the A-submodule spanned by
monomials in which at least one ti appears with a non-negative exponent.) In particular,
butting bi :“ ´pa1 ´ 1q in the above expressions the summands for individual Serre twists e
have the following descriptions (i.e., there are isomorphisms of B-modules)

Hn
pX,OXpeqq “

à

biď0,
ř

bi“e`pn`1q

Btb00 ¨ ¨ ¨ tbnn , (3.4.2)

Hn
pX,OXpeqq “ 0 for e ą ´n ´ 1

Hn
pX,OXp´n ´ 1qq “ B.

Proof. The proof consists in essentially expressing the complex ΓUpX,Op‹qq in terms of an appro-
priate Koszul complex.

Consider the sequence t :“ pt0, . . . , tnq in A, and tm :“ ptm0 , . . . , t
m
n q. The dual Koszul complex

(Definition 3.1.14)
K_

pptqq “ colimmě1K
_

ptmq
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reads as follows (compare with (3.3.2); the term Brt‚s is in cochain degree 0 where t‚ serves as a
shorthand for “t0, . . . , tn”; the rightmost term is in cochain degree n ` 1):

Brt‚s //
ś

iBrt‚, t
´1
i s //

ś

i1ăi2
Brt‚, pti1ti2q´1s // . . . // Brt‚, pt0t1 . . . tnq´1s

ś

i ΓpUi,Op‹qq //
ś

i1ăi2
ΓpUi1 X Ui2 ,Op‹qq // . . . // Γp

Ş

iďn Ui,OXp‹qq

Underneath, we have indicated the agreement of the degree ě 1-parts of K_pptqq with the Cech
complex ΓUpX,OXp‹qq. (An inspection of the definition shows the signs of the differentials agree
as well.)

For m ě 1, the sequence tm is a regular sequence in A, so that Proposition 3.1.11 gives

Hk
pK_

ptmqq “

"

A{ptmi q k “ n ` 1
0 k ‰ n ` 1

The nonzero group is a free B-module of finite rank spanned by monomials of the form tm´a :“
śn

i“0 t
m´ai
i , where 0 ă ai ď m. The (filtered) colimit over m ě 1 is formed using the transition

map K_ptmq Ñ K_ptm`1q that is given by multiplication with t0t1 . . . tn. It maps tm´a to tpm`1q´a,
so that passing to the colimit gives

Hk
pK_

pptqqq “ colimmHk
pK_

ptmqq “

"
À

aą0Bt
´a
‚ k “ n ` 1

0 k ‰ n ` 1

Here the direct sum is indexed by all multi-indices a “ pa0, . . . , anq with ai ą 0 for all i, as claimed
above

In other words, the group H0
UpX,OXp‹qq, which is the kernel of the leftmost differential in the

bottom complex, identifies with Brt‚s. (This was already clear from (3.2.7) above.) For r ě 1, we
have

Ȟr
pX,OXp‹qq “ Hr

UpX,OXp‹qq “ Hr`1
pK_

pptqqq.

It remains to observe that the above identification of the Cech complex with the Koszul complex
respects the Z-gradings;

• the Koszul complex for the Z-graded A-module An`1p´1q (and the graded map An`1p´1q
ti
Ñ

A) is Z-graded as well. Concretely, this is simply the Z-grading on (the localizations of) Brt‚s

where deg ti “ 1.

• The Cech complex is Z-graded by means of the grading on OXp‹q.

This finishes the computation of the cohomology groups.

Outlook 3.4.3. Consider the following maps

U :“ An`1
B zt0u

q

��

� � j //An`1
B

a

��

Pn
B “ U{Gm

π // SpecB.

There is a formalism of so-called derived categories of quasi-coherent sheaves on these schemes,
and, for any map of schemes f : X Ñ Y , the derived functor Rf˚ : DQCohpXq Ñ DQCohpY q. Then
the Čech cohomology groups H˚pPn,Oq are the cohomology groups of the complex Rπ˚OPn P

DQCohpSpecZq “ DpModZq; similarly H˚pPn,
À

eOpeqq is related to Rπ˚

À

eOpeq. The above
computation of these cohomology groups are explained by observing that

à

e

Opeq “ Rq˚OU ,
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which follows essentially from the fact that q is affine (!), which by Lemma 3.4.4 implies that
Rq˚OU “ q˚OU “

À

eOpeq. This implies

Rπ˚

à

e

Opeq “ Rπ˚Rq˚OU “ Ra˚Rj˚OU .

Since An`1 is affine, the vanishing of higher cohomology of quasi-coherent sheaves means that Ra˚

is essentially just a forgetful functor. By contrast, the inclusion j is not affine, and Rj˚OU is given
by the Cech comples ΓpU ,OUq, for the standard covering of An`1z0 by n ` 1 copies of Gm ˆ An,
cf. (3.2.6).

Lemma 3.4.4. If f : X Ñ Y is an affine morphism (Definition 2.5.1, for example f could be
finite or, more specifically, a closed immersion), then for any F P QCohpXq there is a natural
isomorphism

Ȟ˚
pY, f˚F q

–
Ñ Ȟ˚

pX,F q.

Proof. Fix an affine open covering U of Y . By assumption, the open covering f´1pUq of X consists
of affine opens. Using Proposition 3.3.4, we can compute Cech cohomology using these covers. By
definition, ΓpUI , f˚F q “ Γpf´1pUIq, F q, so the Cech complexes are isomorphic, hence so are their
cohomology groups.

Theorem 3.4.5. (Bézout’s theorem) Let fi P krt0, . . . , tns, 1 ď i ď n be homogeneous polynomials
of degree di. Consider the hypersurface

Hi :“ V pfiq :“ Proj krt0, . . . , tns{fi Ă Pn
k “: X.

We suppose that the scheme-theoretic intersection (Exercise 2.6.5)

Y :“ H1 X ¨ ¨ ¨ X Hn “ V pf1, . . . , fnq

is finite over k. Then
dimkOY pY q “

ź

i

di.

In particular, if k is algebraically closed and Y is reduced, then

7Y “
ź

i

di.

Proof. Let E :“
À

iOp´diq. Note this is a locally free sheaf of rank n on Pn
k . We consider

the Koszul complex for E Ñ O given by multiplication with the fi. (This is possible since the
definition of the Koszul complex can be adapted to any quasi-coherent sheaf E, and map E Ñ OX ;
equivalently, but more closely related to the above computation, one may also consider the graded
A :“ krt0, . . . , tns-module M :“

À

iAp´diq and form the Koszul complex of this graded A-module
with respect to the map M Ñ A given by multiplication with the fi; then apply the (exact)
functor r´ in Definition and Lemma 2.10.13.) As in Example 3.2.11, we obtain an exact sequence
(in QCohpPnq)

0 Ñ

n
ľ

E Ñ . . . Ñ E Ñ OX Ñ i˚OY Ñ 0.

where i : Y Ñ Pn
k is the closed embedding. For any F “

ŹaE appearing in the complex above,
the Euler characteristic χpF q (cf. Exercise 3.2.15) is defined. Indeed, χpOp´diqq is defined (all but
possibly two cohomology groups of OXp´diq are zero). Therefore the Euler characteristic is also
well-defined for E and its exterior powers, as one checks inductively using that

r
ľ

pOpd0q ‘ E 1
q “

˜

0
ľ

Opd0q b

r
ľ

E 1

¸

‘

˜

1
ľ

Opd0q ‘

r´1
ľ

E 1

¸

“

r
ľ

E 1
‘ p

r´1
ľ

E 1
qpd0q.
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We obtain

χpi˚OY q “
ÿ

q

p´1q
qχ

˜

q
ľ

E

¸

.

Crucially, the right hand side depends only on di, but not on the fi. To compute χpi˚OY q,
we may therefore assume fi “ tdii . Similarly to Example 3.2.11, we have Y :“

Şn
i“1 V ptdii q “

Spec krx1, . . . , xns{pxdii q (noting that Y Ă D`pt0q “ Spec kr
ti
t0

s “: Spec krx1, . . . , xns). Using
Lemma 3.4.4 and Corollary 3.3.3, we get

χpX, i˚OY q “ χpY,OY q “ dimkOY pY q “ dimk krxis{x
di
i “

ź

i

di.

The additional claim holds since for any finite k-algebra A (such as OY pY q) there is an isomor-
phism A “

À

mĂAAm (cf. Exercise 1.7.29). If A is reduced, then Am is a domain, which is therefore

a field extension of k. If k “ k, Am “ k.

3.5 Finiteness of cohomology

One consequence of Theorem 3.4.1 is that the cohomology groups of Opdq on Pn are finitely
generated. In this section, we provide a more general statement asserting such finiteness results.
We begin by discussing the necessary finiteness condition on quasicoherent sheaves F .

3.5.1 Coherent sheaves

Let A be a Noetherian ring. Recall that for an A-module M , the following are equivalent:
(1) M is finitely generated, i.e., lies in an exact sequence

An Ñ M Ñ 0.

(2) M is finitely presented, i.e., lies in an exact sequence

Am Ñ An Ñ M Ñ 0.

(3) M is coherent , i.e. M is finitely generated and the kernel of any (not necessarily surjective)
map An Ñ M is finitely generated.

Indeed, the implications (3) ñ (2) ñ (1) are obvious, and for (1) ñ (3), the kernel of An Ñ M is a
submodule of a finitely generated A-module, and for Noetherian rings, these are finitely generated.

Remark 3.5.1. For simplicity, we only consider coherent modules over Noetherian rings. A well-
behaved theory of coherent modules exists for a more general class of rings called coherent rings ,
cf. [Stacks, Tag 05CV] onwards. A ring is coherent if it satisfies condition (3) above, i.e., if any
finitely generated ideal is finitely presented. Any Noetherian ring is coherent, but not conversely.
An example of a coherent, non-Noetherian ring is the ring OpZq of holomorphic functions on a
polydisk Z :“ tpz1, . . . , znq P Cn, |zi| ď 1u.

Throughout this section, let X be a locally Noetherian scheme (Definition 2.1.10), so X “
Ť

SpecAi, with Ai being Noetherian. A typical case is if X is locally of finite type over SpecA,
for a Noetherian ring A, e.g. a field or Z. We are going to introduce the concept of a coherent
sheaf, which extends the above notion of finitely generated modules.

Definition 3.5.2. A quasi-coherent sheaf F on a locally Noetherian scheme X is called coherent
if for any open affine U “ SpecA Ă X, F pUq is a coherent (equivalently, finitely generated)
A-module. Coherent sheaves spann a full subcategory CohpXq Ă QCohpXq.

http://stacks.math.columbia.edu/tag/05CV
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Example 3.5.3. • The structural sheaf OX is a coherent sheaf.

• More generally, for a closed immersion i : Y Ñ X, i˚OY P CohpXq. Indeed, locally on X, i is
of the form SpecA{I Ñ SpecA.

• Even more generally, if f : Y Ñ X is a finite morphism, and F P CohpY q, then f˚F P CohpXq:
locally on X, f is given by SpecA Ñ SpecB for A being finite (as a module!) over B, and so
any finitely generated A-module is also finitely generated when regarded as a B-module.

• Lemma 2.10.15 shows that for the structural map f : Pn Ñ SpecZ,

f˚Opeq P CohpSpecZq.

• However, for f : A1 Ñ SpecZ,
f˚OA1 R CohpSpecZq

since its global sections are Zrts, which is not finitely generated (as a Z-module).

• Another notable permanence property is that for any map f : Y Ñ X (of locally Noetherian
schemes), the pullback functor f˚ (Lemma 2.10.19) preserves coherent sheaves (since if M is
a finitely generated A-module, and A Ñ B a ring homomorphism then M bA B is a finitely
generated B-module).

It is a consequence of the above properties of coherent modules that CohpXq Ă QCohpXq is an
abelian subcategory.

3.5.2 Cohomology of coherent sheaves on projective schemes

Theorem 3.5.4. Let i : Y Ă X :“ Pn
A be a closed subscheme, with A being a Noetherian ring. For

any F P CohpY q, the cohomology groups Ȟ˚pY, F q are finitely generated A-modules. In particular,
F pY q “ Ȟ0pY, F q is finitely generated.

By Lemma 3.4.4, and using that i˚F P CohpPn
Aq (Example 3.5.3), it is enough to prove Theo-

rem 3.5.4 in the case Y “ X “ Pn
A.

Lemma 3.5.5. For any F P CohpXq there is a surjection

n
à

j“1

OXp´djq Ñ F

for appropriate (finite) n and dj P Z.

Proof. We need to find a map of coherent sheaves whose cokernel in QCohpXq or CohpXq is 0;
equivalently, we need to supply a map such that the sections on every basic open Ui :“ D`ptiq,
À

j OXpUiq Ñ F pUiq are surjective. Since this involves finitely many i, and since F pUiq “: Mi is

a finitely generated OXpUiq-module, it is enough to prove the following: for any i and any fixed
element s P F pUiq, there is some d such that tdi s P pF pdqqpUiq extends to a global section s1 of
F pdq, i.e., an element in F pdqpXq. Here we use Lemma 2.10.3, i.e., a global section s1 P pF pdqqpXq

is nothing but a map (of OX-modules) OX Ñ F pdq or, equivalently, a map OXp´dq Ñ F . This
assertion is precisely the content of Exercise 2.10.28.

Proof. (of Theorem 3.5.4, for Y “ X “ Pn
A) We will prove that ȞqpX,F q is finitely generated by

descending induction on q. The statement holds for q ą n ` 1 by Exercise 3.3.7.
Pick a surjection as above, and consider its kernel

0 Ñ K Ñ
à

j

OXp´djq Ñ F Ñ 0. (3.5.6)
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The kernel K is coherent since CohpXq Ă QCohpXq is an abelian subcategory (this uses that A is
Noetherian). Consider the long exact cohomology sequence

Ȟq
pX,

à

Op´djqq “
à

j

Hq
pX,Op´djqq Ñ Ȟq

pX,F q Ñ Ȟq`1
pX,Kq Ñ . . . .

The outer terms are finitely generated by Theorem 3.4.1 and the inductive assumption, respectively.
Hence the middle group is also finitely generated (over the Noetherian ring A).

Remark 3.5.7. The proof technique above also shows that for a fixed F P CohpPn
Aq, there is

e " 0 such that for all e1 ě e we have

Ȟq
pX,F pe1

qq “ 0 for all q ą 0.

The following statement is the algebro-geometric incarnation of Liouville’s theorem (which
asserts that a holomorphic function on a connected compact complex manifold is constant).

Corollary 3.5.8. Let X Ă Pn
k be an integral closed subscheme, where k is algebraically closed.

(In more classical terminology, one refers to this by saying that X is a projective variety , where
“variety” means integral and of finite type scheme over k “ k.) Then

H0
pX,OXq “ k. (3.5.9)

Proof. By Theorem 3.5.4, A :“ H0pX,OXq is a finite-dimensional k-vector space. By Lemma 2.2.2
it is a domain. Thus A is a finite field extension of k, and therefore A “ k, since k “ k.

Remark 3.5.10. Note that both the closed embedding X Ă Pn
k and the structural map Pn

k Ñ

Spec k are proper, and hence so is the map X Ñ Spec k (Lemma 2.9.9). The assertion of The-
orem 3.5.4 holds true for arbitrary proper morphisms X Ñ SpecB. This is proved in [Gro61,
Théorème 3.2.1] using Chow’s lemma (stated above in Proposition 2.9.17). Also note that Corol-
lary 3.5.8 reproves the statement in Exercise 2.9.22 (in the projective case). Finally, the assumption
that k is algebraically closed can be relaxed, as discussed in Exercise 3.5.12.

Exercises

Exercise 3.5.11. We say that some F P QCohpXq is generated by global sections iff there is a
surjection (in the category QCohpXq, see around (3.2.8) what this means)

à

iPI

OX Ñ F.

Let now X “ Pn
A with A Noetherian and F P CohpXq. Prove that there is an e " 0 such that

for all e1 ě e the sheaf F pe1q is generated by finitely many global sections (i.e., the sum above is
finite).

One refers to this statement by saying that OXp1q is an ample line bundle. This is an important
positivity property in algebraic geometry.

Exercise 3.5.12. A scheme X{k is called geometrically integral if X ˆSpec k Spec k (where k is an
algebraic closure of k) is integral.
(1) Prove that any geometrically integral scheme is integral.

(2) The converse does not hold: for k “ R, prove that SpecRrts{f is geometrically integral iff
deg f “ 1.

(3) Prove that the natural map k Ñ H0pX,OXq (which is nothing but the pullback along the
structural map X Ñ Spec k) is an isomorphism provided that X is geometrically integral, and
X Ă Pn

k is a closed subscheme.
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Exercise 3.5.13. (Solution at p. 109) For the purposes of this exercise, we call a function

P : N Ñ N

a numerical polynomial if there is a (necessarily unique) polynomial Q P Qrxs and m0 P N such
that

P pmq “ Qpmq

for all m P N, m ě m0. We set its degree to be degP :“ degQ.
Let k be a field and let us write X :“ Pn

k . For F P CohpXq, we consider the function

P :“ PF : N Ñ N, P pmq :“ dimk H
0
pX,F pmqq.

(1) For e P Z, compute the values of the function POXpeq. You may use without proof that the

k-vector space of homogeneous polynomials of degree r in s variables has dimension
`

r`s´1
s´1

˘

.
Compute degPOX

.

(2) Let i : Y “ V pfq Ă X be the closed immersion defined by a non-zero homogeneous polynomial
f P krt0, . . . , tnsd of degree d ě 0. Prove that

degPi˚OY
ď n ´ 1

(you may use (3) below). Is it possible that “ă” holds in the above?

(3) For any F P CohpXq, prove that there is some e0 ě 0 such that

PF peq “ χpX,F peqq (3.5.14)

for e ě e0.

(4) (Bonus) Generalizing Part (2), prove that for Y “ V pf1, . . . , fmq, for homogeneous polynomials
f1, . . . , fm P krt0, . . . , tns, we have

degPi˚OY
ď n ´ m.

3.6 Outlook: The Riemann–Roch theorem

In this outlook, we are going to state the Riemann–Roch theorem, which is the cornerstone in the
theory of algebraic curves. Throughout we make the following assumptions:

Notation 3.6.1. • k “ k will be an algebraically closed field,

• X is a scheme that is

(1) 1-dimensional (Definition 1.3.1),

(2) integral, i.e., reduced and irreducible (Definition 2.2.1),

(3) a closed subscheme of some Pn
k ,

(4) regular in the sense that the local rings OX,x are regular rings. Note: if x is the generic
point, this condition is vacuous. If x is a closed point, so that dimOX,x “ 1, this means
thatmx is a principal ideal, so that equivalently for these points, OX,xis a discrete valuation
ring, see around Corollary 1.7.17). We the valuation map

val :“ valx : QpOX,xqzt0u Ñ Z

which is the unique group homomorphism sending a generator ϖx P mx to 1, and sending
all the elements in Oˆ

X,x to 0. (I.e., there is a unique u P Oˆ
X,x and n P Z such that

s “ ϖn
x ¨ u, and then valpsq “ n).
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We refer to the conjunction of these assumptions by saying that X is a smooth projective curve.
We will denote by

K :“ kpXq :“ OX,η

the local ring at the generic point (for any nonempty open U Ă X, we have K “ QpOXpUqq). We
refer to its elements as rational functions .

According to Corollary 3.5.8, we have dimkOXpXq “ 1, paralleling the fact that on a connected
compact Riemann surface there are only constant holomorphic functions. However, there is an
infinite-dimensional space of meromorphic functions (i.e., locally of the form z´n ¨ fpzq, where
fpzq is holomorphic). The Riemann–Roch theorem below gives a way to count, more precisely,
how many functions having prescribed pole orders there are. In this section, we formulate this
theorem, including the rudiments of the necessary preliminaries in the specific situation of a smooth
projective curve.

Definition 3.6.2. For X as above, the genus is defined as

g :“ gpXq :“ dimk H
1
pX,OXq.

We will use without proof that for any F P CohpXq:

Hn
pX,F q “ 0 for n ą 1 “ dimX. (3.6.3)

(This can be proved by in two ways: 1) by comparing Cech cohomology with sheaf cohomology
and using a vanishing for sheaf cohomology beyond the dimension [Stacks, Tags 03AG, 04AR], or
2) in our situation by Serre duality as stated in Theorem 3.6.30 below.) Thus

1 ´ gpXq “ dimH0
pX,OXq ´ dimH1

pX,OXq “ χpX,OXq.

Example 3.6.4. If i : X “ V pfq Ă P2 is a plane curve, where f is a homogeneous polynomial of
degree d, then we have an exact sequence

0 Ñ OP2p´dq
f

Ñ OP2 Ñ i˚OX Ñ 0,

and

χpP2, i˚OXq “ χpX,OXq “ χpP2,Oq ´ χpP2,Op´dqq “ 1 ´

ˆ

2 ´ d

2

˙

.

For d ě 0, we have χpP2,Op´dqq “ dimk H
2pP2,Op´dqq, and by (3.4.2) we see that HnpP2,Op´dqq

is isomorphic (as a k-vector space) to the space of homogeneous polynomials (in 3 variables) of

degree d ´ 3, and the dimension of this k-vector space equals
`

pd´3q`p3´1q

3´1

˘

“
`

d´1
2

˘

“
pd´1qpd´2q

2
.

Hence

gpXq “ χpX,OXq ´ 1 “ χpP2,Op´dqq “
pd ´ 1qpd ´ 2q

2
.

For example, if deg f “ d “ 3, we obtain gpXq “ 1, while for d “ 1 or d “ 2, we have g “ 0. For
X as in Notation 3.6.1 and k “ C, one can prove that there are equalities

2 dimH1
pX,OXq “ 2 dimH0

pX,Ω1
q “ dimH1

singpXpCq,Qq,

where at the right we have the first singular cohomology group of the complex submanifold of P2
C

defined by the equation f . One may conclude that g is equal to the number of “handles” attached
to S2 – P1

C.

Definition 3.6.5. (see [Vak17, §14.2], [Stacks, Tag 0BE2] for the definition in general) A Weil
divisor D on X is a finite formal linear sum of closed points, written as D :“

ř

nixi, where xi P X
is a closed point and ni P Z. In other words, D P

À

xPXcl Z. The degree of such a Weil divisor is

degD :“
ÿ

ni P Z.

http://stacks.math.columbia.edu/tag/03AG
http://stacks.math.columbia.edu/tag/04AR
http://stacks.math.columbia.edu/tag/0BE2
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The support of the divisor is

|D| :“
ď

nx‰0

txu.

Definition and Lemma 3.6.6. For a Weil divisor D “
ř

nxx, we define

OpDq :“ OXpDq

to be the sheaf

OpDqpUq :“ ts P kpXq
ˆ

|valxpsq ` nx ě 0 for all x P Uu Y t0u.

(In other words, we consider rational functions that have a pole of order at most nx in the points
x.) For another divisor E “

ř

mxx and their sum D`E :“
ř

pnx`mxqx, we have an isomorphism

OpD ` Eq “ OpDq b OpEq.

Thus OpDq is a line bundle (and therefore in particular a coherent sheaf) with dual given by

OpDq
_

“ Op´Dq.

Proof. On Xz|D|, we have OpDq – O. For any of the points x P |D| there is an open neighborhood
U Q x such that UX|D| “ txu, such that ϖx P mx Ă OX,x extends to an element of f P OXpUq, and

such f |Uztxuu is invertible. Then the multiplication map OX |U
f´nx

Ñ OpDq|U is an isomorphism.

Lemma 3.6.7. (See [Har83, §II.6], especially Corollary 6.16 there, or [Vak17, Proposition 14.2.10]
for the statement in the generality of a Noetherian, integral, separated scheme whose local rings
OX,x are factorial rings) The map

à

xPXcl

Z Ñ PicpXq, D ÞÑ OpDq

induces an isomorphism of abelian groups

ClpXq
–
Ñ PicpXq,

where
ClpXq :“

à

xPXcl

Z{
`

divpsq, s P kpXq
ˆ
˘

is the so-called divisor class group, where

divpsq :“
ÿ

xPXcl

valxpsqx.

Moreover, we have
degpdivpsqq “ 0,

so there is a well-defined map
deg : ClpXq Ñ Z.

Example 3.6.8. Recall from Theorem 2.11.4 that on X “ P1
k, any line bundle is of the form Opeq

(Definition 2.10.14), i.e.
PicpP1

kq “ Z.

This is matched by the fact that any two (closed) points x, x1 P pP1
kqcl are rationally equivalent ,

i.e., there is a function s P kpP1
kq “ kptq such that divs “ x ´ x1. (This is seen by showing that

there is an automorphism of φ : P1 Ñ P1 such that φpxq “ 0, φpx1q “ 1 and then the function t
t´1

has a simple zero at 0 and a simple pole at 1; cf. [Vak17, Exercise 16.4.B]).
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Definition 3.6.9. For a divisor D and a line bundle L on X we write

hpLq :“ dimk H
0
pX,Lq

and hpDq :“ hpOpDqq.

Lemma 3.6.10. (See [Har83, Proposition II.7.7] for a discussion in the generality of a smooth
projective variety.) If hpDq ‰ 0, then OpDq – OpD1q with D1 being an effective divisor , i.e.,
D1 “

ř

nixi with ni ě 0.

Proof. If we have a non-zero global section s P OpDqpXq, then locally on U Ă X where OpDq|U –

OX |U , s gives rise to a section s1 P OXpUq. This section depends on the choice of the isomorphism
up to multiplying with some element in OXpUqˆ, so that V ps1q is a well-defined closed subset of
dimension 0 (since s ‰ 0). This subset therefore defines an effective divisor D1, and one checks
OpDq – OpD1q.

Proposition 3.6.11. (Riemann–Roch theorem, preliminary version) LetX be as in Notation 3.6.1,
g :“ gpXq its genus and D a divisor on X. Then the Euler characteristic of OpDq can be computed
by

χpX,OpDqq “ degD ` 1 ´ g.

Proof. Using (3.6.3), we have to prove

dimH0
pX,OpDqq ´ dimH1

pX,OpDqq “ degD ` 1 ´ g. (3.6.12)

For D “ 0, this formula holds true by the definition of g and by (3.5.9). It suffices to show that
(3.6.12) holds for some divisor D iff it holds for D1 “ D ` x, where x P Xcl is any (closed) point.
We claim that there is an exact sequence (in QCohpXq)

0 Ñ OpDq Ñ OpD ` xq Ñ i˚k Ñ 0, (3.6.13)

where i : txu Ñ X is the closed embedding, and we have x “ Spec k (by Hilbert’s Nullstellensatz),
and we have written k “ OSpec k. Indeed, the restriction of the above sequence to Xztxu is exact,
given that pi˚kq|Xztxu “ 0. Consider now an open affine neighborhood U “ SpecA Q x as in the
proof of Definition and Lemma 3.6.6, i.e., U contains no other point of D, and ϖx P mx Ă OX,x

extends to an element of ϖ P A “ OXpUq such that x “ V pϖq. The restriction of the above
sequence to U then arises by applying r´ to the following exact sequence of A-modules (where in
the middle 1

ϖ
A Ă QpAq denotes the A-submodule generated by 1

ϖ
):

0 Ñ A Ă
1

ϖ
¨ A Ñ

1

ϖ
¨ A{A Ñ 0

which is isomorphic to
0 Ñ A

ϖ
Ñ A Ñ A{ϖ Ñ 0.

This confirms (3.6.13), so we obtain our claim from the additivity of Euler characteristics in
(3.2.16), given that χpX, i˚kq “ χpSpec k,OSpec kq “ 1.

3.6.1 Interlude: Kähler differentials

Definition 3.6.14. For an A-algebra B, the Kähler differentials is the B-module

ΩB{A :“
à

bPB

Bdb{ „,

where db is just a symbol for each b P B, and the relations divided out are

dpbb1
q “ b ¨ db1

` b1
¨ db (Leibniz rule)

dpab ` a1b1
q “ a ¨ db ` a1

¨ db1.

for a, a1 P A, b, b1 P B.
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Remark 3.6.15. One should think of ΩB{A as being the algebraic analogue of differential 1-forms.
The above relations imply

d1 “ d1 ` d1 ñ d1 “ 0

da “ ad1 “ 0. (3.6.16)

There is a natural map (called universal derivation, in view of Exercise 3.6.27 it corresponds to
idB P DerApB,Bq)

d : B Ñ ΩB{A, b ÞÑ db. (3.6.17)

Example 3.6.18. Let B “ Arti, i P Is, where I is some (possibly even infinite) index set, so
SpecB “ AI

A. Then
ΩB{A “

à

iPI

Bdti,

i.e., the Kähler differentials for a polynomial algebra are just a free module (over that polynomial
algebra). (This computation matches the analogous fact in differential geometry, where the 1-forms
on Rn are of the form

ω “

n
ÿ

i“1

fidxi.q

The universal derivation is given by

dpfq “
ÿ

i

Bf

Bti
dti.

One quick way to see this is to first prove Exercise 3.6.27 and to show DerApArtis,Mq “
ś

iM .

Lemma 3.6.19. (First fundamental sequence) Let A
f

Ñ B
g

Ñ C be two ring homomorphisms.
Then there is an exact sequence (of C-modules)

ΩB{A bB C
v

Ñ ΩC{A Ñ ΩC{B Ñ 0.

The maps are given by v : db b c ÞÑ c ¨ dpgpbqq and dc ÞÑ dc, respectively.

Proof. The right hand map is clearly surjective (since symbols dc generate ΩC{B). The extra
relations db “ 0 in ΩC{B, for b P B are precisely the image of the generators dbb 1 in the left hand
group.

Lemma 3.6.20. (Conormal sequence or second fundamental exact sequence) Suppose A Ñ B
π

Ñ

C “ B{I are two ring homomorphisms (with I an ideal in B). Then there is an exact sequence of
C-modules

I{I2
1bd
Ñ C bB ΩB{A

Dπ
Ñ ΩC{A Ñ 0.

Here, the left hand map is i ÞÑ 1 b dpiq, where d is the universal derivation (3.6.17).

Proof. First note that d factors over I{I2 since dpii1q “ 1 b pidi1 ` i1diq “ i b di1 ` i1 b di “ 0 P

C bB ΩB{A “ ΩB{A{IΩB{A.
We already noted that Dπ is surjective since C Ñ B is surjective. To prove the exactness in

the middle we use again Exercise 3.6.27 and Exercise 3.6.28 and prove that we have the following
exact sequence, for any C-module T :

HomCpΩC{B, T q // HomCpΩB{A bB C, T q // HomCpI{I2, T q

DerBpB{I, T q // DerApB, T q
BÞÑB|I

// HomBpI, T q.

For the right hand identification note that applying bBI to 0 Ñ I Ñ B Ñ C Ñ 0 gives the exact
sequence 0 Ñ I2p“ im I bB Iq Ñ I Ñ C bB I Ñ 0. This sequence is clearly exact.
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Example 3.6.21. Suppose A “ k is a field, B “ krx, y, ts, so SpecB “ A3 and C “ krx, ys{f . In
other words SpecC “ V pfq is the zero-set of f . By Theorem 1.3.4, we have dimC “ 1.

The conormal sequence implies the following formula

ΩC{k “ pBdx ‘ Bdyq{pf, dfq.

We specialize to the case

fpx, yq “ y2 ´ px3 ` ax ` bq,

where a, b P k are fixed. The above quotient is modding out 2ydy and p3x2 ` aqdx. We are
interested in seeing when the stalk of the above C-module at a closed point px´ r, y´ sq P SpecC
(with r, s P k), i.e., s2 “ r3 ` ar ` b, is 1. If s ‰ 0 (and char k ‰ 2) then 2ydy ‰ 0 (and it follows
that 3x2 ` a ‰ 0). If s “ 0, then we have 0 “ r3 ` ar ` b, and the above module is of rank
1 precisely if 3r2 ` a ‰ 0, i.e., if r is a simple zero of the polynomial x3 ` ax ` b. It is known
from the theory of (cubic) polynomials that this happens precisely if the so-called discriminant
∆ :“ 4a3 ` 27b2 ‰ 0.

Proposition 3.6.22. (Jacobian criterion for smoothness, see e.g. [Eis95, Theorem 16.19] for the
statement for krtis{pfjq) Fix C “ krx, ys{f , and p P SpecC. We assume that kppq is a separable

extension of k (this is automatic if char k “ 0 or if k “ k).
Then Cp is a DVR iff the vector

pBf{Bx, Bf{Byq

is non-zero in kppq2. In this event, the above conormal exact sequence is split exact, i.e., there is
a split exact sequence of C-modules

0 Ñ pfq{pf 2
q Ñ C bB ΩB{k Ñ ΩC{k Ñ 0.

In order to establish Kähler differentials as a quasi-coherent sheaf, we need the following com-
patibility with localizations.

Lemma 3.6.23. Let A Ñ B be a ring homomorphism and S Ă B a multiplicatively closed subset,
the natural map

BrS´1
s bB ΩB{A Ñ ΩBrS´1s{A

is an isomorphism. Under this isomorphism ´s´2ds at the left corresponds to dp1{sq at the right,
for s P S.

Proof. It suffices to show that HomBrS´1sp´,Mq gives an isomorphism for each BrS´1s-moduleM .
This corresponds to restriction of derivations:

DerApBrS´1
s,Mq Ñ DerApB,Mq.

Given an A-linear derivation B : B Ñ M one checks that the map B1 : BrS´1s Ñ M defined by

B
1
p
b

s
q :“

1

s
Bb ´ b

1

s2
Bs

is well-defined, is a derivation, and is the unique derivation extending B.

Definition and Lemma 3.6.24. Let X Ñ Y “ SpecA be a map of schemes. Then there is a
unique quasi-coherent sheaf ΩX{Y , called the sheaf of Kähler differentials whose restriction to an
open affine subscheme U “ SpecB Ă X satisfies

ΩX{Y |U “ ĆΩB{A.
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Corollary 3.6.25. If i : X Ă Y is a closed embedding of k-schemes, and I “ kerpOY Ñ i˚OXq P

QCohpY q is the so-called ideal sheaf defining i, there is an exact sequence

I{I2 Ñ i˚ΩY {k Ñ ΩX{k Ñ 0.

If X satisfies the condition ((4)) in Notation 3.6.1 and Y “ Pn
k , then this sequence can be extended

to an exact sequence
0 Ñ I{I2 Ñ i˚ΩY {k Ñ ΩX{k Ñ 0. (3.6.26)

In this event ΩX{k is a locally free sheaf of rank 1 “ dimX.

Exercises

Exercise 3.6.27. For any B-module M , establish a natural bijection

HomBpΩB{A,Mq “ DerApB,Mq

where at the right we have the set (or, rather A-module) of derivations , defined by

DerApB,Mq “ tf : B Ñ Mpmap of A-modulesq, fpbb1
q “ bfpb1

q ` b1fpbq for all b, b1
P Bu.

Exercise 3.6.28.
M 1 f

Ñ M
g

Ñ M2

be two composable morphisms of modules (over some fixed ring A).
(1) Prove that the sequence is exact if the induced sequence

HompM2, Nq
´˝g
Ñ HompM,Nq

´˝f
Ñ HompM 1, Nq

is exact for any A-module N . (Hint: it is enough to take N “ M{ im f .)

(2) Prove that the sequence is split exact (i.e., there is an isomorphism M – M 1 ‘ M2 such that
f becomes the canonical injection M 1 Ñ M 1 ‘ M2 and g the canonical projection) if

0 Ñ HompM2, Nq
´˝g
Ñ HompM,Nq

´˝f
Ñ HompM 1, Nq Ñ 0

is exact.

3.6.2 The statement of Riemann–Roch

We continue working under the assumptions in Notation 3.6.1. By these assumptions and by the
Jacobian criterion for smoothness (cf. Proposition 3.6.22 in the case of a plane curve), the sheaf
ΩX{k is locally free of rank 1, i.e., a line bundle.

By Lemma 3.6.7, we can therefore find a divisor K (which is well-defined only up to rational
equivalence, i.e., up to replacing K by K ` divpsq, where s P kpXqˆ) such that

OpKq “ ΩX{k.

This divisor is called canonical divisor .

Example 3.6.29. If i : X “ V pfq Ă P2
k “ Proj krt0, t1, t2s is a plane curve with deg f “ d

(satisfying our standing assumptions in Notation 3.6.1), then

K “ pd ´ 3qpX X V pt2qq,

say, where X denotes the scheme-theoretic intersection (Exercise 2.6.5). This can be deduced from
the exactness of the conormal sequence in (3.6.26), which by passing to the highest exterior powers
gives

ΩX{k b pI{I2q “ i˚ΩP2
k{k.

One computes the right hand side to be OP2p´3q, and pfq{pf 2q “ i˚Op´dq.
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Then 3.6.12 allows to compute dimH0pX,OXpDqq in terms of computable data (degD, g “

gpXq) and an “error term” H1pX,OXpDqq. This error term can be accessed as follows.

Theorem 3.6.30. (Serre duality) For X as in Notation 3.6.1 and any coherent sheaf F P CohpXq

there is an isomorphism
Hi

pX,F q –
`

H1´i
pX,HompF,ΩX{kq

˘_

(where at the right _ denotes the dual k-vector space). In particular, for F “ OpDq, we have

H1
pX,OXpDqq “

`

H0
pX,OpK ´ Dq

˘_
.

Remark 3.6.31. This holds true much more generally: for X Ă Pn
k (closed) being smooth over k

and integral of dimension d, we have an isomorphism

Hi
pX,F q –

˜

Hd´i
pX,HompF,

d
ľ

ΩX{kqq

¸_

.

See, e.g., [Vak17, Theorem 18.5.1] or [Stacks, Tag 0DWE], especially [Stacks, Tag 0BRT] for an
even more sweeping account.

Example 3.6.32. For X “ P1 “ Proj krt0, t1s “: ProjA, Serre duality for the sheaves F “ OXpeq
is nothing but the agreement

H0
pX,Opeqq “ Ae

with the dual of H1pX,Op´2 ´ eqq, cf. (3.4.2).

Theorem 3.6.33. (Riemann–Roch, final form) For X as in Notation 3.6.1, and any divisor D on
X we have an equality

dimH0
pX,OpDqq ´ dimH0

pX,OpK ´ Dqq “ degD ` 1 ´ g.

Example 3.6.34. Putting D “ K and using Serre duality we get

degK “ g ´ 1 ` χpX,OpKqq

“ g ´ 1 ´ χpX,Oq

“ g ´ 1 ´ p1 ´ gq

“ 2g ´ 2.

Corollary 3.6.35. If D is a divisor with degD ą degK “ 2g ´ 2, then

dimH0
pX,OpDqq “ degD ` 1 ´ g.

Proof. This holds since H1pX,OpDqq “ pH0pX,OpK ´ Dqqq_ “ 0 by Lemma 3.6.10 given that
degK ´ D ă 0.

http://stacks.math.columbia.edu/tag/0DWE
http://stacks.math.columbia.edu/tag/0BRT
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Solutions for selected exercises

Solution of Exercise 1.1.21: We first prove that Y Ă X (in any topological space X) is
irreducible iff its closure Y is irreducible. First, we have Y ‰ H iff Y ‰ H. Now, directly from
the definition, a non-empty space X is irreducible iff any two non-empty open subsets U1, U2 Ă X
have non-empty intersection, i.e., U1 X U2 ‰ H. Also note that the open subsets of Y (or Y ) are
of the form U X Y (resp. U X Y ), with U Ă SpecA open. Now, we observe that U1 XU2 X Y ‰ H

iff U1 X U2 X Y ‰ H, by definition of the closure. Given that Y “ V pIpY qq, this claim allows us
to replace Y by its closure, so we may assume Y is closed.

To prove the Parts (1) and (2) of the exercise, we use the bijection established in Lemma 1.1.6,
under which the non-empty closed subsets H ‰ Y Ă SpecA correspond to proper radical ideals
I Ĺ A. We may replace A by A{IpY q, so we are reduced to proving that for a ring A, SpecA is
irreducible iff

?
0 “ IpSpecAq is a prime ideal.

“ð”: given two open nonempty subsets U1, U2 Ă SpecA, we need to prove U1 X U2 ‰ H.
By definition of the Zariski topology there are f1, f2 P A with H ‰ Dpfiq Ă Ui. We then claim
Dpf1q X Dpf2q “ Dpf1f2q ‰ H. Otherwise we would have f1f2 P

Ş

pĂA p “
?
0 (the nilradical),

which is by assumption a prime ideal, so that f1 P
?
0, say. Then Dpf1q “ H, which is a

contradiction.
“ñ”: if SpecA is irreducible, we show

?
0 is a prime ideal: if a, b P A are such that pabqn “ 0

for n " 0, then SpecA Ă V ppabqnq “ V pabq “ V paq Y V pbq, so by irreducibility SpecA “ V paq,
say, so that a P

?
0.

Concerning Part (3), we note that x2 ´ y2 “ px ´ yqpx ` yq yields V px2 ´ y2q “ V px ` yq Y

V px´yq and these are two proper subsets, so SpecZrx, ys{x2´y2 is reducible (with two irreducible
components being each isomorphic to SpecZrxs “ A1). By contrast, the polynomials x2 ´ y3 and
xy ´ 1 are both irreducible (as one sees directly by considering the degree with respect to x), and
therefore these polynomials cut out two irreducible (closed) subsets of A2.

Solution of Exercise 1.1.25: (solution provided by Cecilia Moriggi) Recall from (1.1.5) that
Ş

pPSpecA p “
?
0. Now fix f P A: we have

Ş

pPSpecArf´1s
p “

?
0Arf´1s; recall that SpecArf´1s is in

bijection with Dpfq and

?
0Arf´1s “

"

a

fk
s.t.a P A, Dn P N :

ˆ

a

fk

˙n

“ 0

*

“ ta P A|Dm P N : pafq
m

“ 0u “
?
0 : pfq.

Thus we get
Ş

pPDpfq
p “

?
0 : pfq.

Now Dpfq “ V pIpDpfqqq “ tp P SpecA|
Ş

qPDpfq
q Ď pu and so

BDpfq “ tp P SpecA|tfu Y
č

qPDpfq

q Ď pu “ tp P SpecA|I Ď pu

105



106 CHAPTER 4. SOLUTIONS FOR SELECTED EXERCISES

And from this we immediately get the required bijection.

4.1 Rings and their spectra

Solution of Exercise 1.3.7: (solution provided by Francesco Feltrin and Manuel Zorzo; this is
also adressing Exercise 1.2.10) The inclusion Z Ă Zrts induces the map ϕ : SpecZrts Ñ SpecZ,
sending a prime ideal p of Zrts to pXZ. The spectrum of Zrts is the disjoint union of the fibers of ϕ:
we will describe ϕ´1ppZq for pZ P SpecZ. We consider two cases, using in both cases Lemma 1.2.6
and the fact that prime ideals in krts (for a field k such as Fp or Q) are p0q and pfq with f P krts
being an irreducible polynomial.

• p ‰ 0 is a prime number. Then

ϕ´1
ppZq – SpecpZrts bZ kppZqq – SpecpZrts bZ Fpq – SpecFprts

We conclude that

ϕ´1
ppZq “ tp “ pp, fq|f is irreducible mod pu Y tpZrtsu,

• p “ 0. Then

ϕ´1
p0q – SpecpZrts bZ kp0qq – SpecpZrts bZ Qq – SpecQrts

We also note that an irreducible polynomial f P Qrts is, by clearing the denominators gener-
ating the same ideal (in Qrts) as a unique irreducible integer multiple of f having the property
that its coefficients are coprime. We conclude that

ϕ´1
p0q “ tp “ pfq|f P Zrts is an irreducible polynomial with coprime coefficientsu Y tp0qu.

Since Zrts is a domain, p0q is a prime ideal, and it is the generic point (e.g., by using Exer-
cise 1.1.21).

The ideals of type 4 are maximal (equivalently, the quotients Zrts{pp, fq are fields); now it is
easy to see that they are the only ones, because ideals of type 2 and 3 can always be included in
one ideal of type 4 (alternatively, look at Zrts{ppq and Zrts{pfq).

This discussion implies that dim Zrts “ 2: indeed we do have the chains of length 2: p0q Ă

ppq Ă pp, fq and p0q Ă pfq Ă pp, fq. And there are no longer chains, since there can’t be inclusions
between two ideals of type 2, or 3, or 4, nor between an ideal of type 2 and one of type 3, the only
possible chains of length 2 are the ones just mentioned.

Solution of Exercise 1.3.8: An example is A “ V ˆ k3, where V is a DVR and k a field. For
any ring A with 4 maximal ideals and one non-maximal (i.e., minimal), we have dimA “ 1.

Solution of Exercise 1.4.17: (Solution by Mario Mascolo and Paola Schiavone)

• “p2q ñ p3q”: Let a P A and let φ : Z ˆ Zrt˘1s Ñ A be a ring homomorphism such that
φp0, tq “ a. Set e – φp0, 1q and u – φp1, tq. Note that, since p0, 1q is an idempotent, so is e;
and since p1, tq is a unit, so is u. Finally,

a “ φp0, tq “ φp0, 1qφp1, tq “ eu.
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• “p3q ñ p2q”. Any element of ZˆZrt˘1s can be written in the form pn, pptqt´αq, where n P Z,
α P N and pptq P Zrts. Fix an homomorphism Zrts Ñ A sending t to a P A. By assumption,
a “ ue for an idempotent e P A and a unit u P Aˆ. We define ψ : Z ˆ Zrt˘1s Ñ A by setting

ψpn, pptqt´αq – np1 ´ eq ` ppaqu´αe, (4.1.1)

for all n P Z, α P N and pptq P Zrts. It is clear that ψp0, tq “ ae “ uee “ ue “ a. Some short
computation proves that the map ψ defined in 4.1.1 is indeed a ring homomorphism. Indeed,
ψ preserves sums (we assume without loss of generality, that β ě α):

ψrpn, pptqt´αq ` pm, qptqt´βqs “ ψrn ` m, ppptqtβ´α
` qptqqt´βs

“ pn ` mqp1 ´ eq ` pppaqaβ´α
` qpaqqu´βe

“ pnp1 ´ eq ` ppaqu´αeq ` pmp1 ´ eq ` qpaqu´βeq

“ ψpn, pptqt´αq ` ψpm, qptqt´βq;

and it also preserves products:

ψrpn, pptqt´αq ¨ pm, qptqt´βqs “ ψpnm, pptqqptqt´α´β
q

“ nmp1 ´ eq ` ppaqqpaqu´α´βe

“ pnp1 ´ eq ` ppaqu´αeq ¨ pmp1 ´ eq ` qpaqu´βeq

“ ψpn, pptqt´αqψpm, qptqt´βq,

where we have used the fact that e and 1 ´ e are orthogonal idempotents. We conclude that
ψ makes the diagram in p2q commute.

• Let R be any (commutative) ring. We say that two elements x, y P R are associate if they
generate the same ideal, i.e. if there exists u P Rˆ such that y “ xu. Notice that if two
idempotent elements of a ring are associate, they coincide. Indeed, let e P R and f P R be
two idempotents such that e “ fu for some u P Rˆ. Then f “ u´1e, and

e “ fu “ f ¨ fu “ feu´1u “ fe “ u´1e ¨ e “ u´1e “ u´1uf “ f.

In particular, for any r P R, either no idempotent is associate to r or the idempotent associate
to r is unique.

• Using the previous observation we prove that γ : Zrts Ñ Z ˆ Zrt˘1s, t ÞÑ p0, tq is an epimor-
phism (in the category of rings). Let us be given ring homomorphisms

Zrts
γ

Ñ Z ˆ Zrt˘1
s
φ

Ñ
ψ
A

be such that φ ˝ γ “ ψ ˝ γ. To prove ψ “ φ it suffices to show that any ring homomorphism
Z ˆ Zrt˘1s Ñ A is uniquely determined by the image of p0, tq.

Let φ : Z ˆ Zrt˘1s Ñ A be a ring homomorphism. Set a – φp0, tq. We can write a “ eu,
where e “ φp0, 1q is idempotent and u “ φp1, tq P Aˆ, hence a and e are associate in A:
by what we have proven earlier, we may thus deduce that φp0, 1q is the unique idempotent
element of A that is associate to a “ φp0, tq.

In particular, the value of φp0, 1q is uniquely determined by the value of a “ φp0, tq. Notice
that φp1, 0q “ φp1, 1q´φp0, 1q “ 1´φp0, 1q and that if pn, pptqt´αq is any element of ZˆZrt˘1s,
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then

φpn, pptqt´αq “ φpn, 0q ` φp0, pptqqφp0, t´αq

“ nφp1, 0q ` ppφp0, tqqφp0, tq´αφp0, 1q

“ np1 ´ φp0, 1qq ` ppφp0, tqqφp0, tq´αφp0, 1q.

Thus φ is indeed uniquely determined once the value of φp0, tq is fixed, which proves that γ
is an epimorphism in the category of rings.

• Here is another proof that γ is an epimorphism. Consider the diagram

Zrts
γ

//

γ

��

Z ˆ Zrt˘1s

γ1

��
φ

##

Z ˆ Zrt˘1s
γ2

//

ψ

,,

pZ ˆ Zrt˘1sq bZrts pZ ˆ Zrt˘1sq

δ

)) A

By assumption the outer quadrangle commutes, which gives a unique map δ making the
diagram commute. However, as was discussed in the proof of Lemma 1.4.9, the map γ1 (and
also γ2) is an isomorphism, so that φ “ ψ.

Solution of Exercise 1.8.10: In general, a subset S Ă X :“ SpecA is stable under specialization
iff its complement XzS is stable under generization. For example we show “ñ”: if x P XzS and
y ⇝ x are given, suppose y P S. Then we would have x P S by the assumption. We also recall
from Exercise 1.8.11 that XzS is constructible iff S is constructible.

We prove part (2) of th exercise only. Putting V :“ XzS, we have to prove a constructible
subset V Ă X is closed iff it is stable under specialization. By Exercise 1.8.9, V is the image of a
finite type map SpecB Ñ SpecA. It is closed by Lemma 1.7.19.

Solution of Exercise 1.8.13: This proof is due to Moret-Bailly https://mathoverflow.net/

q/481465. Let Z be the image of Dpbq under φ : SpecB Ñ SpecA. For a prime p Ă A we have

p R Z iff H “ Dpbq X φ´1ppq
Lemma 1.2.6

“ Dpbq X SpecB bA kppq “ SpecBrb´1s bA kppq, which in
turn is equivalent to b being nilpotent in B bA kppq. Given that B is free of rank d over A, the
latter is a d-dimensional kppq-vector space. So being nilpotent is equivalent to bd “ 0. In the
given basis bd “ pa1, . . . , adq, so this amounts to ai “ 0 P kppq, or equivalently ai P p. Therefore

SpecAzφpZq “
Şd
i“1 V paiq.

Solution of Exercise 1.8.14: As in the proof before, for a prime p Ă A we have p P φpDpfqq

iff f is not nilpotent in kppqrts. For a general ring A, a polynomial f “
ř

ant
n is nilpotent in Arts

iff all its coefficients ai are nilpotent in A, as one sees by induction on deg f . ForA “ kppq, this
means that f “ 0. Thus Thus

φpDpfqq “ tp, ai R p for some iu “
ď

i

Dpaiq.

Solution of Exercise 1.8.15: : “ñ”: first, V pfq is clopen for any f P A. This holds by (1.4.11).
This implies that V pIq, for any finitely generated ideal I Ă A, is clopen. This then implies that
any constructible subset is clopen.

“ð”: we use that SpecB is compact Hausdorff (Lemma 1.4.9(4)), and therefore any open subset
is a finite union of fundamental open subsets Dpfq.

https://mathoverflow.net/q/481465
https://mathoverflow.net/q/481465
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Solution of Exercise 1.9.6: If k is no longer algebraically closed, there are prime ideals not of
this form, e.g. in Rrxs we have a prime ideal px2 ` 1q, whose residue field is C.

4.2 Schemes

Solution of Exercise 2.8.3: By definition, X is covered by finitely many open affines SpecA
with A being a finitely generated Z-algebra. By Chevalley’s theorem (Theorem 1.8.5), the image
of SpecA in SpecZ is constructible, hence so is the image of X. If fpXq contains infinitely many
closed points, it must contain the generic point as well by Definition 1.8.3.

Solution of Exercise 2.9.20: We have the implications “proper” ñ “finite” (Proposition 2.9.12)
and (by definition) “proper” ñ “separated” and “finite” ñ “separated” (Example 2.9.2). The
converse implications do not hold: A1 Ñ SpecZ is separated but not finite nor proper. The
map P1 Ñ SpecZ is proper, but not affine and in particular not finite (cf. the discussion after
Definition 2.5.1).

Solution of Exercise 2.9.23: Throughout we use that the diagonal map ∆ corresponds to the
multiplication map B bA B Ñ B.

The map A Ñ Arf´1s is flat (being a localization) and nice, since Arf´1s bA Arf´1s Ñ Arf´1s

is an isomorphism.
The map Z Ñ Fp is not flat (since p is a zero-divisor in Fp but not in Z), but nice: FpbZFp Ñ Fp

is an isomorphism.
The map Z Ñ Zrts is flat (even free as a Z-module), but not nice (Zrts bZ Zrts Ñ Zrts is

surjective but not flat, and therefore not an open embedding).
We have a ring isomorphism C bR C “ Crts{t2 ` 1 “ C ‘ C, and the multiplication map to C

is given by pz, wq ÞÑ iz ` iw. There is a splitting C Ñ C bR C given by u ÞÑ p1
i
u, 0q, so the map

is an open embedding after passing to spectra. The map is flat (anything over a field is flat).
The composite of nice maps is nice, as one sees by expressing ∆g˝f as the composite of ∆f and

a pullback of ∆g, cf. the proof of Lemma 2.9.7.

4.3 Cohomology of quasi-coherent sheaves

Solution of Exercise 3.5.13:
(1): We have

POX
pmq “ dimk H

0
pPn

k ,Opmqq “ dim krt0, . . . , tnsm

so that

POX
pmq “

"

`

m`n
n

˘

“
pm`nqpm`n´1q¨¨¨pm`1q

n!
m ě 0

0 m ă 0

We note that for m ě 0, the above expression is a polynomial (in m) of degree n.
We have POXpeqpmq “ POX

pe ` mq, which for any m with e ` m ě 0 agrees with the above
polynomial. In particular, this is a numerical polynomial, with degPOXpeq “ n.

(2) In order to compute Pi˚OY
, we use the exact sequence

0 Ñ OXp´dq
f

Ñ OX Ñ i˚OY Ñ 0.
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The Euler characteristic is additive, so we get

χpi˚OY peqq “ χpOXpeqq ´ χpOXp´d1 ` eqq.

Using (3.5.14), we may replace χpF q by PF throughout, provided that e " 0. We get

Pi˚OY
peq “ POX

peq ´ POX
pe ´ d1q

“

ˆ

e ` n

n

˙

´

ˆ

e ´ d1 ` n

n

˙

“
pe ` nq ¨ ¨ ¨ pe ` 1q ´ pe ´ d1 ` nq ¨ ¨ ¨ pe ´ d1q

n!

In the enumerator, there is no term of order en (these cancel), so the degree is ď n ´ 1. If d “ 0
and f “ 1, we have i˚OY “ 0, so that degPi˚OY

“ 0 ă n ´ 1.
(3): We need to show that for each F there is some e0 such that HmpX,F peqq “ 0 for all m ě 1

and e ě e0. For any F P CohpXq, we have an exact sequence

0 Ñ K Ñ
à

Op´diq Ñ F Ñ 0,

and we know HmpX,´q “ 0 for any m ą n` 1. We do a downward induction on m. We have the
exact sequence

Hm
pX,Kpeqq Ñ Hm

pX,
à

Ope ´ diqq Ñ Hm
pX,F peqq Ñ Hm`1

pX,Kpe ` 1qq,

and by induction the right hand term vanishes for e " 0, and this is also true for the second term
(again for e " 0).

(4): We use the exact Koszul sequence

0 Ñ OX Ñ . . . Ñ
à

i

OXp´diq Ñ OX

loooooooooooooooooooomoooooooooooooooooooon

“Kpf1,...,fmq

Ñ i˚OY Ñ 0.

We see that the Euler characteristic of i˚OY only depends on the di, so we may assume f1 “ td10 ,
say. We have a short exact sequence of chain complexes

0 Ñ Kpf2, . . . , fmqp´d1q
f1
Ñ Kpf2, . . . , fmq Ñ Kpf1, . . . , fmq Ñ 0.

Let us write i1 : Y 1 :“ V pf2, . . . , fmq Ă X and P 1 for the numerical polynomial Pi1˚OY 1 . We know
by induction, beginning with the case m “ 1 discussed above, degP 1 ď n ´ m ` 1. We obtain

χpX, i˚OY peqq “ P 1
pe ´ d1q ´ P 1

peq,

which is a polynomial of degree ď degP 1 ´ 1.
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the 1983 original. (Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9.) Berlin: Springer,
2006, p. 200. isbn: 3-540-33942-6.

[Bre+73] J. W. Brewer et al. Krull dimension of polynomial rings. English. Conf. commutat. Algebra, Lawrence,
Kansas 1972, Lect. Notes Math. 311, 26-45 (1973). 1973.

[Bre97] Glen E. Bredon. Sheaf Theory. 2nd ed. Vol. 170. Graduate Texts in Mathematics. Springer, 1997. isbn:
978-0-387-94905-5. doi: 10.1007/978-1-4612-0647-7. url: https://link.springer.com/book/10.
1007/978-1-4612-0647-7.

[BSY22] Robert Burklund, Tomer M. Schlank, and Allen Yuan. The Chromatic Nullstellensatz. 2022. eprint:
arXiv:2207.09929.

[Eis95] David Eisenbud. Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward
algebraic geometry. New York: Springer-Verlag, 1995, pp. xvi+785. isbn: 0-387-94268-8; 0-387-94269-6.
doi: 10.1007/978-1-4612-5350-1. url: http://dx.doi.org/10.1007/978-1-4612-5350-1.

[GL01] Thomas G. Goodwillie and Stephen Lichtenbaum. “A Cohomological Bound for the h-Topology”. In:
American Journal of Mathematics 123.3 (2001), pp. 425–443. doi: 10.1353/ajm.2001.0016. url:
https://doi.org/10.1353/ajm.2001.0016.
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Čech complex, 85

absolute Frobenius, 9
absolutely flat, 16
action, 55
acyclic assembly lemma, 90
additive group, 28
adeles, 78
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Amitsur complex, 16
ample line bundle, 96
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arithmetic surface, 14

base change, 15
basic open subsets, 5
blow-up, 55
boundary, 9
Bézout’s theorem, 93

Chevalley’s theorem on constructible sets, 38
Chow’s lemma, 66
class number formula, 78
clopen, 20
closed embedding, 59
closed point, 7
cocycle condition, 21, 49
coherent, 94
coherent rings, 94
cohomology commutes with flat base change, 90
compact Hausdorff spaces, 62
complex projective space, 51
connected, 21, 51

conservative, 10, 43
constant sheaf, 74
constructible, 37
cusp, 37

dense, 7
derived categories, 92
derived functor, 92
determinant, 81
direct image functor, 23, 72
discrete valuation rings, 33
domain, 27
dominant, 7
dominates, 32
dual Koszul complex, 82
dual line bundle, 76
dualizable object, 79

Euler characteristic, 88, 93
extension by zero, 74
exterior algebra, 81

factorial, 50
faithfully flat, 14
Fermat’s last theorem, 48
fibers, 11
finite, 29, 60
finitely presented quasi-coherent sheaf, 79
flat, 14
Frobenius, 9
functor of points approach, 74

generalization, 7
generated by global sections, 96
generic point, 6
global sections, 19
global sections functor, 24
glue, 21, 28
graded ideal, 52
graded ring, 52
graded ring homomorphism, 52
Grothendieck group, 78
group schemes, 28

Hartog’s theorem, 28
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Hausdorff, 62
Hilbert’s Nullstellensatz, 39
homogeneous, 52
homogeneous of degree n, 52
homogeneous polynomials, 52
hypersurface, 93

idempotent, 20
infinite-dimensional affine space, 8, 39
integral, 29, 51
integral adeles, 78
integral closure, 30
integral extension, 29
integral map, 29
integral ring homomorphism, 29
integrally closed, 30, 33
inverse image functor, 72
invertible sheaves, 79
irreducible, 8, 51
irreducible component, 8
irrelevant ideal, 52

Jacobson radical, 30

K-group, 78
Koszul complex, 81
Krull dimension, 12

Lazard’s theorem, 14
line bundle, 75
Liouville’s theorem, 54, 95
local map, 11
local ring, 10
locally closed embedding, 59
locally Noetherian, 50
locally of finite presentation, 60
locally of finite type, 60
locally ringed space, 22

minimal, 8
monoidal unit, 79
morphism of locally ringed spaces, 23
multiplicative group, 26

Nakayama lemma, 31
nil-radical, 6, 9
nilradical, 9
Noether normalization, 36
Noetherian, 8, 50
normal, 50
normalization, 37

of finite type, 60

open embedding, 59
open map, 38
open maps, 14
origin, 26

points, 12
presheaf, 18
Proj construction, 52
projective space, 52
projective variety, 95
proper, 33, 63
pullback functor, 72
punctured plane, 28
pushforward functor, 72

quasi-affine scheme, 49
quasi-coherent sheaf, 70
quasi-compact, 6, 60
quasi-separated, 59, 72

radical, 6, 8, 30
reduced, 51
reducible, 9
regular sequence, 83
residue field, 11
restriction map, 18
ringed space, 22

saturation, 41
scheme, 47
scheme-theoretic intersection, 60
schemes glue, 49
separated, 62
Serre twist, 71
sheaf, 19
sheaf of OX-modules, 67
sheaf of rings, 22
shift, 83
singular, 37
small object argument, 41
specialization, 7
specializations lift, 64
spectrum, 5
stable under pullback, 58
stalk, 22
structural sheaf, 20
support, 36

tensor algebra, 81
total complex, 90
trivial line bundle, 75
trivial vector bundle, 75
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unique factorization domain, 33, 36
universally closed, 62, 63

valuation ring, 31
Valuative criterion for universally closed maps,

64
valuative dimension, 13
vector bundle, 75

Weil uniformization theorem, 78

Zariski topology, 5
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